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Abstract 

Attitudes to risk have generated a lot of attention over the years due to its vital 

importance in decision-making processes that are necessary for life and livelihoods. 

Attitudes towards uncertainty have received less attention even though arguably most 

important decisions are under uncertainty rather than risk. In addition, many studies 

modelling attitudes to risk have adopted experiments that place significant cognitive 

burden on respondents. Crucially, they are also framed in a way that do not reflect 

everyday problems. Specifically, the most common way of eliciting attitudes is to ask 

decision makers to choose between discrete monetary lotteries with known 

probabilities attached to the payoffs. Yet, arguably, the vast majority of choices that 

people make in their day-to-day lives are with respect to continuous non-monetary 

outcomes. To address these gaps, this thesis investigates responses to continuous 

‘prospects’ across different conditions (risk & uncertainty), contexts (monetary & time) 

and content domains (gain, loss & mixed). Further, this thesis examines the link 

between attitudes to risk/uncertainty and mental health related factors and the effect 

of attitudes to risk and uncertainty on farmers’ decisions both for themselves and for 

others. 

This thesis uses both non-parametric methods - relating to the patterns that 

characterise participants’ choices and their determinants; and parametric models – 

based upon cumulative prospect theory (CPT) as it extends to continuous prospects. 

The data were gathered using lab-in-field experiments in which Nigerian farmer’s chose 

between pairs of prospects with continuous distributions, which were not exclusively 

monetary in nature.  Attitudes towards risk, as opposed to uncertainty were elicited by 

specifying that all outcomes over the specified interval were ‘equally likely’ (thus a 

uniform probability density).  Uncertainty was specified by indicating to farmers that 

one outcome within the specified interval would be realised but without the 

specification of an associated probability density. 

Key findings are that attitudes differ under different conditions, contexts and 

content domains. Using continuous prospects, respondents did not treat equally likely 

outcomes as ‘equally likely’ and appear to demonstrate cumulative probability 

distribution warping consistent with the CPT.  However, there were behaviours that are 

difficult to reconcile with CPT such as the preferences of many respondents could only 

be modelled using “extreme curvature” of the value function. This was induced by what 

we term negligible gain avoidance (i.e. avoiding prospects with zero lower bound in the 

gain domain) or negligible loss seeking (i.e. preferring prospects with zero upper bound 

in the loss domain) behaviours. CPT, Salience theory, Heuristics and other theories 

examined in this study could not alone explain these behaviours. Results from 

investigating the effect of bipolar disorder tendencies (BD) on risk attitudes show 

that BD significantly affects the shape of the value and probability weighting 

functions; and farmers that have BD are more likely to make random choices. Other 

results show that risk aversion for losses increases participation in off-farm income 

generating activities; and that farmers’ likelihood to engage in specific types of off-

farm activities is determined by their risk and uncertainty attitudes.  
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Chapter 1 

Background of the Study 
 

1.0 Introduction 

Hardly any ‘real world’ decisions are made without some degree of uncertainty 

and/or risk. Much has been reported about the risk attitudes1 of people, including 

farmers, but there has been less attention to uncertainty. Yet, farming decisions  are 

permeated with uncertainties ranging from - the unpredictable nature of weather, 

household health and government legislation - to fluctuating input and output 

prices. As a result, farmers’ attitudes towards risk and/or uncertainty are pivotal to 

their decisions (Bard & Barry, 2001; Haneishi et al., 2014; Bauer & Buchholz, 2008; 

Sengupta, 2012; Wang & Wang, 2012).  

Numerous studies have now made contributions that provide insights into decision-

makers’ (DMs’) attitudes to risk and uncertainty. These studies have been driven by 

multidisciplinary perspectives including mathematics, economics and psychology. 

Each are directed at examining and rationalizing risk and uncertainty attitudes. 

However, there is a lack of consensus on the estimation methods, suitable elicitation 

tools and techniques. Specifically, risky and uncertain decision-making theories and 

methods have not been exhaustively tested. Thus, the extent to which theories about 

uncertain and risky choice reflect actual behaviour is not fully known. 

This study examines attitudes to risk and uncertainty by farmers in Nigeria and 

connects the findings with other important farm issues including the relationship 

between mental health related factors and risk or uncertainty attitudes; and the 

effect these attitudes to risk and uncertainty have on farmers’ day-to-day decisions 

both for themselves and for others. The purpose of this chapter is to identify 

problems, motivate the research questions and guide the reader as to the specific 

objectives of this thesis. 

                                                           
1 Attitudes in this context refers to a decision maker’s mental disposition with respect to a state. 
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1.1  Problem Statement 

Mixed inferences about risk and uncertainty attitudes and its implications 

In the broader literature, the nomenclature of risk and uncertainty is not used in a 

standardised way. The applied literature uses the term risk, when it probably means 

uncertainty. The distinction between risk and uncertainty is discussed in section 2.1 

of Chapter 2.  However, at this point it is necessary to mention that the working 

definition of risk adopted in this thesis is a DM faced with a situation in which the 

associated probability density of realising outcomes is specified and the DM has this 

information. As for the case of uncertainty, the DM has insufficient information of 

the associated probability density but has information that one outcome within an 

interval will occur.  

Farmers in developing countries have frequently been reported to have 

homogenous mostly ‘risk-averse’ attitudes. Several of these studies have also 

assumed that risk and uncertainty attitudes are personality traits thus it is stable 

across context and content domains (e.g. Eysenck & Eysenck, 1977; Paunonen & 

Jackson, 1996). However, much recently there has been disagreement about the risk 

attitudes of small farmers. Some authors have reported that - far from conforming 

to the stereotype of extremely risk averse that small farmers have often assumed to 

be – there is evidence that farmers may be risk neutral (as in Vieider, Truong, 

Martinsson, & Nam, 2013) or risk seeking (see Henrich & McElreath, 2002; Maertens, 

Chari & Just, 2014). These authors have argued in favour of domain-specific 

construct which implies individual are not consistently risk-taking or risk-averse 

across domains but that attitudes depend on the domain and ‘size’ of the prospects. 

In Nigeria, a the Top-Down2 approach is operated and farmers rely on the 

government for support; the assumed stereotypic ‘risk averse’ attitude of farmers 

by the government has influenced the nature of agricultural policies, projects and 

support of successive governments towards farmers. For example, in order to 

encourage production the marketing board policy provided a guaranteed return for 

                                                           
2 The top-down approach refers to a system where all planning and intervention is at the national 
level without any participation in the decision making process by the farmers who are supposed to 
be beneficiaries.  This method has the demerits of one-way flow of information without room for 
feedback (Agbamu, 2000). 
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farmers’ produce though at prices substantially lower than market prices. However, 

in most cases the objectives of these policies are usually not met (Nwankwo & 

Wolfgang, 2008; Olubiyo et al., 2009). One of the factors attributed to these failures 

(e.g. considering the case mentioned above where the post-marketing era witnessed 

higher production) has been poor situation assessment (Olarinde, Manyong & 

Akintola, 2010) and crucially the lack of consideration that risk attitude of farmers 

may be domain specific and dependent on the outcomes of the prospects3.  

It has been suggested in some studies (e.g. Isik, 2002; Cervantes-Godoy, Kimura & 

Antón, 2013) that for such policies to be effective (at the same time not being an 

additional source of institutional or policy risk), it must be attuned with farmers’ 

risk attitudes. Therefore, there is a need to broaden the scope of research on small 

farmers’ risk and uncertainty attitudes in Nigeria4 across contexts and content 

domains. This motivates further investigation of farmers’ risk and uncertainty 

attitude in order to provide plausible information that will serve as a guide to policy 

makers as well as strengthen the broader literature on risk and uncertainty. 

Much has been reported about the risk attitudes of farmers in developing countries. 

However, studies on uncertainty are limited. It is evident that important farm 

decisions are taken under uncertainty as much as under risk. Several studies 

including Abdellaoui et al., (2010) and Heath & Tversky (1991) have provided 

evidence that individual DM can differentiate between risky and uncertainty 

prospects and have distinct attitude to both. It could be that the sparse research in 

this area is a result of limited number of acceptable theories on which to model 

empirical findings (e.g. De Palmer et al., 2008) on one hand, or to the proliferation 

of normative models that are unable to empirically describe the choices under 

uncertainty on the other hand.  

 

                                                           
3 The context in which ‘prospect’ is referred to here is outcomes that have probability densities 
attached to it. 
4 Currently most studies in Nigeria have focused on determinants of risk attitude (e.g. Aye & Oji, 
2007; Nmadu, Eze & Jirgi, 2012) or the effect of different variables such as income and consumption 
on risk attitude (Adewumi, Ayinde, Olatunji & Ajayi, 2012). Others estimated risk attitude from 

observed levels of products and inputs use (see Olarinde, Manyong & Akintola, 2007). Only a few 
have used psychometric scales on specific domains. 
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Making decision on behalf of others in Agriculture 

Studies in the decision-making literature have focused on risk attitudes when 

making decision for oneself. However, in many situations, people make decisions on 

behalf of others. Crucially, this aspect has not received the much-needed attention. 

Proxy decision making in this context refers to making decision for someone on 

his/her request. Although decision by proxy is not widespread in agriculture as it is 

in medicine or public policy, there are also notable cases of such in farming. For 

instance in Nigeria, owing to the limited number of extension agents small farmers 

in most cases; have to work with opinion leaders or model/contact farmer who are 

in direct contact with extension agents. These opinion leaders reach decisions that 

may be binding for farmers, who share the consequences of such decisions. Given 

the evidence that risk attitudes have significant impact on decision (e.g. as 

documented in Domingo, Parton, Mullen, & Jones, 2015; Wossen, Berger & Di Falco, 

2015; Tanaka, Camerer & Nguyen, 2016); and the negative consequence of a ‘wrong’ 

decision on entire livelihoods of smallholder farmers in developing countries; there 

is need to investigate further risk and uncertainty attitudes in proxy decision-

making. 

Biological/Physiological traits and Risk/Uncertainty Attitudes 

Biological/physiological traits may influence risk and uncertainty attitudes; and 

may well be related to individuals’ decision-making behaviour. However, limited 

number of studies have investigated the links between such factors and attitudes 

towards risk and uncertainty. There is literature suggesting that individuals with 

certain mood disorders are high goal-orientated and risk seeking. For instance, it is 

reported that in contrast to non-bipolar5 individuals, those having bipolar disorder 

(BD hereafter) show impulsive behaviour (Johnson et al., 2012; Reddy et al., 2014) 

and become risk seeking/averse in certain states (Leahy, 1999). However, studies 

investigating the relationship between BD and farmers’ risk or uncertainty attitudes 

is lacking. Although this link have not been given attention in developed countries, 

                                                           
5 Bipolar Disorder (BD) commonly referred to as a mood disorder wherein episodes of both elevated 
and depressed mood is experienced by the individual and may be associated with distress and 
impairment of function (Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) 1994).  



16 
 

the reports that about 33% of adult Nigerians (compared to about 18.5% in the US6 

for instance) have suffered one form of mental illness (Owoyemi, 2013 as cited in 

Oyewunmi, Oyewunmi, Iyiola & Ojo 2015, Onyemelukwe, 2016; Suleiman, 2016) 

suggest the need for research in this area. More so, given the statistics that about 

37% (i.e. approximately 70 million) of the Nigerian population are farmers 

(International Labour Organization, 2017), this thesis hypothesizes that a 

significant number of those predicted to be at risk of mental health related illness7 

in Nigeria could be farmers. It therefore becomes necessary to examine from these 

perspective whether mental health factors affects the Nigerian farmers’ risk and 

uncertainty attitudes, which in turn can affect their livelihood. 

Risk, uncertainty attitudes and the implications for farm decision  

Small farmers especially in low/middle income countries are exposed to numerous 

uncertainties and risks but have fewer options to cope as formal institutions or 

policy instruments do not provide commensurate protection. Consequently, their 

livelihood is vulnerable. Off-farm employment has been documented as a significant 

risk coping strategy particularly among those who have the intent of cushioning 

production risk (Lamb, 2003) or the risk of income shortfall (Berg (2001); Mishra 

& Goodwin, (1997)).  According to van Winsen et al., (2014), risk seeking farmers 

are more proactive in their attitudes and strive towards curtailing risk through 

means such as farm diversification and farm business optimization. McNamara & 

Weiss (2001) posited that a key signal of risk aversion among farmers lies in the 

proportion of time spent on the farm enterprise and off-farm labour. However, not 

much of current research have focused on determining what links exist between 

farmers’ risk and uncertainty attitudes and their farm and off-farm decisions. The 

closest studies to investigate this relationship are Bezabih, Gebreegziabher, 

GebreMedhin & Gunnar, (2010) and Iqbal, Ping, Abid, Kazmi & Rizwan, (2016). 

However, the details of experimental procedures used in the former to characterise 

                                                           
6 Any Mental Illness (AMI) Among Adults. (n.d.). Retrieved September 6, 2016, from 
http://www.nimh.nih.gov/health/statistics/prevalence/any-mental-illness-ami-among-
adults.shtm 
 

7 Currently in Nigeria, the statistics showing the proportion of people having mental health related 
issues classified as BD is about 0.63% according to Institute for Health Metrics and Evaluation 
(IHME), 2017. This puts BD as the fourth prevalent mental and substance use disorders behind 
depression, anxiety, and alcohol use. See Appendix 10 for statistics on bipolar disorder in Nigeria. 

http://www.nimh.nih.gov/health/statistics/prevalence/any-mental-illness-ami-among-adults.shtm
http://www.nimh.nih.gov/health/statistics/prevalence/any-mental-illness-ami-among-adults.shtm
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risk preference is vague while for the latter, the experiments and methodology differ 

from this thesis. 

Methodological issues 

Several authors (including Schoemaker, (1993); Huber, Wider & Huber, (1997); 

Weber, Blais & Betz, (2002); Harrison, Humphrey & Verschoor, (2010)) have found 

that different models of choice and varing analytical design leads to different 

inferences about the risk attitudes of the DM. There are several reasons for these 

disparities, which includes differences in underlying theories, methodologies and 

elicitation techniques. 

