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Abstract

The  transfer  of  carbon  dioxide  between  the  ocean  and  the  atmosphere,  and

within the ocean interior, can be described by constituent “carbon pumps”. These

carbon pumps are driven by biological and physical processes.  The biological

components can be separated into the “biological carbon pump”, which describes

the  cycling  of  carbon  in  the  upper  layers  driven  by  photosynthesis  in

phytoplankton, and the “microbial carbon pump”, which describes the bacterial

transformation of dissolved organic carbon into a slowly degradable form in the

deep ocean. Understanding these processes requires both sophisticated marine

ecosystem models and observations of the ocean carbon cycle.

This thesis proposes that the simulation and understanding of the carbon pumps

can be improved through data assimilation. Data assimilation is the process of

incorporating observations (data) into a dynamic model to improve the accuracy

of the simulations. This thesis makes use of ocean colour observations obtained

by satellite imaging, assimilated into the marine ecosystem model ERSEM.

The first objective of this study is to provide evidence that assimilating ocean

colour data into a marine ecosystem model improves the simulation of carbon

fluxes  in  the  ocean,  which  is  supported  by  results  from  identical  twin

experiments.  The  second  objective  is  to  improve  the  understanding  of  the

biological  and  microbial  carbon  pumps  and  their  variability  across  different

marine locations. This was achieved by comparing the results  of ocean colour

data assimilation reanalyses at a nutrient rich coastal  site and a nutrient-poor

open-ocean site. 

A major finding of this study is that nutrient concentrations control the strength

of  the  biologically  driven  carbon  pumps,  with  the  microbial  carbon  pump

showing dominance in nutrient poor environments.
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Chapter 1

Introduction

1.1. Overview and Motivation

Atmospheric concentrations of carbon dioxide have increased since the industrial

revolution, and are now the highest they have been in 800,000 years (IPCC Fifth

AR 2013). The ocean has absorbed about 30% of anthropogenic CO2 emissions,

which has placed an importance on the understanding of ocean carbon fluxes in

recent  scientific  research.  While  the  rate  of  this  uptake  is  relatively  well

constrained  (2.2  ±  0.3  Pg  C  per  year),  the  processes  responsible  for  carbon

sequestration in the ocean are not well understood.

While many physical and chemical processes are important drivers of the ocean

carbon fluxes, biologically driven processes also make a significant contribution.

This study will focus on the biological components of the carbon fluxes, with a

primary focus on the roles of phytoplankton and bacteria.

Phytoplankton are microscopic marine plants.  They are predominantly single-

celled and are mostly confined to the surface layers of the ocean due to their

dependence  on  sunlight  for  survival.  They  absorb  light  to  undergo

photosynthesis by means of pigments called chlorophyll,  which influences the

colour  of  the  ocean  surface.  This  can  be  detected  from  space  using  satellite

imaging (e.g. Zhang et al., 2017) in a product known as “ocean colour”, which is

now routinely monitored by several space agencies worldwide.

The  global  distribution  of  chlorophyll  concentration,  which  can  be  inferred

directly  from ocean  colour  data,  varies  annually  due  to  spatial  and  seasonal

variations of the phytoplankton community biomass in the marine environment.

This is driven by changes in solar irradiance, temperature, spatial gradients of

nutrient availability, and grazing by secondary producers. Figure 1.1 illustrates 
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Figure 1.1: A comparison of the global distribution of chlorophyll for January and

June  of  2017.  Data  shown  was  retrieved  from  MODIS,  a  remote  sensing

instrument  launched  by  NASA[DOI:  https://oceancolor.gsfc.

nasa.gov/cgi/browse.pl]. 

these  variations  from  a  NASA  data  set.  In  this  figure,  a  higher  chlorophyll

concentration is observed in coastal waters compared the deep ocean due to an

increase in nutrient availability. Higher concentrations are also typically seen in

the  northern  hemisphere  in  the  summer  months,  as  well  as  the  southern

hemisphere in winter months, due to the differences in average daily exposure to

sunlight during different seasons.

Chlorophyll  concentration  is  an  indicator  of  phytoplankton  biomass  (carbon

content). However, the ratio between the carbon and chlorophyll concentration

within  the  phytoplankton  cells  is  not  constant  but  varies  as  a  function  of

irradiance,  temperature  and  nutrient  concentration  (Geider  et  al.,  1987).

Therefore, monitoring the concentration of chlorophyll across the year allows us

to  obtain  information  about  the  phytoplankton  contributions  to  many  ocean

carbon fluxes, such as primary production, predator-prey interactions between

zooplankton and phytoplankton, the sinking of dead phytoplankton cells,  and

the seasonal variability of such processes. These possibilities provide a basis for

using surface chlorophyll data from ocean colour to gain an insight into carbon

cycling in marine ecosystems. 

10
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In addition to phytoplankton, bacteria are another key biological contributor to

the  ocean  carbon  fluxes.  They  are  also  micro-organisms,  but  unlike

phytoplankton,  maintain their  presence in the deeper ocean. Bacteria  compete

with phytoplankton for uptake of nutrients, particularly nitrate, phosphate and

ammonium (Caron, 1994). However, due to their nutrient uptake efficiency, they

are  mostly  dominant  in  oligotrophic  (nutrient-poor)  regions,  where  bacterial

biomass is similar to that of phytoplankton. They play a pivotal role in marine

carbon cycling due to their interactions with dissolved organic matter (DOM),

including its consumption and processing of the DOM. Much of this matter is

cycled  through  the  oceans  by  transportation  and  remineralisation  at  greater

depths.

It is possible to infer bacterial processes by observing DOM (Kähler et al., 1997),

through a means similar to that of phytoplankton processes and ocean colour.

However, the availability of DOM data is currently low. Despite this, modelling

bacterial processes is still necessary for the understanding of carbon cycling in the

deep  ocean,  and  is  therefore  a  vital  inclusion  in  marine  ecosystem  models

(Polimene et al., 2012).

The roles of phytoplankton and bacteria in the cycling of carbon are incorporated

into two mechanisms known as the biological  carbon pump (BCP;  Falkowski,

2012) and the microbial carbon pump (MCP; Jiao, et al., 2010). These pumps will

be outlined here, but are explained in more detail in section 1.3.1.

The  BCP  describes  the  transport  of  organic  matter  in  both  dissolved  and

particulate form due to gravitational sinking and vertical mixing. This is enabled

through  primary  production  at  the  surface  and  the  subsequent  trophic

interactions in the deeper layers of the ocean. Current estimates suggest that the

BCP exports 5-12 Pg C y-1 from the euphotic zone (the region at the surface where

sunlight is sufficient for photosynthesis) to the “twilight zone” (the region in the

11
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deep ocean where carbon is sequestered on time scales up to millennia; Siegel et

al. 2016). 

The  MCP,  which  was  only  recently  conceptualised,  describes  the  bacterially

mediated  transformation  of  dissolved  organic  carbon  from  labile  (easily

degradable) to recalcitrant (slowly degradable) forms. Modern estimates of the

current rate of recalcitrant dissolved organic matter (RDOM) production range

from 0.07  to  0.6  Pg  C  per  year,  indicating  a  critical  one-order  magnitude  of

uncertainly for this process (Jiao et. al., 2010).

The relative dominance of BCP and MCP is thought to be dependent on seasonal

and inter-annual climate variability and nutrient gradients in the global ocean

(Jiao et. al., 2013). However, high uncertainty in the relative influence of the two

pumps  remains  due  to  the  difficulty  of  observing  the  organic  and  inorganic

carbon stocks and fluxes in the ocean. There is also a poor understanding of the

patterns  of  the  variability  of  biological  carbon  fluxes  in  relation  to  climate

oscillations and trophic gradients in the ocean.

Marine biogeochemical models such as the  European Regional Seas Ecosystem

Model (ERSEM; Blackford et al., 2004, Butenschön et al., 2016) are now able to

simulate many of the biological processes involved in these pumps. They have

been used to quantify carbon fluxes and budgeting in the ocean (e.g Wakelin et

al.,  2012),  and recent efforts  towards the integration of ocean-colour data into

marine ecosystem models has led to revised estimates of carbon fluxes in the

ocean through assimilation algorithms (e.g. Ciavatta et al., 2016). Carbon pumps

in marine models are explained in more detail in section 1.3.2, with an in-depth

description of the ERSEM model in section 2.2.1.

There are now opportunities to take the approach of data incorporation in marine

models further due to the recent availability of high frequency data from remote

sensing  projects  (e.g.  ESA  OC-CCI)  (Zibordi  et  al.,  2010).  There  are  also
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comprehensive in-situ datasets from diverse monitoring sites of the global ocean

(e.g. station L4 in the North West European shelf and BATS in the oligotrophic

North Atlantic gyre). By integrating marine ecosystem models with ESA OC-CCI

data, there is potential for a better understanding of the global variability of the

BCP and MCP.

The process of combining models with data is known as “data assimilation” (DA)

(see section 1.3.3 for more details). This is a huge area of research in its own right,

and subsequently DA techniques are often applied to models without a thorough

exploration  of  the  benefits  of  using  alternative  DA  techniques.  This  thesis

incorporates a discussion of the operational side of DA and experiments with a

newer  techniques,  in  addition  to  the  discussion  of  its  outcomes  in  this

application.  This  is  included  in  light  of  the  well-documented  challenges  that

marine biogeochemical models such as ERSEM face when applying DA methods,

which is due to the high-dimensionality, non-linear and positive-definite nature

of many of the biogeochemical variables (Dowd et al., 2014). 

Potential  problems  with  applying  DA  in  this  area  still  persist  when  using

conventional  methods  such  as  the  Ensemble  Kalman  Filter,  particularly  as  it

assumes that the model error covariances form a Gaussian (and therefore linear)

distribution. This problem increases further when the degree of non-linearity of

the relationships between state variables changes depending on particular spatial

dynamics, such as the position of the mixed layer depth in the water column.

This argues for a closer examination of alternative non-linear DA techniques (Van

Leeuwen, 2009), which is explored as a potential alternative in this thesis in the

identical twin experiments presented in Chapter 3.
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1.2. Objective and Procedure 

The aim of this project is to improve the understanding and simulation of carbon

pumps in the ocean by assimilating ocean colour data into marine ecosystem

models. This was achieved by applying an ensemble-based DA method to the

marine ecosystem model ERSEM. To this end, two distinct monitoring sites were

considered for DA application to capture the variability in the carbon pumps

(BCP and MCP) across different parts of the ocean. 

The first step made to satisfy this objective was to identify the most effective DA

method for providing the best representation of the carbon fluxes. For this, two

different DA methods, the Ensemble Transform Kalman Filter (ETKF) and the

Implicit Equal Weights Particle Filter (IEWPF), were applied in controlled twin

experiments.  These experiments have three main aims: (1) to support the case

that assimilating ocean-colour can improve the simulation of carbon fluxes, (2) to

assess the suitability of competing DA techniques, (3) to tune the parameters of

the  selected  DA  algorithm  for  its  subsequent  application  in  real  ecosystem

simulations.  Chapter  3  is  dedicated to describing these twin experiments  and

their results.

Then, the assimilation of ESA OC-CCI ocean colour data was performed with the

objective  to  quantify  the  inter-annual  variability  of  the  carbon  fluxes  in  two

environmentally distinct regions of the global ocean. These areas were chosen

based on the availability of data and so that they would encompass both open

ocean and coastal regions, as well as nutrient rich and nutrient poor locations, to

investigate the impact of different nutrient regimes on the relative intensity of

fluxes involved in the BCP and MCP. Therefore, the assimilation of ocean colour

was considered at two sites:  Station L4 and the site for the Burmuda Atlantic

Time-Series Study (BATS). The location of these sites is shown in figure 1.2.
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Figure 1.2: The location of Station L4 and BATS in relation to the North Atlantic

To  validate  the  assimilation  of  ocean  colour  at  these  sites,  available  in-situ

measurements  of  other  biogeochemical  variables  were  used  to  examine  the

“closeness” of the assimilation ensemble to these data compared to a simulation

without assimilation. The results of this validation are outlined in Chapter 4 (for

Station L4) and Chapter 5 (for BATS).

The results were then post-processed in Chapter 6 to explain the differences in

the  MCP  and  BCP  in  relation  to  the  nutrient  regimes  at  the  two  sites.  This

provides a key result for this thesis, showing that the DA reanalyses can help in

efforts to understand complex ecosystem processes.

In summary, this thesis makes a case for the inclusion of the assimilation of ocean

colour in efforts to calculate the carbon fluxes and understand the carbon pumps

in the oceans. It presents estimates for the extent of improvement of the carbon

flux representation on the basis of the twin experiments, and provides evidence

of  improvements  at  sites  with  different  biogeochemical  properties.  From  the

results it is possible to see the benefit of DA in terms of improved accuracy and to

infer some dynamic properties of the ecosystem.

The remainder  of  this  chapter  includes  a  literature  review of the background

material  that  this  project  intends  to  build  upon.  Chapter  2 will  discuss  the

methodological details of the model, observations and DA methods. Chapter 3

15



will show the results of the twin experiments, and discuss how they can be used

to inform the real data-assimilation products. Chapter 4 will present results from

ocean-colour assimilation at station L4, and Chapter 5 will do the same for BATS.

Chapter 6 will provide a comparison of the variability of the dominance of the

carbon pumps between the sites, which will be based on the results provided by

the previous two chapters. Finally chapter 7 will summarise the achievements of

this project and outline possible future directions.
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1.3. Background Material

1.3.1 Understanding the Ocean Carbon Pumps

The term “carbon pump” describes a mechanism that transports carbon dioxide

(CO2). This idea was explored in an ocean context by Volk and Hoffert, (1985),

who defined and investigated different types of carbon pumps. They defined an

ocean carbon pump as “a process that depletes the ocean surface of CO2 relative

to  the  deep-water  CO2”.  Following  this,  they  reasoned  that  the  global  ocean

carbon  pump  can  be  described  as  a  system  of  component  pumps.  Their

proposition was that the ocean pump should be separated into three constituents:

the “soft-tissue pump”, the “solubility pump”, and the “carbonate pump”. 

The “soft-tissue” pump describes the vertical redistribution of CO2, both by its

incorporation  into  phytoplankton  cells,  and  by  the  subsequent  gravitational

sinking of particulate organic carbon (POC) into the deeper ocean. This process

now forms the basis of what is known as the “biological carbon pump” (BCP)

(Figure 1.3), a term which in more recent years has become a partial replacement

to the term “soft-tissue”, as examined by Sigman and Haug, (2003). They suggest

that the BCP is a consideration of all biologically driven sequestration of CO2, and

therefore  the  soft-tissue  pump  could  be  considered  a  subcategory  of  this.

Falkowski  et  al.,  (2012)  discusses  some  of  the  additional  processes  that  now

comprise the BCP, such as the breakdown of the organic carbon in phytoplankton

by its predators (e.g. zooplankton) and the decomposition of dead organic matter

by bacteria. 

The  “solubility  pump”  (SCP)  describes  the  physio-chemical  processes  in  the

ocean. This term is still widely used, and is discussed by Falkowski et al., (2000),

where it is said to be primarily driven by the increased solubility of CO2 in lower

temperatures and higher salinity. Further transportation is provided through the

dynamics and thermohaline circulation. While the SCP is an essential component
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of the global carbon cycle, it is largely omitted from this thesis to maintain a focus

on the biological contributions.

The  remaining  “carbonate  pump”  named  by  Volk  and  Hoffert,  (1985),  first

emerged as an additional process that was subtracted from the combined signal

of  the  solubility  and  soft-tissue  pumps.  This  pump,  studied  extensively  in

Ridgewell and Zeebe, (2006), is driven by the mineral calcium carbonate (CaCO3),

the precipitation of which results in an increase in pCO2 (partial pressure of CO2)

due a re-partitioning of undissolved carbon in favour of aqueous CO2. This pump

consists  of  many  biological  factors,  particularly  due  to  the  use  of  calcium

carbonate as a protective shell in many types of plankton, but this is outside the

scope of this thesis.

A comparison of the relative contributions of these pumps was performed by

Cameron at al., (2005), which used a factorial analysis to conclude that the soft-

tissue,  solubility  and  carbonate  pump  contribute  around  63%,  24%  and  6%

respectively to variations in atmospheric CO2, using an Earth system model of

intermediate complexity.

Recent studies have revealed a further biologically-driven pump, the “microbial

carbon pump” (MCP) (Figure 1.4), which has been classified separately from the

well-established BCP. The mechanism behind this pump was proposed by Jiao et

al., (2010). This introduces the MCP by suggesting that a proportion of dissolved

organic  matter  produced  by  primary  production  is  not  re-mineralised,  but

instead transformed by marine bacteria into refractory (slowly degradable) forms

which may persist in the ocean for extended time scales, perhaps up to millenia

(Hansell  2013).  Although  many  experimental  works  seem  to  support  this

hypothesis (e.g. Biddanda et al., 1997), the mechanisms underpinning the MCP

remain largely unknown

18



A comprehensive look at the relative contributions of the BCP and the MCP can

be found in Legendre et al., (2015). Here, the magnitude of the MCP is defined

quantitatively as being the rate of production of DOC with an average lifetime

greater than 100 years. They estimate that the MCP contributes an average of 0.2

Pg C to the World Ocean each year, whereas the BCP magnitude could be placed

somewhere between 0.3 and 0.7 Pg C per year. 

Jiao et al. (2014) proposed an integration of the BCP and MCP, but this requires a

better  understanding  of  the  interplay  of  the  carbon  fluxes  between  the  two

pumps.  They  hypothesise  that  an  increased  nutrient  availability  within  an

ecosystem decreases the efficiency of carbon storage by the MCP, which in turn

increases the dominance of the BCP in the system (Figure 1.5). This hypothesis

was  supported  by  Polimene  et  al.,  2016,  through  model  simulations  which

showed  a  relationship  between  carbon  pump  dominance  and  the  carbon  to

nutrient ratios in phytoplankton.

This  thesis  explores  this  hypothesis  further  and aims  to  quantify  the  relative

importance of the BCP and MCP in relation to the availability of nutrients in the

water column. This is achieved by simulating the relevant carbon fluxes at two

sites in the ocean representative of nutrient-poor gyre conditions and nutrient-

rich coastal conditions.
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Figure 1.3: Diagram of the BCP, from Chisolm et al.,  2000 (Nature).  Here, phytoplankton and

zooplankton are split into two categories by size, to represent the dependence of length scale on

their interactions.

Figure 1.4: Diagram of the MCP, from Jiao et al., 2010

Figure 1.5. An illustration demonstrating the main environmental conditions that accompany the

dominance of the BCP and MCP – nutrient availability for the BCP and depth for the MCP. Figure

is taken from Jiao et al., 2014
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1.3.2 Carbon Fluxes in Marine Ecosystem Modelling

Ecosystem models are mathematical representations of the processes driving the

spatial-temporal evolution of ecological variables that characterise the state of a

natural  environment.  In  an  effort  to  simulate  ocean  carbon  fluxes,  this  work

considers biogeochemical marine ecosystem models that describe the processes

driven  by  the  plankton  community.  Fasham  et  al.,  (1990),  outlines  an  early

example of this in a nitrogen-based plankton model. This used a “low trophic

level”  model,  meaning  that  it  focussed  on  primary  producers  and  micro-

organisms  (e.g.  bacteria,  phytoplankton,  zooplankton),  while  incorporating

essential nutrients such as carbon and nitrogen.

Low trophic level models give an essential insight into the biologically driven

carbon fluxes due to their representation of primary production (PP), which is the

basis of the BCP. In the model provided by Fasham et al., (1990), the annual net

PP was estimated by adjusting the phytoplankton mortality rate while adhering

to a ratio of carbon : nitrogen : phosphate that is equal to the value of 106 : 16 : 1

proposed by Redfield (1934) (which was subsequently known as the “Redfield

ratio”). This is not the only method of estimating PP, as many studies infer this

from productivity  irradiance  (P-E)  curves,  such  Furuya  et  al,  1998.  These  are

examples  of  “static”  approaches,  meaning  that  PP  is  assumed  to  be

approximately constant. Later studies, such as Macedo et al., (2006), argue for a

dynamic approach, motivated by an effort to avoid the overestimation of photo-

inhibition that is observed when using a static model. 

Improvements  to  the  simulations  of  PP  were  also  facilitated  by  a  number  of

innovations  to  dynamic  marine  ecosystem  modelling.  For  example,  the

representation of a variable stoichiometric ratio was examined by Geider et al.,

(1997), which proposed a chlorophyll-a to carbon ratio regulated by alterations in

light  exposure,  nutrient-limitation  and temperature.  Furthermore,  there  is  the
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introduction  of  the  plankton functional  types  (PFTs)  into  the  model  used  by

Baretta et al.,  (1995). Here, zooplankton and phytoplankton are separated into

subgroups to distinguish between trophic interactions that are specific to those

groups.  An example of  this  is  the incorporation of  silicate  into diatom shells,

which does not occur in the other phytoplankton types. Le Quere et al., (2005)

provided a more in-depth examination into the characteristic traits of each PFT,

and proposed a set of 10 PFTs based on a set of physiological, environmental and

nutrient requirements that regulate their biomass and productivity.

Most contemporary models include complex relations between the PFT sizes and

essential BCP dynamics. For example, the selective grazing of zooplankton may

vary depending on its size, prompting the need for a separation of zooplankton

based on the relative length scale of each group (Le Quere et al., 2005). Similarly,

the sinking of particulate organic carbon is also a function of the size, which in

turn depends on the size of the organisms (phytoplankton or zooplankton) from

which the particles derive.

By  simulating  primary  production,  grazing,  and  various  other  trophic

interactions,  models  have started  to  quantify  the  BCP in  the  global  ocean.  A

notable  example  is  Giering  et  al.,  (2014),  wherein  the  first  carbon  budget

calculation  in  the  mesopelagic  regions  was  made.  They  concluded  that

prokaryotes (such as bacteria) provided the dominant sink for organic carbon,

and are responsible for around 70 to 92 per cent of remineralisation in the deeper

ocean region.

For the simulation of MCP, an explicit representation of bacteria is required. This

has only been achieved in more recent model simulations.  Allen et al.,  (2004)

examined  a  water  column  in  the  North  Sea  with  the  inclusion  of  bacterial

biomass  and  the  dissolved  organic  carbon  (DOC),  which  drives  the  bacterial

production. They deduced that changes in the stratification of the water column
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influences  the  development  of  the  microbial  loop.  Polimene  et  al.,  (2006),

introduced  the  bacterially-mediated  formation  of  recalcitrant  DOM  and

investigated the dynamics leading to DOM accumulation, particularly in regions

where the microbial-loop is dominant.

Despite these advancements, there is a lot of work required for the modelling of

the MCP. Current models are still incapable of providing the key fluxes involved

in the MCP that have been outlined in literature accounts. Models are also unable

to keep up with the newer theoretical additions to bacterial communities, such as

those outlined by Polimene et al., (2017).

This research uses an updated version of the European Regional Seas Ecosystem

Model (ERSEM), a case study of which is provided by L. De Mora et al., 2016. In

addition to  simulating the  BCP,  this  model  is  also  capable  of  simulating key

processes  of  the  MCP due  to  its  inclusion  of  bacteria  and  the  production  of

recalcitrant DOC (Polimene et al., 2017).
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1.3.3 Data Assimilation

Data assimilation (DA) is the process of incorporating observations of a system

into a model describing the system. This is useful because both observations and

models are uncertain representations, and so an analysis that combines the two

(while appropriately accounting for these uncertainties) is capable of producing a

more accurate representation of the system. 

DA is typically applied for one of two major purposes:  parameter estimation,

which adjusts model parameters to best fit the observations, or state estimation,

which updates the model states based on the observations during a model run.

This thesis will proceed to discuss state estimation, as it most effectively provides

a reanalysis (a refining of an existing analysis) of the carbon fluxes.

The  state  estimation  DA  process  can  be  interpreted  as  an  application  of  the

stochastic  filtering  process,  as  outlined  in  Jazwinski  (1970).  In  this  context,

filtering is the method of determining a best estimate for the true state of a system

from  a  potentially  noisy  set  of  observations.  This  process  can  be  expressed

mathematically  through Bayes'  Theorem,  where  the posterior  pdf  (probability

density function) is used to provide the best estimate and the uncertainty of the

state:

p ⟨x|y ⟩=
p (x )p ⟨ y|x ⟩

p ( y ) (1)

Where x  is the state vector, y  is the observation vector, p ( x| y )  is the posterior

pdf, p ( x )  is the prior pdf and p ( y|x )  is the observed pdf.

A  further  distinction  that  is  often  made  is  the  categorisation  of  modern  DA

methods  into  “variational”  and  “sequential”  techniques,  although  hybrids

between the two are becoming more popular.
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Variational DA methods rely on the calculus of variations to find the mode of the

posterior pdf by minimizing a cost function, typically assuming a Gaussian prior

pdf.  “3D-Var”  is  an  early  type  of  variational  technique  developed  by  Sasaki

(1958), which assumes that observations are static in time, so the x and y in Bayes

Theorem above are only valid at a specific time. A more complex version of this,

known as  “4D-Var”,  was later  developed by Le Dimet  and Talagrand (1986),

which considered the distribution of the observations in a time window, so that

the  observation  vector  in  Bayes  Theorem  depends  on  time.  A  further

classification within variational techniques is that if a state is required to satisfy a

deterministic  dynamical  model,  it  is  called  a  “strong-constraint”  problem,

meaning x is the state at the beginning of the assimilation window, and otherwise

it is called “weak-constraint”, in which  x denotes a model trajectory inside the

observation window.

Variational approaches have been applied in BGC DA in a strong constraint form

(e.g. Matear 1995, Freidrichs et al., 2007), but are problematic due to the lack of

consideration  for  the  contribution  of  model  error.  Furthermore,  the  approach

relies on a linearisation of the model equations and its adjoint, which is an issue

when the dynamics are strongly non-linear. Due to these drawbacks, this thesis

does not explore variational techniques and instead examines sequential DA.

Sequential DA methods rely on forward propagation of the model in time until

an observation is reached, whereupon it performs its “analysis step”. Perhaps the

simplest  method  of  a  sequential  method  would  be  optimal  interpolation,

introduced by Gandin (1963), which weights each observation based on statistical

information about their errors. This method is not typically used in sophisticated

models as it fails to propagate error covariances.

The most popular types of sequential DA stem from the original Kalman Filter

(KF) proposed by Kalman, (1960). The KF is an algorithm that makes use of a set
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of  noise-prone  observations  to  estimate  a  combined  probability  distribution

through Bayesian  inference.  For  complex  high-dimensional  models,  the  KF is

now performed with ensembles (a grouping of dispersed model runs, assumed to

be representative of model uncertainty), as proposed by Evensen, (1994). This is

known as the Ensemble Kalman Filter (EnKF).

The EnKF proceeds by propagating an ensemble of  states with the fully non-

linear model while assuming a Gaussian probability distribution. To represent

the error statistics in the analysis step, the EnKF performs an ensemble of parallel

data  assimilation  cycles.  At  the  analysis  step,  the  update  equation  for  one

ensemble member is:

xk=xk∣k−1+ K̂ k ( yk−Hxk∣k−1
f ) (2)

Here xk  is the state vector at time k , H  is the observation matrix and yk  is the

observation at time k , which is subject to a perturbation given by:

yk= yk+ vk (3)

Where vk  is a random variable with a normal distribution.

The Kalman Gain is denoted by K̂ k . This is the weight, or relative importance,

given to the current state estimate which is achieved through a comparison of the

covariance update between timesteps. A higher Kalman gain indicates that the

filter is placing a higher importance to recent measurements. This is given by:

K̂ k=P k∣k−1H k
T (H kPk∣k−1H

T+R k)
−1 (4)

Where  R  is  the  observation  covariance  matrix  and  P k|k− 1  is  the  covariance

update between timesteps k− 1  and k , which can be written as:

Pk∣k=( I−K k H k)Pk∣k−1( I−K k H k )
T +K kR kK k

T (5)
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This is known as the Joseph form for the update covariance matrix. Note that I

is the identity matrix. This can be simplified further when choosing the optimal

Kalman Gain, which gives the following equation:

Pk|k=(I−K k H k)Pk|k−1 (6)

Since its introduction the EnKF has received many improvements and exists in

many augmented variations. Notably, there is the Localised Ensemble Transform

Kalman Filter (LETKF; Hunt et al., 2007) which includes localisation to minimise

spurious correlations between model variables that arise from the relatively small

ensemble sizes that can be afforded in real applications, and to enhance the rank

of the ensemble covariance matrix. This implementation also includes inflation,

enabling the spread of the ensemble to be adjusted. The form of EnKF used in

this thesis is a similar implementation of the form outlined in Hunt et al. (2007),

without localisation (ETKF), and is discussed further in 2.3.1.

Another alternative to the EnKF method is to use a sequential data assimilation

method  that  attempts  to  solve  Bayes’  Theorem  directly,  without  making  the

Gaussian  assumption  for  any  of  the  variables.  An example  of  this  is  particle

filtering  (PF)  (Del  Moral,  1996),  and is  reviewed extensively  in  a  geophysical

context by van Leeuwen, (2009). It represents the model probability distribution

function  as  an  ensemble  of  particles,  each  with  an  assigned  weight  (relative

importance).  It  resamples  the  particles  at  the  analysis  step  based  on  their

predictive performance. 

PFs assume that the prior p(x)  can be written as the sum of delta functions:

p (x )=∑
i=1

N e

δ (x−x i) (7)

   

27



These delta functions centre on the particles  xi ,  and each particle is a model

state, as in an EnKF. Together they form a posterior pdf that is not constrained by

any assumption of its shape.

While  full  non-linearity  is  an advantage of  PFs,  a  disadvantage has  been  the

inability  to  perform  well  in  high-dimensional  systems  (called  the  “curse  of

dimensionality”), due to a rapid loss of the statistical information of the particles

when the number of independent observations is large. The introduction of the

Equivalent Weights Particle Filter (EWPF), suggested by Van Leeuwen, (2010),

offers a solution to this by exploiting the “proposal density”, a method which

ensures that particles will be relatively close to the observations. In this method,

every  ensemble  member  is  reassigned  to  have  an  equal  weight  (relative

importance) at the analysis step. Zhu et al. (2016), extended this further into the

Implicit-Equal  Weights  Particle  Filter  (IEWPF),  which  proceeds  by  sampling

implicitly with a different covariance for each particle, resulting in equal particle

weights by construction. More details on these methods are given in Section 2.3.2.

One final note on the model error considerations for both of the sequential DA

methods  outlined  is  that  the  model  state  is  propagated  forward  between

timesteps with a random forcing factor βk :

x k= f (xk−1)+β k (8)

where  k  is the timestep and f denotes the deterministic model. The nature of

this forcing factor is chosen to reflect the model uncertainty, and can therefore be

set up to depend on a model error covariance matrix, known as the Q matrix.

This  determines  the  error  covariance  between  each  state  variable.  The

implementation of  this  matrix  in  the  set-up of  the  perturbations  used  in  this

project will be described further in Sections 2.3.3 and 3.2.2.
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1.3.4 Data Assimilation in Biogeochemical Marine Models

Marine Biogeochemistry (BGC) is now an essential component of many marine

modelling platforms. It is a field that is clearly set to benefit from DA due to the

recent  surge  in  availability  of  remotely  sensed  data  as  well  as  the  strong

relationships  that  exist  between  the  BGC  and  the  observable  physical

environment, which is discussed by Gehlen, (2015).

An early example of sequential DA in BGC marine models was performed by

Ishizaka (1990), which used an optimal interpolation method to assimilate ocean

colour into a coupled physical-biological model in the South-east US continental

shelf.  While somewhat beneficial,  this method omitted many sources  of error,

and the corrections due to assimilation were often overpowered by the dynamics

of a free model run. Semovski and Wozniak (1995) used a similar method with

chlorophyll assimilation in a model of the North Atlantic and Baltic Sea, while

comparing their  output  with in-situ data  as a means of  validation.  While  the

representation of  the phytoplankton seasonal  cycle was improved,  there  were

some  undesired  side-effects  such  as  an  erroneous  increase  in  zooplankton

biomass. They concluded that further DA work needed to incorporate a more

complete  representation  of  ecosystem  dynamics,  noting  representations  of

primary production estimates and the inclusion of dissolved organic carbon as

examples.

Ensemble methods were later applied to account for the multivariate nature of

the BGC models.  Eknes and Evensen (2002) demonstrated the potential of the

EnKF through its implementation into a 1D BGC model. They conducted twin

experiments using 100 ensemble members with phytoplankton biomass as the

assimilated variable. They revealed that the evolution of the whole model state

could be  controlled  with this  method,  including  critical  unobserved  variables

such as zooplankton and the nutrients. Allen (2003) used this technique in a more
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complex model (ERSEM) by assimilating in situ chlorophyll and nutrients into a

1D model in the Cretan Sea. They a found a marked improvement in the model’s

ability to hindcast chlorophyll, but emphasized the need for high frequency data

due to a maximum predictability window of two days.

Further  examples  of  EnKF approaches  include Torres  (2006),  who assimilated

chlorophyll and nutrient data into a 1D ERSEM representation of the Ria de Vigo

estuary, and Ciavatta (2011), who assimilated chlorophyll data into a 3D ERSEM

representation for the Western English Channel using data collected from station

L4. Both studies report improvements to the representation of chlorophyll as well

as  a  number  of  unobserved  variables,  although  the  improvements  to  the

forecasting ability were limited. Ciavatta (2014) extended work from the previous

study  with  an  updated  version  of  ERSEM,  this  time  assimilating  light

attenuation.  This  resulted  in  improvements  to  the  carbon  flux  simulation,

plankton  trophic  dynamics,  and  even  some  bacterial  dynamics,  which  were

included in the model to provide initial insight into the MCP. This showed that

EnKF  techniques  were  potentially  useful  alongside  recent  developments  in

ecosystem understanding. These studies, among many others, helped to establish

the EnKF techniques as the leading sequential DA method in marine BGC.

The other main class of ensemble methods that has seen some success in marine

BGC are the PF methods. Sequential importance resampling (SIR), the standard

PF technique, was the first method of this kind to be applied to a marine BGC

model by Losa, (2003). However,  this was only a 0D model and was found to

experience difficulties with model stability due to filter degeneracy. Dowd (2007)

used a Markov Chain Monte Carlo (MCMC) approach in an attempt to avoid the

degeneracy  seen  in  the  SIR filter,  and managed to  produce  results  that  were

comparable to the EnKF for state estimation in a 0D model. A different approach

was taken by Mattern (2013),  which used the SIR filter  in a 3D model  of  the

Middle Atlantic Bight. By making a series of modifications to the SIR method,
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such as state augmentation and smoothing to deal with observation outliers, they

achieved  an  improved  model-data  fit  compared  to  an  optimised  model

simulation, which showed the potential for PF methods in surface chlorophyll

assimilation.  While some success  has been demonstrated,  there are still  many

unexplored areas of PF techniques in a marine BGC context.

Despite all the advances in the aforementioned techniques, there are still many

statistical  challenges  that  arise  from  applying  DA  in  marine  BGC.  These

challenges include: highly non-linear relationships that govern the dynamic BGC

models, the large number of dimensions required by these models, the positive-

definite nature of many BGC variables as well as physical complications such as

the geometric boundary conditions that constrain the models (e.g. coastlines). 

On top of this, many of the parameters are uncertain, with a wide range of values

reported in literature.  This  is  exemplified by Parslow,  (2013),  with regards  to

trajectories  involving  phytoplankton  blooms  and  nitrate  depletion.  There  are

further  uncertainties  in  the  ocean  circulation  models  that  drive  BGC models,

which  are  discussed  by  Toyoda et  al.,  (2013)  in  their  effort  to  improve  state

estimations of lower trophic ecosystems. There are currently no DA methods that

can account for all these problems simultaneously, and so the most successful

methods have attempted to find a compromise.

Dowd (2014) provides a detailed account of potential DA techniques for marine

BGC modelling, in both variational and sequential DA. This thesis will focus on

some of the sequential methods, specifically EnKF and PF techniques, as potential

candidates.

The main problem experienced by the EnKF application in marine BGC, is that

the variables are highly non-linear in both distribution and uncertainty, which

the EnKF does not explicitly address.  This also extends to the observed fields,

such  as  chlorophyll  that  is  distributed  logarithmically,  as  determined  by
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Campbell (1995). From this, there is a solution, which is executed by Ciavatta et

al.,  (2011)  and  Ford  et  al.,  (2012)  among  others,  which  is  to  log-transform

chlorophyll prior to its assimilation at each analysis step. Another anamorphic

transformation  to  transform  non-Gaussian  distributed  variables  to  Gaussian

variables  is  used  by  Lenartz  et  al,  (2007),  also  with  the  EnKF.  While  these

solutions  do  not  completely  resolve  this  problem,  they  show  that  the  EnKF

methods are capable of producing desired results for ocean colour assimilation,

which has motivated the examination of a filter of this kind in this project.

Particle filters are the fully non-linear solution to this problem, but in turn they

typically struggle from a separate issue - “curse of dimensionality”, as described

in the previous section. This is a problem as most dynamic marine BGC models

operate in a high number of dimensions, resulting from their fine resolutions in

space and time and the complexity of the underlying equations. For this reason,

standard  particle  filter  methods,  such  as  the  SIR  filter,  often  lead  to  a  poor

representation of the targeted distribution, as the filter degenerates with even a

small number of members, which is shown by Snyder et al., (2008). This is why

the recently proposed updates to particle filtering which offer potential solutions

to the high-dimension problem, such as Van Leeuwen (2010) and Zhu, (2016), are

of interest within this field. While there are currently no literature accounts of the

equivalent  weight  particle  filter  methods  in  BGC marine  modelling,  they  are

examined as a second method of interest within this project.
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Chapter 2

Methods

2.1. Overview

This chapter presents a description of the general methods applied in this project,

including details of the model, data and set-up for the assimilative simulations.

Firstly, the ecosystem model will be described. This is a coupling of the ocean

biogeochemical model ERSEM (European Regional Seas Ecosystem Model), with

the 1D ocean physical model  GOTM (General Ocean Turbulence Model).  This

model is used to represent the carbon fluxes that are involved in the biological

and  microbial  carbon  pumps  (BCP  and  MCP)  such  as  primary  production,

respiration,  zooplankton grazing  and particle  sinking  for  the  BCP,  as  well  as

bacterial DOC production for the MCP. The most recent description of ERSEM is

provided by Butenschon et al.,  (2016).  The coupled model  ERSEM-GOTM has

been applied in many previous studies,  such as Blackford et  al.  (2007) which

estimated biogeochemical dynamics at two sites in the global ocean. GOTM will

be described in less depth than ERSEM due to the biological focus of this thesis.

A brief discussion of the mixed layer depth consideration in GOTM-ERSEM is

also included as a reference point for later discussion.

Then, the data assimilation algorithms will be described. Two techniques were

chosen for examination: the Ensemble Transform Kalman Filter (ETKF), and the

Implicit  Equal  Weights  Particle  Filter  (IEWPF).  There  are  major  differences  in

these  approaches  arising  from  fundamentally  different  assumptions  on  the

distribution of data and model states, which will be discussed. These methods

were applied using the DA framework EMPIRE (Employing MPI for Researching

Ensembles). While this is the first application of the ETKF and the IEWPF with
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ERSEM, some DA methods have already been applied to ERSEM-GOTM such as

Torres, (2006), with the Ensemble Kalman Filter (EnKF). It is worth mentioning

that  ERSEM  with  the  EnKF  has  also  been  applied  in  three-dimensional

assimilative  applications  by  Ciavatta  et  al.,  (2011,  2014  and  2016).  Further

successful  examples  of  DA  within  ERSEM  include  the  use  of  the  Singular

Evolutive Interpolated Kalman filter (SEIK) by Triantafyllou et al., (2003), Korres

et  al.,  (2012),  Triantafyllou  et  al.,  (2013),  as  well  as  the  Singular  Evolutive

Extended Kalman filter (SEEK), by Hoteit et al., (2003), Hoteit et al., (2004), and

Korres et al., (2012).

The skill metrics that were applied to assess and compare the performances of the

reference and assimilative simulations are also presented in this chapter. This will

primarily focus on the interpretation of the root-mean squared deviation (RMSD)

between the means of the two simulations.

Finally, an account of the type of observational data assimilated in this work, i.e.

remotely  sensed  ocean-colour  data,  will  be  provided.  This  is  the  surface

chlorophyll concentration provided by the ESA’s Ocean Colour Climate Change

Initiative (OC-CCI).  This  was used for the assimilation at  the two ocean sites

(station  L4  and  BATS),  as  well  as  for  the  characterisation  of  the  artificial

observations  in  the  twin  experiments.  Previous  works  have  made  use  of

assimilation with these data, including Ford and Barciela, (2017) and Ciavatta et

al., (2016), with ERSEM.
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Figure 2.1. Schematic of the combined model. The structure of ERSEM is on the left with the main

components of GOTM shown on the right.
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2.2. The Model: ERSEM-GOTM

The  full  ecosystem model  chosen  for  this  project  consists  of  two  component

models: the 0-dimensional model ERSEM, which simulates the trophic dynamics

that  drive  the  BGC  variables,  and  the  1-dimensional  model  GOTM,  which

describes  the  vertical  transport  of  the  variables  and  the  physical  processes

determining the vertical profiles of temperature and salinity. A diagram showing

the main features of this model is shown in Figure 2.1. 

2.2.1 The biogeochemical model: ERSEM

ERSEM is designed to simulate the biogeochemical dynamics of a realistic marine

ecosystem  (Baretta  et  al.,  1995).  Since  its  initial  development  the  model  has

received  regular  updates,  and  this  project  makes  use  of  the  recent  version

presented  by  Butenschön  et  al.,  (2016).  In  this  work,  the  model  state  vector

includes the following:

4 phytoplankton functional types: ERSEM uses a functional type approach to model

the dynamics  of  the low trophic  levels  of  the ecosystem,  and so  the  primary

producers  are  split  into  four  phytoplankton  functional  types  (PFTs).  These

include  three  categories  based  on  relative  size  –  picophytoplankton,

nanophytoplankon and microphytoplankton – in addition to diatoms, which are

included separately due to their unique incorporation of silicate. Each PFT has

four  corresponding  variables  that  represent  the  content  of  its  constituents:

chlorophyll, carbon, nitrate and phosphate. The diatom PFT has an extra variable

for  its  silicate  content.  The PFTs  are  characterized  by  stoichiometric  ratios  of

nutrients-to-carbon  and  chlorophyll-to-carbon,  which  may  vary  dynamically

(Geider et al., 1997; Baretta-Bekker et al., 1997) between individual ranges defined
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in the model parameterization by Blackford et al. (2004).  The PFTs differ because

of the different  values  of  the parameters  characterizing the specific lysis rates

(rate of cell disintigration) and specific rest respiration. The processes relating to

phytoplankton in the ecosystem model are shown in Figure 2.2 (left).

3 zooplankton functional types: the zooplankton functional types (ZFTs) consist of

mesozooplankton,  microzooplankton,  and heterotrophic  nanoflagellates.  These

are also separated by relative size, because this determines the type of PFT they

graze on and the relative size of particulate organic matter they excrete. Each ZFT

is represented by a variable corresponding to its  biomass (carbon content),  as

well as nitrate and phosphate content for the two larger types (microzooplankton

and heterotrophic nanoflagellates). The processes relating to zooplankton in the

ecosystem model are shown in Figure 2.2 (middle).

1  bacterial  functional  type: this  is  the  main  driver  of  the  microbial  loop.  It  is

responsible for the production and recycling of dissolved organic matter (DOM)

in  labile,  and  recalcitrant  forms,  and  drives  the  regeneration  of  inorganic

nutrients in the water column (Polimene et al.,  2006; Hansell,  2013). There are

variables corresponding to the bacterial content of carbon, nitrate and phosphate.

Bacteria  contribute  to  cycling  of  not  only  inorganic  nutrients,  but  also  labile,

semi-labile  and  recalcitrant  DOM.  The  processes  relating  to  bacteria  in  the

ecosystem model are shown in Figure 2.2 (right).

6 inorganic components: this includes  five inorganic dissolved nutrients (carbon

dioxide,  nitrate,  ammonia, phosphate and silicate),  and dissolved oxygen. The

model  configuration applied here includes  a carbonate system module,  which

regulates the air-sea flux of carbon dioxide (Butenschön et al., 2016).
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Figure 2.2. Diagram of phytoplankton, zooplankton and bacteria interactions. For phytoplankton:

synthesis  of  dissolved  gases  includes  photosynthesis  which  uses  carbon  dioxide.  Uptake  of

nutrients includes nitrate, phosphate and ammonium, as well as silicate for diatoms only. Organic

matter from excretion takes the form of particulate organic matter, that undergoes sinking and

uptake by bacteria. For zooplankton: Predation occurs both on phytoplankton, zooplankton and

bacteria, and well as by zooplankton themselves. Organic matter is produced both by excretion

and mortality (dead matter). For bacteria: cycling of nutrients as well as organic matter produced

by the PFTs and ZFTs.

These  variables  can  be  combined  and  used  in  equations  to  examine  fluxes

pertaining to the BCP and the MCP. This project considers a total of five carbon

fluxes.  This  is  comprised  of  three  relevant  fluxes  for  the  BCP:  (1)  primary

production, (2) zooplankton grazing and (3) the sinking of particulate organic

carbon,  and  one  relevant  flux  for  the  MCP:  (4)  net  bacterial  production.  In

addition,  a  final  flux  describing  CO2 exchange  between  the  ocean  and

atmosphere, (5) the air-sea flux, is also considered due to its implications for the

global carbon budget. The representation of these five fluxes in ERSEM will now

be explained in further detail.

(1) Primary production (PP): in marine ecosystems this is the net gain or loss in the

synthesis of organic compounds from phytoplankton. To represent this, ERSEM

considers the combined effects of carbon uptake, excretion and respiration by the

PFTs (Figure 2.2).  The uptake of carbon removes CO2 from the surroundings,

whereas  excretion  and respiration  both  export  CO2 to  the  surroundings.  The
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mathematical  formulation  of  PP  in  ERSEM  is  based  on  the  work  of  Baretta-

Bekker et al. (1997). Here, the gross carbon uptake is treated separately from the

uptake of nitrogen and phosphorus. This is because the cellular nutrient uptake

of  newly  fixed  carbon  is  affected  more  by  the  nutrient  limitation  than  by

photosynthesis. From this, it is assumed that the gross primary production (GPP)

consists of both a photosynthetic component (through cellular uptake) and an

unused, excreted component (resulting in nutrient limitation). This approach was

also used by Falkowski and Raven (2007). Overall, the ERSEM computation of

the mass-specific phytoplankton GPP is complex and considers the chlorophyll-a

to carbon quota of each PFT, the metabolic response to temperature of each PFT,

as  well  as  silicate  and  iron  limitation  factors,  photosynthetic  rates,  and

photoinhibition.

(2) Zooplankton grazing: this describes the consumption of primary producers by

predators, and may also be referred to as zooplankton predation. In ERSEM, this

is performed by all 3 of the ZFTs mentioned previously. The model dynamics are

based on work by Baretta-Bekker  et  al.  (1995),  Broekhuizen  et  al.  (1995),  and

Heath et al., (1997). An important consideration is that the type of phytoplankton

that each ZFT may consume is variable, as predation capability depends on size.

In ERSEM, this uses type II Michaelis-Menten-type uptake capacities (Chesson,

1983;  Gentleman  et  al.,  2003).  Zooplankton  also  graze  on  bacteria  and  even

exhibit  cannibalism,  and  so  the  governing  equations  must  include  the  ZFTs

themselves as potential prey.

ERSEM represents the total prey available to zooplankton as the following:

PrC,N,P
χ =∑

Ψ

f pr|ZΨ
χ

Ψ'C
Ψ'C+hmin

χ
Ψ'C,N,P (9)
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where  χ  are  the ZFTs,  Ψ  are  the individual  prey types,   f pr  are  the food

preferences and  hmin  is a food half-saturation constant based on the detection

capacity of predators.

(3)  The  sinking  of  particulate  organic  carbon  (POC): this  describes  the  effects  of

gravity on the carbon by-products of microbial, PFT and ZFT excretion, mortality

and grazing. ERSEM makes three distinctions between the relative sizes of POC

(small, medium and large) based on the size of the PFT or ZFT that it originates

from. The sinking of  the POC model  states is  achieved by passing them to a

physical  driver,  which  considers  the  velocity  of  sinking.  This  velocity  is

connected by:

ω sed
χ =ω0

χ +ω lim
χ max (0 ,p sink

χ − l<NP>
χ ) (10)

where  ω  are  the  sinking  velocities  subject  to  different  conditions  (“sed”  -

sedimentation, “0” – a constant relating to the POC type, and “lim” - nutrient

limited),  χ  are  the  phytoplankton  states,  psink  is  the  threshold  for  nutrient

limitation, and l<NP>
χ

 is the combined nitrogen-phosphorus limitation factor.

(4)  Net  bacterial  production: this  refers  to  the  carbon  output  from  bacterial

decomposition and the modulation of particulate and dissolved organic matter

(DOM). In ERSEM, bacteria feeds on labile dissolved organic matter, and produce

semi-labile  and  recalcitrant  forms  of  DOM,  which  are  those  with  longer

degradation timescales. This is the primary driver of the microbial loop dynamics

in  the  model.  The  rate  of  the  bacterial  uptake  of  DOM  is  regulated  by

temperature, nutrient and oxygen conditions. Following this, the nutrient status

of  bacteria  controls  the  labile  DOM.  The  ERSEM  formulation  of  this  process

includes  the  mechanism for  the  production  of  recalcitrant  DOC mediated  by
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bacteria as described by Hansell, (2013). This provides the model with the outline

of the MCP, despite the exclusion of recalcitrant DOC with lifetimes much greater

than a year. The sub-model for these processes is provided by Polimene et al.,

(2007).

The formulation in ERSEM of the bacterial uptake of particulate and dissolved

organic matter is given by:

~R=RC,P,N
lab +qslab RC,P,N

slab +q srefr RC,P,N
srefr +q smallRC,P,N

small +qmed RC,P,N
med +qlarge RC,P,N

large (11)

where q  is the turnover rate corresponding to turnover of the organic matter R .

RC,P,N  relates  to  the  carbon,  phosphate  and  nitrate  content  of  each  type  of

dissolved organic matter, with “lab” - labile, “slab” - semi-labile, “srefr” -  semi-

refractory, and “small”, “med” and “large” meaning different categorical sizes.

(5) Air-sea flux: this is the exchange of carbon dioxide at the interface between

ocean  and  atmosphere.  This  flux  is  driven  physically  and  is  based  on  the

differences  between  the  partial  pressures  of  both  mediums.  The  pCO2 in  the

water both influences and is influenced by the BCP and MCP, and therefore the

exchange is also considered in this  work.  This  exchange is  also crucial  to the

global carbon cycle.

The air-sea flux for carbon dioxide in ERSEM is given by:

FC|sea
air=ρ sea kairC (T,uwind )(pCO2

− pCO2

air ) (12)

where F  is the flux, ρsea  is the sea density, T  is the temperature, uwind  is the

wind speed,  p  is pressure and k  is an empirical gas transfer coefficient taken

from Nightingale et al., (2000).
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2.2.2 The physical model: GOTM

The General Ocean Turbulence Model (GOTM; Burchard et al., 1999) is a one-

dimensional  physical  model  that  is  used  to  represent  the  vertical  mixing  of

hydrodynamic variables  in  a water  column. Forcing functions for  this  model,

include wind, temperature,  irradiance, cloud cover and relative humidity. The

fluxes of ecosystem components are determined between adjacent boxes and/or

layers. The procedure of coupling of ERSEM and GOTM is discussed in Allen et

al. (2004).

The model is capable of calculating temperature, salinity, velocities, turbulence

momentum and fluxes between the atmosphere and the sea. The sensible and

latent heat fluxes are calculated from the formulae in Casterllari et al., (1998), and

the long wave back-radiation is calculated using the May formulation (Budyko,

1974). The surface stress is calculated from the wind stress, and the formulae for

this were chosen based on a sensitivity study of surface heat flux formulation on

the model response (Siddorn and Allen, 2003).

Some  of  these  parameters  can  be  adjusted  to  test  for  different  regimes,  for

example in the use of a Mellor–Yamada (Mellor and Yamada, 1974) type k-L or a

k-ε type turbulence closure scheme. Routines for nudging observations also exist

in GOTM, which were applied here to relax the simulation towards the profiles of

salinity  and  water  temperature.  This  form  of  relaxation  was  used  in  prior

successful  GOTM-ERSEM simulations (e.g.  Blackford et al.,  2004; Torres et al.,

2006; Polimene et al., 2012; 2014; 2016, Butenschön et al., 2016).
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2.2.3 Representation of the Mixed Layer Depth in ERSEM-GOTM

The mixed layer depth (MLD) in a marine system is the depth above which the

physical and BGC properties of the water column are homogeneous due to

turbulence. This section is included to help inform the interpretation of results

in Chapter 3.

The MLD is relevant to plankton dynamics because it regulates the availability

of nutrients in the upper layers, where the light availability enables primary

production. In the idealised site set-up for station L4, the time evolution of the

MLD is driven by the spring/summer warming of the upper layer (by solar

irradiance that determines stratification) and the autumn/winter mixing of the

whole water  column due to wind-induced turbulence.  The variation of  the

MLD  position  in  a  GOTM-ERSEM  simulation  configured  for  station  L4  is

shown in Figure 2.3. Note that 50 metres is the full depth modelled by the set-

up shown in the figure, so when the MLD is below this point the entire column

is considered mixed.