In order to model attitudes towards uncertainty of a DM, a number of methods have 

evolved in recent times. However, such theories and methods including  Expected 

Utility theory (EUT), Prospect theory (PT), Rank Dependant Utility theory (RDU), 

Cumulative Prospect theory (CPT), Choquet Expected Utility (CEU), Salience theory 

(ST) and Regret and Disappointment theories have not been exhaustively tested. As 

such, the extent to which they reflect actual behaviour under risk and uncertainty is 

not fully known. Of particular concern is the gap in extending these theories to 

continuous prospects which partly triggered the need for this study. The procedure 

of most literature has mainly been willingness to pay (or accept) or use of lottery 

choices in discrete construct. There have been very limited studies that extend these 

popular theories to continuous prospects in experimental studies with exception of 

the works of Kothiyal, Spinu & Wakker (2011) albeit for Prospect Theory; Kontek 

(2009) for Relative Utility Theory; and Rieger & Wang (2006), Rieger & Wang 

(2008), Gürtler & Stolpe (2011), Tian, Huang & Wang (2012) for CPT. 

Arising from the concerns regarding selection of the most appropriate theories and 

methodologies that best describes any DM’s attitudes as well as the suitability of 

these methodologies in laboratory or field experiments, more research is necessary 

to provide additional evidence and broaden our understanding of the psychological 

construct of risk and uncertainty attitudes. This thesis therefore employs 

methodologies and unique experiments that represent the choices that DMs make 

day-to-day. Specifically, this study employs the CPT/CEU (equivalence of both 
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theories under certain conditions is shown in section 3.4.2 in Chapter 3) to examine 

the risk and uncertainty attitudes across contexts and content domains.   
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1.2 Objectives  

The broad objective of the study is to examine the risk and uncertainty attitude of a 

farm-household decision maker. Content domain in this thesis refers to the framing 

of the choice problems as either gains, losses or mixed (e.g. in terms of money; it 

may be solely a loss of money, a gain of money or having both the possibility of losing 

or gaining some money). While contexts domain gives meaning to the content 

domains by presenting different ‘states’ of the decision problem (e.g. monetary vs 

non-monetary context). Within these settings, this thesis specifically:  

i. Examines farmers’ risk attitudes in different context (monetary & time) and 

content (gain, loss & mixed) domains 

ii. Examines farmers’ uncertainty attitudes in different content (gain, loss & 

mixed) domains but within a specific context 

iii. Compares attitudes to risk and uncertainty within content domains 

iv. Examines and compare farmers’ risk attitudes when making proxy decision 

and decisions for oneself. 

v. Examines the relationship between mental health related factors and risk 

and uncertainty attitudes 

vi. Investigates the relationship between risk and uncertainty attitudes and 

decision to participate in off-farm income generating activities. 

1.3 Research Questions and Hypotheses 

This study draws on the gaps that are identified in the literature in Chapters 2 and 

3 and raises the following research questions and corresponding hypotheses. 

1.3.1 Risk and Uncertainty Attitudes  

Central to the Expected Utility theory (EUT) (discussed in section 3.1 of Chapter 3) 

is the estimation of risk attitude using the curvature of the utility function. From this 

perspective, some economists have generally taken attitudes towards risk as given 

and treated them as stable across context. On the other hand the rank dependant 

(RDU) based theories (including the CPT and CEU) which relies on both the utility 

function and probability weightings to explain risk attitude suggest that individuals 
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are not globally risk-averse i.e. risk attitudes often differ across domains (the 

distinction between risk averse/seeking is presented in Section 2.1 in Chapter 2).  

The questions that arises are:  

A. Do risk and uncertainty attitudes remain consistent within content domains 

(gain, loss, mixed)?  

Increasing number of studies have shown that the way in which outcomes are 

framed influences DMs’ preferences and risk/uncertainty attitudes. DM’s are not 

expected to maintain the same attitude in different content domains i.e. being 

unswervingly risk/or uncertainty averse or seeking. Therefore, it is hypothesised in 

this research that: 

Hypothesis 1: Attitudes to risk depends on content domains 

Hypothesis 2: Attitudes to uncertainty depends on content domains 

B. Do risk attitudes remain consistent across context (monetary versus time) 

domains?  

Numerous studies suggest that risk attitude is context domain-specific. Such studies 

have provided evidence that challenges the perspective of risk attitude as a 

personality trait and shown the reason why such models are unreliable in predicting 

attitudes across context. Based on this viewpoint, the corresponding hypothesis 

that is tested is: 

Hypothesis 3: Attitudes to risk depends on context 

C. Do attitudes to risk differ from attitudes to uncertainty (within a particular 

context)? 

On one hand, there has been definitional and operational inconsistency in using the 

terms risk and uncertainty interchangeably in literature that has led to different 

conclusions while on the other hand there are studies that suggest the behaviour of 

an individual DM under risk is different from that of uncertainty. It is hypothesised 

that: 

Hypothesis 4: Attitudes to risk compared to uncertainty are different  

Although similar hypotheses have been tested (for example in Weber, Blais & Betz, 

2002; Blais & Weber 2006; Hanoch et al., 2006; Zimmerman et al., 2014; Gummerum 
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et al., 2014; Rolison et al., 2014 among others), however the experiment design, 

elicitation methods analytical techniques differ from this study.  

1.3.2 Risk Attitude in Proxy Decision 

In proxy decision-making – a case where one is permitted to make decision on 

behalf of others; the proxy is often regarded as having better knowledge or 

information in that specific domain in which the decision is to be made (Harvey et 

al., 2006). The proxy is however expected to put into consideration the risk 

tolerance of the person on whose behalf the decision is being made. For example, a 

farmer may request the veterinarian to make decision for him regarding specific 

treatment for his animals. There have been numerous justifications to back the 

reason why proxy decision may differ from personal decision within the context of 

risk. Specifically, Stone, Yates & Caruthers (2002) posit that it could be based on an 

assumption of difference in risk attitude between the proxy and recipient and the 

possibility of making the decision to meet different aims under both situations. 

Based on similar assertions, the questions that arise are: Does a proxy’s own risk 

attitude influence the decision taken for others? Do proxies categorise others as 

more risk or uncertainty averse than they are? This leads to the more specific 

research question:  

D. Does a DM’s attitude to risk differ when they take decision for others? 

The hypothesis tested from the above question is: 

Hypothesis 5: There is significant difference in a DM’s risk attitude when 

making personal vs. proxy decision. 

1.3.3  Effect of Bipolar Disorder on Risk and Uncertainty Attitude 

Leahy (1999) opines that BD individuals tend to enjoy gains more and suffer losses 

less than non-BD individuals. That is, at the manic phase, the threshold for defining 

loss (gain) is high (low) and the individual could be categorised as risk-seeking. 

Leahy (1999) further asserts that during the manic phase, individuals view 

themselves as possessing unlimited current and future resources, and trust their 

“flawless” prediction and control of outcomes. Similarly, Chandler et al., (2009) 

reports that bipolar disorder individuals are more risk-seeking for increased gains. 

In the light of these arguments, this study seeks to determine the effect of bipolar 
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disorder on risk and uncertainty attitude. The specific research question to be 

addressed is: 

E. Is there any effect of bipolar disorder on risk or uncertainty attitude? 

It is hypothesised in this thesis that: 

Hypothesis 6: DMs having bipolar disorder tendencies have significantly 

different risk and uncertainty attitude from DMs with no bipolar disorder. 

1.3.4 Risk and Uncertainty Attitudes and Off-farm Income Generating 
Activities 

According to the assertion of Reij & Waters-Bayer (2001) creative and innovative 

farmers typically farm the land to meet their needs thus do not depend to a large 

findings of Baron (2011) that overly risk-seeking individuals characteristically fail 

to diversify. Arguably, the proposition is that risk seeking farmers would be mostly 

full-time farmers who may be less likely to diversify to off-farm income activities. 

From these perspectives, the specific research question and hypothesis which is put 

forward is: 

F. Is there any relationship between the risk attitudes and the decisions to 

engage in off-farm income earning activities? 

The corresponding hypothesis that is tested is: 

Hypothesis 7: Farmers that are risk seeking in monetary context are less likely 

to engage in off-farm employment 

1.4  Outline of the Thesis 

The thesis is made up of the following sections. While Chapter 1 introduces the 

study, Chapter 2 covers literature review. Chapter 3 deals with the theories of risk 

and uncertainty. In Chapter 4, research methods and models are presented while 

Chapter 5 documents the survey design and implementation. Chapter 6 reports the 

description of data, Chapter 7 covers results of CPT/CEU, Chapter 8 contains the 

results of alternative theories, Chapter 9 dwells on the implication of findings for 

farm decisions and Chapter 10 summarises, concludes and provides 

recommendations for policy design.  
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Chapter 2 

Risk and Uncertainty Attitudes in Farmers’ 

Decision Making 
 

2.0 Introduction 

This chapter is a discourse on risk and uncertainty attitudes of a DM in the broad 

context with the focal point being attitudes to risk and uncertainty of farmers 

responsible for making farm decisions. It reviews the approaches to eliciting 

attitudes to risk and uncertainty as well as examines literature on the role of risk 

and uncertainty attitudes on farmers’ decision-making. In addition, this Chapter 

investigates how much is known about risk attitudes in proxy decision-making in 

the context of farmers in developing countries. Finally, it reviews studies on the 

relationship between mental health related  factors and farmers’ risk attitude, 

risk/uncertainty attitudes and the decision to engage in off-farm income earning 

activities and; identifies the links between risk/uncertainty attitudes and type of 

off-farm activity chosen.  

Specifically, the sections that make up Chapter 2 are as follows. Section 2.1 covers 

the meaning of risk and uncertainty and the specific context adopted for use in this 

thesis, section 2.2 focuses the empirical evidence of risk and uncertainty at the farm 

level while section 2.3 examines previous studies on risk and uncertainty attitudes 

in proxy decision making. In section 2.4, literature on bipolar disorder and risk 

attitude are discussed; while risk attitude and its relationship with off-farm 

participation are reviewed in section 2.5. Finally, the last sections in this chapter 

dwell on the elicitation tools and methods that have been reported in the risk and 

uncertainty literature.   
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2.1 Distinction between Risk and Uncertainty 

‘Risk’ and ‘uncertainty’ are fundamental terms in decision-making framework 

however different schools of thought hold different perceptions of risk and 

uncertainty. Therefore, it is difficult to have an all-inclusive definition specifically as 

the nomenclature of risk and uncertainty has not been used in a standardised way. 

Knight (1921) proposed one of the very early distinctions between risk and 

uncertainty.  Knight defined risk as a condition where a decision maker (DM 

hereafter) is faced with a situation in which the DM knows every consequence of the 

decision but does not know prior to decision-making the events that will in reality 

occur. This implies that the DM can measure the odds with accuracy to the extent 

that the prediction will be similar to any other DM having identical information and 

beliefs. Knight (1921) then distinguished risk from uncertainty from the perspective 

of incomplete knowledge by defining uncertainty as a situation in which the all 

possible outcome of a given state is unknown to a DM thus the DM cannot measure 

the odds with any accuracy due to insufficient information. Building on the 

explanation put forward by Knight (1921) this thesis adopts a definition modified 

to fit prospects with continuous distributions. Risk refers to a situation where a DM 

is faced with a scenario in which the DM knows the associated probability density 

of realising an outcome. As for the case of uncertainty, the associated probability 

density is unknown but a DM has the information that an outcome within the 

specified interval would be realised. 

To shed more light on the distinction between this definitions of risk and 

uncertainty, consider a hypothetical risky situation where a DM is presented with 

two prospects (Prospect A can earn the DM any amount between $4 and $7 and B is 

between $2 and $11). Assuming all outcomes over the interval have equal likelihood 

of occurrence, a uniform probability density is thus specified thereby making this a 

case of risk. However, for uncertainty the DM is aware that one outcome within the 

specified interval (e.g. in the above hypothetical prospects A and B) would be 

obtained but the associated probability density (as to whether outcomes were 

‘equally likely’ or not) is not given. 
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Unlike other studies (e.g. Mas-Collel, Whinston & Green, 1995 and Jehle & Reny, 

2000) that use the terms risk and uncertainty interchangeably this thesis adopts the 

above definitions to distinguish risk from uncertainty. This distinction is useful 

since there is empirical evidence in some other literature that the behaviour of an 

individual DM under risk is different from that of uncertainty (see Camerer & Weber 

(1992); Tversky & Fox (1995); Dow & da Costa Werlang (1992) that empirically 

distinguished between attitudes to risk and uncertainty in their studies).  

2.1.1 Distinction between Uncertainty and Ambiguity 

Notably, numerous studies have erroneously used the terms uncertainty and 

ambiguity interchangeably. Some studies (for example Backus, Ferriere & Zin, 2015; 

Fujino et al., 2017) have argued that uncertainty consist of two main elements which 

these studies refer to as ‘risk’ and ‘ambiguity’. In the literature, the perception of 

‘information gap’ is what shapes many definition of ambiguity. Ellsberg (1961) 

argued that ambiguity is a condition that sits between two extreme conditions 

namely risk and absolute ignorance (a case where the DM has no information 

whatsoever on the relative probabilities). According to Camerer & Weber (1992) 

when important information that could be known is missing and it results in 

uncertainty about probability, this condition is referred to as ambiguity. 

Earlier studies including Meyerson & Martin (1987), McCaskey, (1982) and 

Schrader, Riggs & Smith (1993) distinguished between uncertainty and ambiguity 

by classifying uncertainty in terms of shortage of information; and ambiguity from 

the perspective of absence of clarity with reference to the functional relationships 

between variables. From the above perspective, gathering additional information 

may lead to the situation of uncertainty being resolved however, it will not lead to 

resolving ambiguity. 

Some studies8 have argued that while the probabilities in the case of uncertainty are 

either unknown or indeterminable and ascribable to randomness or data 

limitations; the probabilities of ambiguity on the other hand are either not known 

                                                           
8 These arguments can be found in studies including Dequech (2000); Camerer & Weber (1992) 
and Frisch & Baron (1988). 
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or indeterminable owing to data or model deficiency (yet with possibility in some 

cases to be known to persons other than the DM). 

It is pertinent however to differentiate between uncertainty (in the context of this 

study) and ambiguity specifically as each require different procedure for problem-

solving and behaviours differ under both (for example as reported in Schrader, 

Riggs & Smith, 1993; Saint-Charles & Mongeau, 2009). For clarification regarding 

the use of these terms in this thesis, uncertainty refers to the situation where the 

associated probability density is unknown but a DM has the information that an 

outcome within the specified interval would be realised. Ambiguity on the other 

hand viewed from the perspective of ‘uncertainty about the uncertain;’ refers to the 

situation in which the DM does not have complete information about the associated 

probability density and the specified interval from which an outcome would be 

realised. In other words, the DM lacks sufficient information to establish a unique 

subjective belief distribution and is to any extent unable to define a probability 

distribution.  