The effect of the MLD on the correlations between variables at different depths

is demonstrated in Figure 2.4, which shows the correlation between the surface

layer chlorophyll concentration and the bottom layer POC. The left plot uses

the daily values for each variable taken when the water column is fully mixed,

and the right plot uses the daily values when the water column is stratified.

Here, it can be seen that when there is nutrient mixing in the water column (in

late  autumn and winter),  these  variables  are  correlated  linearly.  When the

water  column  is  stratified  (in  late  spring  and  summer),  there  is  far  more

scattering  with  no  discernible  trends.  Despite  this,  the  linear  regression  is

smaller in the fully mixed case because the two points of linear behaviour are

far apart, taking the plot away from the regression line.
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The seasonally-altering nature of these correlations as revealed by the MLD in-

corporation in GOTM-ERSEM are a source of the non-linearity that are typic-

ally encountered in BGC Marine DA. This shows that the non-linear behaviour

in these models may be situational depending on the season.

Figure 2.3: Evolution of the simulated mixed layer depth at station L4. A depth of 50 metres in-

dicates that the water column is fully mixed. The MLD is calculated here based on the depth loc-

ations at which vertical gradients in temperature and salinity profiles experience sharp changes.

Figure 2.4: A scatter plot of chlorophyll concentrations in the surface layer against the POC con-

centration at the bottom layer in a 1 year ERSEM simulation at station L4. The plot on the left in-

cludes each day where the entire water column is mixed (i.e.  mixed layer depth is below 50

metres) and the plot on the right includes each day where the water column is partially stratified

(mixed layer depth < 50 metres). The r2 value shown in the top left of each plot is the coefficient

of determination of the linear regression. The colour map shows the progression of daily values,

from blue (day 0) to red (day 365) The values shown here are normalised, and so they may take

negative values.

44



2.3 Data Assimilation

These sections will describe in more depth the two DA methods explored for this

work:  the  Ensemble  Transform  Kalman  Filter  (ETKF)  and  the  Implicit-Equal

Weights Particle Filter (IEWPF). Both of these methods are sequential ensemble-

based approaches.

2.3.1 Ensemble Transform Kalman Filter (ETKF) 

This is an extension of the Ensemble Kalman Filter (EnKF), which propagates an

ensemble of states with the full non-linear model,  while assuming a Gaussian

probability distribution of the model states during analysis times (see figure 2.5).

The update equation of the Ensemble Kalman Filter is given by equation 2 in

section 1.3.3.

The implementation of the ETKF used in this thesis draws from a set-up of the

LETKF (Hunt B. R. et al., 2007), without the use of localisation. The LETKF is so-

called as it draws from both the Local Ensemble Kalman Filter (LEKF; E. Ott et

al., 2005) and the Ensemble Transform Kalman Filter (ETKF; Bishop et al., 2001).

The LEKF was introduced to fulfil a need for a grid point by grid point analysis,

due to rapidly growing background errors (Kalnay and Toth, 1994).  This was

achieved  through  a  localisation  algorithm  which  ensured  that  the  data

assimilated  at  a  grid  point  would  influence  the  adjacent  grid  points

appropriately.  The ETKF attempted to  improve the EnKF accuracy  through a

different approach – using an ensemble transformation which removes the need

to update  each ensemble  member  individually,  improving efficiency.  Its  main

strength  was  found  to  be  its  computational  efficiency  in  high-dimensional

systems.  The  ETKF  was  the  method  used  in  this  thesis,  adapted  from  an

implementation of the LETKF described by Hunt et al., 2007, without localisation.
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Figure 2.5. Diagram of the EnKF applied using satellite data. The blue lines are the ensemble

members,  which  progress  in  non-linear  propagation  until  the  timestep  with  a  satellite

observation,  shown  in  red.  Here,  the  analysis  step  occurs,  in  which  ensemble  members  are

reassigned values based on the magnitude and error of the observation using Gaussian error

covariances. The black line indicates a reference model simulation (without assimilation).

The ETKF uses inflation to allow the user to adjust for the individual model case.

The inflation parameter is the proposed solution to the under-estimation of the

background error covariance, which arises from often unavoidable omissions of

various sources of error in the background ensemble, and from the fact that the

ensemble only spans part of the state space. It was first included as a parameter

to EnKF methods by Anderson et al. (1999), and in its simplest form operates by

inflating the distance of each ensemble member from the ensemble mean by a

constant factor, which in turn increases the ensemble variance by the square of

this factor. This form of inflation was explored by Sarcher and Barthello (2008),

who determined that the sampling errors in the estimates of the Kalman gain

should be proportional to the Kalman gain itself. From this, Whitaker and Hamill

(2012) introduced a new formulation for the inflation factor, given by:

ρ=α(σb−σa

σb

+1) (13)
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Where  σ b  is the background error standard deviation,  σ a is the analysis error

standard deviation, and  α is an adjustable parameter.  If  α is zero, there is no

inflation, and at  α  = 1, the analysis variance is equivalent to the background

variance. This inflation method is called a “relaxation to prior spread” scheme, as

it inflates the posterior ensemble proportional to the amount that the ensemble

variance is reduced by the assimilation.

2.3.2 Implicit Equal-Weights Particle Filter (IEWPF)

The IEWPF builds on the particle filtering (PF) methods, which provide a fully

non-linear  DA method by solving Bayes’  theorem explicitly.  It  represents  the

model probability distribution function as an ensemble of particles, each with an

assigned weight (relative importance). It resamples the particles at the analysis

step based on their predictive performance. A diagram illustrating each step in

the PF is shown in Figure 2.6.

Figure 2.6. Diagram of the standard PF. Here, 10 particles sample the prior pdf, shown as vertical

bars in (1), where the height indicates their weight. The particles are propagated forward in time

using full non-linear equations resulting in a redistribution as shown in (2), where the pdf of the

observations is given by the green curve. At the analysis step (3), Bayes’ Theorem is applied and

the bars and the observation pdf are multiplied.  This results  in new weights of the particles,

indicated by the red bars. After the resampling step, the procedure is repeated with 10 equally

weighted particles (4). This figure is available at: wileyonlinelibrary.com/journal/qj.
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The  classical  PF  methods  are  only  efficient  for  small-dimensional  problems,

which makes them unsuitable for most models in the geosciences. This prompted

the introduction of the Equivalent Weights Particle Filter (EWPF; van Leeuwen,

2010).  Here,  the PF method can be applied to higher dimensional  systems by

exploiting the concept of a proposal density.

The proposal density arises from the formulation of the expectation value of a

function of the state vector. This effectively makes use of a series of mathematical

arguments  to  arrive  at  a  rewritten  version  of  Bayes’  theorem,  in  which  an

additional probability density function may be included (q):

p (xn|y n)= 1
N
∑

p ( yn|xn) p (xn|xn−1)q (xn|xn−1 ,yn)
p ( yn)q (xn|xn−1 ,yn) (14)

Here,  x
n

 is the state vector at time n ,  y
n

 is the observation vector at time n ,
N  is the number of ensemble members,  p  are the pdfs and q  is the proposal

density.

As  equation 14  shows,  there  is  a  multiplication  and division  of  the  proposal

density q. This means that the form of the proposal density is of no consequence

to the overall  solution of Bayes’ theorem, but allows for a choice of any form

which may be advantageous to the assimilation procedure when the ensemble

size is small, as it is in realistic applications. In light of the high-dimensionality

problem in the PF, the proposal density is often used as a means of directing the

particles towards the future observations, because it ensures that each particle

contains relevant statistical information.

This filter also reduces any loss of information due to straying particles by means

of  re-sampling  at  each  analysis  step.  In  the  EWPF  method,  the  particles  are

propagated forward in time driven by the full non-linear model equations while
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also propagating an extra variable known as a “weight” which is assigned to each

of these particles. This weight is used as a measure of the relative importance of

the particles as probability density changes. Due to the tendency of these weights

to  vary  significantly  in  magnitude  (which  corresponds  to  a  statistically

insignificant representation by low-weight particles), the re-sampling stage in the

EWPF  proceeds  by  abandoning  low weight  particles  while  duplicating  high-

weight particles to take their place.  This results in an ensemble of particles of

equal  weight,  as  it  was  in  its  initialisation,  and  avoids  the  issue  of  filter

degeneracy. Doucet and Tadić (2003), and van Leeuwen (2009) provide a review

of specific methods of implementing the resampling.

The IEWPF is very similar in form to the EWPF, but manages to achieve equal

weights through implicit (or indirect) means (Zhu et al., 2016). Here, samples are

drawn implicitly from proposal densities with a specific covariance assigned to

each  particle,  and  this  ensures  that  the  particle  weights  will  be  equal  by

construction at the analysis step. This method allows for consistency in ensemble

spread for various unobserved variables and grid points, which is a complication

often experienced using the EnKF.

As part  of  the proposal  density  used between observation times,  the  nudging

factor is a key parameter for the IEWPF which will require tuning based on the

specifications of the applied system. Nudging is the term given to the operation

by which a system of particles is pushed deterministically towards an area of

state space where the likelihood is expected to be high (Akyıldız and Míguez  et

al.,  2017).  In  the  EWPF  and IEWPF,  this  is  performed  by  applying  a  forcing

function  in  the  form  of  a  relaxation  term  towards  the  value  of  the  next

observation, before the ensemble has reached the time of the next observation.

This results in two parameters, as both the magnitude of this nudging factor, as

well  as  its  relative  location  in  time  between  the  observations  dates,  can  be
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adjusted. Currently, the proposed optimal method of tuning these parameters is

by  trial  of  multiple  runs  while  readjusting  the  values,  in  which  a  suitable

performance  diagnostic  is  examined  (Ades  and  van  Leeuwen,  2015).  This

diagnostic can be the root-mean squared deviation between the mean truth state

if tuned within a twin experiment approach. It can also be considered through a

rank histogram approach as used by Ades and van Leeuwen (2015).

2.3.3 Stochastic perturbation of model states

Data assimilation  requires  a  representation  of  the  uncertainty  attached  to  the

model.  This  is  challenging  because  there  are  many  contributing  sources  of

uncertainty, such as limits in the formulation of the relevant ecosystem processes,

uncertainty in the parametrizations and errors in the data representing the model

forcing functions.

In previous applications of ensemble DA methods with marine models, model

errors  have been  represented  by  means  of  stochastic  perturbations  of  forcing

functions, e.g. solar irradiance driving photosynthesis (Ciavatta et al., 2011, 2016)

and other atmospheric functions (Natvik and Evensen, 2003; Simon and Bertino,

2009),  or by means of  stochastic  perturbations  of  the model  states during the

model forecast steps (e.g. Torres et al., 2006) or prior to the analysis (e.g. Ciavatta

et al., 2011; Ciavatta et al., 2016)

Stochastic perturbations of model states can be generated by a spectral method

(Evensen  2003), which samples random numbers from a specified distribution.

Browne  and  van  Leeuwen  (2015)  represent  the  model  evolution  error  by

applying a random number based on a Gaussian distribution with zero mean

(implying no model bias) at each time step. The covariance of this Gaussian was

estimated  based  on  the  variances  retrieved  through  a  long  model  run.  It  is
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important to note that stochastic perturbations can generate negative values for

the  model  states,  which  are  unrealistic  for  marine  biogeochemical  variables

because these are mostly positive-defined, such as the concentrations (Natvik and

Evensen,  2003).  To  prevent  this  issue,  previous  works  have  applied  refined

anamorphic transformations (e.g. Simon and Bertino, 2009, Fontana et al., 2012),

log-transformations of the states (e.g.  Nerger and Gregg, 2008, Ciavatta et  al.,

2011, 2014, Janjić et al., 2014) or clipping the negative values to zeros or small

positive values (e.g. Natvik and Evensen, 2003).

In this work, stochastic perturbations were applied to multiple model states at

each  timestep  of  the  model  integration,  to  represent  the  uncertainties  in  the

model  while  it  is  propagated in  time.  These  perturbations  were  generated as

pseudo-random values sampled from a multivariate Gaussian distribution with

zero mean and cross-covariances among model states. This was computed from a

preliminary 100-member ensemble of model runs.

The procedure for computing the stochastic perturbations of each model state is

as follows: a pseudo-random value is generated for the total chlorophyll variable,

after  which  this  value  is  multiplied  by  the  state-to-chlorophyll  covariance  to

compute  the  perturbation  of  the  model  state.  Then  the  perturbation  of  each

model state is multiplied by a further parameter, Qsd (this acts as the standard

deviation of the Q matrix). This parameter needs to be tuned in relation to the

length of the integration time step, to prevent the ensemble from diverging to

unrealistic  values  or  collapsing  towards  the  trajectory  of  a  typical  model

simulation. When the stochastic perturbations generate negative values, they are

clipped to an extremely low positive value (i.e. 10-14) which is comparable to the

approach by Natvik and Evensen (2003).
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2.3.4 Implementation of the Data Assimilation Framework: EMPIRE

The DA methods were applied using EMPIRE (Employing MPI for Researching

Ensembles), which is a data assimilation framework developed at the University

of Reading (Browne and Wilson, 2015). EMPIRE is a framework that facilitates

the coupling of mathematical models with a range of DA algorithms to assimilate

data in real system simulations. The techniques included are based on their suc-

cess in previous applications and research potential, such as in both twin experi-

ments and real-system applications. A schematic of EMPIRE is shown in Figure

2.7.

EMPIRE also allows for the use of “twin experiments”. In twin experiments, the

model is integrated in time to produce “true” values of the biogeochemical states.

This “truth” can also be perturbed to generate synthetic observations that can be

used in assimilative experiments to assess and compare different DA methods.

The  model  GOTM-ERSEM  was  implemented  into  EMPIRE  for  the  first  time

within this project. This ideal assimilative marine modelling framework was ap-

plied in both twin experiments and real-system simulations. This required modi-

fications to the FORTRAN code to implement and test MPI routines within the

GOTM-ERSEM git repository.

In particular, this work required:

- The implementation of MPI code within the main program of the model.

- The implementation of MPI code within the time loop of the ecosystem model in-

tegration.

- The representation of the observational operator to link the surface total chloro-

phyll observations into the sum of the chlorophyll concentrations of the four

ERSEM PFTs.
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- The accommodation of time irregularity of retrieval of assimilated data, which

is typical in ocean-colour time series.

- The coding of Input/Output routines to compute the model error through the

multivariate stochastic perturbations of the state variables.

- The coding of preventative controls for the negative values of model states gen-

erated by the stochastic perturbations and the assimilative analysis.

-  The  construction  of  a  model  error  covariance  matrix  based  on  correlations

between variables in an ensemble of model runs.

Each of these updates was made within the EMPIRE code using FORTRAN90

and MPI.

Figure 2.7. A schematic of the EMPIRE method
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2.4. Skill metrics for assessing DA performance

The use of quantitative metrics is necessary for an objective assessment of the

performance of the model simulation in representing observations of the marine

ecosystems (Gregg et al., 2009). The same is true for the assessment and compar-

ison of the suitability of DA methods applied in identical “twin experiments”

(defined in the previous section).

Here, the primary means of assessment for model and assimilation performance

is achieved through the calculation of the root-mean squared deviation (RMSD).

This quantifies the extent of differences between the model (or analysis) output

and the comparison benchmark (observations in real system simulation or simu-

lated “synthetic observations” or “truth” in twin experiment simulations). This is

given by the following equation:

RMSD=√∑i (x i− y i)
2

n
(15)

where  i is an iteration of locations in time, x is the output, y is the comparison

benchmark and n is the number of match-ups between the two. For comparison

of the output to discrete observations, i represents the time steps where the data

occurs and y represents the values of the observations. For comparison to another

simulation continuous in time (i.e. the “truth” in twin experiments)  i  represents

each model timestep and y represents the values of the other simulation.

The following sections will present the application of skill metrics in two separate

parts – one for controlled twin experiments and one for DA applications in real

ecosystem simulations, as there are important distinctions to be made for each

approach.
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2.4.1 DA skill assessment in controlled twin experiments

In controlled twin experiments, a model simulation is used to provide a repres-

entation of the real state we are attempting to emulate. In a twin experiment con-

text, this is referred to as the “truth” run (Abarbanel, 2013). Therefore, the skill of

the DA method can be assessed by examining the extent to which the temporal

trajectories of state variables in the analysis resembles those of the state variables

produced by the truth run.

The most direct method to achieve this is by calculating the average deviation of

the DA ensemble mean from the truth run. This is the main technique used by

Browne and van Leeuwen, (2015), among others. In this work, the calculation of

this metric is given as a scalar RMSD value (equation 15). The skill of the DA

methods can also be evaluated by looking at the absolute value of the difference

between mean ensemble value and truth at each integration time step. This can

be used to provide a continuous series of values that can be plotted to examine

the variability of the DA method’s performance in time.

Another useful metric to assess the twin experiments is rank histograms. These

can be used to assess the likelihood of a set of observations (or a truth simulation)

to remain confined to the spread of an ensemble of model simulations. It can also

be used to assess the appropriateness of ensemble spread itself.

For twin experiments, a rank histogram is formed by systematically assigning a

number to the truth run at each timestep. This represents the “ranking” of the

value of the truth run within the values of the ensemble at these timesteps for a

given variable (e.g. it is given a rank 0 if it is below every ensemble member or a

value n if it is above n ensemble members). By presenting the frequency of the oc-

currence of each rank in a histogram, the quality of the truth simulation and the
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ensemble dispersion can be determined.  An ideal scenario will result  in a flat

rank histogram. The interpretation of rank histograms in illustrated in Figure 2.8.

Figure 2.8. The interpretation of different rank histograms (here shown for the observation loca-

tion in ensemble rather than truth run). The x-axis presents the observations rank among a 10-

member ensemble and the y axis represents the proportion of time steps where the observation

takes this rank. Figure was taken online from DOI: 10.5772/55699.

The top left histogram shows the distribution of bars skewed towards high val-

ues  meaning  that  the  truth  is  typically  larger  than  most  ensemble  members,

hence the ensemble is negatively biased. The top right histogram depicts the op-

posite situation, the truth is typically lower than most of the members, suggesting

a positive bias in the ensemble. The bottom two graphs show the cases where the

truth lies most often outside the ensemble or centred on the ensemble, which in-

dicates that the ensemble dispersion is too low or too high.
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2.4.2 DA skill assessment in real system simulations

It is more difficult to assess the performance of DA in real applications because

there is no knowledge of the “true” state available for comparison. Here, the res-

ult itself is assumed to be the best possible estimate, so identifying a suitable skill

metric is challenging (Gregg et al., 2009). The proximity of the analysis to the as-

similated observations may be examined as a means to confirm the correct imple-

mentation of DA as the analysis should be closer to the data than the model.

However, it is possible to compare the analysis from a real DA implementation to

a different set of unassimilated observations for the other state variables in the

system. For example, Ciavatta et al., (2011, 2014) uses this method by assimilating

remotely sensed ocean colour data, and then assessing the DA performance by

examining its ability to reproduce the trends seen in a separate in-situ nutrient

data set.  It  is  also possible to compare different  data of  the same variable,  as

shown by Korres et al., (2012), with in-situ and satellite derived chlorophyll con-

centration data.

 

In this work, the assimilative output is compared with independent observations

of biogeochemical variables measured in-situ at the sites of the real system simu-

lations (station L4 in the English Channels and BATS in the Bermuda Sea). The

multiannual assimilative output was matched-up with the observations in time

and space (depth) and the RMSD in equation 15 was computed.
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2.5. Ocean Colour Data

In this project, remotely sensed ocean colour data (for total chlorophyll concen-

tration) was chosen as the assimilated variable. Assimilating ocean colour is ad-

vantageous because the satellite retrievals for data have high temporal frequency,

and cover a large spatial area. Furthermore, the data have a strong connection to

the BCP, as there is a close correlation between chlorophyll and phytoplankton

biomass. Some representation of the MCP is also possible, but difficult due to the

surface confinement of the assimilated variables and the implicit nature of the

link to MCP processes. Many studies have already incorporated satellite ocean

colour data in sequential DA techniques (e.g. Ciavatta et al., 2011, 2014 and 2016,

Torres et al., 2006, Ford et al., 2012, Hemmings et al., 2008, Gregg, 2008, and many

others).

This project uses remotely sensed ocean colour data provided by the Ocean Col-

our - Climate Change Initiative (OC-CCI) project of the European Space Agency

(ESA) (Brewin et al.,  2015). The data set was created by merging satellite data

from the  sensors  MERIS,  MODIS and SeaWiFS,  after  shifting  the  wavelength

bands and correcting the bias between them. It consists of a global daily level 3

binned product provided on a sinusoidal grid at 4 km resolution.

Chlorophyll-a  concentrations  in  the  OC-CCI  dataset  are  provided  as  daily

products with a horizontal resolution of ~4km/pixel. The root-mean-square un-

certainty and the bias in the chlorophyll-a concentration are also provided, based

on comparison with match-up in-situ data. The availability of data depends on

location – observations for station L4 typically occur every day, but there is often

missing data due to complications such as cloud cover, so 5-day composites were

used in this project.
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The data comes with per-pixel error, and has been applied in previous DA works

(Ciavatta et al., 2016). In this project, 30% is taken as an upper-bound for the un-

certainty, for simplicity. However, in coastal waters the estimates of per-pixel er-

ror is much higher than in the open ocean (>30%), so the assimilation will have

less effect in correcting the model simulation.

For the twin experiments, artificial observations were generated for chlorophyll

concentration from an ERSEM model run, which uses uncertainties and retrieval

frequencies matching those outlined for the OC-CCI data in the station L4 region.

This was used to achieve a realistic emulation of the data sets that were later used

for the DA at station L4, allowing for an accurate assessment of the capability of

the DA methods. Further details on this will be provided in the twin experiments

chapter.
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2.6. Summary

The marine ecosystem model applied in this project is ERSEM-GOTM, which is

able to describe the dynamics of various ocean carbon fluxes that relate to the

BCP and MCP. The improvement that the assimilation of ocean colour data from

the ESA’s OC-CCI can make to the representation of these carbon fluxes will be

investigated. Two ensemble-based DA methods, the ETKF and IEWPF, will be

applied to tackle the dual  challenges of non-linearity and high-dimensionality

that BGC marine models present. They will be applied using the DA framework

EMPIRE that was upgraded in this project to work with the marine ecosystem

model.

The  methods  described  here  were  adapted  in  two  types  of  applications:

controlled twin experiments, and real assimilation at the two sites, station L4 and

BATS.  As  the  results  from  the  TEs  are  performed  in  an  environment

representative  of  station  L4,  they  are  more  directly  applicable  to  the  real

assimilation  performed  at  this  site.  However,  most  outcomes  of  the  TEs  are

dependent on model dynamics which are still present in a BATS simulation. The

results of these applications will be described in Chapters 3, 4 and 5 respectively. 

60



Chapter 3

Twin Experiments

3.1. Overview

This chapter presents the application of the DA methods in identical “twin exper-

iments” (TEs). These are numerical experiments in which a model simulation is

used as a representation of the “true” values of the biogeochemical (BGC) states.

The capability of ensemble DA methods to reproduce similar BGC trajectories is

then assessed by assimilating sub-sampled synthetic observations of this “truth”

simulation.  These  pseudo-observations  are  generated  from  the  truth  run  by

means of stochastic perturbations of the output which are representative of a suit-

able observational error.  While reliant on many approximations, the TEs are a

useful method to quantify the expected improvement that can be made by DA

methods when applied to model simulations. The sensitivity of the model to ini-

tialisation is also explored by producing a Stochastic Ensemble.

For this PhD project, the TEs are applied to pursue two objectives: (1) to quantify

improvements in the representation of carbon fluxes by assimilating ocean colour

data, and (2) to compare the performance of two sequential DA methods.

The chapter begins by outlining set-ups of the model and DA schemes used to

perform the TEs. In particular, the tuning of the error covariance matrix repres-

enting the model error, the attainment of an appropriate observational error, and

the tuning of the parameters specific to the ETKF and the IEWPF are described.

Then the results are presented. This will evaluate three ensemble simulations: the

ETKF, the IEWPF and a stochastic ensemble (SE). The first two are DA methods,

whereas the SE is simply an ensemble simulation of members starting from dif-
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ferent initial conditions and perturbed stochastically. The SE does not make use

of observations and is included here to test the sensitivity of the model to intial

conditions, and is used as a benchmark to understand whether DA is beneficial

with respect running an uncertain model simulation. The performance of the DA

methods will then be compared in relation to the following five carbon fluxes in-

volved in the BCP and MCP: air-sea flux, zooplankton predation on phytoplank-

ton  and bacteria,  net  ecosystem production,  net  bacterial  production  and the

sinking of particulate organic carbon. The metric used here to assess the perform-

ance of each method is the average difference between the ensemble mean and

the truth.

Finally, the results will be discussed and interpreted, with reference to the chal-

lenges that face both of the DA methods, such as non-linearity of marine systems

and the need for an accurate representation of unobserved carbon fluxes, as de-

scribed in chapter 1. Following the results of the TEs presented in this chapter,

the most successful method will be chosen as the method to be applied in the

subsequent assimilation of ocean colour in the real-system reanalyses.
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3.2. Set-up

3.2.1 Model set-up

These TEs examined ocean colour DA within a coastal marine system. They were

performed  using  a  configuration  of  the  water  column,  parameters,  initial

conditions,  and  atmospheric  forcing  for  the  marine  model  (GOTM-ERSEM)

drawn  from  a  previous  model  application  at  a  coastal  monitoring  site  by

Butenschon et al. (2016). This coastal monitoring site is station L4 of the Western

English Channel Observatory (Smyth et al., 2009).

A water column 50 meters deep was simulated,  which is subdivided into 100

layers of variable thickness within the model (as there is a higher resolution at the

surface and bottom of the column). At the bottom of this column, a benthic return

module  simulates  the  benthic  fluxes  at  the  sediment  interface.  Model

initialisation  makes  use  of  meteorological  surface  forcing  data  supplied  by  a

reanalysis of the European Centre for Medium-range Weather Forecasts (Dee et

al.,  2011).  GOTM  was  set-up  to  nudge  real  data  of  temperature  and  salinity

profiles at station L4 for a better simulation of the physical processes, such as

vertical mixing, at the site.

The “truth” simulation spanned a period of two years,  from the beginning of

2007 to the end of 2008. This included a spin-up period of one year. This was

used to minimise the impact of initial conditions, and to achieve stable physical

and biogeochemical  conditions within the model  configuration (Butenschon et

al., 2016). The following year is where the assimilation takes place, and the truth

simulation  is  taken  as  a  potential  ensemble  member.  In  this  year,  model-

generated  observations  of  ocean-colour  data  were  produced  and  assimilated.