 

 

 

  



27 
 

2.1.2 Defining Risk Aversion and Risk Seeking9  

It is complicated to present a universally acceptable definition of ‘risk averse’ or 

‘risk seeking’ especially as different assumptions and conditions result in different 

definitions. Therefore, this section provides background on the common definitions 

in the literature and highlights their respective limitations. It concludes by clarifying 

the context in which this study refers to ‘risk averse’ or ‘risk seeking’, how this 

definitions differ from several in the literature and the justification for choosing it 

above the others. 

It is commonplace to find in the literature risk averse/seeking used loosely to 

describe DMs attitudes without acknowledging the role that context and content 

domains as well as magnitude of the prospects plays in determining the risk 

averse/seeking attitudes of a DM. This is because the premise on which such studies 

base their augments are maximisation of expected utility and global concavity or 

convexity of the utility/value function. In the absence of one or both conditions, the 

complexity around defining the terms (risk averse/seeking) increases.   

In the case of Cumulative Prospect Theory (CPT) (details in Section 3.4 in Chapter 

3) which is built around probability weighting and local convexity and concavity in 

the same value function, the meaning behind the concepts risk averse/seeking 

becomes fuzzy. On one hand, the literature have restricted the terms to the shape of 

the value function albeit acknowledging that the magnitude of the prospects 

determines risk averse/seeking attitudes. On the other hand, researchers have 

based it upon the overall attitude of DMs in connection with the actions taken when 

faced with “risky prospects”. 

What then is a risky prospect? 

Of central importance in defining risky prospect is second order stochastic 

dominance (see Appendix 7 for details of first and second order stochastic 

dominance). Given two prospects A and B having CDFs FA and FB, assuming 

∫ [𝐹𝐵
𝑥

−∞
(𝑥) − 𝐹𝐴(𝑥)]𝑑(𝑥) ≥ 0 for all values of 𝑥 and 𝐹𝐵(𝑥

∗) − 𝐹𝐴(𝑥
∗) for some 𝑥∗ 

                                                           
9 I acknowledge the discussions and comments of Professor Kelvin Balcombe in building up these 
arguments.  
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then prospect A dominates B from the position of second-order stochastic 

dominance (SODs). From this perspective, risk ordering emerges such that A can be 

categorised as ‘less risky’ if A SODs B. Accordingly, definitions of risk aversion can be 

drawn.  

Definition 1 A DM is termed GLOBALLY risk averse if for any two prospects A and B 

for which A SODs B the DM will always choose A.  

However in the case of risk seeking, the converse holds if A and B have equal means. 

Thus, risk seeking is defined with respect to controlling for the mean; therefore 

making it pertinent to introduce the concept of mean preserving spread (MPS). B is 

a mean preserving spread of A 𝑖𝑓𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 A SODs B and A and B have identical 

expected values i.e. 𝐸 (𝐴)  =  𝐸 (𝐵).   

Modifying Definition 1 leads to  

Definition 2 A DM is GLOBALLY risk averse if for any two prospects A and B for which 

B is a MPS of A the DM will always choose A.  

Definition 3 A DM is GLOBALLY risk seeking if for any two prospects A and B for which 

B is a MPS of A the DM will always choose B  

Following the inference in the literature, under Expected Utility Definitions 2 and 3 

suggest global concavity or convexity of the utility function. Crucially, however, the 

curvature of the value function is not given consideration in both definitions. 

Definitions 2 and 3 can be broadened to domain specific payoffs such that if the 

payoffs of A and B are both within payoff domain 𝔻 then 

Definition 4 A DM is GLOBALLY risk averse in payoff domain 𝔻 if for any two prospects 

A and B, the payoffs of A and B are both within payoff domain 𝔻 and for which B is a 

MPS of A the DM will always choose A.  

Definition 5 A DM is GLOBALLY risk seeking in payoff domain 𝔻 if for any two 

prospects A and B, the payoffs of A and B are both within payoff domain 𝔻 and for 

which B is a MPS of A the DM will always choose B.  

These definitions also hold within the context of the EUT given that if a DM’s utility 

function is uniformly concave/convex within payoff domain 𝔻 then the DM will be 
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risk averse/seeking within that domain. The assertion above is not transferable to 

the CPT, owing to the fact that concavity/convexity over the specified domain is no 

longer sufficient for risk aversion/seeking behaviour. Thus, a DM can be risk averse 

at the same time optimistic in terms of probability weightings. 

An extension of the above definitions may require defining a probability-payoff 

domain Ω = 𝔻,ℙ resulting in 

Definition 6 A DM is risk averse in probability-payoff domain Ω if for any two 

prospects A and B, the payoffs and probabilities of A and B are both within domain Ω 

and for which B is a MPS of A the DM will always choose A.  

Definition 7 A DM is risk seeking in probability-payoff domain Ω if for any two 

prospects A and B, the payoffs and probabilities of A and B are both within domain Ω 

and for which B is a MPS of A the DM will always choose B. 

However if the sub-domains within Ω over which the DM is risk averse/seeking is 

ambiguous, then it heightens the complexity in defining risk aversion and risk 

seeking.  

Based on the above arguments, this thesis therefore adopts the definition of risk 

aversion in respect of the curvature of the value function. However, is should be 

noted that this is not equivalent to DMs choosing prospects based on mean 

preserving spreads. The rationale behind the focus mainly on the curvature of the 

value function in describing risk aversion/seeking is that the manner in which DMs 

treat probabilities (known as optimism and pessimism in the decision-making 

literature and discussed in 3.4.2 in chapter 3) is not often a reflection of DMs 

preferences per se. Therefore, a DM can be risk averse (concave in utility over the 

domain) at the same time optimistic in terms of probability weightings10 such that 

within the context of the above definitions, the DM is not risk averse. 

 

  

                                                           
10 Evidence of this behaviour is reported in Balcombe & Fraser (2015) where respondents are 
estimated to be risk averse as regards the concave value function on one hand but on the other hand 
are optimistic as to high payoffs with high probability. 
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2.2 Empirical Evidence on Risk and Uncertainty at Farm Level 

Like other enterprises, farm businesses are faced with uncertainty (and possibly 

risk) which is crucial in determining the possibility of a farmer achieving his/her 

farming objectives. Although in reality farmers deal with uncertainties far more 

often; the literature has paid less attention to uncertainty compared to risk. The 

prominence of risk studies over uncertainty has meant that empirical findings about 

uncertainty are limited. In the broader literature, (see Boehlje & Trede, 1977; 

Heifner, Coble, Perry & Somwaru, 1999; Hardaker, Huirne, Anderson, & Lien, 2004) 

the main uncertainties in agriculture have been classified into five main groups. 

First, production uncertainties arising from the uncertain natural growth processes 

of crops and livestock including weather related factors. Second, price or market 

uncertainties due to unpredictable changes in prices of both inputs and outputs. 

Third, financial uncertainties and fourth, institutional uncertainties resulting from 

uncertainties surrounding income/profit and government actions respectively. 

Fifth, human or personal uncertainties arising from problems with human health or 

personal relationships. These uncertainties in several applied literature (e.g. 

Hardaker 2004; Patrick 1998; Huirne et al., 2000); have either been erroneously 

referred to as risk or both terms have been used interchangeably. 

According to Kaan (1998), the most significant of these uncertainties are prices and 

yield variability which makes farmers perceive farming as a “gamble” since at the 

onset of the farming season there is no certainty that their efforts will pay off.  

Hoogeveen et al., (2004) find that farm households in developing countries are 

typically more exposed to uncertainties and risks compared to other enterprises 

however, the formal institutions or instruments do not provide commensurate 

protection. In Nigeria, the case is not different as smallholder farmers who are 

among the poorest in the country (Ajibefun, 2002; Asogwa, Umeh & Ihemeje, 2012) 

have to make decisions under conditions of uncertainties and risk while these small 

farmers typically have limited access to insurance markets; and market failures 

further amplify farmers’ exposure to risks and uncertainty. 

Using decision-making experiments applied to a number of methodologies, DM are 

commonly categorised as risk averse, risk neutral or risk seeking. Adopting different 

theories and assuming various utility functions parameters (discussed in section 3.1 
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in Chapter 3) across a wide range of countries as summarized in Table 1, farmers 

have mostly been reported as being risk averse to risk neutral (i.e. DM being 

indifferent to risk taking). However, a few studies have also found risk-seeking 

attitude among farmers. For example as shown in Table 1, while Yesuf, & Bluffstone, 

(2007) and De Brauw, & Eozenou (2014) find that farmers in Ethiopia and 

Mozambique are risk averse, Maertens, Chari, & Just (2014) and Henrich & 

McElreath (2002), in different studies in India and Tanzania respectively document 

farmers in those regions as risk seeking. While some of these researches find 

genuine difference in the attitudes of DMs, differences in underlying theories and 

differences in methodologies could have considerable effect on the results reported.  

Table 1  
Selected studies classifying low and middle income countries farmers’ and rural 
households according to risk attitudes 
Studies Countries Framework/ 

Theories* 
Findings 
(gains domain) 

Yesuf & Bluffstone (2007)  Ethiopia EUT Risk averse 

Binswanger (1980) India EUT Risk averse 

De Brauw & Eozenou (2014) Mozambique EUT & RDU Risk averse 

Akay,  Martinsson, Medhin & 

Trautmann (2012) 

Ethiopia  Risk averse 

Vieider, Truong, Martinsson & 

Khanh (2014) 

Vietnam PT Risk Neutral 

Maertens, Chari & Just (2014) India EUT Risk Seeking 

Henrich,  & McElreath (2002) Tanzania EUT Risk Seeking 

Ullah, Shivakoti & Ali (2015) Pakistan ELCE Risk averse 

Tanaka et al. (2010) Vietnam EUT, CPT   

Liu (2013) China CPT  

Harrison et al. (2010) Ethiopia, India 

& Uganda 

EUT 

CPT 

Risk averse 

Risk Seeking 

Hill (2009)  Uganda EUT  

Miyata (2003) Indonesia EUT  

Wik et al. (2004) Zambia EUT Risk averse 

Dillon & Scandizzo, (1978). Brazil EUT Risk averse 

Gonzalez-Ramirez, Arora & 

Podesta (2018) 

Argentina EUT, CPT Risk averse 

Freudenreich, Musshoff & 

Wiercinski (2017) 

Mexico EUT, CPT Risk averse 

Galarza (2009) Peru EUT, CPT  

Ward & Singh (2014) India CPT Risk averse 

Liebenehm & Waibel, (2014) Mali &  

Burkina Faso 

CPT Risk averse 
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Mao, Wang, Oniki, Kagatsume & 

Yu (2016) 

China EUT Risk averse 

Love et al. (2014)  Kenya EUT, CPT Risk averse 

Kibet, Obare & Lagat (2018) Kenya EUT, CPT Risk averse  

He, Jin, Gong & Tian (2019) China CPT Risk averse 

Alvarado, Ibanez & Brummer 

(2018) 

Chile CPT Risk averse 

Serfilippi, Carter & Guirkinger 

(2015) 

Burkina Faso EUT, CPT Risk averse 

Ihli, Chiputwa, & Musshoff (2016) Uganda EUT Risk averse 

Brick, Visser & Burns (2012) South Africa EUT Risk averse 

Holden & Quiggin (2015) Malawi EUT, CPT Risk averse 

Petraud, Boucher & Carter (2015) Peru EUT, CPT Risk averse 

Orhan, Vedat, Ahmet &  Zeki 

(2016) 

Turkey ELCE Risk averse 

ZgaJnar & Kavcic (2011) Slovenia MV Risk averse 

Torkamani & Haji-Rahimi (2010) Azerbaijan EUT Risk averse 

Other studies classifying high income countries farmers’ according to risk attitudes 

Bocquého, Jacquet & Reynaud 

(2013) 

France EUT, CPT Risk averse 

Bougherara, Gassmann, Piet & 

Reynaud (2017) 

France EUT, CPT Risk averse 

Gregg & Rolfe (2017) Australia EUT, RDU, 

CPT 

Risk averse 

Tauer (1986) US EUT Mixed findings 

Roe (2015) US Self-

assessment 

Mixed findings 

Meraner & Finger (2017) Germany Self-

assessment, 

EUT 

Risk averse 

Xu et al. (2005) US Psychological 
measurement 
scales 

Risk seeking 

Canales et al. (2015) US EUT, CPT Risk averse 

Other studies classifying DMs (non-farmers) according to risk attitudes 

Tversky & Kahneman (1992) US CPT Risk averse  

Wu & Gonzalez (1996) US CPT Risk averse 

Wakker, Erev & Weber(1994)    

Harrison & Rutström (2009) US EUT, CPT Risk averse 

Stott (2006) UK CPT Risk averse 

Balcombe & Fraser (2015) UK RDU, CPT Risk averse 

Loomes & Sugden (1998) UK EUT Risk averse 

Tu (2005) Sweden CPT Risk averse 
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Hey & Orme (1994) US EUT Risk averse 

Donkers et al. (2001) Netherlands EUT, CPT Mixed findings 

Bruhin et al. (2010) Switzerland 

China 

CPT Risk averse 

Zeisberger et al. (2012) Germany CPT Risk neutral 

Toubia et al. (2013)  CPT Risk averse 

Abdellaoui et al. (2005) Germany CEU, CPT Risk averse  

Booij et al. (2010) Netherlands EUT, CPT Mixed findings 

Camerer (1989)  EUT Risk averse 

EUT – Expected Utility Theory 
RDU – Rank Dependant Utility Theory 
PT – Prospect Theory  

ELCE – Equally Likely Certainty Equivalent approach 
MV – Mean-variance Expected utility 
CEU – Choquet Expected Utility Theory 
*These theories are extensively discussed in chapter 3  
      

Further, several studies have identified links between attitudes towards 

risk/uncertainty and agricultural decision-making. These links covers farmers 

decisions to adopt new technology (see Asci, Borisova & VanSickle, 2015; Liu, 2013; 

Marra, Pannell & Ghadim, 2003; Kebede, Gunjal, & Coffin, 1990). The decision to 

take insurance (see Kouame, & Komenan, 2012; Amaefula, Okezie & Mejeha, 2012), 

the decision to hedge (see Rolfo, 1980), the decision to sharecrop (Reid, 1976), the 

decision to comply with environmental policies (Ozanne, Hogan and Colman, 2001; 

Brick, Visser & Burns, 2012) – to the relationship between risk and farm 

productivity (Barrett, 1996). All of these studies have lent a hand to accentuate the 

importance of understanding and accurately predicting risk and uncertainty 

attitudes. 
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2.3 Risk Attitudes in Proxy Decision Making 

Most of the studies in the decision-making literature have focused on risk attitudes 

when making decision for oneself. However, in many situations, people make 

decisions on behalf of others i.e. proxy decision-making wherein decision is made 

for another person on his/her request. Given the importance of some of these proxy 

decisions there are reasons to examine what similarities or differences exist when 

the decision is made on behalf of another person compared to decision for self.  

In Nigeria, farmers are sometimes in the position where they make decisions on 

behalf of other persons. Owing to the limited number of extension agents, small 

farmers in most cases have to work with opinion leaders or contact farmer who are 

in direct contact with extension agents. These opinion leaders reach decisions that 

may be binding for farmers; who share the consequences of such decisions. There 

are arguments in the literature whether attitudes in proxy decisions differ from 

personal decision within a specific context under risk and uncertainty. Studies 

including Ockenfels (2010), Chakravarty et al., (2011), Polman (2012), and Stone et 

al., (2013), provide support for the argument that a DM’s attitude to risk differs in 

proxy compared to self. On the other hand, Kvaløy & Luzuriaga (2014) and 

Humphrey & Renner (2011) have reported contrary findings. 

Social psychology lends different explanations as to why personal and proxy 

decisions might differ when approached from different perspectives. These 

perspectives are discussed as follows. 
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2.3.1 Responsibility 

Responsibility within the context of decision-making refers to a situation in which 

the decisions made affect both the decision maker and the person on whose behalf 

the decision is being made. Therefore, the proxy considers not only the processes 

and outcomes but also the consequences. It is typically in the form of a principal-

agent relationship where in several cases both the principal’s and agents payoff 

depends on the outcome of the decision taken by the agent.  For example, in farming 

context this would be a contact farmer primarily responsible for contacting and 

communicating with extension agents in addition to being responsible for making 

decision on behalf of other farmers.  

Most studies find that responsibility has a significant effect on risk and uncertainty 

attitude. For example, Kvaløy, Eriksen & Luzuriaga, (2014) reports that personal 

decisions made by individuals are different compared to those made on behalf of 

others. Charness & Jackson (2009), Fullbrunn & Luhan (2015), Bolton, Ockenfels & 

Stauf (2015) and Pahlke et al., (2015) find that proxy decision where responsibility 

was attached had significant effect on the decision made by the proxy. However the 

direction of the effect of responsibility (i.e. whether responsibility increases or 

decreases risk or uncertainty aversion) when making decisions has been mixed. As 

presented in Table 2, Chakravarty et al., (2011) and Agranov et al., (2014) studies 

show that responsibility increases risk-taking; Bolton & Ockenfels (2010), Vieider 

et al., (2016) conclude that responsibility increases risk aversion while Humphrey 

& Renner, (2011) found no effect of responsibility on risk attitude when making 

decision for others. While these differences may be genuine, there is also the 

possibility that outcomes were driven by the design of the task and the estimation 

methods. 

As for the effects of responsibility for choices specifically in the gains only domain, 

the findings in this area have also been mixed. For instance, Bolton and Ockenfels 

(2010), Humphrey and Renner (2011), Anderson et al., (2015) do not find decisions 

under responsibility to significantly influence choice behaviour in the gain domain, 

Bolton et al., (2015) and Pahlke et al., (2015) reports otherwise. Most studies have 

focused mainly on financial decisions with discrete monetary outcomes, however 

there are reasons to extend the scope, elicitation method and category of 
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respondents e.g. to DMs using continuous ‘prospects’ which is where this thesis fills 

the gap. 

2.3.2 Accountability  

According to Semin & Manstead (1983) and Tetlock (1992), accountability refers to 

the (implicit or explicit) expectation of a proxy that any decision he or she takes 

needs to be justified to the individual(s) on whose behalf the decision is being made 

prior to or post decision making. In the agricultural context, this could be a farmer 

responsible for managing and taking decisions on resources on a communal farm or 

joint enterprise. For example, in Fadama III rural agriculture project in Nigeria, the 

proxy is the project leader who make binding decisions such as the types of 

farm/off-farm investment the group engages in or whether to adopt certain 

technologies. Given the fact that the DM can be ‘blamed’ for the decision, a-priori it 

is expected that when making risky decisions for others the DM will consider this 

factor.  

In social psychology, researchers have made efforts to prove the effects of 

accountability on decision making as shown in Table 2. Holding DMs accountable 

for their decisions has been reported to be a credible means to de-biasing loss 

aversion in self-proxy relations. Studies including Pahlke, Strasser & Vieider, (2012) 

introduces accountability post-experiment while others e.g. Sutter (2008) focused 

on agent justifying any decision taken prior to decision-making. Sutter (2008) 

conclude that accountability increases risk seeking. Similarly, Schlenker (1991) 

reported amplified risk attitudes under accountability for either risk lovers who 

preferred more risky choices or risk averters who became more cautious. In 

contradiction, Humphrey & Renner (2011) findings suggest preferences of 

individuals in the gain and loss domains are unaffected by accountability. Crucially, 

the domains and size of the prospects; as well the social distance that exist between 

the proxy decision maker and the person on whose behalf the decision is being made 

may have resulted in mixed finding reported in these studies.  
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2.3.3 Self-Other Distance 

Self-Other distance – the social distance between others and self can provide some 

explanations as to why attitudes to risk may differ when taking decisions for oneself 

compared to proxy decisions. There have been proponents and opponents in the 

discourse on the effect of self-other differences in decision making under risk and 

uncertainty. Two widely mentioned explanations for self-other differences in 

decision making are social value theory11 and construal level theory12.  

The proponents of social value theory argue that when making proxy decision under 

risk or uncertainty, the individual assigns social value over and above other factors 

as opposed to decision for self where there is a mix of other elements. According to 

Stone & Allgaier, (2008) the emphasis is on what is ‘socially valued’ as opposed to 

what the individual making the decision would do in a scenario where decisions are 

not socially-sanctioned. In conditions where value is placed on risk aversion (for 

instance in outcomes with life-threatening consequences), several studies have 

documented safer decisions for others than for the self. As shown in Table 2, Stone, 

Choi, de Bruin & Mandel, (2013) findings support this expectation as they show that 

DM’s display greater risk-aversion for others than for self in situation where social 

value is placed on risk aversion. 

On the other hand Construal level theory (CLT) surmises that individual’s behaviour 

is impacted upon by psychological distance that determines the way in which future 

events are mentally portrayed. Self-other distance in this context is based on the 

concept of social distance that describes the affective closeness between the DM or 

proxy and the individual(s) on whose behalf the decision is to be made. According 

to Zhang et al., (2017), the more psychologically removed the DM is from the other 

person on whose behalf the decision is to be made, the greater the social distance. 

From this perspective, Zhang et al., (2017) found that self-other distance increased 

risk aversion. Raue, Streicher, Lermer, & Frey (2015) found that construal level does 

not have a similar effect across domain as their results show no effect in the loss 

domain contrary to what was obtained in the gain domain. However, there are 

                                                           
11 See Stone, Choi, de Bruin & Mandel, (2013) for detailed discussion  
12 In the works of Trope, Liberman & Wakslak, (2007); Trope & Liberman, (2010); Raue, Streicher, 
Lermer, & Frey (2015) the construal level theory extensively discussed and tested.  
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concerns about the psychological distance hypothesis in explaining empirical 

findings and the simplicity of the CLT to form a generally accepted theoretical 

model. 

Table 2  
Selected Literature on Risk Taking for Others (Proxy Risk) 

Studies Contexts Findings 

Chakravarty et al., (2011) Responsibility Increased risk seeking 

Pollmann,et al., (2014) Accountability Increased risk seeking 

Polman (2012) Responsibility Increased risk seeking 

Agranov et al., (2014) Responsibility Increased risk seeking 

Reynolds et al., (2009) Responsibility Increased risk aversion 

Eriksen & Kvaløy (2010) Self-Other distance Increased risk aversion 

Vieider, et al., (2016) Responsibility Increased risk aversion 

Sutter, (2009) Accountability Increased risk seeking 

Lion & Meertens, (2001) Accountability Mixed findings 

Zhang et al., (2017) Self-Other distance Increased risk aversion 

Humphrey & Renner, 

(2011) 

Responsibility No effect  

Charness & Jackson (2009) Responsibility Increased risk aversion 

Weigold & Schlenker (1991) 

Bolton & Ockenfels (2010) 

Stone, Choi, de Bruin & 

Mandel, (2013) 

Accountability 

Responsibility 

Self-Other distance 

Increased risk aversion 

Increased risk aversion 

Increased risk aversion 
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2.4 Bipolar Propensities and Risk and Uncertainty Attitudes 

Economists have generally taken attitudes towards risk and uncertainty as given; 

and treated them as stable. An alternative perspective is that the causes of these 

attitudes to risk and uncertainty is worthy of investigation. Moreover, these 

attitudes may be temporally variable and related to biological/physiological traits 

of individuals. Accordingly, decision-making behaviour is likely to be related to 

mental health related factors such as ‘bipolarism’, yet for the most part economists 

have not investigated the links between such factors and attitudes towards risk and 

uncertainty.  

With mental health issues being more prevalent than previously reported13 

(probably due to more individuals contacting mental health services as a result of 

increased awareness and reduction in stigma and discrimination); studies focused 

on examining mental health related factors and decision-making have become more 

requisite. Notable, the impact of mental health related issues is largely discernible 

in occupational functioning and a ‘wrong’ decision can threaten the entire livelihood 

of DM’s (especially many smallholder farmers in developing countries that are 

barely ‘hanging in’). Thus, examining the effect mental health related factors (with 

focus on bipolar disorder in this thesis) has on a DM’s attitudes to risk and 

uncertainty will help to better understand the potential drivers of risk/uncertainty 

attitudes as well as ensure appropriate interventions are targeted at assisting 

individuals’ with mental health problems when they are faced with making 

important decisions. 

Bipolar Disorder (BD) commonly referred to as a mood disorder wherein episodes 

of both elevated and depressed mood is experienced by the individual and may be 

associated with distress and impairment of function (Diagnostic and Statistical 

Manual of Mental Disorders (DSM-IV), 1994). An individual with this disorder 

experiences episodes of depression and mania referred to as bipolar I disorder (or 

hypomania – bipolar II disorder) which occur in turns (National Health Service 

(NHS) 2011). These extreme changes in mood either from highs to lows or vice versa 

can persist for hours, days or even months (Ogoke, Nduka & Nja, 2015). Chandler, 

                                                           
13 See Duncan & Prowse, (2014), Blader & Carlson, (2007). 
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Wakeley, Goodwin & Rogers, (2009) affirms that risky behaviour can be linked with 

Bipolar disorder (BD). During the period of “highs” the individual is reported to have 

increased self-esteem, increased goal-directed activities and becomes more risk 

seeking. 

According to Johnson et al., (2012); Reddy et al., (2014) one of the distinctive 

features of bipolar disorder is impulsive behaviour and increased propensity to 

work toward a reward, usually in the absence of any adequate plan. However, 

Mason et al., (2014) asserted that bipolar disorder is like a double-edged sword. It 

aids the individual to strive toward their goals and ambitions and may consequently 

lead to success. However, the fact that most decisions may be driven by immediate 

benefit usually result to adverse effect. It is also documented that during manic and 

depressive episodes, decisions made by individuals with bipolar disorder are 

typically suboptimal and can have negative long-term consequences. However, this 

argument contradicts Tremblay, Grosskopf & Yang (2010) who find evidence of 

links between bipolar disorder and occupational creativity and reports that 

productivity gains from enhanced creativity may have the capacity to outweigh 

productivity losses from bipolar illness. Nevertheless, attempts have been made to 

show that in comparison to a DM without mental health problems, the tendency 

towards risk-taking behaviour would increase the proportion of risky choices taken 

by a bipolar disorder DM.  

Although BD has received much research attention in developed countries, a very 

limited number of studies have been carried out in developing countries. In Nigeria, 

almost all studies so far has been targeted only at diagnosed and hospitalized 

patients across Federal Neuropsychiatric Hospitals (see Onyeama, Agomoh & 

Jombo, 2010; Aiyelero, Kwanashie, Sheikh, & Hussaini, 2010) with the exception of 

Gureje & Lasebikan, 2006 who carried out a large sample study on 4,948 

respondents and finds that 17.9% had at least one DSM–IV14 disorder. Aiyelero et 

al., (2010) report that, in Nigeria symptoms of all such illness are considered 

embarrassing due to stigmatization of all forms of mental illness. This situation of 

stigmatization coupled with individuals feeling less inclined to disclose their 

                                                           
14 DSM-IV refers to the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders, 
which is the standard classification of mental disorders used by mental health professionals. 
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symptoms may result in underreporting of such cases (Gureje & Lasebikan, 2006). 

However, the lack of credible statistics and other aforementioned challenges does 

not imply that this disorder is non-prevalent in Nigeria.  

Funk, Drew & Knapp (2012) reported a lopsided ratio in mental disorders among 

the rich and the poor with the latter being the most affected. Also, Negash et al., 

(2009) find that rural farmers made up nearly half of Bipolar-I disorder patients in 

Butajira, Ethiopia. Given similar statistics that characterise smallholder farmers in 

Nigeria i.e. being among the poorest and low socioeconomic groups (as reported in 

Ajibefun, 2002; Asogwa, Umeh & Ihemeje, 2012), there is reason to postulate that a 

study that concerns BD is well targeted if farmers are chosen as participants to test 

the study hypothesis.   

This study makes use of a modified Bipolar Spectrum Diagnostic Scale (by Ghaemi 

et al., 2005),15 (which is effective in addressing the concept of bipolar spectrum and 

can accurately record subtle features of bipolar illness) in identifying whether 

farmers within the spectrum of bipolar propensities have different attitudes to risk 

and uncertainty. It is necessary to point out  that this study did not aim to clinically 

ascertain or identify individuals with BD thus did not in any way provide a 

categorical response to whether or not an individual has bipolar disorder. 

Respondents were simply categorised by their scores which were cumulated and 

matched with the test scoring ranges in which the likelihood of BD propensities 

increased with a higher score as shown in Appendix 3. 