These were synthetic chlorophyll concentration pseudo-observations which were
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generated based on the model trajectory of the total chlorophyll variable in the

second year of the truth simulation. The analysis of the TEs will be focussed on

this second year (2008).

The  three  ensemble  simulations  were  also  generated  over  two  years.  The

ensemble members were initialised by perturbing the same initial conditions of

the truth simulation, and proceeded subject to stochastic perturbations at each

time step to represent the model uncertainty, as described in section 2.3.3.

Each ensemble -  the SE, the ETKF and the IEPWF - contained 50 members, while

using the same error covariance matrices to define the stochastic perturbations. In

both the assimilative simulations, the pseudo-observations of chlorophyll were

assimilated only in the second year of simulation, with a time step of five days.

These  factors  were  consistent  to  ensure  a  fair  test  between  the  methods.

However, there were also some parameters characteristic to only one of each DA

methods (such as localisation in the ETKF and nudging in the IEWPF), which

were chosen based on the best performance in trial and error simulations.
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3.2.2 Model errors and correlation

The development of a suitable model error covariance matrix (Q) to represent

model error requires the consideration of the relationships between variables in

ERSEM. This includes an understanding of the impact that incremental changes

in the total chlorophyll variable can have on the full range of ERSEM variables, as

well as the correlations between each variable. Note that the information for this

covariance  matrix  is  able  to  be  represented  through  the  use  of  a  correlation

matrix  for  all  the  model  states  since  the  correlation  matrix  is  effectively  the

covariance  matrix  of  the  standardised  variables.  This  can  be  then  scaled

according to the estimated uncertainties to represent the covariance matrix for

the errors.

To construct the correlation matrix, the correlations between all state variables in

ERSEM were determined. This was achieved by using a large stochastic ensemble

(of 100 members) perturbed at each time-step and depth, and creating a matrix to

store the values of each variable at time steps of 10 days throughout a one-year

run. From this matrix, the correlations between the variables were computed for

each time step using a correlation function in python. A time averaged value of

the correlations is  then taken over all  the time steps to represent  the average

correlation between variables.

A graphical representation of the correlation matrix used in the TEs is shown in

Figure  3.1.  Here,  a  green  square  indicates  that  the  variable  was,  on  average,

positively  correlated  with  the  corresponding  variable.  The  purple  squares

indicate  negative  correlation.  Each  variable  has  a  correlation  with  itself  of  1.

These  correlations  were  all  taken  at  the  surface  layer  (the  top  layer)  of  the

simulated  water  column,  which  is  the  depth  at  which  the  observations  are

assimilated. However, the perturbations were added at every layer.
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Figure 3.1. A visual representation of the correlation matrices for the 51 variables considered in

the Q matrix based on the run of 100 ensemble members in the year 2008. The variable names are

given by their codes in ERSEM; e.g. N = nutrient types, P = phytoplankton types, Z = zooplankton

types, Chl = chlorophyll types, R = dissolved and particulate organic carbon; B =bacteria, O = gas

compounds.

It should be noted that the correlations between variables are subject to change at

different points in the year due to the annual solar cycle that drives plankton

productivity. For this reason, the variability of the correlations in relation to the

season was also investigated. Further correlation matrices are shown in Figure

3.2, which are split into four to approximately show different seasons throughout

the year. These were taken as an average over three-month periods. In this figure,

it  can  be  seen  that  some  of  the  positive  correlations  in  the  winter  turn  into

negative correlations in the summer (e.g. for bacteria, the PFTs and ZFTs). The

correlations are also overall smaller in magnitude in the summer, as shown by

their faintness in the figure, which indicates values close to zero. The variability

of the correlations illustrates one of the challenges of BGC data assimilation: the

model error covariances are variable in time. 
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To evaluate if this variability could be accounted for in the twin experiments, a

numerical experiment was performed consisting of a one-year long SE simulation

in which the four Q matrices shown in Figure 3.2 were used in sequence to rep-

resent the errors in the different seasons. However, This lead to abrupt shifts of

the ensemble dispersions at the cut-off points for each season, causing unrealistic

discontinuities in the values of the biogeochemical variables. Therefore, it was de-

cided to continue using the average correlation matrix taken over the full year

(Figure 3.1) to compute the multivariate stochastic perturbations representing the

model error. It should be highlighted that the temporal variability of the model-

error covariances is still accounted for in the analysis steps of the DA methods

applied here, despite the use of a constant Q matrix. For example, the ETKF com-

putes the covariances from the ensemble distribution at each analysis step, and

the IEWPF assigns low weights to particles that deviate considerably from the ob-

servations over time.

There is a similar issue of spatial variability of the correlations among BGC vari-

ables, which occurs in relation to the depth within the water column. The posi-

tion of the mixed layer depth is responsible for this, as it results in the stratifica-

tion of the water column and therefore weakening of the correlations among BGC

trajectories in the surface and bottom layers. This effect is shown in Figure 3.3 for

total chlorophyll, where there are two distinct regions of cross-correlations on

either side of the mixed layer depth. For simplicity, this project considers a correl-

ation matrix which is constant along the water column.
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Figure 3.2. A visual representation of the correlation matrices for the 51 variables considered in

the Q matrix: Winter (top-left), Spring (top right), Summer (bottom-left), Autumn (bottom-right).

The  variable  names  are  given  by  their  codes  in  ERSEM;  e.g.  N  =  nutrient  types,  P  =

phytoplankton  types,  Z  =  zooplankton  types,  Chl  =  chlorophyll  types,  R  =  dissolved  and

particulate organic carbon; B =bacteria, O = gas compounds

Figure 3.3. One year correlation for the total chlorophyll variable compared at different depths,

where 0 is the surface layer and 99 is the bottom layer in the model. This shows that there are two

distinct regions in the water column, which are separated by the mixed layer depth. The x and y-

axes  represent  the  depth  layers  within  the  model.  Within  each  region  chlorophyll  is

approximately uniform.
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The final matrix was computed at the surface layer and used throughout the wa-

ter column. It is argued that it is preferable to use correlations based on a point

above the mixed layer depth (such as the surface) rather than at a deeper layer,

because most of the carbon fluxes that are relevant in this project are stronger at

the surface, e.g. primary production, grazing, air-sea carbon fluxes. However, it is

recognised  that  this  approach  may  have  limits  for  other  fluxes  that  occur  at

greater depths, such as the sinking of the particulate organic carbon and the bac-

terial production and respiration.

Therefore, the TEs were applied using a Q matrix that incorporates constant cor-

relations shown in Figure 3.1.  The ensemble simulations use this  Q matrix to

define the directions of the multivariate stochastic perturbations representing the

model error; however the magnitude of the perturbations are still controlled by

adjusting the value of the standard deviation of the Q matrix (Qsd) (see section

2.3.4). This parameter was used for inflating the dispersion of the ensemble mem-

bers, while preserving their biogeochemical reliability. In particular, a multiplica-

tion factor of Qsd = 1x10-8 was used. It should be noted that as Q is derived from

the covariance of the states rather than the errors, these are expected to be much

larger than the covariance of the errors in the model equations. This explains the

need for such a low value for Qsd.

A final note on the Q matrix is that it was used in a square root form (Q 1/2). This

technique has been used in many EnKF applications as it can be used to reduce

the sampling errors associated with the forecast step (Raanes et al., 2015), and by

using the  symmetric  square  root  approach  the  mean is  not  altered  (Evensen,

2009).
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3.2.3 Observation errors

This simulation of the true state of surface chlorophyll was used to obtain model-

generated observations of ocean-colour data (for the year 2008 only). This was

achieved by randomly perturbing the simulated chlorophyll at pre-determined

observation timesteps,  which involved sampling from a Gaussian distribution

which was adjusted such that the standard deviation was comparable to the error

of real data. The error of chlorophyll data was assumed here to be equal to 30%,

which is a value often used for ocean-colour in open-ocean waters (Brewin et al.,

2017).

To provide a constant standard deviation for the  observation error covariance

matrix (R), the mean value of a set of L4 data from 2002-2010 was computed. 30%

of this value was then set as the standard deviation for R (0.148 mg Chl-a m-3).

3.2.4 ETKF Specific Parameters

For the ETKF, the main parameter that required tuning was the inflation factor. It

should  be  noted  while  the  implementation  of  this  filter  in  EMPIRE  was  the

LETKF, localisation was not used as a factor as the localisation length was set to

100 to represent the 100 depth layers in the physical model.

The inflation factor is used to increase the spread of the ensemble. The value of

this  parameter  was  set  up  by  assessing  the  performance  of  iterative  ETKF

simulations where the value of the parameter was incrementally increased. This

performance was determined based on the average difference between ensemble

mean and truth (the absolute error), with the lowest value representing the best

performance. The best simulation from these tests was used as the final ETKF

result.
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It was found that increasing the inflation factor by almost any amount resulted in

an increase of the absolute error of the simulations, so the final ETKF results used

an inflation factor of zero. This result is likely due to the increased frequency of

the clipping of unrealistic negative BGC values when the ensemble is inflated,

which in turn increases the positive model bias. It was concluded from this that

the inflation factor would not be used as a tool to influence ensemble dispersion,

and so the Q matrix along with the parameter Qsd were used in its place. This

was  deemed  an  acceptable  alternative  as  this  matrix  was  already  tuned  to

represent  model  error  in  the  SE  ensemble,  and  was  therefore  helpful  for

consistency.

3.2.5 IEWPF Specific Parameters

For the IEWPF, the parameters  needed for tuning are related to the nudging,

which include the nudging factor and a control on when the nudging occurs.

The nudging factor is used to force the simulation towards a future observation.

The value of this parameter was determined through various trial  runs and a

comparison of the absolute error, in a similar iterative procedure to that used for

the inflation factor for the ETKF (section 3.2.4). This is set as a fixed value that

persists throughout the assimilation.

The nudging factor can have a detrimental effect if it is either too high or too low,

by  either  pulling  the  ensemble  too  strongly  towards  the  observations  or  not

directing them enough, and so there  is  a  middle value that achieves  the best

overall result.  The magnitude of this optimal nudging factor, as shown by the

lowest average absolute error, was found to be a value of 1x105. This was based

on  a  series  of  tests  that  examined  the  IEWPF  runs  while  incrementing  the

nudging factor by a factor of 10 in each test.
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The location in time of  the nudging was also decided from different  iterative

simulations. The best value for this, determined by examining the absolute error

for  the  IEWPF  and  changing  the  location  of  the  nudging  between  analysis

timesteps  in  increments  of  10% (of  the  distance  between  analysis  steps),  was

determined to be at 40% of the distance between analysis steps. This is 2.2 days

for the pseudo-observations of ocean colour assimilated at interval of 5 days in

the TEs,  meaning that  there  is  a  2.2  day period after  an analysis  step  before

nudging takes place.
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3.3. Results

By using the set-up described in the previous section, the TEs were conducted,

which  simulated  a  representation  of  “true”  BGC variables,  generated  pseudo

observations  of  chlorophyll,  and  then  assimilated  this  data  in  an  attempt  to

reproduce the truth. A comparison of the performance of the ETKF and IEWPF

methods will be presented for each carbon flux.

The results of the twin experiments indicate that each DA method was able to

reproduce the seasonal  cycles  of  the “true” carbon fluxes  in the system, as

shown by Figure 3.4. The average RMSD values between ensemble mean and

truth (Table 3.1) show that DA generally performed better than the stochastic

ensemble, with a few exceptions, most notably for the IEWPF. The RMSD in

Table 3.1 is the primary metric to assess each DA method’s performance (see

chapter 2.4.1). In this table the statistics for the SE simulation are included as a

benchmark. 

The table shows that on annual average the IEWPF was better than the SE for

two  of  the  fluxes  and the  observed  surface  chlorophyll  concentration.  The

ETKF made improvements on four carbon fluxes and the observed variable.

The  ETKF  also  outperformed  the  IEWPF  for  the  surface  chlorophyll

concentration, the air-sea carbon flux, the net ecosystem production and the

net bacterial production. However, the ETKF did not perform as well as the

IEWPF  for  the  zooplankton  predation,  and  the  sinking  of  all  particulate

organic carbon. Therefore, while the ETKF shows the best overall performance,

the  strength  of  each  method is  situational.  The  ETKF generally  performed

better for fluxes evaluated at the surface layer and for variables with a close

relationship to the observed variable.  Also, the IEWPF performed better for

fluxes evaluated at lower depths and for variables with an indirect relationship

to the assimilated chlorophyll.
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Figure 3.4. Ensemble Means vs. Truth for the six key fluxes. The units for each variable are shown

on the y-axis. The x-axis is time, indicated by months. Note that gross primary production minus

respiration is the net ecosystem production.

Carbon Flux Depth SE ETKF IEWPF
Surface [Chl]

(Observed Variable)

Surface

(0 metres)
0.092

0.056

(- 39%)

0.061

(- 33%)

Air-sea CO2 Flux
Surface

(0 metres)
182

161

(- 11%)

221

(+ 21%)

Zooplankton Predation
Surface

(0 metres)
8.5 x 10-11 

8.4 x 10-11  

(- 2.0%)

7.9 x 10-11  

(- 6.5%)
Net ecosystem

Production

Sum of All Layers

(0-50 metres)
6.17 x 10-8  

4.71 x 10-8 

(- 24%)

6.20 x 10-8

(+ 0.49%)
Net Bacterial

Production

Sum of All Layers

(0-50 metres)
2.20 x 10-8

1.91 x 10-8

(- 13%)

2.50 x 10-8

(+ 14%)

Sinking of all POC
Bottom Layer

(50 metres)
21.0

22.2

(+ 6.0%)

20.7

(- 1.4%)

Table 3.1. Root Mean Square Deviation (RMSD) between mean and truth for each assimilation

technique compared to a stochastic ensemble with the same number of ensemble members. The

colours  mean indicate  the ranking of the performance  of  each method –  green:  best,  orange:

middle, red: worst. The percentages show the decrease from the SE as a proportion of the value

for the SE.
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The annual evolutions for both DA methods, shown in Figure 3.5, reveals that

the ensemble mean for the ETKF fits more tightly than the IEWPF to the true

surface  chlorophyll  concentration  (at  the  surface),  which  is  the  observed

variable, as well as the air-sea carbon flux, net ecosystem production and net

bacterial  production.  The  largest  improvement  the  ETKF  makes  over  the

IEWPF is seen for the air-sea flux, where the trajectory of mean ensemble flux

is much closer to the simulated truth in Figure 3.4. The IEWPF estimates of the

air-sea flux are less skilled, and even mistake the direction of the flux at the

start of the year. Overall, the IEWPF only outperforms the ETKF in the case of

the sinking of POC at the deepest layer in the model, which is where the ETKF

does  not  improve  on  the  stochastic  ensemble  (although  the  difference  is

relatively small). The IEWPF does perform better towards the end of the run in

many  cases,  as  shown  for  the  net  ecosystem  production  and  net  bacterial

production in Figure 3.4,  but suffers overall  from straying too far from the

truth at the start of the year. 

In general,  while the ETKF performs better,  there is a notable difference in

where the methods perform strongest  -  the ETKF generally performs much

better for the fluxes taken close to the surface, but the IEWPF performs best (or

degrades far less than the ETKF) for the flux at the bottom layer. This shows

that the differences in the depths at which variables and fluxes are considered

is important to the performance of these methods, and this will be discussed in

the following section.
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3.4. Discussion

The results  showed that  the assimilation of  the pseudo-observations of  ocean

colour outperformed the uncertain model simulation, the SE, in estimating the

seasonal cycle and annual average of the true carbon fluxes. It also emerged that

the spread of the chlorophyll ensemble, as well as the depth at which the DA

performance  is  to  be  evaluated,  are  crucial  factors  in  explaining the  different

performance of the methods. These factors will now be discussed.

3.4.1 Analysis of the Observed Variable

The two assimilation methods operate in different ways, which is best shown

by the graphs for the ensemble of chlorophyll concentration values simulated

by the different  methods (see Figure 3.5,  left).  The stochastic  ensemble (SE)

illustrates what the ensemble looks like without assimilating the data, which is

displayed here so that the adjustments due to assimilation are made clear.

The ETKF has a reduced dispersion compared to the SE, and ensures that the

truth is  mostly centred within the ensemble.  This  makes it  a  very accurate

method for the estimation of chlorophyll. The ensemble overestimates the data

in some areas,  most notably in March which is suspected to be due to the

simulation of an unobserved peak of diatoms. Otherwise there are very few

areas beyond this point where the ensemble performs inadequately.

The IEWPF resembles the structure of the SE closely, in both the magnitude of

ensemble dispersion as well as the trajectory for the mid-parts of the run. This

implies that the IEWPF overestimates the chlorophyll observations during the

summer. The features of the nudging parameter applied in the simulations are

evident from the midway points between each observation, characterised by

sharp decreases of the ensemble spread. The role of the re-sampling step in 
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a)

b)

c)  

Figure 3.5.  Each ensemble  method plotted alongside truth and observations for  surface

chlorophyll for 2008 (left). A rank histogram for each ensemble comparing the spread of the

ensemble to the location of the truth within the ensemble (right).

reducing the ensemble inflation is  indicated by the slight narrowing of  the

ensemble at each analysis step.

Both the ETKF and the IEWPF bring the ensemble closer to the observations

than the SE, which is to be expected as the SE is given no information about

the observations. The ETKF brings the ensemble mean about ten times closer

to  the  observations  than  the  IEWPF  (the  average  difference  between  the

observations and the ensemble mean was 0.06 for the ETKF compared to 0.54

for the IEWPF). It also avoids strong nudges towards observations that deviate

strongly from the model trajectory.
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The quality of the ETKF compared to the IEWPF is also evident in Figure 3.5:

the ETKF ensemble is able to track the truth sufficiently and does so with a

lower spread than the IEWPF. Therefore, the ensemble mean is also closer to

the truth throughout the year (Figure 3.5) as well  as on an annual  average

(Table 3.1).

Figure 3.5 (right) shows rank histograms for each ensemble in the case of the

simulated  surface-layer  chlorophyll  concentration.  As  described  in  the

Methods, rank histograms show when the ideal ensemble will be centred on

the truth (flat columns), while a skew towards low (or high) values represents

positive (or negative) bias of the ensemble with respect to the truth.

The stochastic ensemble fails to show a flat histogram, and instead has a peak

skewed  towards  low  ranked  values.  This  means  that  the  truth  ranks  low

among the ensemble, i.e. most of the ensemble members are above the truth

and so the ensemble has a positive bias). The origin of this bias is suspected to

be a result of the truth simulation taking a relatively high value within the

distribution of the initial conditions in the SE, which results in the ensemble

taking an overall  higher  trajectory  that  the truth.  Note that  while  this  bias

could have been reduced by selecting a more centred value from multliple

runs, it is considered a better test of each method to see how each they correct

for  a  truth  that  lies  at  the  limits  of  the  ensemble.  For  the  SE,  there  is  no

assimilation, and therefore no means by which the ensemble can account for

this lower-valued state and so most ensemble members will remain above the

truth for the full run. Note that this is in contrast to what is encountered in

more chaotic systems, such as in atmospheric models, where the information

from initial conditions is quickly forgotten.

The ETKF however takes the ensemble down towards the lower-valued truth
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from assimilation at an early stage in the run. The comparative flatness of the

histogram confirms that the spread of the ensemble encompasses the truth for

the majority of the run, indicating an unbiased representation.

The IEWPF improves on the SE as it lowers the frequency of occurrences that

most of the ensemble are above the truth. However, it is still is unable to shift

the trajectories to sufficiently encompass the truth, as the particles typically

resume the regimes they take in the stochastic ensemble. This results in a rank

histogram resembling that of the stochastic ensemble, with a minor reduction

in the bias.

These  histograms show that  the  ETKF has  produced  the  most  appropriate

ensemble for the observed variable with a suitable adjustment for the position

of the truth compared to the ensemble. This suggests that the ETKF method

was better suited than the IEWPF method for surface chlorophyll because the

whole ensemble surrounds the truth more closely throughout the year. As a

consequence,  it  is  argued that  the  ETKF is  expected  to  be  more  skilled  at

simulating the variables and fluxes that are directly linked to phytoplankton

and  are  also  evaluated  at  surface,  such  as  the  air-sea  flux  and  the  net

ecosystem production. Figure 3.4 appears to support this in the case of the air-

sea flux.

3.4.2 Analysis of Unobserved Fluxes

To re-cap: the results in Table 3.1 show that on an annual average, the ETKF

was more skilled than the IEWPF, but Figure 3.4 suggested that the skill was

variable in time. This is confirmed in figure 3.6, which now shows the plotted

difference between mean and truth from the daily averages for all five of the

fluxes of interest (note that table 3.1 simply shows the average values of the

plots in this figure).  These graphs can be used to examine the specific time
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frames in which a method is performing especially well, or poorly for each

carbon fluxes.

The DA methods typically performed better than the SE almost throughout the

whole year, as the difference between SE mean and the truth is mostly higher

than the DA methods, particularly for chlorophyll. The IEWPF struggles for

some of the fluxes, such as the air-sea flux and the net bacterial production,

and the ETKF also under-performs in the summer for some fluxes such as the

zooplankton predation. Overall, the ETKF has a more consistent improvement,

but  both  methods  are  capable  of  making  improvements  over  the  SE,

confirming  that  ocean  colour  assimilation  can  improve  the  simulation  of

carbon fluxes.

Figure 3.6. The absolute value of the difference between the ensemble mean and the truth

(absolute error). These values are shown for the Stochastic Ensemble simulation (SE), the

ETKF and the IEWPF, plotted over the full assimilation period. The errors are shown for

the surface chlorophyll concentration and the five fluxes previously discussed.

80



Expanding on the individual performance of DA methods, it is clear that the

superior  performance  shown  by  the  ETKF  for  the  surface  chlorophyll

concentration,  air-sea  flux,  net  ecosystem  production  and  net  bacterial

production (evident from Table 3.1) is largely due to its ability to adjust to the

truth during the summer (Figure 3.6). The air-sea carbon flux is interesting in

that it appears to be the winter season where the ETKF performs better, which

is likely due to the seasonal dependence on the mixed layer depth (discussed

in the following section).

It is also interesting to see that the locations at which the ETKF is less effective

for the remaining fluxes is also during the summer. This is the season where

non-linear  dynamics  among  variables  become  more  evident,  due  to

phytoplankton  blooms,  crossing  the  limits  of  the  linear  assumption  in  the

ETKF analysis.

The  IEWPF  performs  better  than  the  ETKF  in  the  cases  of  zooplankton

predation and sinking of POC. This is mainly due to the decrease in skill for

both of these fluxes by the ETKF, rather than an accurate representation by the

IEWPF. The IEWPF trajectory still remains fairly close to the one of the SE. It

can be seen from Figure 3.6 that unlike the surface chlorophyll concentration,

there is no clear point in the run at which the IEWPF improves significantly on

the SE estimates of the biogeochemical fluxes.
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3.4.3 Influence of the mixed layer depth (MLD)

A significant factor that influenced the results of the twin-experiments is the

temporal evolution of the mixed layer depth (MLD). An explanation of MLD

and a plot of its annual evolution at station L4 is provided in section 2.2.3.

The  relevance  of  the  MLD  evolution  was  suggested  by  the  preliminary

analysis of the model error in the set-up (Figure 3.2) and was confirmed by the

results of the SE and DA simulations (Table 3.1 and Figure 3.4).

As shown previously, the BGC variables simulated at the bottom and surface

layers have a stronger correlation in the winter season. However, in the spring

and summer seasons the water column is stratified, which implies a weaker

correlation among variables simulated at the bottom with respect those at the

surface. In particular, there are weaker correlations with respect to the surface

chlorophyll  concentration,  which  is  the  variable  assimilated.  A  weaker

summer correlation is expected to result in the weakening of the ETKF due to

its linear assumptions. 

Therefore, it is mainly in the summer, when the location of the MLD is within

the modelled water column, that the non-linear behaviour is exhibited. In fact,

this is when the ETKF performed more poorly with respect to the SE for the

sinking of POC, while the skill was comparable in the remaining part of the

year. This is explained in Figure 2.4 which examined the different degrees of

correlation in stratified and non-stratified seasons. 

This  analysis  has  allowed us  to  better  assess  the  limits  of  the  ETKF when

examining the influence of ocean colour DA on the variables in deeper layers.

The results  from this  experiment  reinforce  the idea that the non-linear  DA

problem can vary in time as the MLD position evolves throughout the year.
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3.4.4 Influence of the error covariance matrix Q

Another  factor  to  consider  is  that  the  approximations  involved  in  the

construction of the Q matrix are likely to have a stronger negative impact on

the IEWPF than the ETKF.

All updates for the IEWPF are directly related to the form of the Q matrix, in

both  the  nudging  term  and  the  analysis  step.  As  the  Q  matrix  is

unrepresentative of the seasonal and mixed-layer variations demonstrated in

3.2.1, the IEWPF is fully unable to incorporate these dynamics as the variables

are updated following the time-averaged Q matrix. 

The ETKF however generates the covariance matrix directly from the ensemble

members at the analysis step. The structure of the Q matrix will have some

influence on this, but in general the ETKF will be able to capture some of the

model  dynamics  that  will  be  inherent  in  the  propagation  of  the  ensemble

members. The ensemble will see the mixed-layer variations, so is expected to

do better below the mixed layer depth than the IEWPF. It is also expected to

perform  very  well  for  any  variable  that  has  a  close  linear  relation  to  the

observations, which is supported by its performance in the cases of the air-sea

flux and the net ecosystem production.

From this, it should be considered that the IEWPF has the capacity to improve

by a  greater  amount than the  ETKF if  a  dynamic  Q matrix  was used that

reflects  the  time-varying  physics  and  biogeochemistry  of  the  system.

Therefore, there may be potential for the IEWPF to outperform ETKF if a more

advanced setup of the Q matrix is achieved.
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3.5. Conclusion

These  TEs  provide  evidence  that  assimilation  of  surface  chlorophyll

concentration into the ERSEM-GOTM model can improve the representation

of carbon fluxes in an ideal system, and by extension the assimilation of real

ocean colour data can also be expected to benefit the simulation. It has been

shown  that  the  simulation  of  the  air-sea  carbon  flux,  the  zooplankton

predation  and the  net  ecosystem  production  can  all  be  improved  through

assimilating  surface  chlorophyll  concentration.  Since  these  fluxes  are

important  components  of  the  BCP,  one  can  argue  that  this  can  also  be

improved by assimilating ocean colour. The improvement to the net bacterial

production also indicates that the understanding of the MCP may also benefit

from  ocean  colour  assimilation.  Therefore,  our  twin  experiments  support

assimilating ocean colour to investigate the relative importance of the MCP

and BCP in the ocean and their contributions to the global carbon budget.