  

  

                                                           
15 Ronald Pies developed the original scale known as the Bipolar Clinical Scale. Later revised and 
tested by S. Nassir Ghaemi 
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2.5 Risk and Uncertainty Attitudes and Participation in Off-farm 
Income Generating Activities (OFIGA*) 

Small farmers especially in low/middle income countries are exposed to numerous 

uncertainties and risks but have fewer options to cope as formal institutions or 

policy instruments do not provide commensurate protection. Consequently, their 

livelihood is vulnerable. Off-farm employment has been documented as a significant 

risk coping strategy particularly among those with the intent of cushioning 

production risk (Lamb, 2003) or the risk of income shortfall (Berg (2001); Mishra 

& Goodwin, (1997)).  Although, studies have been carried out with focus on risk and 

uncertainty attitudes and individual decision making for instance; entrepreneurial 

decisions (Brockhaus, 1980), acquisitions (Pablo et al., 1996), asset allocation (Riley 

& Chow, 1992), market behaviours (Fellner & Maciejovsky, 2007), rate of adoption 

(Just & Zilberman, 1983), farm diversification (Eke-Göransson & Rinman, 2012). 

However, studies examining the relationship between of risk and uncertainty 

attitudes and OFIGA participation is limited.  

Other studies specific to farming that examines the role of risk and uncertainty 

attitudes in farm production, investment and management decisions (e.g. Backus et 

al., 1997; Senkondo, 2000; Haneishi et al., 2014 and Brunette et al., 2017)  have more 

often than not reported that risk and uncertainty attitudes have significant effect on 

various farm decisions. For instance Brunette et al., (2017) find a positive impact of 

the DM’s risk aversion on harvesting decisions, Gong et al., (2016) reported that risk 

averse farmers where more likely to increase pesticides application. This suggests 

possible relationship may also exist between risk and uncertainty attitudes on 

OFIGA participation. 

From a different perspective in the literature (see Reardon 1997; Bryceson & Jamal 

1997; Chuta & Liedholm 1990), farmers in very poor and developing countries 

reportedly rely on off-farm activities as a cushion for anticipated risk. Sulewski & 

Kłoczko-Gajewska, (2014) have found that farmers who plan to engage in off-farm 

income earning activity may have a slightly higher than average level of risk 

aversion than those who do not. In contradiction Iqbal, Ping, Abid, Kazmi & Rizwan, 

(2016) who find that farmers who have earn income off-farm are less risk averse.  
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According to Islam (1997), it is typical of a risk averse farmer to take the decision to 

devote some of their productive resources to off-farm activities, with less risk and a 

more stable income not minding the lower returns from such off-farm farm 

activities. Mishra & Goodwin (1997), similarly asserts that; for the risk averse 

farmers’, greater farm income variability leads to increased off-farm labour supply. 

Thus, the opportunity to compensate for the risk and uncertainty related to the 

variations in farm income is made possible by the off-farm sector. In a similar light, 

Domingo, Parton, Mullen & Jones (2015) report that progressive farmers are likely 

to take greater risk in order to achieve greater gains while the conservative will 

avoid risk. From the various perspectives, one conclusion that stands out is that; for 

risk averse farmers’ off-farm activity is an effective strategy in the reduction of 

variability, risk and uncertainty.  

Risk attitude have also been documented to influence the category of OFIGA chosen 

by DMs. King (1974) and Musetescu et al., (2007) reported that if the income 

earning activity is self-owned, the decision maker is more risk seeking. This 

corroborates Halek & Eisenhauer, (2001) findings of decreased risk aversion among 

self-employed. Further, Block, Sandner & Spiegel, (2015) that there exists a strong 

relationship between risk attitudes and the sources of work motivation. They 

conclude that in terms of necessity and opportunity, entrepreneurs show risk 

aversion towards the former and risk tolerance for the latter. Adopting similar 

approach, farmers could also be categorised into two groups. Farmers that 

participate in off-farm income activities primarily as a buffer against anticipated 

farm uncertainties and those that engaged in off-farm income activities because 

they spotted an investment opportunity.   

2.5.1 Determinants of decision to participate in off-farm activity 

Although the determinants of participation in off-farm activities have been widely 

studied (see among others the works of Mduma & Wobet (2005); Bezu et al., (2009) 

16, there is limited empirical evidence on the relationship between risk and 

uncertainty attitudes and decisions to be involved in off-farm income earning 

                                                           
16 Mduma & Wobet (2005); Bezu et al. (2009) examined the decision to participate and the 
determinants of activity choice in rural non-farm employment respectively. However, both studies 
focused mainly on other socioeconomic factors. 



44 
 

activities. In addition, the link between risk and uncertainty attitudes and the type 

of off-farm activities taken up has not been adequately examined. Ignoring this 

potentially critical factor can lead to faulty predictions and misleading conclusions 

hence the relevance of studies which addresses this gap. 

As presented in Table 3, factors considered to be determinants of farmers’ 

participation in off-farm activities are (but not limited to) age, gender, education, 

household size and income. For instance, Man (2009) found age and household size 

are significant factors influencing decision making in OFIGA among farmers in 

Malaysia. While OFIGA participation decreased with age, the opposite was the case 

for household size in several studies. Christopher (2014) findings on farmers in 

Tanzania regarding household size however was contrary to Man (2009).  

Table 3  
Selected Studies on Determinants of Off-Farm Participation Decision  
Factor Authors Country Statistical 

Models 
Findings 
(Effects) 

Farm Size Rahman (2013) 

Bezabih et al. (2010) 

Bangladesh 

Ethiopia 

Probit  

Logit 

Negative  

Positive 

Age Man (2009) Malaysia Logit  Negative 

Gender 

 

Beyene (2008) 

Bezabih et al. (2010) 

Ethiopia 

Ethiopia 

Probit  

Logit 

Positive  

None 

Education 

 

Rahman (2013) 

Beyene (2008) 

Bangladesh 

Ethiopia 

Probit  

Probit 

Negative 

None 

Household size 

 

Man (2009) 

Christopher (2014) 

Raimondi et al. (2013) 

Malaysia 

Tanzania 

Italy 

Logit  

Tobit 

Probit 

Positive 

Negative 

Positive 

Access to credit Shehu & Abubakar (2015) Nigeria Probit Positive 

Farm income Zahonogo (2011) Burkina Faso Logit Negative 

Risk & 
uncertainty 
attitudes 

Sulewski & Kłoczko-

Gajewska (2014) 

Poland 

 

Descriptive 

 

Positive 

 

Mental health 
related factors 

This thesis Nigeria Probit Mixed* 

* Effect depending on the different subjective value function (i.e. gain or loss) and conditions (risk or 
uncertainty) 
 

Bezabih, Gebreegziabher, GebreMedhin & Köhlin (2010) argue that the two main 

drivers of off-farm involvement decisions are disparities in wages and risk 
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associated with the off-farm option. Of relevance to this study however is the risk 

factor. Sulewski & Kłoczko-Gajewska (2014) are among the few who have examined 

off-farm participation as a risk management strategy that is dependent on farmers 

level of risk aversion. They report that there was difference (though marginally 

above the average level) in risk aversion between farmers who planned to engage 

in off-farm income generating activities than farmers who did not. However, 

Sulewski, & Kłoczko-Gajewska (2014) did not examine uncertainty and estimated 

‘risk attitude’ from simple descriptive statistics. The gap is filled in this thesis using 

parametric approach and estimating econometric models from which reliable 

empirical evidence is provided.  
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2.6 Risk and Uncertainty Elicitation- Lottery-Style Experiments  

Lottery-style experiments have featured significantly in studies of both normative 

and descriptive decision theories. Numerous studies adopting different methods 

have designed their lotteries payoffs as either real17, hypothetical or both. It has 

been argued that using hypothetical payoffs as opposed to real payoff determines 

the quality of the result (see Kroll & Vogt, 2008). However Kahneman & Tversky, 

(1979), Irwin, McClelland & Schulze, (1992), Kühberger, Schulte-Mecklenbeck & 

Perner, (2002), Etchart-Vincent & L’Haridon (2011) suggest that individuals know 

how they would behave in actual situations and therefore they have no cause to 

conceal their genuine preferences. 

As presented in Table 4, a considerable number of authors have applied, modified 

or adopted the Ordered Lottery Selection design (OL), Multiple Price List (MPL) 

design, Becker, Degroot & Marshak (BDM) Design among others in real and 

hypothetical cases. Notably, researchers have applied lottery type experiments to a 

wide range of methodologies; and to address different objectives. While Holt and 

Laury (2002) (HL) employed their lottery approach within the framework of the 

EUT, Tanaka, Camerer and Nguyen (2010) (TCN) relied on the PT. Other studies 

such as Bocquého, Jacquet & Reynaud (2014) compared preference from EUT and 

CPT using both single and mixed domain real payoff lotteries. In the discussion that 

follows, the merits and demerits of these popular elicitation methods are 

highlighted. 

 

 

 

  

                                                           
17 For real payoffs, the DM at the end of the experiment will be offered some payment reflective of 
the outcome of the DM’s choices during the experiment e.g. a DM can earn some physical money; 
while for hypothetical payoffs the none of the outcomes are real.  
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Table 4  
Selected Popular Lottery Methods of Eliciting Risk and Uncertainty attitudes 

Design Studies where adopted Lottery type 

The Ordered Lottery 
Selection (OL) Design  

Binswanger (1980) Real & Hypothetical  

Clarke & Kalani, (2012) Hypothetical 

Kouamé, (2013) Real & Hypothetical 

 Eckel & Grossman (2002) Real & Hypothetical 

The Multiple Price List  
(MPL) Design  

Holt & Laury (2002) Real & Hypothetical 

Deck, Lee, Reyes & Rosen (2008) Real 

 Couture, Reynaud, Dury, & Bergez, 

(2010) 

Real & Hypothetical 

 De Brauw, & Eozenou, (2014) Hypothetical 

 Clist, D’Exelle, & Verschoor, (2013) Real 

 Reynaud & Couture, (2012). Hypothetical 

Tanaka, Camerer & 
Nguyen (TCN) Design 

Tanaka, Camerer & Nguyen (2010) Real 

Liu & Huang, (2013) Hypothetical 

 Love, Magnan & Colson, (2014) Real 

 Bocquého, Jacquet & Reynaud (2014) Real 

Becker, Degroot & 
Marshak (BDM) Design 

Becker, Degroot & Marshak (1963) Real 

Isaac & James, (2000) Hypothetical 

Harrison, (1989) Hypothetical 

The Random Lottery 
Pair Design  

Hey and Orme (1994)  

Battalio, Kagel and Jiranyakul (1990) 

Hypothetical 

Real & Hypothetical 

Couture,Reynaud, Dury, & Bergez 

(2010) 

Real & Hypothetical 

Mixed Methods Glöckner & Pachur (2012)  Hypothetical 

 Donkers, Melenberg & Van Soest 

(2001) 

Hypothetical 

Bespoke methods Hsee and Weber (1997)  

Pahlke, Strasser, and Vieider (2015) 

Hypothetical 

Real & Hypothetical  
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The Ordered Lottery Selection design (OL)  

The Ordered Lottery Selection design (OL) by Binswanger (1981) approach shown 

in Table 5 where a number of 50-50 lotteries are presented to participants from 

which they are required to pick just one pair to play. While this method is simple 

and permits parametric estimation, however the potential of deducing risk seeking 

behaviour is limited. Consequently, this method over-estimates risk aversion. In 

addition, the 50/50 lottery structure makes it difficult to draw conclusions on 

warping of probabilities, since identification of warping requires variability in 

probabilities.   

Table 5  
Binswanger (1980) version of the OL 

Lottery A            Lottery B 

p  ₹ p  ₹ 

0.5 50 0.5 50 

0.5 45 0.5 95 

0.5 40 0.5 120 

0.5 35 0.5 125 

0.5 30 0.5 150 

0.5 20 0.5 160 

0.5 10 0.5 190 

0.5 0 0.5 200 
Reprinted from “Attitudes toward risk: Experimental measurement  
in rural India”. Binswanger, H. P. (1980). American journal of  
Agricultural Economics, 62(3), 395-407. 

 

Multiple Price List (MPL)  

In this case the DM has to choose between two lotteries with varying probabilities 

and fixed payoffs where the expected value of the lottery with the higher variance 

increases as the experiment progresses. The design of the Multiple Price List (MPL) 

shown in Table 6 is organised such that a participant is faced with pairs of a given 

number of lotteries from which the decision maker states preference between each 

pair (say A and B) for all given paired lotteries. While the payoff of each lottery pair 

is fixed, the probability however varies. With the onset of the task, the expected 

value of A is greater than B and the expected value of each pair increases as 

participants move down each row until it gets to a point where B exceed A. 

Consequently, the point at which the participants switches determines the risk 
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attitude. This method has been popularised by HL and is applied in numerous 

studies as it is arguably ease to use. However, results from some studies have shown 

that the HL-MPL may not be the most suitable method of eliciting risk attitude in 

developing countries as the multiple switching behaviours have been persistently 

documented. For example studies carried out in Peru (see Galarza, 2009), Rwanda 

(see Jacobson & Petrie, 2009) Mozambique (see De Brauw & Eozenou, 2011), South 

Africa (see Brick et al., 2012), Senegal (see Charness and Viceisza, 2012) each show 

different rates of inconsistencies among participants who switched choice at least 

once. Other limitation is that the MPL design leads to systematic framing which coax 

respondents to pick the lottery on the middle row of the table. 

Table 6  
Holt & Laury (2002) version of the MPL 

Lottery A Lottery B 

p € p € p € p € 

0.1 2 0.9 1.60 0.1 3.85 0.9 0.10 

0.2 2 0.8 1.60 0.2 3.85 0.8 0.10 

0.3 2 0.7 1.60 0.3 3.85 0.7 0.10 

0.4 2 0.6 1.60 0.4 3.85 0.6 0.10 

0.5 2 0.5 1.60 0.5 3.85 0.5 0.10 

0.6 2 0.4 1.60 0.6 3.85 0.4 0.10 

0.7 2 0.3 1.60 0.7 3.85 0.3 0.10 

0.8 2 0.2 1.60 0.8 3.85 0.2 0.10 

0.9 2 0.1 1.60 0.9 3.85 0.1 0.10 

1 2 0 1.60 1 3.85 0 0.10 
Reprinted from “Risk Aversion and Incentive Effects.”  
Holt, Charles, A., & Susan K. Laury. 2002.   
American Economic Review, 92 (5): 1644-1655. 

 
 

The Becker, Degroot & Marshak (BDM)  

The Becker, Degroot & Marshak (BDM) design presented in Table 7 has been applied 

in both real and hypothetical studies including Becker, Degroot & Marshak (1963), 

Isaac & James (2000), Harrison, (1989). The BDM is built around bidding where 

participants’ are handed a number of lotteries from which they could only sell if the 

selling price (Si) demanded by the participant is equal or less than a randomly 

picked buying price (Ci) in which case the participant is paid price Ai. On the 

contrary, where the randomly picked buying price is greater, the participants gets 

Bi. However, the BDM however depends on the assumptions that participants are 
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expected utility maximizers otherwise, their true certainty equivalents of lotteries 

will not be disclosed. 

Table 7  
Becker, Degroot & Marshak (BDM) design 

Stages i Ai Bi Ci Si U(si) Stages i Ai Bi Ci Si U(si) 

1 0 100 50 S1 ½ 13 S4 100 50 S13 7/8 
2 0 100 75 S2 ¼ 14 S7 S8 75 S14 43/64 
3 0 100 25 S3 ¾ 15 S5 S4 50 S15 ½ 
4 S1 100 50 S4 ¾ 16 S9 100 50 S16 13/16 
5 0 S1 50 S5 ¼ 17 S6 S7 75 S17 7/16 
6 S2 S3 75 S6 3/8 18 S9 S13 50 S18 ¾ 
7 S2 S1 25 S7 5/8 19 S11 S8 75 S19 5/8 
8 100 S3 25 S8 13/16 20 0 S13 50 S20 7/16 
9 S5 100 590 S9 5/8 21 0 S4 50 S21 5/8 
10 S5 S1 50 S10 3/8 22 0 S8 25 S22 ¾ 
11 0 S3 25 S11 9/6 23 0 S4 50 S23 3/8 
12 S2 100 75 S12 7/16 24 0 100 75 S24 42/64 

Reprinted from “Measuring utility by a single‐response sequential method.” Becker, G. M., DeGroot, 
M. H., & Marschak, J. (1964). Systems Research and Behavioral Science, 9(3), 226-232. 
 

Bespoke methods 

Some studies have employed lottery experiments that do not directly fit in to the 

categories mentioned above. Hsee & Weber (1997) and Pahlke, Strasser & Vieider 

(2015) are typical examples. In Hsee & Weber (1997) design, participants were 

presented with a sure vs. 50-50 risky option from which a risk preference index was 

calculated depending on the participant choice in each group of experiment. Pahlke, 

Strasser & Vieider (2015) elicitation method features lotteries having a sure amount 

vs a 50-50 risky lottery for seven (7) out of eight (8) pairs; and one in which the 

lottery consisted of a 50-50 safe option vs a 50-50 option. The demerits of these 

methods i.e. lottery vs. sure option is that it does not permit controlling for chances 

that dissimilarity in complexity of the lottery constitute preference. Also it cannot 

model many real day-to-day problems. 

Overall, the findings from authors who have adopted the lottery style approach to 

elicit attitudes to risk and uncertainty particularly among the individuals in 

developing countries leaves fundamental gap for further research particularly as 

the results from experimental techniques applying such lotteries is contentious on 

one hand. For example, Reynaud & Couture (2012) in their comparison of Eckel and 

Grossman vs. Holt and Laury report that risk preference measures are affected by 
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the lottery approach used. Similarly, Anderson & Mellor (2009); Ihli, Chiputwa & 

Musshoff (2013) corroborate this argument by documenting evidence of instability 

of elicitation methods. Since neither of the approaches is a win-all, this calls for 

further research in designing and testing alternative lottery-style experiments. On 

the other hand, these lottery experiments are mostly restricted to monetary payoffs 

and framed in a way that do not reflect everyday problems. 

Non-Lottery based elicitation methods 

Besides the stated preference method (such as using lottery experiments as 

discussed above) which relies on direct elicitation from experiments or 

questionnaire; other authors’ have elicited DMs’ attitudes using revealed preference 

method to examine the relationship between DMs’ behaviour in real 

risky/uncertain scenarios. However this method have been criticised on the issue 

of external validity.  

One of the risk estimation approach that gained popularity in the agricultural 

economics literature is the Just & Pope (1977, 1978) model based on EUT. This idea 

behind the model is to examine how output level and output risks are concurrently 

affected by production inputs. According to Just & Pope (1978), splitting the 

stochastic production function into mean and variance terms make it possible to 

isolate the effects of inputs on the mean of output and risk i.e. the econometric 

estimation of the production function relies on aggregating the level and variability 

of production output thus permitting production inputs to be either risk-increasing 

or risk-decreasing. Other studies have relied on this model to estimate risk and risk 

preferences drawing on aversion to variability.  
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2.7 Summary of Research Gaps Guided by Literature 

Although numerous studies have been conducted on risk and a few focusing on 

uncertainty, this research identified the following gaps based on the literature 

reviewed in this chapter. 

First, studies carried out on risk attitudes of farmers’ specifically in developing 

countries have produced contrasting results – from reports of risk aversion to 

documentation of risk seeking behaviour. There is evidence that inconsistency in 

behaviour arises from adopting different theories and employing diverse 

experimental procedures. Therefore, there is the need for more research on the 

interaction between contextual or procedural factors and the processes through 

which individual responses are obtained. 

Second, several of the more popular methods adopted in most studies have their 

respective limitations ranging from the way the experiments are designed which 

introduces significant cognitive burden; to format and framing that does not 

adequately reflect everyday problems. In addition, the potential of many leading 

theories especially non-EU based theories (discussed in Chapter 3) have not been 

exhaustively examined.  

Third, risk and uncertainty attitudes have more often been measured using either 

the choice list, ranking or allocation procedures. The most popular procedure – the 

choice list, has relied on binary choices designs in which the outcomes are discrete. 

There are limited studies that have shown the potential of extending popular 

theories using continuous binary choices. 

Fourth, risk attitudes in proxy decision i.e. situations where people make decisions 

on behalf of others have not been widely researched in Agricultural Economics 

compared to personal decisions. Crucially, in the literature, findings about whether 

attitudes in proxy decisions differ from personal decision within the context of risk 

and uncertainty are mixed. More so only a minute number of studies in this area 

have been targeted at agriculture in developing countries.  

Fifth, there is limited investigation on the possible temporal variability in 

risk/uncertainty attitudes; and the effect the biological/physiological traits of a 
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decision maker has on these attitudes. Specifically, although mental health related 

factors are reported to influence decision-making behaviour, yet for the most part 

economists have not investigated the links between such factors and context 

specific attitudes towards risk and uncertainty. 

Sixth, numerous studies on participation in off-farm activities have focused on other 

determinants or drivers of the decision to participation in off-farm income earning 

activities without extending the determinants to accommodate risk and uncertainty 

attitudes. Currently, there is scarce empirical evidence on risk attitudes and the 

relationship between the decision to engage in off-farm income earning activities on 

one hand; and the link between risk attitudes and nature or type of off-farm activity. 

Lastly, there is dearth of studies addressing the issues above in developing countries 

where empirical evidence are much need as farmers risks their livelihoods by being 

exposed to arguably much larger risks/uncertainties than farmers in developed 

countries.   
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Chapter 3 

Theories of Risk and Uncertainty– Preference 

Functional and Decision Rules  

3.0 Introduction 

Theories that characterize choices under risk and uncertainty are numerous – from 

normative to descriptive. A considerably large number of authors have introduced, 

adopted or modified the approach of the Expected Utility theory (Von Neumann & 

Morgenstern, 1944), the Subjective Expected Utility theory (Savage, 1954) or the 

Weighted Expected Utility model (Chew & MacCrimmon, 1979; Fishburn, 1983). 

The non-EU theories that have shaped the agricultural economics literature 

includes Prospect theory (Kahneman & Tversky, 1979), Rank Dependant Utility 

theory (Quiggin, 1982), Cumulative Prospect theory (Tversky & Kahneman, 1992), 

Salience theory (Bordalo et al., 2011) and Regret and Disappointment theories (Bell 

1985; Fishburn, 1984; Loomes & Sugden, 1982). In the Chapter, both EU and non-

EU theories are reviewed extensively. 

Chapter 3 is split into three components namely: EUT, the non-EU theories and 

other alternative theories. Precisely, section 3.1 is a general review of the EUT, 

sections 3.2 and 3.3 focuses on non-EU theories, sections 3.4 to 3.8 are expositions 

of alternative theories including heuristics and decision rules. 
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3.1 The Expected Utility (EU) model 

Expected Utility (EU) Theory (EUT) arguably remains the benchmark theory of 

decision-making under risk. The earliest record of the EUT dates back to the work 

of Bernoulli (1738). Broadly, EUT has tended to have two applied versions, one built 

around the element of wealth or income in which case the DM’s utility is a function 

of disposable income or wealth; and one which does not include initial wealth 

around which utility is evaluated. According to Cox & Sadiraj, (2002) the expected 

utility function is linear in probabilities whether decisions are taken under risk or 

uncertainty and a rational decision maker will choose options that maximize their 

expected utility. 

According to von Neumann-Morgenstern (1944) (VNM hereafter), the EU model can 

be specified as: 

EU(𝐿)  =  ∑𝑝𝑖𝑢(𝑥𝑖)                                       (3.1.1) 

or in the case of just two payoffs,      

EU(𝐿)  =  𝑝1𝑢(𝑥1) + (1 − 𝑝1)𝑢(𝑥2)                    

Where L refers to the probability 𝑝1 of getting payoff 𝑥1 and 𝑝2 of getting payoff 𝑥2 

and 𝑢(. ) is the utility function. Given any two lotteries18 where ≻ represent 

preference, it is assumed that L1 ≻ L2 if EU(L1) > EU(L2).  

According to von Neumann & Morgenstern (1944) the expected utility of any 

rational decision maker is derived from four axioms. These axioms are: 

Completeness:  establishes preference ordering for any comparison of a pair of 

lotteries. That is a decision maker either prefers one to the other or is indifferent 

between lotteries (Aumann, 1962).  

 
For any pair of A and B either A ≽ B or A ≼ B. 

 
Transitivity: implies that a decision maker maintains a consistent preference. If A is 

preferred to B and B to C; then A is equally preferred to C. 

 
Given A, B and C if A ≽ B and B ≽ C  then it is expected that A ≽ C. 

                                                           
18 Lottery in this context is the case in which the outcome is determined by chance 
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Continuity: Given lotteries A and B then C; and A is preferred to B, B preferred to C 

then there exists a probability p such that B is equally attractive as [A, C; p, (1-p)] 

thus the decision maker becomes indifferent. 

 
A ≽ B ≽ C then ∈ p such that B ∼ [A, C; p, (1-p)] 

 
Independence: also known as the sure-thing principle states that if each of two 

lotteries are mixed with a third in the same way, the preference ordering remains 

independent of the third. That is, given lotteries A and B an agent who prefers A to 

B also prefers the possibility of A to the possibility of B, wherein the other possibility 

in both cases is some C. 

A ≽ B then, for all C, [A, C; p, (1-p)] ≽ [B, C; p, (1-p)] 

Any “rational” decision maker ought not to violate these axioms in which case his 

complete, transitive and continuous preferences can be represented by a utility 

function   

, where A ≽ B if and only if U(A) ≽ U(B). 

According to the EUT, the shape of the utility function determines the risk attitude.  

For a concave (convex) utility function, the DM is reported to be risk averse 

(seeking) while a DM with linear utility function is categorised as risk neutral.  

In estimating the utility function, several parametric forms have been widely used 

in the literature as presented in Table 1 in Chapter 2. Popular among these are the 

Arrow (1965) and Pratt (1964) Relative Risk Aversion (RRA) and Absolute Risk 

Aversion (ARA). The ARA provide details regarding the manner in which risk 

aversion change with  different wealth level while RRA show the way risk aversion 

changes when risky prospect and wealth level are changed by equal proportion. 

Assuming a DM having a Bernoulli utility function denoted 𝑈(𝑌) that is twice 

differentiable, then ARA and RRA is given as equation 3.1.2 and 3.1.3 respectively 

𝐴(𝑌) =
−𝑈′′(𝑌)

𝑈′(𝑌)
                                                   (3.1.2) 
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𝑅(𝑌) =
−𝑌𝑈′′(𝑌)

𝑈′(𝑌)
= 𝑌𝐴(𝑌)                               (3.1.3) 

In constant relative risk aversion (CRRA) utility function the relative risk aversion 

is assumed to be the same irrespective of wealth level (𝑌). Here the coefficient of 

relative risk aversion (𝛾) is the parameter of interest. The greater the value of  𝛾, the 

stronger the risk aversion.  

For  𝛾 = 1, the utility function of CRRA is given by: 

𝑈(𝑌) = 𝑙𝑜𝑔 (𝑌)                                            (3.1.4)    

For  𝛾 > 0, the utility function of CRRA takes the   form:  

𝑈(𝑌) =
𝑌1−𝛾

1 − 𝛾
                                               (3.1.5)  

The key characteristics of the specified CRRA are (I)  in the event that 𝛾 < 1 the CRRA 

utility function is increasing in 𝑌1−𝛾 and  vice versa if  𝛾 > 1 (II) whenever 𝛾 → 1, the 

utility function coincides with 𝑙𝑛𝑌, (III) 𝑈′′′𝑌 > 0. The popularity of this function 

arises from the necessity of estimating only a single parameter. 

With regards to the constant absolute risk aversion (CARA) utility function, the 

absolute risk aversion is determined on the supposition that 𝜌 is a positive constant 

which does not depend of wealth. In this case, adjustments to a DM’s preference as 

risk aversion becomes greater can be estimated subject to a known value of absolute 

risk aversion.  

The utility function of CARA is specified as:  

𝑈(𝑌) = −𝑒−𝜌𝑌                                         (3.1.6) 

The coefficient of absolute risk aversion 𝜌 > 0  implies risk aversion,  𝜌 = 0  implies 

risk neutral and  𝜌 < 0  implies risk seeking. One of the main criticisms is that 

assumption of CARA does not reflect real behaviour as it does not take into 

consideration any wealth effects.  

Other functional forms include the quadratic form also known as the Increasing 

Absolute Risk Aversion (IARA). For 𝜌 > 0, the utility function of IARA takes the 

form: 
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𝑈(𝑌) = Y − 𝜌𝑌2                                  (3.1.7) 

In which case the parameter to be estimated is the coefficient of relative risk 

aversion (𝜌).  