While it is concluded that the ETKF performs better than the IEWPF in this

experiment,  it  appears  that  to  some  extent  the  IEWPF  has  some  minor

advantages. To achieve the best results for surface layer variables, or variables

with a somewhat linear correlation to the surface chlorophyll concentration,

the ETKF is expected to produce more reliable results. However, the IEWPF

may be more reliable for ensuring an improvement has been made for some

relatively  uncorrelated  variables.  However,  it  was  noted  that  this

improvement  may be  relatively  insignificant.  In  general,  the  ETKF made a

stronger adjustment for all variables, which often results in a more accurate

representation but also results in a greater degree of misrepresentation for the

variables with a low correlation to surface chlorophyll.

The TEs could have been improved through the use of a covariance matrix that

varies  with  depth  according  to  the  mixed  layer  depth  and  the  seasonal
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variations, as it appears to be a significant contributor to the difference in each

DA methods performance. As discussed in section 3.4.4 this may particularly

benefit the IEWPF. Also, the number of ensemble members used as well as the

number of time-steps between observations has not been investigated here due

to the computational costs, but they may be significant factors for investigation

in a future analysis.
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Chapter 4

Ocean Colour Assimilation at Station L4

4.1 Overview

This chapter describes the multi-annual assimilation of ocean colour data into

ERSEM at the coastal station L4 in the Western English Channel. The objective of

this  is  to  use  ocean  colour  DA  to  improve  the  model  simulation  and

understanding of BGC variables and carbon fluxes in a coastal marine ecosystem

characterised by relatively high nutrient concentrations.

The  chosen  DA  method  was  the  ETKF  as  it  outperformed  the  IEWPF  in

representing the carbon fluxes in the Twin Experiments (TEs; see Chapter 3 for

details). The application at station L4 used a configuration of the ETKF tuned in

the TEs, with a few extra modifications that were needed to address spurious

trends in the long-term simulations and to accommodate the irregular availability

of ocean colour data.

The core results  are presented here  in two parts:  firstly,  an evaluation of  the

assimilation performance in estimating station L4 biogeochemistry, by comparing

the  output  with  in  situ  data  (chlorophyll  and  nutrients)  and  applying  the

quantitative  skill  metrics  (see  Chapter  2);  and  secondly,  an  evaluation  of  the

revised estimates of the carbon fluxes that are associated with the biological and

microbial carbon pump (BCP and MCP) after assimilation at station L4.

The discussion of the results will focus on the model performance and on the

mean value of the unobserved flux estimates in relation to previous literature

estimates of the biogeochemical patterns at the study site. Then, the ability of the
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assimilated  ocean  colour  data  to  represent  the  chlorophyll  concentration  at

station L4 and the sensitivity of the results to the definition of the observational

and model errors will be assessed.

The  final  section  of  this  chapter  will  present  some  concluding  remarks,

highlighting the advantages and potential limits of assimilating ocean colour into

marine models to simulate biogeochemistry in coastal, nutrient-rich sites such as

station L4.

4.2 The study site: Station L4

Station L4 is a coastal long-term monitoring site in the Western English Channel

(R. Harris, 2010). Figure 4.1 illustrates the location of this site. It is one of several

sites included in the Western Channel Observatory (WCO) monitoring program,

and has  been extensively  monitored through both remote sensing and in-situ

data  retrievals.  The site  was  initially  monitored  by  the  UK Marine  Biological

Association  (MBA),  but  has  been  sampled  weekly  by  the  Plymouth  Marine

Laboratory (PML) since 1988, providing high-frequency data for core variables

such as phytoplankton biomass and pigments, zooplankton biomass, inorganic

nutrient concentrations, temperature and salinity.

The site is  seasonally stratified throughout  the summer period (typically late-

April up until September), and is affected by tidal currents with surface speeds of

up to 0.6ms-1  (Smyth et al., 2009). The site is nutrient-rich in winter but surface

waters experience nutrient depletion during the reduced vertical mixing in the

summer. There is also a considerable influence of weather conditions and cloud

cover,  which  constrains  the  availability  of  remote  sensing  data.  The  nutrient

availability of this site is affected by the riverine run-off by the River Tamar after

periods of heavy rainfall (P. Rees et al., 2009), which was particularly noticeable
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in  2007  where  a  period  of  heavy  summertime  rainfall  contributed  to  the

development of haline stratification at station L4. The chlorophyll seasonality at

station L4 are characterised by a spring and autumn phytoplankton blooms (S.

Groom et al., 2009).

Figure 4.1. The location of Station L4 in the English Channel: 50° 15.00' N, 4° 13.02' W.

There have been many previous modelling efforts at station L4, some of which

provide a baseline for comparison with the results presented in this thesis. For

example, Lewis et al., 2007, evaluates an ERSEM-POLCOMS model simulation

(POLCOMS includes GOTM to model vertical turbulence) through comparison to

an in-situ time-series of temperature and nutrients. Polimene et al., 2015, used

GOTM-ERSEM to examine the role of the nutritional status of phytoplankton in

the formation of  the spring bloom, by simulating carbon to nutrient  ratios in

diatoms at station L4. Some relevant DA examples at station L4 includes Ciavatta

et  al.,  2011,  which  looks  at  remotely  sensed  ocean  colour  assimilation  using

ERSEM-POLCOMS,  and Ciavatta  et  al.,  2014,  which compares  assimilation of

optical properties with chlorophyll assimilation. 

Observational analysis of carbon flux estimates have also been made at station

L4,  including Litt  et  al.,  2010,  who calculated the net  air-sea fluxes  using the

differences in partial pressure of CO2  (pCO2) between the ocean and atmosphere

observed at station L4 (see Figure 4.2 for results). This study helped to show that

station L4 is useful for understanding BCP contributions to the carbon cycle at
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coastal marine sites, along with various other studies relating to phytoplankton

dynamics, such as Tarran et al.,  2015, who examine the seasonal cycles of the

nano- and pico-plankton community at station L4. Recently, the site has also been

used for conducting studies relating to the MCP due to the bacterial information

available at station L4. Tait et al., 2015, for example, examines benthic bacterial

responses  to  the  spring  bloom  at  station  L4,  and  Stern  et  al.,  2015,  studied

microbial biodiversity from water samples at station L4 (among other sites). This

study  demonstrated  that  the  bacterial  community  is  a  crucial  driver  of  the

plankton community and biological fluxes at station L4.

Figure 4.2. Inter-seasonal variability of air-sea CO2 fluxes during 2005, 2007 and 2008, as reported

by Litt et al., 2010.  The peaks indicate various phytoplankton dynamics present in the system. 
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4.3 Set-up of the assimilative system

4.3.1 GOTM-ERSEM

Most parts of the model set-up were derived from Butenschon et al., 2016, and

were similar to the application in the TEs (Chapter 3). These include: the selection

of the 51 model state variables, the physical parameters used for initialisation and

the  computation  of  the  five  carbon  fluxes  of  interest:  air-sea  carbon  flux,

zooplankton predation, net ecosystem production, net bacterial production and

sinking of POC. The simulation spans a nine-year period from 2002 to 2010.

The meteorological surface forcing data were acquired from the European Centre

for Medium-range Weather Forecasts (Allen et al., 2004). GOTM was set-up to

nudge data of weekly temperature and salinity profiles at station L4 for a better

simulation of the physical processes (e.g. vertical mixing) at the study site (see

also Chapter 2.2 of the Methods).

The  remotely  sensed  chlorophyll-a  observations  of  this  site  used  in  the

assimilation  were  extracted  as  5-day  composites  from  a  global  ocean-colour

product  delivered by the Climate Change Initiative – Ocean-Colour (OC-CCI)

Project of the European Space Agency (see Section 2.5).

4.3.2 ETKF Set-Up

The set-up of the ETKF in these simulations exploit the set-up tuned in the TEs

(Chapter 3), and so it was also applied with 50 members.

The model configurations uses 100 vertical layers to represent the L4 depth of 50

m, so the localisation factor was set to 100 units. The inflation was unused, as the
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scaling factor applied to the Q matrix was used to parametrise the model error,

i.e.  the  dispersion  of  the  model  ensemble  determined  by  the  stochastic

perturbations with covariances defined by Q. This Q matrix is constructed from

matrices  representing  the  correlations  between  variables,  and  is  then  scaled

according to an input scalar factor.  For this  application,  a further  control,  the

clipping of very low values, was added in the code to prevent the production of

negative  values  of  the  biogeochemical  variable  resulting  from  the  stochastic

sampling when a variable reaches a low value. A threshold value was set to 1x10 -

10, below which the perturbation is recalculated with a different random number

until it exceeds this value.

The observational error of the ocean colour data was set up to correspond to 30%

of the average value of the chlorophyll concentrations, as it was in the TEs, and

similarly  to  previous  applications  of  data  assimilation  with  real  ocean-colour

observations (e.g. Natvik and Evensen, 2003).

4.3.3 EMPIRE

Modifications were also required within the EMPIRE system. The main change

with respect to the TEs was to rewrite the parts of the EMPIRE input-output code

which relied  on receiving  a  set  of  observations  at  regular  time intervals  (e.g.

every  five  days  in  the  TEs).  For  the  TEs,  this  was  not  a  problem  as  the

observations were artificially generated and so the frequency of their production

could be controlled. However, in the real data sets there are certain observations

missing due to technical complications or restrictions, such as cloud cover that

prevents the satellite detection of ocean colour. Therefore, the EMPIRE code was

modified to process a list containing the irregular dates at which observations

were available, and could therefore identify the points at which an analysis step

was necessary.

91



An additional task, though not strictly within EMPIRE, was the conversion of the

data stored in the ESA OC-CCI files into a similar format as the pseudo-data

produced  by  a  truth  simulation  in  EMPIRE.  This  required  the  production  of

binary  files  with  names  indicating  the  timesteps  within  the  model  that

correspond to the time at which each observation was retrieved.

4.3.4 Assimilative and benchmarking simulations

The model simulation and assimilative reanalysis at station L4 are extended over

a period of nine years, initialised at the beginning of 2002 and finishing at the end

of 2010. Forcing functions and validation data for this period were available from

Butenschon et al. (2016).

The  length  of  the  simulated  period  is  much  longer  than  the  one  in  the  TEs

described in Chapter 3, where the simulation spanned 2 years only. One of the

challenges posed by the increased length of the simulation was the emergence of

unconstrained  trending  in  the  ensemble  for  certain  variables,  particularly  the

nutrients. These trends were always positive and are believed to be the result of

the clipping from negative to positive values of certain ensemble members. This

clipping had been included in the code to avoid unrealistic negative values of the

biogeochemical  variable  when  applying  stochastic  perturbations  (see  Section

4.3.2). However, this has the drawback of accumulating positive values over long

time periods, typically leading to a significant spurious trend after the first two

years of simulation.

To prevent this issue, the ensemble is subject to a re-initialisation at the beginning

of  each  year,  where  the  ensemble  members  reassemble  around pre-set  initial

values;  these  are  then  perturbed  stochastically  to  initialise  the  ensemble  by
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representing the uncertainty on initial conditions of the model state variables.

In more detail, the pre-set initial values are computed from a preliminary model

simulation,  which  is  identical  to  the  model  run  without  assimilation  and  is

presented as the “reference” in subsequent figures. These values were calculated

in two stages:  (1)  by performing a preliminary model  simulation in the years

2002-2009, using the initial conditions in Butenschon et al. (2016) for 2002, and

then (2) by computing the average value of each variable on the first of January in

the years 2003-2009, averaged along the water column.

The  scalar  values  obtained  for  each  variable  in  (1)-(2)  above  were  used  to

initialise  the profile of  the variable  at  the beginning of  each year  of  the final

reference model simulation. However, in the assimilation simulation, the scalar

values  obtained for  each  variable  in  (1)-(2)  were  used  as  mean values  of  the

Gaussian distributions from which the initial conditions of the ensembles were

sampled randomly at the beginning of each year.

This approach to reinitialise the simulation annually implies that the reference

and reanalysis simulations should not be considered as an unconstrained nine-

year simulations, but rather an aggregation of runs for each year individually.

The  further  implication  is  that  such  simulations  are  useful  to  investigate  the

biogeochemical seasonal cycles and their inter-annual variability, rather than the

long-term trends.

More  refined  approaches  could  be  applied  in  future  applications  to  avoid

spurious trends in the assimilative simulations, and this will be explored in the

discussion.
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4.4 Results

4.4.1 Simulation of the Ocean Colour Surface Chlorophyll 

The reanalysis  and stand-alone model  simulation of  the  ocean-colour  derived

surface chlorophyll concentration is shown in Figure 4.3. This figure compares

the  reanalysis  output  with  the  assimilated  ocean  colour  data,  and  shows  the

reference model simulation without assimilation.

The RMSD between the output and observations is lower for the ETKF than the

reference  simulation,  which  is  expected  as  the  ETKF  is  updated  by  the

observations whereas the reference simulation is not.

Considering the time evolution of outputs and data, the chlorophyll observations

are more variable than the model and assimilation outputs, and they typically

take on higher values  during the late  summer and autumn period which are

underestimated by the model.  The autumn bloom in particular is consistently

below the observations for both the model and reanalysis.

Figure 4.3.  A plot  of  the ETKF ensemble  and assimilated data (red) for  surface  chlorophyll-a

concentration. The light green lines represent each ETKF ensemble member, the dark green line is

the mean of the ensemble and the black line is the stand-alone model simulation (referred to as

the reference). The values in the top left of this graph show the average value (left) and RMSD

between the observations (right) for each simulation.
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The dispersion of the ETKF ensemble also varies on an annual cycle, with a much

narrower range of values taken by the ensemble members during the summer of

each year. The reanalysis is also typically higher and closer to the data than the

reference during this period.

The main inter-annual differences for both the model and the observations come

from the variability in the sizes of the peaks. This is particularly the case for the

data, which appears to have a variety of peak sizes that are often formed by just a

few observations.

The seasonal cycles and their  interannual  variability represented by the ETKF

mean  and  the  reference  simulation  are  overall  comparable.  However,  some

differences are evident.  For example,  the reanalysis during the autumn-winter

period in 2009 is noticeably higher in comparison to the previous years, whereas

the  reference  simulation shows very  little  variation  in  this  period from other

years. It appears that the autumn-winter period in most years is the main time

frame in which the reanalysis achieves a better fit to the data than the reference.

Unfortunately the spread is under-dispersive compared to the spread of the data

set, implying an under-representation of the observation errors. This results from

implementing the same Q matrix as that used in the TEs, which was adjusted to

accommodate a 30% uncertainty in the observations. The parameters were kept

the same in this chapter as the TEs to maintain enough consistency to apply the

results from Chapter 3 to the discussion here, but it is acknowledged that this

leads to an under-dispersion in comparison to the data set here due to potentially

higher errors in the observations at this site.
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4.4.2 Simulation of in-situ Biogeochemical Observations

Figure 4.4 compares the time evolutions of the ETKF ensemble with the in situ

data (chlorophyll  and nutrient  concentrations),  as  well  as  the reference model

run. In most cases, the reanalysis mean is closer to the data than the reference,

suggesting a better biogeochemical simulation by assimilating ocean colour. This

is confirmed by the lower RMSD values reported in the plots. Improvements are

more evident for chlorophyll and nitrate (0.62% and 1.17%, respectively), less for

silicate  (0.56%),  while  the  simulation  of  phosphate  degraded  (6.67%).  These

changes are displayed in table 4.1. The RMSD time averaged changes between

the reference  and reanalysis  simulations were  relatively  small,  but  differences

between the two simulations were evident in some of the simulated seasons and

years.

For  the  in-situ  chlorophyll  the  time  evolution  of  the  in  situ  observations

resembles, to a certain extent, the one of the ocean colour observations (Figure

4.3).  The seasonal  cycle  of  the  data  is  characterized  by low concentrations  in

winter, peaks in spring that then decrease in summer and reappear in autumn.

However, this typical cycle can change with the year, in particular the amplitude

of  the  spring  blooms.  The  model  outputs,  including  the  reference  but  in

particular the reanalysis, were capable of reproducing the typical seasonal cycle

as well as its inter-annual variability. The low winter and summer values are, in

general,  well  represented  by  the  outputs,  e.g.  winter  2003/2004  and summer

2010. However,  the model is less skilled in representing abrupt spring blooms

and  the  inter-annual  variability  of  their  amplitude.  For  example,  the  spring

bloom was  largely  underestimated  in  2003,  while  an  unobserved  bloom was

simulated in spring 2009. Overall,  the variability of the data was much larger

than that of the outputs.
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Though both the reference and reanalysis  simulations represented the general

features  of  the  observed  time  series,  some differences  are  clear.  Crucially,  in

several  instances  the  reanalysis  was  closer  to  the  un-assimilated  in  situ  data

evident  also  at  a  simple  visual  inspection.  This  is  the  case,  for  example,  in

Autumn 2005, 2007 and 2008.  In a few other circumstances, the assimilation of

ocean colour  brought  the  model  simulation  away from the  observations,  e.g.

autumn  2009.  However,  the  overall  benefit  of  ocean  colour  assimilation  in

reproducing  in  situ chlorophyll  observations at  station L4 is  indicated by the

decreased value of the RMSD in Figure 4.4.

For the nutrients: the time evolution of the observations and model runs exhibits

an annually repeating pattern. The seasonal cycles are characterised by peaks in

winter and periods of low concentrations in summer, converse to the chlorophyll

concentration. The shape of the reference run and the ensemble also tend to show

fewer individual peaks aside from the peak seen in the winter. The in-situ data

shows more variation in peak sizes than the model run which is not captured by

the reanalysis. There is a degree of inter-annual variability which is shown by the

in-situ data but is not fully captured by the model. The most evident example of

this are the high-valued peaks typically seen in the years 2003-2006, where the

data is more scattered, which are not present in the later years. There are also

periods of very low concentration in the summer for the in-situ data, which is

consistently  overestimated  by the  model  run.  Due to  this  overestimation,  the

model generally performs better during the winter periods.

It  is also evident from Figure 4.4 that  the surface simulations of the nutrients

present  some  discontinuities  at  the  beginning  of  each  year  (see  e.g.  winter

2003/2004). This is due to the annual reinitialisations performed using constant

initial values averaged throughout the water column and the period 2002-2003

(described in Section 4.3.4). This helped to prevent long-term trending due to the

readjustment of low values.
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Variable Reference Average Value
Reanalysis Average Value

(% Difference)

Reference

RMSD

Reanalysis RMSD

(% Difference)

Chlorophyll 0.94 mg/Chl-a/m3 0.93 mg/Chl-a/m3 (- 1.06%) 1.122 1.115 (- 0.62%)

Nitrate 4.89 mmol/m3 4.85 mmol/m3 (- 0.82%) 2.56 2.53 (- 1.17%)

Phosphate 0.34  mmol/m3 0.35 mmol/m3  (+ 2.94%) 0.15 0.16 (+ 6.67%)

Silicate 2.30 mmol/m3 2.30 mmol/m3 (- 0.02%) 1.77 1.76 (- 0.56%)

Table 4.1. Comparison of the average values for the reference and reanalysis. The number in

brackets is the percentage difference between the reanalysis and the reference. 
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Figure 4.4. A plot of the ETKF ensemble (green) and in situ data (blue) for surface chlorophyll-a

concentration  and  the  three  modelled  nutrients.  The  light  green  lines  represent  each  ETKF

ensemble member, the dark green line is the mean of the ensemble and the black line is the stand-

alone model simulation. The values in the top left of this graph show the average value (left) and

RMSD between the observations (right) for each simulation.
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Figure  4.5.  Ratio  of  the  data-output  RMSD for  the  ETKF reanalysis  mean  (“Ensemble  Mean

RMSD") and reference simulation ("Reference RMSD") computed at each year of the simulation

period. Values below one indicate that the reanalysis outperformed the reference simulation

While the reanalysis outperformed the reference simulation on average, with the

exception of phosphate (Table 4.1), Figure 4.5 shows that the performance of the

ETKF  had  a  large  degree  of  interannual  variability.  Changes  were  scattered

around the  1-valued  threshold  until  2005,  where  the  variations  became  more

systematic.  In  the  last  period  of  simulation,  the  reanalysis  outperformed  the

reference simulations of nitrate at each year,  with the exception of 2009. Also

silicate  and  chlorophyll  data  were  simulated  better  by  the  reanalysis  in  the

second period of simulation, in general. On the contrary, phosphate deteriorated

from 2006 till 2009, and this was not balanced by the low reanalysis RMSD in

2010, explaining the overall deterioration in Table 4.1. The figure also shows that

while the differences between the RMSD values for chlorophyll and silicate were

small,  the robustness  of  the small  changes  in chlorophyll  was highly variable

compared to silicate.
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4.4.3 Simulation of Carbon Fluxes

In  Figure  4.6,  the  reanalysis  output  is  plotted  alongside  the  reference  model

simulation of carbon fluxes that are of interest  to the biological and microbial

carbon pumps at station L4. Table 4.2 shows the average values for each of these

fluxes, taken by the reference and reanalysis simulations.

The air-sea flux of CO2 is negative in both the simulations, indicating that the

simulated system is  a source  of  CO2 to  the atmosphere.  Both the simulations

represent a seasonal cycle characterized by a negative peak in winter (indicating

outgassing) and a positive peak in summer (indicating ingassing). Within each

cycle, there are a large number of individual peaks indicating large variations on

the  time-scale  of  days.  This  cycle  shows  some  differences  between  years,  in

particular the large downwards peak in 2007 is seen in the reanalysis.

The time evolution for the zooplankton predation is characterized by peaks in the

summer  and  low  values  in  winter.  There  are  numerous  internal  peaks  seen

within  the  summer  periods  that  can  vary  in  frequency  between  years,  for

example the two simulated blooms in 2003 are not observed in some other years.

The winter period is mostly smooth and does not show much variation.

The  net  ecosystem production  is  consistently  negative,  indicating  that  CO2 is

released into the water through overall respiration in greater amounts than it is

taken from the water by photosynthesis. The seasonal cycle characterized by low

negative values in the summer and highly negative values in winter. It closely

resembles  the  graph  for  zooplankton  predation  in  terms  of  the  differences

between internal peaks for each year, but with the values inverted. 
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The sinking of POC is typically higher valued in the summer than in the winter,

and shows a large number of individual peaks with a similar frequency to those

seen in the air-sea flux. The height and frequency of these peaks vary across each

year.

The net bacterial production is characterized by peaks in summer and low-values

in winter. As with many of the other fluxes, small peaks are observed during the

summer period with very few seen in winter. Note that here there is a large shift

observed at the beginning of each year, but this is due re-initialisation and does

not appear to influence the overall simulation.

The  largest  carbon  flux  changes  made  by  the  reanalysis  with  respect  to  the

reference simulation are the sinking of POC and air-sea flux, the first of which

increases  while  the  second  decreases.  The  remaining  fluxes  do  not  change

significantly,  especially  the  zooplankton  predation  which  undergoes  a  very

minor reduction.

The ensemble dispersion also varies on an annual cycle for many of the fluxes,

similar to the case for surface chlorophyll. This is most prominent for the air-sea

flux and the net  bacterial  production,  with a large ensemble spread observed

after the beginning of each year for the air-sea flux, and during the winter period

for net bacterial production. This is likely to be related to the re-initialisation at

the start of each year. 
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Figure 4.6. Plots of the ETKF ensemble against the model for each of the five carbon fluxes of

interest. The light green lines represent each ETKF ensemble member, the dark green line is the

mean of the ensemble and the black line is the stand-alone model simulation. The average values

displayed in the top left of each plot indicate the average values of the reference and ensemble

mean throughout the whole run. The percentage in brackets indicates the change in the average

value expressed as a percentage of the average reference value.
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Carbon flux Depth Reference Average Value
Reanalysis Average Value

(% Difference)

Air-sea flux Surface -10.9 mg C/m2/day -17.6 mg C/m2/day (- 38.3%)

Zooplankton

Predation

Sum of All

Layers
46.9 mg C / day 46.4 mg C / day (- 1.06%)

Net Ecosystem

Production

Sum of All

Layers
-64.1 mg C / day -63.8  mg C / day (+ 0.47%)

Net Bacterial

Production

Sum of All

Layers
14.6  mg C / day 13.8 mg C / day (- 5.48%)

Sinking of all POC 500m 238.3 mg C/m3/day 239.3 mg C/m3/day (+ 0.42%)

Table 4.2. Comparison of the average values for the reference and reanalysis. Negative values

represent outgassing. The number in brackets is the percentage difference between the reanalysis

and the reference.

Figure  4.7.  Percentage  changes  of  the  reanalysis  carbon  fluxes  with  respect  to  the  reference

simulation.  A  positive  value  indicates  an  increase  in  value  and a  negative  value  indicates  a

decrease. Changes to the air-sea flux have been reduced by a factor of ten to increase the visibility

of the changes to the other fluxes.
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Figure 4.7 shows the percentage difference between the reference and reanalysis

for each year. The changes to the air-sea flux are the largest, but are divided by a

factor of 10 to fit into the plot. The figure shows that the changes of the fluxes are

generally  consistent  between  each  year.  The clearest  examples  of  this  are  the

sinking of POC, the zooplankton predation and the net bacterial production, that

were  consistently  lower  in  the  reanalysis  than  in  the  reference  simulations

(excluding 2007 for zooplankton predation). Also the air-sea flux was lower in

most  years,  with  some  exceptions  such  as  2007  and  2009.  Despite  this,  the

changes in the net ecosystem production have a marked interannual variability,

with different signs in subsequent years. With the exception of the air-sea flux,

most of the updates are relatively small as they do not exceed a 10% increase or

decrease.

4.5 Discussion

Overall,  the  reanalysis  improves  the  model  simulation  of  surface  chlorophyll

concentration derived from ocean colour (Figure 4.3), which is validated from in

situ  observations  (Figure  4.4).  On  average,  assimilation  of  ocean  colour  also

improved  the  nitrate  and  silicate,  but  deteriorated  phosphate  (Figure  4.4).

However,  the  performance  of  the  reanalysis  with  respect  to  the  reference

simulation has a degree of interannual  variability (Figure 4.5).  In terms of the

fluxes, the largest impact of assimilation was seen for the air-sea flux and net

bacterial production, while the zooplankton predation received the least impact

in the multi-annual average (Figure 4.6; Table 4.1). The sign of the changes in the

fluxes  were  substantially  consistent  throughout  the  different  years  of  the

simulation window (Figure 4.7). The outcome of these are broadly related to the

model’s capability in representing the biogeochemistry at L4, the reliability of the

ocean  colour  data  and  the  properties  of  the  ETKF.  The  statements  in  this

overview are explored further in the following subsections. 
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4.5.1 Impact on the simulation of the Biogeochemical Variables

For the observed variable, surface chlorophyll-a concentration, there was lower

RMSD (Figure 4.3) between the ETKF mean and the observations compared to

the  reference  and  observations.  This  is  to  be  expected  and  serves  as  a

confirmation that the assimilation scheme was successfully implemented, which

is similarly argued in Triantafyllou et al., 2007, and again in more depth by Gregg

et al., 2009.

A  notable  feature  in  Figure  4.3  is  that  chlorophyll  data  is  fairly  consistently

underestimated by both the reference and the reanalysis in the summer regions.

In Ciavatta et al., 2011, these summer peaks are in fact overestimated, which is

likely to be due to differing initial conditions for the model simulation. However,

in both cases,  blooms in the autumn period are underestimated which can be

attributed to the difficulty of the ERSEM model in simulating sudden blooms.

This  is  particularly  relevant  in  late  summer  and  early  autumn  as  the

phytoplankton community at station L4 is dominated by dinoflallates. Most of

the dinoflagellates species are mixotrophs (Stoecker, 2017), but ERSEM represents

them alongside other microphytoplankton which are autotrophs, resulting in a

failure to accommodate these peaks appropriately in the current model setup.

While this issue remains present in both this application and that of Ciavatta et

al., 2011, the set-up here achieves a better RMSD between reference and in-situ

data, suggesting a potential improvement over the previous station L4 set-up.

Aside  from  the  assimilated  ocean  colour  data,  there  was  also  a  slight

improvement  obtained  for  the  estimation  of  the  in-situ  data  of  surface

chlorophyll, shown in Figure 4.4. These observations refer to the same property

retrieved  from the  satellite  observations.  However  the  two  data  sets  did  not

match  in  time  for  most  of  the  observations,  and  a  different  number  of
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observations were available for each. The two data sets are shown superimposed

in time in Figure 4.6 which illustrates the variations in their trajectories. This is

further revealed in Figure 4.8, which shows only the points in each data set that

occur at about the same time within a 24-hour period. The relatively high RMSD

and low correlation between in situ and ocean colour chlorophyll data means that

the assimilation of ocean colour observations may adjust the reanalysis far away

from the in situ observations for  particular  analysis  steps.  As these situations

appear to be in the minority it appears that overall the in situ and ocean colour

data were in relative agreement. However, the discrepancy between the two data

sets is sufficient to explain the relatively low value of the improvement of the

RMSD of in situ chlorophyll.

The most noticeable shortcoming of both the simulation and reanalysis compared

to in-situ chlorophyll, is that the peaks are poorly represented. Butenschon et al.,

2016,  which  also  provides  a  comparison  between  simulated  chlorophyll

concentration and in-situ data at station L4, also found that the simulation was

unable  to  capture  the  peaks  in  the  data.  One  of  the  suggested  reasons  they

provided for this was the lack of consideration of physical and biogeochemical

impacts of the lateral processes in a 1D setting. It is assumed that this argument

applies to the simulation shown. Another issue is that ERSEM was parameterised

for  a general  marine system, and so it  fails  to  capture some of  the dynamics

specific to L4 (Blackford et al., 2004) (Butenschon et al., 2016).

Improvements to the RMSD between mean and in situ data is less prominent for

the nutrients. The RMSD was only reduced by 0.03 mmol/m3 for nitrate and 0.01

mmol/m3 for silicate,  which is a rather small change. Furthermore,  the RMSD

was in fact higher in the case of phosphate by 0.01 mmol/m3, suggesting that the

reference run may be a better representation of the phosphate evolution.
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Figure 4.8. A plot of the in situ data and satellite data for surface chlorophyll-a concentration,

plotted  across  the  same  8-year  period  used  in  the  assimilation.  The  dotted  lines  show  the

difference  between  adjacent  plots  and  are  included  to  illustrate  the  approximate  trajectory

represented by each set of data.

Figure 4.9. A plot of the in situ data and satellite data for surface chlorophyll-a concentration,

which  shows  only  the  observations  that  occur  within  the  same  24-hour  period.  Additional

information is displayed in the top left of this figure.

To understand this, it is worth noting that the difficulty in capturing the trends of

independent in-situ nutrient data is also present in previous applications of ocean

color assimilation. For example, Fontana et al., 2009, found that assimilation took

their hindcasts away from ammonia as well as nitrate concentrations (in cases

below  the  surface  layer).  Nerger  and  Gregg,  2007,  also  reported  that

representation of the nitrate concentration (and some other nutrients) were often
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degraded  with  respect  to  the  model  predictions.  For  the  specific  case  of

phosphate,  which showed a  deterioration for the reanalysis here,  it  is  evident

from Figure 4.4 that an overestimation in 2008 and 2009 occurred. Also, it could

be  the  case  that  because  phosphate  was  already  sufficiently  captured  by  the

reference model, correcting the bias for phytoplankton increased the phosphate

uptake  by  phytoplankton,  deteriorating  the  optimal  previous  situation.  This

remains an issue in other up-to-date studies, such as Ciavatta et al., 2018, which

found that PFT assimilation also deteriorated nitrate in ERSEM.

It is also important to note that the relative small changes in the values of the

RMSD for the whole simulation period is consistent with the marked interannual

variability of the reanalysis performance with respect to the reference simulation

(Figure 4.6). However, the improvements are more systematic in the second part

of the simulation window, with the exception of phosphate which deteriorated

each year. This indicates the need for higher time-resolution metrics (such as the

annual RMSD) to understand the full potential an asismilation system.
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4.5.2 Impact on the simulation of the Biogeochemical Fluxes

The  overall  success  of  the  results  obtained  for  the  biogeochemical  variables

allows us to consider the reanalysis estimates of the unobserved carbon fluxes

with some confidence on their reliability (Figure 4.5; Table 4.1). This section will

begin with a discussion of the causal relationship between the fluxes relating to

the influence of the ocean colour DA, and will then discuss the overall quality of

the reanalysis and implications for the BCP and MCP.

The starting point for interpreting the DA adjustments made to each flux comes

from the increase  in total  chlorophyll-a  concentration.  This  increase  is  due to

assimilating  satellite  data  which  are  at  higher  values  on  average  than  the

reference run, and this eventually led to the changes seen in the average values

for the fluxes. A diagram outlining the effects of the assimilation on the average

value of each flux is shown in Figure 4.10, with links between the fluxes. A table

summarising the effects of assimilation on other quantities is displayed in Table

4.3, which the following paragraphs will make use of to explain these changes. 

Figure 4.10. Diagram illustrating the impact of the assimilated total chlorophyll increase from DA

on the carbon fluxes. Green arrows pointing up indicate an increase and red arrows pointing

down indicate a decrease.
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Fluxes Change from Reference Average to ETKF Average
Air-sea flux - 38.26%

Zooplankton Predation - 1.06%
Net Ecosystem Production + 0.47%
Net Bacterial Production - 5.48%

Sinking of all POC + 0.42%
Phytoplankton Biomass

Diatoms + 5.18%
Nanophytoplankton - 19.3%
Picophytoplankton + 3.13%

Microphytoplankton - 15.0%
Zooplankton Biomass

Mesozooplankton - 0.82%
Microzooplankton + 0.94%

Heterotrophic Nanoflagellates - 1.18%
Dissolved Organic Carbon

Labile DOC - 0.37%
Semi-Labile DOC - 1.51%
Recalcitrant DOC + 0.74%
C:Nutrient Ratios

C:N in Diatoms - 0.96%
C:P in Diatoms - 4.84%
C:S in Diatoms - 0.04%

C:N in Labile DOM - 0.65%
C:P in Labile DOM - 1.15%

Respiration

Phytoplankton Respiration - 0.38%

Zooplankton Respiration - 0.36%

Bacteria Respiration - 0.16%

Additional

Zooplankton Predation on Phytoplankton Only + 0.66%

Zooplankton Predation on Bacteria Only - 2.83%

Phytoplankton Excretion to DOC - 0.99%

Table 4.3. A summary of the changes made to the average value of various outputs in ERSEM,

expressed as percentages of the reference value.

Net Ecosystem Production: the average value increased by a small margin (+0.47%),

which translates  to  a  slight  decrease  in  the  carbon output  from this  flux.  As

explained previously, this flux relates to the combined effects of photosynthesis

by  phytoplankton  and  respiration  by  each  microorganism.  For  the

photosynthesis,  an  increase  is  expected  due  to  the  increase  in  the  large-type

phytoplankton biomass (diatoms), which the model introduces after the rise in

chlorophyll concentration that follows from the assimilation. As Table 4.3 shows,

the increase in phytoplankton mainly takes the form of diatoms. It  should be

noted that while there is also a decrease in biomass for smaller phytoplankton
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types, nano- and microphytoplankton, their masses are small by comparison and

therefore do not make a significant contribution the overall biomass. The increase

in overall  phytoplankton biomass results  in an increase in carbon intake from

photosynthesis.  Furthermore,  the  overall  respiration  of  phytoplankton

zooplankton  and  bacteria  was  slightly  reduced  after  assimilation  due  which

results for the shifts in the PFT and ZFT biomass. Therefore, there is less carbon

output which further reinforced the reduction of this flux.

Net Bacterial Production: the average value decreased (-5.48%) which is explained

by the decrease in DOC concentration and availability (Table 3.4). The overall

reduction  in  labile  and  semi-labile  DOC  means  that  there  are  less  substrates

available for bacterial breakdown. There was also a small reduction in the DOC

excretion  by  phytoplankton,  which  produce  DOC  for  bacteria.  This  reduced

production of DOC is triggered by the reduction of the carbon to nutrient ratios

for diatoms, due to the influence of changing the stoichiometric ratio on the rate

of conversion of CO2 into DOC. While the average of the net bacterial production

flux appears to change more than most of the other fluxes by the assimilation, the

large shifts imposed by the re-initialisation (which are prominent in Figure 4.5)

may be a significant factor for this. 

Air-sea flux: the average value decreased (-38.26%), suggesting that the ocean is

releasing more CO2 than predicted by the stand-alone model. The extent of this

change is inflated strongly by the timing of the downwards peak in the reanalysis

at the start of 2003 which is not present in the reference run . However, even when

excluding the first two years from this calculation, a decrease of 15.66% remains

(see Figure 4.11). The apparent decrease in this flux is a somewhat unexpected

result as it should correlate with respect to the net ecosystem production due to it

also sharing contributions from primary production and respiration.
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Figure 4.11. Calculation of the reference and assimilation mean for the air-sea flux while

excluding the first two years.

It should also be noted that this flux exhibits large variations in spread, shown in

Figure  4.5.  During  the  summer  and  early-autumn  periods  the  ETKF  mean

remains similar to that of the model, but shows a very large spread of ensemble

members  in  the  winter  period.  Such  a  large  uncertainty  might  be  related

dynamics  to  the  produced  the  annual  re-initialization  of  the  model  state

variables.

By comparing this flux (Figure 4.5) to the findings in Litt et al., 2010 (Figure 4.2),

which was derived through pCO2 observations at station L4, it is evident that

some shared seasonal patterns are present. For example, the largest negative peak

of air-sea flux is seen for 2007 in both this assimilation and in the observations of

Litt et al., 2010, suggesting that ocean colour assimilation may be beneficial with

respect to this flux. 

Zooplankton predation: the average value decreased by a small amount (-1.06%).

The  overall  decrease  can  be  explained  by  the  fall  in  the  biomass  of  most

zooplankton types which results from the reduction of phytoplankton types that

act as prey for these zooplankton. Therefore, there will clearly be a lower amount

of  grazing  by  zooplankton  as  there  is  a  smaller  concentration  of  the  overall

zooplankton present in the water column. The relatively low extent of this update
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may also be due to the cancelling effect of the simultaneous rise in phytoplankton

grazing and fall in bacteria grazing which are shown as separate values at the

bottom of Table 4.3.

An  interesting  result  from  Figure  4.6  is  that  many  of  the  changes  for  the

zooplankton  predation  can  be  linked  to  the  timing  of  changes  to  the  net

ecosystem production. In general, zooplankton predation appears to be inversely

linked  to  the  net  ecosystem  production,  which  is  likely  due  to  the  inter-

relationship  between  the  zooplankton  and  phytoplankton  biomass.  These

updates are typically located in the spring period. During the spring period in

2007, the assimilation was influenced by the observed phytoplankton bloom as it

increased from the reference, which indicates an improvement. The ability of the

assimilation to capture this will have made a beneficial impact on the simulated

low trophic web (zooplankton biomass and predation).

Sinking of  POC:  the average value increased by a small margin (+0.42%). This

implies that more POC is being exported on to the sediment. This update is likely

due to the extra diatom biomass which produces more particulate organic matter

that is subject  to sinking. This is not contradicted by the reduction in smaller

types of phytoplankton as they are not typically large enough to sink themselves

and instead produce fast sinking POC.

4.5.3 Impact on the simulation of the Carbon Pumps

There are implications of the ETKF representation of carbon fluxes in relation to

the BCP and MCP shown by the results in Figure 4.5. But, as mentioned before,

station L4 is a shallow water site and therefore does not incorporate pumping

into the deep ocean. This makes it difficult for a full BCP representation in this

set-up, and this should be taken into account in the proceeding comments.
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The net ecosystem production, which was the flux most reliably updated by the

assimilation according to the TEs (see section 3.4.2), is shifted upwards overall

after assimilation by 0.4% (Table 4.3). This may suggest that there is an increased

significance of the BCP contribution in the site,  due to the additional primary

production.  There  are  also  many  apparent  changes  made  to  the  bacterial

production of recalcitrant DOC (+ 0.74%), which can be seen as an indicator of

the influence of ocean colour DA on the simulation of the MCP.  The intra-annual

changes in the net bacterial production suggests a variation in the dominance of

the MCP relative to the BCP throughout the year,  as  the amount of  bacterial

decomposition tends to deviate from the reference in the winter periods.

Another  interesting  result  is  the  zooplankton predation  representation,  which

shows the most variation between the ETKF and the reference simulation model

during the spring bloom period each year. The location of many of the changes

can be linked to the location of changes to the net ecosystem production, which is

likely due to the inter-relationship between the zooplankton and phytoplankton

biomass.  This  suggests  that  the  assimilation  improves  the  representation  of

phytoplankton contributions during spring, where the observations are helpful in

driving the reanalysis towards towards the observed the diatom bloom.

The effects of the MLD dynamics discussed in the TE chapter are most relevant to

the  sinking  of  POC.  The  TEs  showed  that  in  the  summer  periods,  this

performance of this flux is less reliable, which is likely due to the non-linearity of

the relationships between surface and bottom dynamics when the water column

is  not  fully  mixed.  Therefore,  the  increase  in  POC  sinking  shown  by  the

assimilation  may  be  affected  by  the  uncertainty  induced  by  the  onset  of  the

seasonal stratification. As a consequence the ETKF is less effective in improving

the simulation of POC fluxes in summer at station L4, which is explored in the

next section.
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4.5.4 Impact of the ETKF Hypothesis and Set-up

As  stated  in  prior  chapters,  one  of  the  aims  of  this  thesis  is  to  explore  the

consequence of the linear assumption of Ensemble Kalman Filter methods within

the BGC modelling context,  and the difficulty this might present in such non-

linear models (van Leeuwen, 2010). This is because the transition throughout the

year from a mixed water column to a stratified water column may approximately

represent the transition from a spatially non-linear to linear environment (see TE

discussion for more details). Therefore, the Gaussian assumptions made within

Ensemble Kalman Filter should be more valid during the mixed water column

period.

In  the  context  of  the  biogeochemical  analysis  at  L4,  limitations  of  the  linear

assumption might become particularly relevant in the late spring and summer

periods. In these seasons, the complex production dynamics are at their highest.

Additionally, the physical system is split in two by stratification, which weakens

the linear link between variables at the surface and the deepest layers.

Through a close examination of Figure 4.3,  it  is  also evident that the reduced

RMSD achieved by the reanalysis is mainly achieved in the winter periods, which

is  where the chlorophyll  concentration is  clearly  above the reference  run and

therefore  closer  to  the  observations.  This,  along  with similar  observations  for

some of the fluxes, can be viewed as evidence of the ETKF showing the most

improvement during the periods of high “spatial linearity” (i.e. homogeneity of

the biogeochemistry) along the water column. It should be noted however that

there is likely a mixture of other factors, such as the failure to capture particular

ecosystem  dynamics  specific  to  the  summer  period,  as  suggested  earlier  in

section 4.5.1.
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This  application may have improved though the use  of  a dynamic Q matrix,

which could alter throughout the run to account for dynamics that influence the

cross-correlations  between  variables.  As  discussed  in  Chapter  3,  the  potential

success of the ETKF may have been greater  with respect  to the nutrients and

fluxes  such  as  the  POC  sinking.  Another  improvement  could  be  made  by

eliminating the need for the annual reinitialisation in the set-up, as this has a

strong influence on the results at the start of each year.
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4.6 Conclusion

The  results  of  the  reanalysis  simulations  present  some  evidence  that  the

assimilation  of  ocean  colour  can  improve  our  representation  of  the

biogeochemical variables and fluxes at station L4. The result of the decreased air-

sea flux and increased sinking of POC implies that certain relevant carbon fluxes

may be impacted by the assimilation.

However,  these updates are often very small, which is likely to be due to the

large observational errors placed on the assimilated chlorophyll data. The overall

chlorophyll trajectory is therefore not very sensitive to the assimilation at station

L4. It is also difficult to ensure that the updates made are always improvements,

especially due to the discrepancies between the in-situ and satellite data sets for

chlorophyll.

Overall, the calculations of the carbon fluxes are influenced by the ocean colour

assimilation,  but  are  also  heavily  restrained  by  the  large  observation  errors

present for the current data sets. There will be benefits from ongoing research

efforts in developing ocean-colour algorithms for optically complex coastal areas,

which will reduce the uncertainties of products available for data assimilation in

coastal waters.

Note that a further discussion of the inter-annual variability of the seasonal

cycle of the carbon fluxes shown by the assimilation at station L4 is included in

Chapter 6, which will compare the results of the station L4 assimilation to that

of Bermuda Atlantic Time-Series Study (BATS), which is presented in the next

chapter.
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Chapter 5

Ocean Colour Assimilation at BATS

5.1 Overview

This chapter describes the multi-annual data assimilation of ocean colour data

into  ERSEM-GOTM  configured  for  the  open  ocean  station  BATS  (Bermuda

Atlantic Time-Series Study).  The objective of this is to improve the simulation

and understanding of BGC variables and carbon fluxes in an oligotrophic site in

the open ocean, using the same ocean colour DA method that was applied at

station L4 (Chapter 4).

While the set-up is similar to the one described in the previous chapter, there are

a few essential changes. These changes apply to the initial conditions, observation

uncertainties  and  the  exclusion  of  some  phytoplankton  functional  types  to

account  for the different  ecosystem features  at  the BATS site.  Section 5.3  will

describe these changes in more detail.

The results presented here include the impact of assimilation on total chlorophyll

(section 5.4.1), a comparison of the output with in situ data of chlorophyll and

nutrients  (section  5.4.2)  followed by  an evaluation  of  the  revised  assimilative

estimates of carbon fluxes that are associated with the biological and microbial

carbon pump (BCP and MCP) at BATS (section 5.4.3).

The discussion of the results will focus on the model performance and on the

mean value of the unobserved flux estimates in relation to previous literature

estimates of the biogeochemical patterns at the site (section 5.5).
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5.2 The study site: Bermuda Atlantic Time-Series Study

BATS  was  initiated  in  1989  as  a  broad  study  of  the  physical,  chemical  and

biological ocean processes throughout the 4500m deep water column (Philips et

al., 2007). It is one of the two main island-based sites examined in the U.S. Joint

Global Ocean Flux Study (JGOFS), along with the Hawaiian Ocean Time Series

(HOTS). The location of the BATS site is in the western North Atlantic subtropical

gyre, illustrated in Figure 5.1. 

Figure 5.1. The location of the BATS study site: 31° 40' N, 64° 10' W.

BATS  has  been  used  to  examine  the  causes  of  seasonal  and  inter-annual

variability in ocean biogeochemistry (Michaels et al., 1996). Since 1989, there have

been  nearly  monthly  cruises  to  the  site,  which  has  helped  to  create

comprehensive data sets useful for inter-annual and decadal climate variability

studies.

The site is characterised as an open-ocean site and is nutrient poor (oligotrophic)

(Steinberg et al., 2001). The typically low concentrations of nutrients leads to very

low concentrations of diatoms and dinoflagellates (Steinberg et al., 2001), which

greatly diminishes the prominence of the spring bloom of these groups compared

to those seen in nutrient-rich marine environments. Nutrients are available at the

surface during winter where the subtropical mode water (STMW) is subject to
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deep winter mixing (Worthington, 1976),  which results  in mixed layer depths

between 150-300m. In the summer,  the region is  subject  to  high-pressure that

prevents further frontal passage and leads to a shallow mixed layer depth, often

less than 20m (Steinberg et al., 2001). The typical profiles of temperature and the

mixed layer depth from 1989-1997 are illustrated in Figure 5.2.

The ecosystem is also impacted by tropical meteorological events. Low-salinity

layers form due to heavy rainfall which can stimulate bloom formation (Michaels

et al., 1993). Also, tropical storm activity in the summer and early autumn results

in strong winds which change the thermal and physical structure by deepening

the mixed layer depth and bringing nutrients to the upper layers,  fuelling the

phytoplankton blooms (Nelson et al., 1998).

Seasonal and inter-annual dynamics of the carbon fluxes within the water column

and the atmospheric interface at BATS have been examined in previous studies.

For example, Bates et al., 1996 looked at the total carbon dioxide in the surface

layer of BATS for the years 1989-1993, shown in Figure 5.3. They found that there

were seasonal variations between about 2010 and 2065  µmolkg-1 in these years.

Characteristic  seasonal  patterns  in  total  CO2 were  evident  from  these

observations, including a maximum in the winter-spring from mixed layer total

CO2,  a sharp decrease in spring-summer reaching a minimum in the summer,

and a rise in mixed layer total CO2 during autumn. 

The  inter-annual  dynamics  of  the  biogeochemistry  has  also  been  examined

through other carbon fluxes in previous studies such as Steinberg et al,.  2001.

Figure 5.4. shows these dynamics for primary production and POC at a variety of

depths.  While  some annually  recurring  features  can be  identified,  these  plots

typically show large variations in the sizes of most of the peaks between years.
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Figure 5.2. Contour plot of temperature with a 1 degrees C contour level. The mixed-layer depth

is shown by the white line. Figure is taken from Steinberg et al., 2001.

Figure 5.3. Total CO2 taken monthly at the surface during the first five years of BATS sampling,

taken from Bates et al., 1996.
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Figure 5.4. Integrated Primary Production from 0 – 140m (top), compared to particulate organic

carbon measurements at three depths: 150m, 200m, and 300m, taken each month. Figure is taken

from Steinberg et al., 2001.

Previous modelling studies at BATS include Doney et al.,  1996, which used a

nitrogen-based  1D  biologically-physical  model  based  on  the  site  and  found

success  in  capturing  features  of  the  annual  chlorophyll  distribution,  depth-

integrated chlorophyll and primary production that were present in BATS data.

More recent modelling efforts include Le Clainche et al., 2010 and Polimene et al.,

2011,  which  have  been  helpful  in  explaining  various  observations  in  further

depth, such as the dimethyl-sulfide summer accumulation at BATS.

Data assimilation at BATS has also been explored. An early example of this is

Spitz  et  al.,  1998,  which  used  variational  adjoint  assimilation  to  estimate  the

optimal  parameters  of  a  mixed-layer  ecosystem model  in the upper  ocean.  A
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more  recent  study  that  assimilated  BATS  data  is  Mattern  et  al.,  2010,  which

applied  both  the  Ensemble  Kalman  FIlter  (EnKF)  and  Sequential  Importance

Resampling  (SIR)  filter  to  a  physical-biological  model  including  GOTM.  This

study assessed its results by using a cross comparison of data assimilative and

deterministic  simulations  from  a  two-year  period,  and  concluded  that  the

predictive  skill  of  the system could be  enhanced using the Ensemble Kalman

Filter with ensemble sizes of 20 members or greater (which supports the use of 50

in the application of this thesis). A key result of the study by Mattern et al., 2010,

was that the estimates of surface chlorophyll and particulate organic carbon were

improved compared to a stand-alone model run.
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5.3 Set-up of the assimilative system

The set-up of the model and assimilation system is mostly the same as that used

in the TEs (Chapter 3) and the station L4 assimilation (Chapter 4). However, there

are  necessary  changes  that  were  required  to  accommodate  the  model  to  the

characteristics  of  the  BATS  ecosystem  and  to  assimilate  the  ocean-colour

observations retrieved for BATS. An overview of the set-up and changes will

now  be  outlined  for  both  the  model  (GOTM-ERSEM)  set-up  and  the  DA

framework (EMPIRE) set-up.

5.3.1 GOTM-ERSEM

The fundamentals of the model set-up were the same as in the TEs, but with the

exclusion of some phytoplankton variables to accommodate certain differences

from station L4. The same five carbon fluxes were examined here: air-sea carbon

flux, zooplankton predation, net ecosystem production, net bacterial production

and sinking of POC.

The configuration used for the water column, parameters, initial conditions, and

atmospheric forcing for the marine model (GOTM-ERSEM) at BATS was drawn

from a previous model application at the same site by Butenschon et al. (2016).

The assimilated ocean-colour data were extracted as five-day composites from

the ocean-colour CCI-OC product.

The  model  simulation  at  BATS  spanned  the  years  1998-2007,  based  on  the

availability  of  forcing data  within this  range.  The initial  conditions were  also

changed from those used for station L4 to better fit the BATS site, with a notable

change being the reduction of nutrient concentrations, which were tuned to fit

the average values of available in-situ data. The annual reinitialisation that was
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employed in the assimilation at station L4 to prevent runaway trends was also

used here, but was based on initial values more appropriate for the BATS site.

Another  alteration  is  that  two  of  the  four  phytoplankton  functional  types,

diatoms and microphytoplankton (i.e. dinoflagellates), were excluded from both

the reference simulation and the reanalysis. This exclusion was made to reflect

the reports of very low concentrations of diatoms and dinoflagellates (Steinberg

et al.,  2001).  Preliminary simulations with ERSEM at BATS performed for this

study also led to the extinction of the diatoms and dinoflagellates, prompting this

change.

A further point relating to GOTM in this set-up should be mentioned. The depth

levels were defined as 100 vertical layers as in the station L4 application, but here

this represent a depth of about 500 metres, compared to 50 metres at station L4.

The choice of a deeper threshold ensures that the expected position of the mixed

layer depth, which can reach depths up to 300 metres (see Figure 5.2.), is still

contained by the model.

5.3.2 Assimilation and EMPIRE

The set-up of the ETKF was also based on the configuration that was tuned in the

TEs (Chapter 3), which includes 50 ensemble members. 

The model configurations uses 100 vertical layers to represent the BATS depth of

500m (and so each layer represents a greater depth compared to station L4), so

the localisation factor was set to 100 units for consistency. The inflation was again

unused,  and  the  Q  matrix  was  constructed  from  matrices  representing  the

correlations between variables,  scaled according to an input scalar factor.  The

clipping control is also present to prevent negative values of the biogeochemical
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variable resulting from the stochastic sampling when a variable reaches a low

value.  A  threshold  value  was  set  to  1x10-10,  below  which  an  alternative

perturbation is used.