One utility function that can accommodate in special cases other utility functions 

including the CARA and CRRA is the Hyperbolic Absolute Risk-Aversion (HARA). A 

utility function exhibits HARA in the case where  

𝑈(𝑌) =  
1 − 𝛾

𝛾
(
𝑎𝑌

1 − 𝛾
+ 𝑏)

𝛾

            (3.1.8) 

Where 𝛾 → −∞, 𝑏 > 0 or 𝛾 < 1, 𝑏 = 0 then HARA reduces to CARA and CRRA 

respectively. Unlike CARA and CRRA which permits variation in the magnitude of 

risk aversion, HARA permits positive or negative slope of the risk aversion 

measures in addition to variation in the magnitude of risk aversion. 
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Violations of the axioms of the EUT – Allais paradox (Common Ratio & 

Consequence) 

EUT continues to have support as a theory about how rational decision makers 

should act. However, it has less support in terms of a descriptive theory of how 

decision makers act. Empirical evidence have shown that a DM’s attitude is 

inconsistent with the EUT predictions. The axiom that has been criticised most is 

the independence axiom. The paradoxes of Allais (1953, 1979) provided evidence 

that an individual decision maker can be inconsistent with EU theory. According to 

the observations of Allais (1953) preferences are influenced by introducing an 

independent event into a set of prospects thereby nullifying the validity of the 

independent axiom. The Allais paradoxes have been categorised as common ratio 

and common consequence paradoxes (see Levi, 1986; Starmer & Sugden, 1989; 

Birnbaum, 1999; Cerreia-Vioglio, Dillenberger & Ortoleva, 2013 for details).  

Common Ratio Paradox 

The paradox is illustrated using the following Allais experiment. An individual is 

asked to make a choice between the following lotteries: 

Lottery 1: Would you prefer A or B? 

A: 100% chance of winning $3,000 B:  80% chance of winning $4,000  

                    20% chance of winning $0 

Lottery 2: Would you prefer C or D? 

C: 25% chance of winning $3,000  D: 20% chance of winning $4,000 

 75% chance of winning $0   80% chance of winning $0 

Presented with the first set of lottery, most individuals preferred option A to B. 

However, when presented with the second lottery majority prefer D to C. It is worth 

mentioning that lottery 1 is reduced by a proportion of 0.25 to obtain lottery 2 

however unlike the decision made in lottery 1(where the sure option is chosen); the 

more risky option (D) becomes the most attractive in Lottery 2. This behavior is 

irrational as for larger probabilities; more weight was attached to the larger of the 

two while for small probabilities more weight was attached to the smaller of the 

two.  
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Common Consequence Paradox 

Individuals were presented with lotteries 3 and 4 and were told to make their 

choices. 

Lottery 3: Would you prefer E or F? 

E:  100% chance of winning $.5 Million F:  10% chance of winning $1 Million 

                  89% chance of winning $.5 Million 

            1% Chance of winning $0 

Lottery 4: Would you prefer G or H? 

G: 11% chance of winning $.5 Million  H:  10% chance of winning $1 Million 

     89% chance of winning $0         90% chance of winning $0 

When presented with such scenario the rational decision maker who prefers E over 

F in lottery 3 should prefer lottery G over F in 4 implying E ≻F and G ≻ H. Also given 

that the expected value of E and F are approximately $.5 Million, $.55 Million and G 

and H are $.06 Million $.1Million respectively, judging from this criteria the 

expected utility maximizer preference should be E ≺ F and G ≺ H. However, most 

individuals chose E over F in lottery 3 implying ‘risk dislike’ since the “sure” win is 

chosen. In a contradictory choice pattern, most individuals preferred H to G, which 

implies ‘risk loving’ thus clearly violating the EU axiom. It becomes obvious that 

when making decisions on the outcome of a “sure” lottery an individual places high 

value on such lottery as against a case where the payoff have probabilities attached. 

The common consequence paradox therefore highlights the fact that in certain 

scenarios people would prefer choices that were earlier rejected. Such case 

questions the strength and validity of the VNM (1944) EU theory.  

Other characteristic of the expected utility function that raises concern among 

researchers is the linear handling of probabilities. In reality, DMs do not appear to 

weight probabilities linearly. It has been shown in several studies (e.g. Birnbaum, 

1999; Wakker, Erev & Weber, 1994; Tuthill & Frechette, 2002 and Neilson, 2001) 

that the expected utility theory cannot accommodate non-linear probability 

weighting. This limitation results in the EUT being unable to reflect accurately the 

behaviour of a decision maker.  
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3.1.1 Subjective Expected Utility Theory (SEU).  

One popular variant of the EUT is Subjective Expected Utility Theory (SEU). The SEU 

amalgamates the DM utility function and probability distribution. There is 

difference between the SEU and EUT regarding how probabilities are perceived. As 

discussed above under the EUT, probabilities are given objective evaluation while 

the SEU decision maker perceives probability subjectively in situations where there 

is difficulty defining objective probabilities. The SEU model suggest that DMs act in 

a manner that suggests they estimate the expected utility of each act then chooses 

the act assumed to have the highest utility. In other words, prospects and their 

associated probabilities are given subjective evaluation. Several popular axioms 

include Savage (1954), Anscombe & Aumann (1963), Machina & Schmeidler (1992) 

dominate the literature. Economist have often adapted and employed the 

conceptual and computational composition of the SEU in methodologically 

examining decision making under uncertainty.  

According to Savage (1954), given that ≽ represents preference relation on F that 

defines the set of all acts (𝑓: 𝑆 ↦ 𝐶) where S and C are set of states and consequences 

respectively. Then  ≽  satisfies necessary and sufficient conditions for the 

representation of the preference relation19 𝑖𝑓𝑓 a unique probability measure 𝑃 that 

is nonatomic, finitely additive on the set of states 𝑆 and a cardinally unique utility 

function 𝑢: 𝐶 → ℝ exist such that ≽ is 

𝑓 ↦ ∫𝑢(𝑓(𝑠))𝑑𝑃(𝑠)

𝑠

          (3.1.11)    

This implies that should a rational DM satisfy the axioms; the DM converts any 

uncertainty regarding the states to a subjective probability measure that represents 

the DM’s belief. In addition, consequences are ordered in a manner corresponding 

to a utility function that portrays the taste of the DM and acts appraised based on 

the expected utility criterion. Although the SEU and its axiomatizations are 

relatively less complicated and intuitive, however like the EUT it also has its 

shortcomings mostly concerning its descriptive ability. Notably the SEU fails to 

                                                           
19 These axioms include ordering, sure-thing, independence, comparative probability, non-
degeneracy, non-atomicity and dominance. For depth of discussion, see Savage (1954, 1972) and 
Fishburn (1981). 
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accommodate uncertainty aversion. An example of this limitation is captured in the 

popular Ellsberg (1961) paradox. 

Violation of Subjective Expected Utility (SEU) – Ellsberg Paradox 

The paradoxes of Ellsberg brought to light the fact that DMs prefer events with ‘sure’ 

payoffs over those with ‘uncertainties’ in what Ellsberg (1961) referred to as 

ambiguity aversion (i.e. a case where the DM acts like there is no clear-cut objective 

or subjective belief distribution). An example of Ellsberg (1961) experiment is 

presented. There are 90 coloured balls in an urn and it is known for sure that the 

number of red balls is 30. The remaining 60 balls are green and yellow in unknown 

proportion. 

Individuals were required to make a choice between lotteries A and B  

A: Win $100 if you pick a red ball 

B: Win $100 if you pick a green ball 

Individuals were required to make a choice between lotteries C and D  

C: Win $100 if you pick a ball that is not green ball 

D: Win $100 if you pick a ball that is not red ball 

Most participants choose lottery A over B and D over C which contradicts Savage 

(1954) sure-thing principle20 which stipulates, an agent who prefers A to B should 

also prefers C to D. In lotteries A, given that the DM has information on the 

proportion of red balls, the DM can then attach probability 1 3⁄  to picking a red ball 

however in terms of the probability of picking a green ball in lottery B, the much the 

DM  knows is that the probability does not exceed 2 3⁄ .  Also for lotteries D, the DM 

is sure of the probability 2 3⁄  of not picking a red ball but the probability of not 

picking a green ball in lottery C is not known. These situations according to Ellsberg 

prompt DMs to choose the options with known probabilities over those with 

uncertainties regarding their probabilities. 

                                                           
20 Savage stated that if a DM has to choose between two acts A and B, the DM’s preferences is 
determined by the values of the difference in value of acts A, B. 
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In the light of the above, other decision theories which overcome the limitations of 

the EU and SEU theories and are poised to accommodate decision-making behaviour 

uncertainty are reviewed to assess their suitability for this study.                                                     
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3.2 Rank Dependent Utility model 

The Rank dependent Utility (RDU) theory was first introduced in the works of 

Quiggin (1981, 1982) to accommodate the defects of the EUT with respect to 

decisions making under risk (Wakker, Erev & Weber, 1994). Rank dependent utility 

is built on the foundation that the value of an outcome depends both on probability 

of the outcome and how favourable it appears when ranked with the other possible 

outcomes (Wakker, Erev & Weber, 1994; Tuthill & Frechette, 2002). According to 

Quiggin, a DM compares random outcomes based on the DMs’ expected utility under 

probability warping.  

For illustration purposes assume that a DM is faced with 𝑛-lotteries. Assuming the 

lottery 𝐿 = (𝑥1;  𝑝1;  𝑥2;  𝑝2;  … 𝑥𝑛;  𝑝𝑛) generate the consequences 𝑥𝑖 with probability 

 𝑝𝑖, 𝑖 = 1,2…;𝑛  where the consequences are ranked  𝑥1 ≥ 𝑥2  ≥ ⋯ ≥  𝑥𝑛 . The RDEU 

of lottery L is denoted as:  

𝑅𝐷𝑈(𝐿)  =∑ 𝜋𝑖𝑢(𝑥𝑖)  

𝑛

𝑖=1

                                                       (3.2.1)                

 𝜋𝑖 = 𝑤(𝑝1 + ⋯+ 𝑝𝑖) −  𝑤(𝑝1 + ⋯+ 𝑝𝑖−1)       (3.2.2)     

𝜋𝑖  denotes decision weights and  𝑤 is a uniquely determined weighting function.  

One distinctive characteristic of the RDU is the non-linear probability weighting 

function 𝑤: [0,1]  →  [0,1]  that strictly increases and fulfils the condition 𝑤(0) =

0 and 𝑤(1) = 1  (Jindapon & Shaw, 2008; Wakker, 2010). As shown in Diecidue & 

Wakker, (2001) it is the shape of the uniquely determined weighting function that 

brings about optimism and pessimism21 when a DM evaluates a prospect 

subjectively. 

The RDU have proven valuable in explaining the Allais paradox; a well-known 

violations of EU theory (Segal 1987, Quiggin, 1991). Referring to the lotteries earlier 

presented in common consequence paradox under the EUT; in the first set of 

options (A and B) although there is a 10% chance of getting a higher outcome ($1m 

as compared to a sure $0.5m) most decision makers place more value on  the sure 

payoff rather than gambling to win more (or nothing). However, in the second set 

                                                           
21 See Section 3.4 for a discussion of these terms 



65 
 

of options (C and D), the individual places more importance on the likely increase 

in size of payoff (from $0.5m to $1m). Since there is no sure-win the DM is prepared 

to sacrifice a small percentage for the chance to win more. It becomes evident that 

a percent increase in the probability of getting $0 in both lotteries is weighed more 

heavily in the choice between A and B than in the choice between C and D. Thus for 

large probabilities, more weight is attached to the larger of both while for small 

probabilities, more weight is attached to the smaller. Kahneman and Tversky (1979) 

found that judging by the decision weights used by individuals, low probabilities are 

over-weighted and high probabilities under-weighted. 

Given the response obtained in Lottery 1 as discussed in the common ratio paradox 

presented in section 3.1, 

           A ≻ B ⇒  𝑢(3000) > 𝜋(0.8)𝑢(4000)                          (3.2.3) 

           C ≺ D ⇒  𝜋(0.25)𝑢(3000) < 𝜋(0.2)𝑢(4000)           (3.2.4)   

The violation of VNM expected utility is clearly present as there do not exist any 

utility function in which both A ≻ B and C ≺ D can hold simultaneously. Assuming 

the functional form by Tversky & Kahneman (1992) in equation 3.4.7 is adopted i.e. 

𝜋(𝑝) =  
𝑝𝛾

(𝑝𝛾+(1−𝑝)𝛾)1/𝛾
  where 𝛾 = 0.61, the corresponding values are 𝜋(0.8)  = 0.61,  

𝜋(0.25) = 0.29 and 𝜋(0.2) = 0.26. The respective RDU’s for Lotteries A, B, C and D 

can then reconcile the Allais paradox. 

RDUA = 𝑢(3000) = 3000 

RDUB = 𝑢(0) +  𝜋(0.8)(𝑢(4000) − 𝑢(0)) =2440 

RDUC = 𝑢(0) +  𝜋(0.25)(𝑢(3000) − 𝑢(0)) =870 

RDUD = 𝑢(0) +  𝜋(0.2)(𝑢(4000) − 𝑢(0)) =1040             (3.2.5)   

This then justify having both A ≻ B and C ≺ D holding simultaneously. For 

cumulative weighting function (𝜋), 

                𝜋 (1) – 𝜋 (.8) ≥ 𝜋 (.25) – 𝜋 (.20)                                          (3.2.6)   

Equation (3.2.6) holds under diminishing sensitivity i.e. when the change in 

probability around 0 or 1 has more impact than similar change in the middle area. 