An important change made in EMPIRE which relates to the data assimilation was

that  the  observation  errors  were  reduced  from  those  used  in  the  station  L4

assimilation. As before,  this was a number that represented about 30% of the

value  of  the  chlorophyll  concentration  by  looking  at  the  average  chlorophyll

value  of  the  available  data.  Because  the  BATS  data  had  lower  values,  the

magnitudes  of  the  observation  errors  were  reduced.  This  should  also

approximately account for the reduced error in observations due it being an open

ocean site, and therefore without the uncertainty contributions seen at a coastal

site from riverine inputs of coloured dissolved organic matter (CDOM) and re-

suspension of sediments.
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5.4 Results

5.4.1 Simulation of the Ocean Colour Surface Chlorophyll 

The reanalysis simulation and the model simulation of the ocean-colour derived

surface chlorophyll concentration are shown in Figure 5.5. This figure compares

the  reanalysis  output  with  the  assimilated  ocean  colour  data,  and  shows  the

reference model simulation without assimilation. The RMSD between the output

and observations is lower for the ETKF than for the reference simulation, which

is expected as the ETKF is updated by the observations. The surface chlorophyll

concentration shown here is modelled from just two phytoplankton functional

types: pico- and nano- phytoplankton.

In  terms  of  the  temporal  evolution  of  the  observations  and  the  assimilation

output, the chlorophyll observations are followed closely by the trajectory of the

ETKF ensemble mean. There are some notable exceptions to this, which includes

the lower values of the spring peaks in the reanalysis that is most evident in the

years 2000 and 2001. Generally, the reanalysis fits the data well in winter. The

reference simulation remains below from the observations at almost all periods. 

Figure  5.5.  A  plot  of  the  ETKF  ensemble  and  assimilated  data  (red)  for  surface  chlorophyll-a

concentration. The light green lines represent each ETKF ensemble member, the dark green line is the

mean of  the  ensemble  and the  black  line  is  the  stand-alone  model  simulation (referred to  as  the

reference). The values in the top left of this graph show the average value (left) and RMSD between the

observations (right) for each simulation.
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The ensemble spread is highly variable and includes most of the observations

within its range, with the spring period of 2000 and 2001 being exceptions to this.

The range of ensemble values does not vary significantly on an annual  cycle,

although  the  spread  is  broader  from  spring  2002  onwards,  indicating  an

increased uncertainty of the estimates.

The main inter-annual differences for both the model and the observations comes

from variability in the peak sizes rather than the peaks’  location in time.  The

observations show a wider variety of peak sizes that often consist of only a few

data, such as the high peak in 2001 form from only two observations.

The seasonal cycles and their  interannual  variability represented by the ETKF

mean and the reference simulation show some differences. There are many points

early in each year where the ETKF takes on values lower than the reference, and

during these periods the reference is closer to the spring blooms shown in the

data. Also, while the reduction in chlorophyll in the summer is shown by both

the assimilation and reference run, they become very close to zero in the case of

the reference, which contrasts with the higher chlorophyll concentration seen in

the autumn period. For the assimilation output, the magnitude of the chlorophyll

concentration  remains  fairly  consistent  over  the  summer-autumn  transition

period.

Compared to the ensemble spread for the chlorophyll-a concentration at station

L4, the dispersion is much better fitted to the data set, with only a few major

outliers during the spring bloom period. This suggests  that the assignment of

observation errors  of  30% is  more  appropriate  at  the  BATS site  compared  to

station L4.
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5.4.2 Simulation of in-situ Biogeochemical Observations

Figure 5.6 compares the time evolutions of the ETKF ensemble with in situ data

(chlorophyll,  nutrient  concentrations  and primary  production),  as  well  as  the

reference model run. These plots are split into two depth layers which includes

surface layer in-situ data of chlorophyll and primary production and data taken

at a depth of approximately 100 metres for chlorophyll, nitrate and phosphate.

Note  that  silicate  is  excluded  here  due  to  the  omission  of  diatoms  in  the

simulation. It’s useful to consider nutrient concentrations at these depths for skill

assessment  purposes  because  the  observed  concentrations  were  below  the

analytical  detection  limit  at  the  surface.  Chlorophyll  at  100  metres  is  also

included  to  evaluate  this,  and  to  capture  the  capability  of  the  system  in

simulating the deep chlorophyll maximum which is typically observed at ocean

open sites (Varrela et al., 1992). Overall, the assimilation improved the simulation

of the BGC data compared to the reference simulation. Table 5.1 summarises the

metrics used to assess this.

For the surface data, the reanalysis ensemble mean is closer to the data than the

reference for both the chlorophyll and primary production, suggesting a better

biogeochemical simulation by assimilating ocean colour. This is confirmed by the

lower  RMSD values  reported  in  the  plots,  which  is  about  a  4% reduction  in

RMSD for  surface  chlorophyll,  and a 9% reduction in RMSD for  net  primary

production.

For  the  surface  in-situ  chlorophyll  data,  there  is  a  much  higher  range  of

variability compared to the reanalysis mean (Figure 5.3).  The data often takes

very low values in the summer period which was difficult for the simulation to

capture. There are also relatively high data in the years 2003 and 2004, which is

not  captured  by  the  reanalysis  or  reference,  but  was  also  not  evident  in  the
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satellite data. The seasonal cycle of both the chlorophyll and primary production

data is typically characterized by two peaks in spring and autumn and lower

values in winter and summer during the simulated time window. The amplitude

of  the  spring  blooms  shows  the  most  variation  within  this  cycle.  Both  the

reference and the reanalysis were capable of reproducing the typical seasonal

cycle as well as its inter-annual variability. The reference is in general less skilled

in representing abrupt  spring blooms and the inter-annual  variability of  their

amplitude, resulting in the underestimation of spring blooms consistently seen in

both the ocean-colour and in-situ surface chlorophyll data at BATS. Overall, the

benefit of ocean colour assimilation in reproducing in situ surface chlorophyll

observations at BATS is indicated by the decreased value of the RMSD in Figure

5.6.

The  net  primary  production  at  the  surface  is  underestimated  by  both  the

reference and reanalysis, and is largely similar in its evolution to chlorophyll. It is

improved in the reanalysis case due to the overall  increase resulting from the

assimilation.  The  reduction  of  RMSD  from  reference  to  reanalysis  is

proportionally  larger  than  in  the  chlorophyll  case,  indicating  a  more  reliable

representation due to the assimilation. There is a high amount of inter-annual

variability in both the data and the simulations, which is comparable to previous

findings on the primary production shown in Figure 5.4.

For the data at 100 metres, the reanalysis ensemble mean is slightly closer to the

data  than  the  reference  for  two  cases,  chlorophyll  and  nitrate,  while

approximately the same for phosphate, suggesting a slight improvement to the

deep layer simulation by assimilating ocean colour. The improvement in RMSD

values  are  about  1%,  0%,  and  6%  for  chlorophyll,  phosphate  and  nitrate

respectively.
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For the 100 metre chlorophyll data, the reanalysis is shifted upwards slightly due

to  the  effects  of  surface  chlorophyll  increase.  However,  the  spread  does  not

sufficiently  include  the  data,  suggesting  an  underestimation  of  the  deep

chlorophyll maxima.

Variable
Reference Average

Value

Reanalysis Average Value

(% Difference)

Reference

RMSD

Reanalysis RMSD

(% Difference)
Chlorophyll

(Surface)
0.036 mg/Chl-a/m3 0.064 mg/Chl-a/m3 (+ 77.8%) 0.278 0.267 (- 4.12%)

Net Primary

Production

(Surface)

2.74 mg C/m3 / day 5.09 mgC/m3 / day (+ 85.6%) 6.225 5.713 (- 8.96%)

Chlorophyll

(100 metres)
0.012 mg/Chl-a/m3 0.015 mg/Chl-a/m3 (+ 25%) 0.539 0.534 (- 0.93%)

Phosphate

(100 metres)
0.052 mmol/m3 0.053 mmol/m3 (+ 1.89%) 0.018 0.018 (+ 0%)

Nitrate

(100 metres)
0.238  mmol/m3 0.302 mmol/m3  (+ 21.2%) 0.53 0.501 (- 5.79%)

Table 5.1. Comparison of the average values for the reference and reanalysis. The

number in  brackets is the percentage difference between the reanalysis and the

reference. 
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Figure 5.6. A plot of the ETKF ensemble (green) and in situ data (blue) for chlorophyll-a concentration, net primary

production and two modelled nutrients. The top two plots are taken from the surface layer, the remaining three

plots are taken from a depth of 100 metres. The light green lines represent each ETKF ensemble member, the dark

green line is the mean of the ensemble and the black line is the stand-alone model simulation. The values in the top

left of this graph show the average value (left) and RMSD between the observations (right) for each simulation.
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Figure  5.7.  Ratio  of  the  data-output  RMSD  for  the  ETKF  reanalysis  mean  (“Ensemble  Mean

RMSD") and reference simulation ("Reference RMSD") computed at each year of the simulation

period. Values below one indicate that the reanalysis outperformed the reference simulationThere

is no value shown when there is no data available, e.g. for chlorophyll at 100m from 2005-2007. 

For the nutrients: the time evolution of the observations and model runs exhibit

an  annually  repeating  pattern,  but  this  is  typically  constrained  to  very  low

values. The peaks shown in the model simulations are very small in comparison

to the in-situ data, despite having comparable average values. Nitrate shows the

most  impact  of  the  assimilation  with  multiple  years  showing  a  high-valued

reanalysis  compared to  reference,  which results  in  a  lower  RMSD due to  the

typically high valued in-situ data. The modelled phosphate does not appear to be

influenced significantly due the low concentrations involved.

In general, the nutrient concentrations are slightly higher-valued in the summer

period  than  the  winter  period,  which  is  in  contrast  to  the  chlorophyll
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concentration at the same depth. The reference run and reanalysis do not show

any discernible peaks, and the low availability of the data also makes these peaks

somewhat difficult to identify, due to being comprised of only a few data. The

data shows far more variation in each case compared to that of the ensemble. 

It is also evident from some of the plots in Figure 5.6, particularly for deep layer

chlorophyll and nitrate, that some of these simulations exhibit the discontinuities

at the beginning of certain years. This is again due to the annual reinitialisations

performed using constant initial values.

Figure 5.7 shows the differences in the RMSD between each run and the in-situ

data for each year. The reanalysis improved the simulation of the in situ data for

most  variables  at  each  year.  The  clearest  example  is  the  surface  net  primary

production, with the RMSD ratios always below 1. The simulations of surface

chlorophyll  and  nitrate  at  depth  were  almost  constantly  improved  by  the

reanalysis, with the exception of one year in each case (2000 and 2001 for surface

chlorophyll and nitrate, respectively).  However,  chlorophyll at 100 metres was

deteriorated by the reanalysis in the first part of the simulation (1998-2003) and

was  improved markedly  in  2  subsequent  years.  The reanalysis  and  reference

simulation of phosphate had comparable errors at each year, but the significance

of this results is affected by the low number of data available for this parameter

in the first part of the simulation (shown in Figure 5.6) Unlike at Station L4, the

differences between the reference and the reanalysis are mostly consistent, as the

plots are usually remain above or below a value of 1.

The poor performance of the assimilation at the deeper layers is suspected to be

due  in  part  to  the  problem  of  representing  very  low concentrations  with  an

ensemble for positive-definite variables. It is also reflective of the difficulty of the

ETKF  to  provide  consistent  results  throughout  the  full  water  column,  as

discussed in the results in Chapter 3.
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5.4.3 Simulation of Carbon Fluxes

In  Figure  5.6,  the  reanalysis  output  is  plotted  alongside  the  reference  model

simulation of carbon fluxes that are of interest  to the biological and microbial

carbon pumps at BATS. Table 5.2 shows the average values for each of  these

fluxes, taken by the reference and reanalysis simulations, and states the depths at

which each flux has been considered.

The air-sea flux of CO2 is negative in both the simulations, indicating that the

simulated system is  a source  of  CO2 to  the atmosphere.  Both the simulations

represent a seasonal cycle characterized by a negative peak in winter (indicating

outgassing)  with  some  very  minor  positive  peaks  in  summer  (indicating

ingassing).  Within  each  cycle,  there  are  a  large  number  of  individual  peaks

indicating  large  variations  on  the  time-scale  of  days.  This  cycle  shows  some

differences  between  years,  but  in  general  the  amplitudes  of  these  peaks  are

similar. Note that due to the large shifts in values at the beginning of each year,

the average values shown in Figure 5.6 were calculated excluding the first three

months  of  each  year  to  exclude  the  effect  of  the  reinitialisations  from  these

estimates.

The  time  evolution  for  the  reference  simulation  of  zooplankton  predation  is

consistently  low-valued  with  respect  to  the  reanalysis,  with  the  exception  of

reinitialisation peaks at the beginning of each year. For the reanalysis there is a

clear region in which higher values are taken by the ensemble throughout the

years 2003-2004, and there are peaks around the autumn period for almost every

year. The ensemble spread during the peaks is very high compared to the mean,

indicating that the increase in the mean is influenced by just  a few members.

During the early stages of each year,  the ensemble is mostly at slightly lower

values than the reference.
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The  net  ecosystem  production  is  consistently  positive,  indicating  that  CO2 is

taken from the water by photosynthesis in greater amounts than it is released

into the water through overall respiration. The seasonal cycle is characterized by

high values during the spring period, with steady positive values in the summer

and low positive values at the beginning of each year. The reanalysis takes on

higher values in almost every period except for the low-valued winter regions.

Apart from a notably reduced spring peak in the year 2000, there is not much

inter-annual variability, as each year exhibits a similar pattern.

The net bacterial production is characterized by peaks in spring and lower values

for the remaining parts of each year. The average value of this flux outside of the

spring period is very close to zero. As with many of the other fluxes, small peaks

are  observed  throughout  the  year.  The  assimilation  mean  deviates  from  the

reference  in  a  number  of  places,  and a  relatively  large  spread  is  seen  in  the

ensemble which extends both above and below the typical reference values.

The sinking of POC is typically high valued in the spring and at its lowest during

the summer, and shows a large number of small peaks throughout the year. The

height of these peaks is quite variable for the reanalysis, but does not seem to

vary by much for the reference. The ensemble is mostly higher-valued than the

reference with a few exceptions at the start of each year for the first few years.

There is very little inter-annual variability outside of the variation in peak size

during spring for the reanalysis.

The largest proportional carbon flux changes made by the reanalysis with respect

to  the  reference  simulation is  the zooplankton predation,  with a  considerable

increase of almost 72% of the average value for the reference run. The remaining

fluxes apart from the air-sea flux also receive a considerable increase. Despite a

few periods where the reanalysis takes on lower values than the reference, the

average value of each carbon flux shown here is increased by the assimilation.
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Carbon flux Depth Reference Average Value
Reanalysis Average Value

(% Difference)

Air-sea flux Surface - 1081 mg C/m2/day - 946 mg C/m2/day (+ 12.5%)

Zooplankton

Predation
Sum of All Layers 0.002 mg C / day 0.006 mg C / day (+ 200%)

Net Ecosystem

Production
Sum of All Layers 3.70 mg C / day 8.32  mg C / day (+ 125%)

Net Bacterial

Production
Sum of All Layers   0.021 mg C / day 0.041 mg C / day (+ 95.2%)

Sinking of all

POC
500m 1.85 mg C/m3/day 3.79 mg C/m3/day (+ 105%)

Table 5.2. Comparison of the average values for the reference and reanalysis. Negative values

represent outgassing. The number in brackets is the percentage difference between the reanalysis

and the reference.
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Figure 5.8. Plots of the ETKF ensemble against the model for each of the five carbon fluxes of

interest. The light green lines represent each ETKF ensemble member, the dark green line is the

mean of the ensemble and the black line is the stand-alone model simulation. The average values

displayed in the top left of each plot indicate the average values of the reference and ensemble

mean throughout the whole run. The percentage in brackets indicates the change in the average

value expressed as a proportion of the average reference value. The average values calculated for

the air-sea flux were made while excluding the first three months of each year. 

139



Figure  5.9.  Percentage  changes  of  the  reanalysis  carbon  fluxes  with  respect  to  the  reference

simulation.  A plot of the percentage increase from Reference to LETKF mean for each year. A

positive value indicates an increase in value and a negative value indicates a decrease.

Figure 5.9 shows the percentage difference between the reference and reanalysis

for each year. From this figure, it is clear that the fluxes are increased at almost all

stages of the run, with one exception for the air-sea flux (2002). The zooplankton

predation  and  net  ecosystem  production  experience  the  largest  variations

between values, with some values exceeding 300% of the value in the reference

run. These changes were overall much larger than those for station L4.
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5.5 Discussion

Overall,  the  reanalysis  improved the  model  simulation of  surface  chlorophyll

concentration derived from ocean colour (Figure 5.5),  and in-situ observations

(Figure 5.6). Further comparison to in-situ data (averaged over the multi-annual

simulation window) suggests that the assimilation of ocean colour also improved

the unassimilated deep-layer nitrate and surface-layer primary production, but

showed results for deep chlorophyll and phosphate comparable to the reference

runs (Figure 5.6).  Crucially,  such improvements  were  consistent  during every

year of the simulation window, for most of the variables (Figure 5.7). The largest

proportional impact of assimilation on the fluxes was seen for the zooplankton

predation, while the air-sea flux was impacted the least (Figure 5.7; Table 5.1).

These  outcomes  are  related  to  the  model’s  capability  in  representing  the

biogeochemistry  at  BATS,  the  reliability  of  the  ocean  colour  data  and to  the

properties of the ETKF. The following subsections explain these points in more

depth in a similar format to Chapter 4.

5.5.1 Impact on the simulation of the Biogeochemical Variables

For the observed variable, surface chlorophyll-a concentration, there was lower

RMSD (Figure 5.5) between the ETKF mean and the observations compared to

the  RMSD  between  the  reference  and  observations.  The  reason  for  this

improvement is influenced strongly by the relatively low observation errors of

the assimilated ocean-colour data,  which were consistent with the open-ocean

location of the BATS site.

The observed chlorophyll peak values are consistently underestimated by both

the  reference  and  the  reanalysis.  This  is  related  to  both  the  difficulty  of  the

ERSEM model in simulating sudden blooms, and the exclusion of diatoms and
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dinoflagellates in the simulations.

There  was  also  an  improvement  to  the  estimation  of  in-situ  data  of  surface

chlorophyll, shown in Figure 5.6. In general, the improvement of the reanalysis is

due  to  the  consistent  underestimation  of  the  reference  run  for  the  typical

concentration  values.  As  the  run  is  increased  by  assimilating  higher-valued

satellite  observations,  is  it  also  closer  to  this  much sparser  data  set  of  in-situ

chlorophyll concentration, as the values in this data are also much higher than

the reference.  Despite this, the in-situ data peaks are still  not captured by the

reanalysis run, for the same reason that the model could not capture the peaks of

phytoplankton blooms.

The result of the reduction in the RMSD between mean and in situ data for the

surface net primary production is likely due to the close relationship between this

flux and the chlorophyll. Like the chlorophyll plots, the primary production is

understimated consistently by the reference, and so the reanalysis fits the data

better  by  increasing  the  phytoplankton  biomass  through  the  increase  in

chlorophyll after assimilation.

For the in-situ data taken at 100 metres, the improvements are less obvious, but

still present. As there is a full range of simulated layers separating this depth and

the  surface  layer  where  the  assimilated  data  is  retrieved,  it  is  expected  that

assimilation will struggle to influence the deeper layer as strongly as the surface.

The reanalysis is drawn towards the deep chlorophyll data similarly to the case at

the surface layer,  but to a much lesser extent.  The reanalysis of nitrate is also

increased which supports  the fact  that the in-situ data is,  on average,  located

above the reference simulation, whereas the distribution is more even around the

reference in the case of phosphate. The reason for the lack of updates from the

average in-situ data values for the nutrients is likely due to a combination of the
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initialisation of the simulation, which is already based on similar data, and the

absence  of  significant  dynamics  for  trajectories  to  deviate  from  this  value.

However, the variation in location of the nutrient data does suggest that some

dynamics may have been difficult to simulate at these depths. 

Figure 5.7. consolidates some of these comments as almost all of the variables are

improved as the past 2002. However, it is important to note that the accuracy of

many of these improvements is reduced due to the relatively small sample size of

data in these years An important outcome shown in Figure 5.7. is the ability of

the reanalysis to improve the RMSD for net primary production across all years

suggesting a robust improvement in its representation with the assimilation.

5.5.2 Impact on the simulation of the Biogeochemical Fluxes

The  overall  success  of  the  results  obtained  for  the  biogeochemical  variables

allows us to consider the reanalysis estimates of the unobserved carbon fluxes

with some confidence on their reliability (Figure 5.7 and Table 5.2). This section

will begin with a discussion of the causal relationship between changes in the

reanalysed fluxes driven by ocean-colour DA. Then,  the overall  quality of the

reanalysis and its implications for the BCP and MCP simulation will be discussed

in the next section.

The  increase  in  the  assimilated  total  chlorophyll-a  concentration  is  the  initial

driver of the changes to each of the fluxes. The total chlorophyll increases due to

assimilating  satellite  data  which  are  at  higher  values  on  average  than  the

reference  run.  The  corresponding  increase  of  phytoplankton  biomass  and

production has cascading effects throughout the simulated ecosystem processes

and carbon fluxes.  A diagram outlining the effects  of  the  assimilation on the

average of each flux is shown in Figure 5.8, with links between the fluxes.
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Figure 5.8. Diagram illustrating the impact of the total chlorophyll increase from DA on the carbon fluxes. The green

arrows pointing up indicate an increase in the flux as defined by the model output, which is the case for each flux in this

DA application.

Figure 5.9. A comparison of reference and reanalysis mean for carbon to nutrient ratios for the two phytoplankton

functional types used in the BATS simulation.

Figure 5.10. Evolution of nitrate to phosphate ratio in the reference and reanalysis ensemble in the BATS simulation. The

surface layer is plotted at the top, with a corresponding plots at 100 metres plotted below.
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Carbon Fluxes Change from Reference Average to ETKF Average

Air-sea flux + 12.46%*
Zooplankton Predation + 200%

Net Ecosystem Production + 125%
Net Bacterial Production + 95.2%

Sinking of all POC +105%
Phytoplankton Biomass

Diatoms 0%
Nanophytoplankton + 2.51%
Picophytoplankton + 71.2%

Microphytoplankton 0%
Zooplankton Biomass

Mesozooplankton - 12.86%
Microzooplankton + 10.04%

Heterotrophic Nanoflagellates + 20.3%
Dissolved Organic Carbon

Labile DOC + 59.75%
Semi-Labile DOC + 65.73%
Recalcitrant DOC + 65.23%
C:Nutrient Ratios

C:N in Nanophytoplankton - 28.99%
C:P in Nanophytoplankton + 2.97%
C:N in Picophytoplankton - 1.79%
C:P in Picophytoplankton + 3.23%

C:N in Labile DOM + 1.23%
C:P in Labile DOM + 3.73%

Respiration

Phytoplankton Respiration + 60.82%

Zooplankton Respiration + 31.47%

Bacteria Respiration + 63.86%

Additional

Zooplankton Predation on Phytoplankton Only + 53.43%

Zooplankton Predation on Bacteria Only + 94.91%

Phytoplankton Excretion to DOC + 56.83%

Table 5.3. A summary of the changes made to the average value of various outputs in ERSEM,

expressed as percentages of the reference value. *The air-sea flux calculation shown here ignores

the first three months

Net Ecosystem Production: the average value increased considerably (125%), which

translates to a decrease in the carbon output from this flux. This can be explained

from  the  increases  in  phytoplankton  biomass  for  the  two  phytoplankton

functional types included here, which implies an increase in the simulated gross

primary  production  that  overwhelmed  the  respiration  from  phytoplankton,

zooplankton and bacteria (see Table 5.3). The increase in phytoplankton results in

an increase in primary production, which is evident from the plot in Figure 5.6,
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and  this  has  a  major  impact  of  the  overall  ecosystem  production.  However,

respiration is also increased by a very large amount (60.82% for phytoplankton)

which is expected to somewhat counteract the primary production, making the

extent of this change surprising. This can be accounted for by the decrease in

overall carbon to nutrient ratios (from Figure 5.9, which shows a large decrease in

carbon to nitrate ratios following the increase to nitrate), resulting lower release

of carbon by phytoplankton.

Net Bacterial Production: this increased on average by 95.2% which results from

the overall  increase in DOC availability shown in Table 5.4.  As there is more

DOC present  in  the  system,  there  are  more  substrates  available  for  bacterial

breakdown. The large increase in DOC excretion by phytoplankton was likely a

mechanism  for  this  change  which  follows  from  the  large  increase  in

picophytoplankton biomass.

Air-sea flux:  the average value decreased (12.46%), indicating that the ocean is

releasing less CO2 to the atmosphere than predicted by the stand-alone model.

The lower rate  of  outgassing at  BATS is  explained by the increase of  the net

ecosystem  production,  by  an  increased  net  uptake  of  carbon  dioxide  by  the

primary producers. However, the changes to this flux are small in comparison to

the other fluxes at BATS, both in average value and in the ensemble distribution.

Zooplankton predation: the average value increased by a significant amount (200%).

Here it is important to notice that this increase was driven by large increases to

the flux seen in the years 2003-2004, shown in Figure 5.7. The cause of this change

correlates  to  a  large  increase  in  the  nanophytoplankton  biomass  in  the  same

years.  The  increase  can  only  be  related  to  the  smaller  zooplankton  groups

because the mesozooplankton decreases,  shown in Table 5.3.  However,  as  the

overall zooplankton biomass increases, there is a larger amount of zooplankton
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preying on phytoplankton and bacteria. Most of the flux is in the form of bacteria

predation, which increases by 94.91%, and suggests that the increase in this flux

and the  net  bacterial  production  are  largely  due  to  an  increased  biomass  of

bacteria (which drives an increase in the MCP).

Sinking  of  POC:  the  average  value  increased  by  a  large  amount  (105%).  This

implies that much more POC is being exported to the deeper layers. For BATS,

this  is  difficult  to  explain  as  diatoms and dinoflagellates  are  excluded  in  the

simulation, which are the larger type of phytoplankton and will produce larger

and faster-sinking POC compared to the other types. However, it could be that

the increases to the overall zooplankton biomass are responsible for this change.

Most of the spring peaks in the first half of the run are just below 100 mgC/

m2/day, which is in agreement to the typical peak value shown in figure 5.4. for

the POC flux reported by Steinberg et al., 2001. 

There are differences between the impact on the fluxes for BATS compared to

station L4 despite an increase in chlorophyll in both cases. This is predominantly

due to the reduction of large components of phytoplankton in the case of BATS

which increases zooplankton predation on the smaller phytoplankton types. This

is reflected Table 5.3., where the biomass of mesozooplankton decreases while the

biomass  of  microzooplankton and heterotrophic  nanoflagellates  increases.  The

increase in DOC produced from this types of zooplankton drives the increase in

net bacterial production, which is not observed at station L4. The difference in the

change to the air-sea flux between these sites is not as obvious which is because

the decrease in air-sea flux is an unexpected result (as stated in section 4.5.2). It is

suspected  that  the  reinitialisation  at  the  start  of  each  year  plays  a  role  in

reinforcing the very large negative peaks that are present for the air-sea flux at

station L4.
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5.5.3 Impact on the simulation of the Carbon Pumps

There are implications of the ETKF representation of carbon fluxes in relation to

the BCP and MCP shown by the results in Figure 5.7 as well as Figure 5.9.

The net ecosystem production, which was the flux most reliably updated by the

assimilation according to the TEs (see section 3.4.2), received a largest increase in

the BATS assimilation, increasing by 55.45% (Table 5.3). This suggests an increase

in the significance of the BCP contributions at the BATS site, due to a higher rate

of primary production.

For the MCP, the increase in net bacterial production and in recalcitrant DOC

concentration (65.23%) suggests  an increase  in the prominence of  the MCP at

BATS. This means that the assimilation at BATS resulted in a slight increase the

MCP to BCP ratio.

Ocean  colour  assimilation  also  implied  an  increase  in  the  C:N  ratio  in

phytoplankton, as the biomass increased without a reduction in phytoplankton

nitrate.  A high (i.e.  unbalanced)  C:N ratio increases  the exudation of  DOC in

ERSEM (Butenschon et al., 2016), which potentially boosts the MCP (Jiao et al.,

2014).

148

mailto:C@N


5.6 Conclusion

The results of the reanalysis simulations presents evidence that the assimilation

of ocean colour can improve our representation of the carbon fluxes at BATS. The

relatively larger extent of the flux changes at the BATS site suggests that DA had

a stronger impact on the simulations at the open ocean site than at station L4.

The  large  values  of  these  updates  may  be  due  to  a  combination  of  reasons,

including, (1) the lower observational uncertainty of the assimilated chlorophyll

data  at  BATS  compared  to  station  L4,  (2)  the  low  values  of  the  nutrient

concentrations  that  may  result  in  more  extreme  dynamic  consequences  from

small modifications to some the variables, and (3) the larger number of sources of

uncertainty that the open ocean site BATS presents (as explained in section 5.2).

Overall, the calculations of the carbon budget are significantly influenced by the

BATS ocean colour assimilation. The large update to the net bacterial production

may show that DA enhances MCP dynamics with respect to the reference model

simulation.  In particular,  assimilation increased the phytoplankton C:N ratios,

which may contribute to the increase in the MCP. This mechanism is the focus of

next chapter.
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Chapter 6

Comparison between the Carbon Pumps at Station

L4 and BATS

6.1 Overview

This chapter will focus on the final aim of this thesis, which is to establish an

understanding of the processes behind the two biologically driven carbon pumps

from the ocean-colour data assimilation reanalyses at station L4 and BATS. This

will be performed using the ensemble mean of the ETKF reanalyses presented in

the  previous  two  chapters.  At  this  point,  it  is  assumed  that  assimilation  has

provided a  reliable  representation of  the system,  justified from the validation

using  in-situ  data  and  by  comparison  to  predictions  in  the  literature  (see

Chapters 4 and 5), and so no further discussion of the assimilation methods will

be included in this chapter.

The  main  hypothesis  to  be  examined is  that  the  ratio  between  the  microbial

carbon pump (MCP) and the biological carbon pump (BCP) increases as nutrient

concentrations  decrease  (see  literature  review in  section 1.3)  Due to  the  large

differences in nutrient concentrations between station L4 and BATS, this study is

suitable  for  exploring  this  concept  in  depth.  As  a  reminder,  this  pumps-to-

nutrient hypothesis was formulated by Jiao et al., 2010 and 2014, on the basis of

established conceptual frameworks, and was supported by Polimene et al. (2017),

through model simulations of an idealised marine system.

In  this  chapter,  this  hypothesis  is  tested  for  the  first  time  through  data-

assimilated model simulations of real systems, at station L4 and BATS. For these
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sites, it is expected that the oligotrophic conditions at BATS will increase the ratio

microbial-to-biological carbon pumps by both: increasing the carbon-to-nutrient

concentrations  in  the  phytoplankton  cells,  which  increases  the  production  of

recalcitrant  dissolved  organic  matter  (MCP)  (Polimene  et  al.,  2017),  and

decreasing the production of large phytoplankton, i.e. decreasing the sinking of

POC (BCP). This will be tested by comparing the ratios between the reanalysed

biological and microbial carbon pumps at both sites, as well as comparing the

underlying drivers of these pumps, such as the nitrate concentrations and the

phytoplankton C:N ratios

This chapter will first outline the methods, stating the depth layers and outputs

used in the calculation of the results shown here. Then, there will be an in-depth

look at  the  differences  between  the pumps at  both sites  and the mechanisms

behind these differences. Finally, the seasonal differences of the pump ratios at

station L4 will be examined, to investigate if the dominance of each pump can

shift throughout the year due to the seasonal cycle of the marine ecosystem.
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6.2  Methods

The  MCP  and  BCP  were  calculated  according  to  the  approach  outlined  in

Polimene et al. (2017). The MCP was quantified as the total release of semi-labile

and semi-refractory dissolved organic carbon by the ERSEM bacteria functional

group, integrated from the surface to a selected depth. The BCP was quantified as

the vertical  flux of  total  particulate  carbon across a cross-section of  the water

column, at a selected depth.

The  analysis  in  this  chapter  is  focussed  on  examining  the  total  quantities

throughout a range of  depths,  rather  than at  the surface.  For station L4,  each

output is calculated up to a selected depth of 50 metres to include the full water

column, with the sinking of POC calculated at this depth. For BATS, the depth

selected  was  100  metres,  which  does  not  include  the  full  range  of  depths

simulated, but is the depth that is often used to evaluate carbon export in the

open ocean (Legendre et al., 2015).

The ratio MCP:BCP is computed to compare the relative importance of the two

pumps  at  station  L4  and  BATS.  The  normalized  MCP*  and  BCP*  were  also

computed by dividing MCP and BCP by the gross primary production (GPP).

The asterisk notation used throughout this chapter indicates a division of these

pumps by the GPP. Using these normalised quantities allows for a comparison of

the  relative  importance  of  the  MCP and BCP at  the  sites  (and seasons)  with

respect to the different amounts of organic matter available for degradation and

sinking, and will therefore be referenced extensively throughout the chapter.

The nutrient regime of station L4 and BATS were characterized by focusing on

nitrogen. From the reanalyses, nitrogen was on average the limiting nutrient for

phytoplankton  growth  at  both  sites.  This  follows  from  the  findings  that  the
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simulated ratios  of  the  average  values  of  dissolved nitrogen and phosphorus

were below the Redfield ratio of 16 (see Tables 4.3 and 5.3). This result was less

expected in BATS, which is often limited by phosphate in the upper thermocline

Polimene et al. (2017). This is suspected to be caused due to the reinitialisation

performed at the start of each year in the simulation.

The phytoplankton stoichiometry (Carbon:Nitrogen) was computed by dividing

the  internal  carbon  and  nitrogen  concentrations  summed  throughout  the

simulated  phytoplankton  groups.  The  large  phytoplankton  groups  were

simulated  only  at  station  L4,  as  stated  in  the  previous  chapters.  This  was

motivated by preliminary simulations at BATS which led to the extinction of the

diatoms and dinoflagellates groups (i.e. microplankton), and is supported by the

negligible concentration of microplankton observed at BATS in previous studies

(Steinberg et al., 2001).

The  carbon pumps,  nitrate  concentrations,  C:N ratios  and microplankton (for

station L4 only) were computed by integrating the variables from the surface to

50 metres (i.e. bottom) at station L4, and 100 metres at BATS. For each variable,

the time series of daily values spans the multi-annual simulations at both station

L4 and BATS. These time series were used to compute scatter-plots of the annual

medians  of  the  variables  (MCP,  BCP,  MCP:BCP  and C:N)  versus  the  annual

medians of nitrate to evaluate and explain differences in the pumps related to

differences in the nutrient regime at the two ocean sites. The use of medians as

opposed to means is applied here to eliminate the effects of atypical behaviour

for  particular  years,  which  can  often  be  seen  for  the  later  years  at  BATS.

Additionally, the monthly means were computed to discuss the climatologies of

the variables at station L4, to evaluate and compare the seasonal variability of the

two pumps.
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6.3 Differences between the Carbon Pumps

The MCP has a much greater relevance at BATS than at station L4, if compared to

the BCP (Figure 6.1 and 6.2 and Table 6.2). The difference of the MCP:BCP ratio is

linked to the different concentration of nitrate at the two ocean sites: the MCP is

comparatively  more  important  in  the  oligotrophic  site  BATS,  where  the

stoichiometry of phytoplankton is more unbalanced (high C:N ratio, Figure 6.3).

Figure 6.1. Time-Series Plots of the BCP, MCP and MCP:BCP ratio from the ocean-colour DA

reanalysis at station L4 (left) and BATS (right).

Station L4 Average BATS Average

MCP:BCP 0.20 1.8 x 104

MCP 45.3 mgC / day 38.3 mgC / day

BCP 232 mgC / day 0.006 mgC / day

Nitrate 3.63 x 104 mg 747 mg

GPP 841 mgC / day 363 mgC / day

DOC 0.033 mgC 0.167 mgC

Table 6.1. The average value of each of the time-series for the carbon pumps shown in figure 6.1,

as well as other relevant outputs.
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Figure 6.1 shows that the MCP:BCP ratio reaches  high values throughout the

decadal simulation at BATS. The MCP:BCP is almost always below 1 at station

L4, with the exceptions of few spikes (Figure 6.1) and the average value is about

0.2 (Table 3.1). The MCP:BCP ratio is higher at BATS though the magnitude of

the MCP (and BCP) is higher at station L4 throughout the simulation. The reason

for this is that the gross primary productions are much higher at station L4 than

at BATS, and so there is more dissolved organic carbon available for the overall

bacteria production (Table 3.1). 

In terms of the time-series evolution, the peaks in the summer period present in

Figure  6.1.  for  the  BCP at  station  L4  represent  the  individual  phytoplankton

blooms  and  overall  increase  in  primary  productivity  which  in-turn  produces

more POC subject to sinking. This feature is absent in most years in the BATS

time-series due to the lower availability of nutrients, and the absence of larger

phytoplankton types, with some late-summer peaks shown for the last few years

of the run.

The evolution of MCP is relatively similar between the two sites, with a generally

smooth  peak  in  summer  and  a  trough  in  winter.  While  the  peak-values  are

comparable at both sites,  the winter values are typically higher for station L4,

which results in the higher average value for the MCP at station L4. This is due to

a much larger drop in levels of DOC released during the winter period for BATS,

due to the lower biomass of phytoplankton in this period.

However,  after normalization by GPP, MCP* is systematically higher at BATS

than  at  station  L4  (Figure  6.2),  while  BCP*  remains  higher  at  station  L4.

Therefore, at the oligotrophic site BATS, a much larger proportion of the gross

primary production is used in bacteria transformation, rather than to the sinking

of large particulate carbon.
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Figure 6.3 examines  the dependency of  these pumps on the total  nitrate.  The

different MCP* and BCP* and MCP:BCP correspond to different average nutrient

concentrations at the two ocean sites: the MCP is comparatively higher (i.e. more

important)  than the BCP in low-nutrient  (oligotrophic)  environments.  In  such

conditions, the resulting phytoplankton carbon to nutrient ratio is much higher

(~13 at BATS shown in Figure 6.3, compared to the Redfield C:N value = 6.6). 

 

Figure 6.2 Time-Series Plots of the MCP* and BCP* from the ocean-colour DA reanalysis at station

L4 (left) and BATS (right).

Both sites display a degree of spread in the magnitude of values between the

median values for each year (represented by spreading along the y-axis) and a

spread in nitrate values (represented by spreading along the x-axis).

These results are consistent with the conceptual diagram in Figure 6.4 and verify

the  general  theoretical  framework  proposed  by  Polimene  et  al  (2017).  At  the

oligotrophic  site  BATS,  the  low  nutrient  concentration  imbalances  the

phytoplankton carbon to nutrient ratio (C:N>>6.6). This leads phytoplankton to

release the excess carbon, which increases the bacterial production of recalcitrant

DOC,  and  therefore  the  MCP.  For  BATS,  the  simulated  phytoplankton

production consists  of  small  nanophytoplankton and picoplankton production

only, thus the export of POC, and therefore the BCP, is very small at a 100 metre

depth. The consequence of this is that the MCP:BCP at BATS is relatively high.
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Figure 6.3. Annual-Averaged plots versus nitrate for the BCP, MCP and MCP:BCP ratio, as well

as the phytoplankton carbon:nutrient ratio, taken from median value of each year.  Station L4

values are represented by the green triangles, whereas BATS values are represented by the blue

circles.

At station L4 the concentration of nitrate is relatively high, and therefore the C:N

ratio is close to the balance value, and so the exudation of DOC, and the MCP, is

relatively low.  The production of large phytoplankton and their sinking is high,

and so the BCP is also high. The higher downward flux of POC at the bottom,

combined with a lower exudation of DOC, leads to a relatively low MCP:BCP.
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Figure 6.4 Conceptual  diagram explaining the difference between MCP:BCP in relation to the

trophic  regimes.   C:N  =  phytoplankton  carbon  to  nitrogen  ratio;  POC  =  particulate  organic

carbon, and DOC = dissolved organic carbon, GPP = gross primary production.
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6.4. Seasonal Cycle of the Carbon Pump Ratio at station L4

The conceptual diagram drawn in Figure 6.4 was tested to explain the seasonal

variability of the MCP, BCP and MCP:BCP simulated at station L4. The surface

waters at station L4 tend to switch between mesotrophic conditions in winter

(high  nitrate  concentrations)  to  oligotrophic  in  summer  (low  nitrate

concentrations), resulting in an annual cycle for the nutrient limitation.  BATS is

excluded here as it  is  characterized by oligotrophic conditions throughout the

year without a clear seasonal cycle for the nutrients

Figure  6.5  shows the  seasonal  climatologies  of  carbon  pumps,  as  well  as  the

evolution  of  nitrate  throughout  the  year.  Here,  the  MCP:BCP  climatology  is

consistently  below  0.5  throughout  the  year,  confirming  the  overall  high

importance of the BCP at L4 pointed out in Figures 6.1 and 6.2. Despite this, the

MCP* has a clear seasonal cycle that peaks in July-August, leading to a relative

maximum of MCP:BCP in the same months. This peak corresponds to a relative

minimum of the microphytoplankton biomass (diatoms plus dinoflagellates) and

to a summer plateau of high C:N phytoplankton ratio. On the contrary, MCP:BCP

has the lowest values in spring (March to May) and early Autumn, when the

microphytoplankton  production  peaks  and  the  internal  nutrient  imbalance  is

slightly less severe. The GPP is typically lower in the winter as a result of light

limitation rather than nitrate limitation which explains the relatively high values

of BCP*=BCP/GPP in winter.

The results in Figure 6.5 are consistent with the scheme presented in Figure 6.4,

indicating  that  the  fluctuations  of  the  external  nutrient  concentrations  can

determine  phytoplankton  stress  and/or  production,  and  are  therefore  a  key

driver of the seasonal variability of the MCP, BCP and MCP:BCP in a temperate

coastal marine system.
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Figure 6.5 Seasonal Climatologies of MCP*:BCP*, MCP*, BCP*, Nitrate, Phytoplankton C:N, and

Diatoms and Dinoflagellate Biomass.
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6.5. Conclusion

The results presented in this chapter indicate that microbial carbon pump is more

important  than  the  biological  carbon  pump  in  sequestrating  carbon  in  an

oligotrophic open ocean system, if compared to a mesotrophic coastal system. In

particular,  these  results  support  the  hypotheses  that  oligotrophic  conditions

increase the ratio of microbial-to-biological carbon pumps by: (1) unbalancing the

carbon-to-nutrient concentrations in the phytoplankton cells, i.e. increasing the

production of recalcitrant dissolved organic matter (MCP) (Polimene et al., 2017);

and (2)  decreasing  the  production  of  large  phytoplankton,  i.e.  decreasing  the

sinking of POC (BCP).

This interpretation can be used to explain the seasonal cycles of the pumps at the

coastal  site  station  L4,  where  stratification  and primary  production  dynamics

shifts the systems from mesotrophic to oligotrophic regimes annually.

It is argued that these results are reliable because they were obtained by post-

processing the outputs of the reanalyses at the two ocean sites. Though data were

not  available  to  assess  directly  the  skill  of  these  pump  simulations,  the

assimilative  reanalyses  were  ideally  the  best  available  estimates  of  the  “true

state” of the system and were validated with large datasets of biogeochemical

variables and carbon fluxes (Chapters 4 and 5). 

The  main  aim  of  the  analysis  presented  here  is  to  compare  and  explain  the

variability of the pumps at the two sites, rather than quantify their magnitude. To

this regard, there are some limitations of the results presented here. Though the

concepts of MCP and BCP have been applied in the coastal zone by Jiao et al

(2014), their formal definitions imply that carbon is sequestrated from the system
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(below the depth of 100m, Legendre et al. 2015). Therefore this evaluation of the

BCP at station L4 is an approximation to this study due to the shallowness of the

site. This is because the water column is only 50m deep while experiencing full

mixed in winter,  and so it is  affected by sediment resuspension (Smyth et al.,

2009).  Furthermore,  ERSEM  does  not  simulate  recalcitrant  dissolved  organic

carbon (i.e. the fraction with lifetime in the order of millennia) which is related to

the MCP in a stricter sense. However, the production of semi-labile and semi-

refractory dissolved organic carbon components in ERSEM have been adopted by

Polimene et al (2017) as an approximation of the MCP, which is acceptable in the

context of this study.

This 1D model analysis of the MCP:BCP dependency on the nutrient regime

can  be  extended  to  3D  model  applications.  This  will  make  possible  the

exploration of the variability of the pumps along the continuum of nutrient

gradients  and shifts  in  the  plankton community  composition  of  the  global

ocean  in  relation  to  horizontal  transport  processes,  which  were  not

investigated here.
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Chapter 7

Conclusions

The work presented in this thesis advances the simulation and understanding of

the variability of climate-relevant, biologically-driven carbon pumps in the ocean.

This  was  achieved  through  applications  of  state-of-the-art  data  assimilation

methods with a marine ecosystem model and ocean colour data.

This  thesis  has  shown  that  ocean  colour  DA  can  be  used  to  further  our

understanding  of  biologically  driven  carbon  pumps  in  the  ocean,  which  is

especially useful in light of modern developments in the microbial carbon pump

which  still  require  development  in  marine  models.  This  objective  has  been

achieved  through  the  real  application  of  ocean  colour  DA  at  two  distinctly

different locations: station L4 (shown in Chapter 4) and BATS (Chapter 5).

The assimilative reanalysis showed that the microbial carbon pump may exceed

the biological carbon pump in oligotrophic ocean regimes, due to the unbalanced

phytoplankton  stoichiometry  in  nutrient-poor  waters.  This  was  an  emergent

property  of  the ecosystem,  and was underpinned by applying assimilation of

ocean colour. In fact, model estimates of biogeochemical time series and carbon

fluxes  were  improved  by  applying  data  assimilation  in  twin  experiments

(Chapter 3), mesotrophic coastal site reanalyses (L4, Chapter 4) and oligotrophic

open ocean reanalyses (BATS, Chapter 5).

These findings are reviewed in the following sections. Section 7.1 will focus on

the comparison of the DA methods in twin experiments, section 7.2 will highlight

the impact of DA on the simulation of carbon fluxes and the understanding of the

carbon pumps, and the final section 7.3 will provide suggestions for future work.
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7.1  Assessing  Ensemble  DA  Methods  for  Ocean  Colour

Assimilation

The Twin Experiments  (TEs; Chapter 3) demonstrated that the assimilation of

synthetic  ocean  colour  data  into  the  ERSEM-GOTM  model  can  improve  the

model simulation of ocean carbon fluxes in an ideal system. This was achieved by

assessing and comparing the performance of the Localised Ensemble Transform

Kalman Filter (ETKF) and the Implicit Equal Weights Particle Filter (IEWPF), for

the first time with a marine ecosystem model. In the TEs, the simulation of five

carbon fluxes linked to both the BCP and the MCP were all shown to be capable

of improving to some extent from assimilation, which include the air-sea carbon

flux, zooplankton predation, net ecosystem production, net bacterial production

and the sinking of POC.

Overall,  the  TEs  show  that  ocean  colour  assimilation  is  beneficial,  as  both

methods outperform the SE in reproducing most of the model-generated fluxes.

The ETKF was overall  preferable to the IEWPF in this  application,  because  it

provided better estimates for four out of the five fluxes. However, the application

of the IEWPF showed that there may be some potential in outperforming the

Gaussian-based ETKF in estimating a carbon flux with a highly non-linear link to

the assimilated surface ocean colour (the sinking of POC). 

 

This finding supports the view that IEWPF is capable of performing better than

ETKF  for  a  non-linear  analysis,  but  this  is  overshadowed  by  its  significant

underperformance in other areas. Therefore, the potential of the IEWPF in marine

ecosystems is not to be discounted, but a more in-depth implementation than the

one used in this study is required. Following its overall performance in the TEs,

the ETKF was the method used in the reanalyses of real marine ecosystems.
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7.2 Using Ocean Colour DA to Represent Carbon Fluxes and Pumps

in the Ocean

The ETKF was applied in decadal reanalyses of the biogeochemistry and carbon

fluxes at the mesotrophic coastal site station L4 (Chapter 4) and the oligotrophic

ocean site BATS (Chapter 5). These applications demonstrate that the assimilation

of ocean colour could improve the overall simulation of independent time-series

of biogeochemical data. It was also shown that substantial changes were made to

the  average  values  of  the  carbon fluxes,  showing the  potential  impact  of  the

assimilation on the simulation of the carbon pumps.

The assimilation had a large impact on the simulation of the ecosystem processes

at both sites.  For station L4, the increase in the total chlorophyll produced an

increase in the net ecosystem production due to the increase in photosynthesis,

which resulted in a slight increase in the sinking of POC due to a greater quantity

of detritus produced from large phytoplankton groups. This also resulted in a

reduction  of  the  the  overall  zooplankton  population  and DOC concentration,

which  in  turn  reduced  fluxes  for  the  predation  by  zooplankton  and  the  net

bacterial production. For BATS, the total chlorophyll also increased, but this did

not have the same impact  on all  of  the other  fluxes  due to the differences  in

phytoplankton types.

Assimilation of ocean colour impacted the simulation of some other ecosystem

and plankton features  that are potentially linked to the BCP and MCP. These

features include the phytoplankton blooms and the phytoplankton stoichiometry.

The  assimilative  reanalyses  were  processed  in  Chapter  6,  providing  a  crucial

result for this thesis. Building on the hypothesis by Jiao, and advancing the ideal

modelling exercise by Polimene, it was shown for the first time in a real-system
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simulation that  the relative importance  of  the MCP and BCP is  linked to  the

nutrient  regime  of  marine  systems  because  of  its  impact  on  the  plankton

stoichiometry. In addition, it was shown at station L4 that the MCP:BCP can shift

between  the  seasons  due  to  variations  in  the  nitrate  throughout  the  year.  It

should be noted that the variations in the MCP and BCP dominance are emergent

properties of the simulated ecosystem, in that they are not explicitly coded in the

model equations but emerge from the complexity of the model applied here.

There are some limitations for the analysis at station L4 and BATS. This includes

the initialisation of variables at the start of each year, which was put in place to

constrain erroneous trends but also prevents an analysis of long-term trends and

inter-annual variability. Furthermore, the BCP is very approximately simulated

at station L4 as it is too shallow to encompass the carbon sequestration from the

system. Furthermore, the recalcitrant DOC with a full 1000-year lifetime is not

simulated by the model, limiting the representation of the MCP. Another crucial

limitation  is  in  the  uncertainties  in  the  satellite  data,  and  the  difficulty  in

accurately characterising them, which will inevitably constrain the impact of the

assimilation.

Overall, the reanalyses at these sites show evidence that ensemble DA methods

can  be  used  to  improve  modern  understanding  of  the  variability  of  climate

relevant BGC processes such as the MCP and BCP. The impact that ocean colour

DA is able to make on the average values of carbon fluxes, argues towards its

implementation  alongside  updates  to  marine  models,  improving  marine

ecosystem understanding. 
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7.3 Recommendations and Opportunities for Future Work

This research opens up a lot of potential for further investigation. In terms of DA,

the IEWPF could be examined further by developing the twin experiments to

account for the dependency of the linearity (and non-linearity) of the ecosystem

based on the seasons and depth in the water column. This could be achieved

through the use of a dynamic error covariance matrix that uses different values

below the mixed layer depth, and different values based on the time in the year,

which would accommodate the changes in dynamics between the seasons. These

updates  are  expected  to  benefit  the  IEWPF  analysis  more  than  the  ETKF.

Furthermore, there are many other DA techniques which could be examined in a

similar study, in particular the LETKF with a full implementation of localisation

is likely to exceed the performance of the ETKF when applied to a non-linear

BGC model.

Also,  the study could be extended to a 3D environment,  using a 3D physical

model such as NEMO. This would take into account horizontal transportation

that  could  influence  the  biogeochemical  variables  examined  in  this  study.

Furthermore,  there  are  a  range  of  other  sites  that  could  be  added  for

investigation, which would help in establishing the significance of understanding

carbon pump dynamics through ocean colour assimilation on a global scale.

The  accuracy  of  the  observation  errors  could  be  improved  by  considering

separate values for satellite-imaged ocean colour data at coastal and open-ocean

sites,  which  was  omitted  in  this  research  for  simplicity.  Also,  a  better

representation of the observation errors could be achieved by exploiting the per-

pixel  uncertainty  estimates  provided  by  novel  ocean-colour  products  (e.g.

Jackson  et  al.,  2017;  Ciavatta  et  al.,  2016).  The  representation  could  also  be
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improved through a deeper analysis of the implications of using the ocean colour

– chlorophyll concentration relationship in ERSEM, which was not explored here.

Finally, data assimilation of different data sets, such as in-situ POC derived from

biogeochemical carbon floats, could be useful for looking at improvements to the

carbon pumps as they are more closely linked to some dynamics of the BCP and

MCP. While ocean colour was chosen for this study based on its availability and

relatively  low  observational  errors  compared  to  other  data  sets,  there  is  the

possibility that assimilation of other properties may have some advantages.
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