Schmeidler (1989) has further extended the RDEU to explain decision under 

uncertainty.  
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Notably, the RDU preserves first order stochastic dominance because in appropriate 

conditions, a rightward shift in the probability distribution mass from one outcome 

to a strictly higher outcome will leads to a corresponding homogenous shift in the 

transformed probability distribution (Quiggin 1991; Prigent, 2008). This is made 

possible since it is the cumulative distribution function that is transformed thus 

assuring stochastic dominance (Quiggin 1982; Allais 1987; Eide, Von Simson & 

Strøm 2011, Neilson, 2001). The RDU is closely related to the CEU wherein the RDU 

is referred to as a special case of the CEU albeit for risk. However, the main 

limitations of the RDU are its inability to accommodate the Ellsberg paradox 

(detailed in section 3.1) as well as handle mixed domain lotteries among others 

hence its unsuitability for this study. 
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3.3 Mean-Standard deviation Theory 

Markowitz (1952) paper popularised the mean-variance utility model. The crux of 

the mean-standard variance (MSD) model is in the measurement of risk by its 

standard deviation (SD) i.e. the presumption that weighted sum of a lottery’s EV and 

SD determines the utility a DM obtains from that lottery. Markowitz (1952) 

argument is that; in selecting a portfolio an investor aims at maximizing expected 

return while minimizing the variance. In other words, it is based on the presumption 

that when a rational DM is presented with risky (or uncertain) choices, he/she 

selects the payoff with the highest mean (expected value) while simultaneously 

minimizing variance. It is on this premise that the (static) mean Standard deviation 

model is built. The model specifies that 

𝑢(𝑥) =  Ω +  𝜇(𝑥) −  𝑏𝜎(𝑥)                              (3.3.1) 
Where 

𝑢(𝑥)  = Utility of a prospect 𝑥 

𝜇(𝑥)  = Expected value of 𝑥 

𝜎  = Standard deviation  

𝑏   = Risk tolerance parameter (b>0, risk averse and b<0,risk loving) 

             Ω            = Constant 
 

According to the tenets of mean-variance criterion, when faced with a scenario that 

involves risk and the DM has to choose between say X and Y the DM should prefer X 

whenever the expected value of 𝑥 is greater and variance is smaller than Y. Similarly, 

the DM should prefer X if the expected value of 𝑥 is greater even when both have 

equal variance. In the case where the variance of 𝑥 is smaller and both have equal 

expected value, the DM should also choose X. The manner in which risk aversion is 

estimated in the MSD theory is distinct from that of the EUT. As shown in the 

equation 3.3.1, risk aversion is the consequence of the penalty foisted on risk. The 

utility depends on a trade-off between expected value and variance thus the higher 

the risk parameter 𝑏, the greater the risk aversion. The EUT is equivalent to the MSD 

for an exponential utility function and approximate for quadratic utility function. 

The mean variance model22 has been applied to numerous studies including travel 

time (Börjesson, Eliasson & Franklin, 2012), portfolio selection (Stone, 1973; Kroll, 

                                                           
22 This model gained popularity in agricultural economics linear programming literature in the 70’s 
and 80’s. 
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Levy & Rapoport, 1988), movement tasks (Nagengast, Braun & Wolpert, 2011), risk 

attitude (Mengel, Tsakas & Vostroknutov, 2011). A few studies have attempted to 

compare the MSD theory with other leading theories. For instance, Nagengast, 

Braun & Wolpert (2011) test for sensitivity to the variance instead of only the 

average level of movement and compared the MV model with the CPT and report 

that their findings favour the MV model. Similarly, Best & Grauer, (2011) paper 

which focused on examining the behaviour of individuals with extreme risk 

attitudes under different situations using prospect-theory, power-utility and MV 

portfolios find that the performance of the MV is superior to prospect-theory. 

However, De Giorgi & Hens (2009) making similar comparison have reported 

contrary findings.  

Mengel et al., (2016) applied the MV model to estimate risk attitude over monetary 

and non-monetary outcomes across risk, ambiguity and unawareness however 

their design was restricted to a fixed versus varying sure outcomes. This thesis 

however applied the MV model to estimate risk and uncertainty attitudes from a set 

of non-degenerate prospects. 

The main merits of the MV theory are the absence of complication that would 

otherwise arise from having to estimate several parameters. Also it has the 

advantage of corresponding to EU maximization under certain conditions. Despite 

these advantages, there have been many criticisms of the MV model. For instance, 

its inability to satisfy first order stochastic dominance and accommodate cases of 

infinite mean/variance. In addition, the MV cannot adequately handle a situation 

where prospects have equal mean and variance leading to the conclusion of 

indifference when in actual sense such prospects may not be equally appealing to 

the DM.  
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3.4 The Prospect and Cumulative Prospect Models 

The prospect theory (PT) proposed by Kahneman & Tversky (1979) caters for the 

descriptive limitations (including the widely documented Allais paradox) of the 

VNM expected utility theory. The PT assigns value to gains and losses as opposed to 

final wealth; and substitutes decision weights for probabilities. In other words, a 

DM’s action pivots on the possible value of losses and gains (instead of the final 

outcome) which is reference point dependent. According to the proposition of the 

PT, two steps are involved in the decision making process. A DM first edits and codes 

the prospect; then proceeds to evaluate it before reaching any decision. 

Assuming ℘ = (𝑝1𝑥1, 𝑝2𝑥2; 1 − 𝑝1 − 𝑝2 − z) represents a prospect which has 

𝑝1 probability at 𝑥1, 𝑝2 probability at 𝑥2  and 1 − 𝑝1 − 𝑝2 at z in which case x1 >

x1 > z ≥ 0. Here prospects are appraised by 

𝑉(𝑝1, 𝑥1; … ; 𝑝𝑖, 𝑥𝑖; … ; 𝑝𝑚, 𝑥𝑚) =  ∑  

𝑚

𝑖=1

𝜋(𝑝𝑖)𝑣(𝑥𝑖)                        (3.4.1) 

Where 𝑣  which represents the function that assigns value to payoffs and 𝜋 

represents decision weights. The original prospect theory recorded its own 

setbacks both in terms of the way it handled non-additive probabilities and 

subjective editing operations which results in its violation of first order stochastic 

dominance23. In addition, the specification of the probability weighting function is 

weak and it poses a challenge when applied to larger results. 

The Cumulative Prospect theory thereafter put forward by Tversky & Kahneman 

(1992) combines the concepts of the rank dependant utility theory and the original 

prospect theory24. The foundation of the CPT primarily relies on the prospect theory 

paper of Kahneman & Tversky (1979) which was built on two major elements – 

wherein the cumulative functional are applied separately to gains and losses; and 

the transformation of probabilities. Kahneman & Tversky (1992) then incorporated 

                                                           
23 Assuming lottery A for any payoff Y result in a higher probability of a DM getting a payoff equal to 
or greater than Y under lottery B, then lottery A is regarded as having (first-order) stochastic 
dominance over B. Details of first and second order stochastic dominance in Appendix 7. 
24 Similar to the prospect theory, the value function however displays reference dependence, 
diminishing sensitivity and loss aversion (Bui, 2009). However, unlike the PT; the CPT preserves 
first order stochastic dominance by using cumulative probabilities. 
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the Rank Dependant Utility theory (RDU) where the objective probability is 

transformed and the decision weights are determined by the cumulative 

probabilities. The tenets of the CPT are that DMs judge ‘riskiness’ of a prospect in 

relation to a reference point, do not have the same risk attitude for gains and losses 

and tend to distort cumulative distributions. 

Assuming a prospect with probabilities 𝑝1…𝑝𝑛 with outcomes  𝑥1 ≤ ⋯𝑥𝑚 ≤ 0 ≤

 𝑥𝑚+1 ≤ 𝑥𝑛. The overall valuation of a prospect ℘ is presented as:  

𝑉(℘)  =  ∑ 𝑣(𝑥𝑖)𝜋𝑖
+  +  

𝑚

𝑖=𝑛+1

∑ 𝑣(𝑥𝑖)𝜋𝑖
− 

𝑛

𝑗=1

            (3.4.2) 

For which 𝑣 is the value function for payoffs and 𝜋+ and 𝜋− represents decision 

weights for gains and losses respectively. The value function in Kahneman & 

Tversky (1992) takes the form of a power function in which responsiveness to gains 

and losses are distinguished by means of the coefficient25 (λ). Wherein λ > 1 

suggest that the weight attached to loss exceeds that attached to gain. For the gain 

and loss domains, the value function specified as in power form is given as: 

             𝑣(𝑥) = {
𝑥𝛼  

– λ(−𝑥)𝛽         𝑓𝑜𝑟 𝑥<0

       𝑓𝑜𝑟 𝑥≥0

                       (3.4.3)  

Where the curvature of the value function for gains and that of losses are obtained 

form the parameters α and β respectively. In conformity with diminishing 

sensitivity, 0 < 𝛼, 𝛽 < 1 implies concave shape in the gain domain and convex 

shape in the loss domain. Other value function forms include the exponential form 

for example in Köbberling & Wakker (2005) and Rieger & Bui (2010) given by: 

         𝑣(𝑥) = {
1 − 𝑒−𝛼𝑥 
– λ + λe𝛽𝑥         𝑓𝑜𝑟 𝑥<0

       𝑓𝑜𝑟 𝑥≥0

                         (3.4.4)  

Or the quadratic value function adopted in Giorgi et al., (2004) and Zakamouline & 

Koekebakker (2009). The quadratic value function is given by: 

                                                           
25 In the decision-making literature, lambda (λ) is often known called the coefficient of loss 
aversion. 
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                   𝑣(𝑥) = {
λ (𝑥 +

𝛽

2
𝑥2) ,

𝑥 −
𝛼

2
𝑥2,   

      𝑓𝑜𝑟 𝑥≥0

       𝑓𝑜𝑟 𝑥<0

                             (3.4.5)  

The probability weighting function (PWF) of Quiggin (1982) and Kahneman & 

Tversky (1992) ‘combines’ probability weighting with EU such that for a prospect 

(𝑥−𝑛 <  0 < 𝑥𝑚) with corresponding probabilities (𝑝−𝑛, 𝑝𝑚), the decision weights 

which are sign-dependent are expressed as  

𝜋𝑚
+ = 𝑤+(𝑝𝑚) 

𝜋𝑖
+ = 𝑤+(𝑝𝑖  +  …+ 𝑝𝑚) − 𝑤

+(𝑝𝑖+1  +  …+ 𝑝𝑚)   𝑛  < 𝑖 < 𝑚 

𝜋1
− = 𝑤−(𝑝1)  

𝜋𝑗
− = 𝑤−(𝑝1  +  …+ 𝑝𝑗) − 𝑤

−(𝑝1 + …+ 𝑝𝑗−1 )   1 < 𝑗 ≤ 𝑛            (3.4.6)  

While 𝑤(. ) is the probability transformation function with characteristic of 

𝑤: [0,1]  →  [0,1]  that strictly increases and fulfils the condition 𝑤+(0) =  𝑤− (0) =

0 and 𝑤+(1) =  𝑤− (1) = 1. Each segment of the gain and loss equations are forms of 

the RDU. This implies that the CPT consist of the summation of RDU of  𝑝+ with 

respect to 𝒲+  and RDU of  𝑝− with respect to the dual of  𝒲 –. The curve of the  𝒲+ 

and 𝒲− function fitted in Tversky & Kahneman (1992) takes the form of  

       𝒲+(𝑝) =  
𝑝𝛾

(𝑝𝛾 + (1 − 𝑝)𝛾)1/𝛾
     𝑖𝑓 𝑥 ≥ 0                                         

      𝒲−(𝑝) =  
𝑝𝛿

(𝑝𝛿 + (1 − 𝑝)𝛿)1/𝛿
𝑖    𝑖𝑓 𝑥 < 0                         (3.4.7)  

Where domain sensitivity to differences in probability is represented by the 

parameters 𝛾 for the gain and 𝛿 for the loss domain.  
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Goldstein & Einhorn (1987) suggested a linear-in-log-odds function wherein the 

parameters that captures separately the curvature (γ+, γ−) and elevation (δ+,  δ−) 

of the PWF are obtained 

𝒲+(𝑝) =  
𝛿+𝑝𝛾

+

𝛿+𝑝𝛾
+
+ (1 − 𝑝)𝛾

+                                               

𝒲−(𝑝) =  
𝛿−𝑝𝛾

−

𝛿−𝑝𝛾
−
+ (1 − 𝑝)𝛾

−                                 (3.4.8)  

Smaller values on 𝛾+and 𝛾− translates to reduced sensitivity to changes in 

probabilities. On the other hand, the parameters 𝛿+ and 𝛿− (both > 0) which 

determine the attractiveness of the prospect suggest that larger (resp. smaller) 

values of 𝛿+ (𝛿−) suggests greater elevation of the PWF for gains (losses). This 

corresponds to the behaviour reported in the literature as optimism for gains and 

losses. Another widely applied two-parameter weighting functions in which the 

probability weighting curvature is distinct from the elevation is Prelec (1998) 

probability weighting functions (Prelec I and II hereafter).  

Prelec II is represented by:  

𝒲+(𝑝) = 𝑒𝑥𝑝 (−𝛿+(− 𝑙𝑛(𝑝𝑖))
𝛾+)       𝑖𝑓 𝑥 ≥ 0                                  

𝒲−(𝑝) =  𝑒𝑥𝑝 (−𝛿−(− 𝑙𝑛(𝑝𝑖))
𝛾−)       𝑖𝑓 𝑥 < 0             (3.4.9)  

 

However, Prelec I PWF takes the form of:  

𝒲+(𝑝) = 𝑒𝑥𝑝 (−(− 𝑙𝑛(𝑝𝑖))
𝛾+)        𝑖𝑓 𝑥 ≥ 0                                  

   𝒲−(𝑝) =  𝑒𝑥𝑝 (−(− 𝑙𝑛(𝑝𝑖))
𝛾−)        𝑖𝑓 𝑥 < 0              (3.4.10)  

 

While the power PWF: 

             𝒲+(𝑝) = 𝑝𝑖
𝛾+         𝑖𝑓 𝑥 ≥ 0                                                       

                        𝒲−(𝑝) = 𝑝𝑖
𝛾−          𝑖𝑓 𝑥 < 0                                       (3.4.11)           

 

In order to model noise in data, an estimation of outcome sensitivity in the 

commonly specified in the literature takes the exponential (Luce, 1959) choice form 

given by: 
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     𝑃(𝑉(𝐴), 𝑉(𝐵)) =
1

1 + 𝑒− 𝜑(𝑉(𝐴)−𝑉(𝐵))
                                (3.4.12)   

where the 𝑃(𝑉(𝐴), 𝑉(𝐵)) specifies the probability that Prospect A will be chosen 

over B. The parameter φ (response/choice sensitivity parameter) measure 

arbitrariness in the DM choice while 𝑉(𝐴) and 𝑉(𝐵) represents the subjective 

values of the prospects. The closer 𝜑 is to zero, the greater the randomness of 

choices. (For details of different value, weighting and choice functional forms; see 

Stott (2006) and Balcombe & Fraser (2016)). In summary, the CPT’s combination of 

reference dependence, diminishing sensitivity, perception of loss with respect to 

gain and non-linear probability weighting distinguishes its predictions with that of 

the EUT. 

Table 8 summarizes the value and probability weighting functional forms and the 

results obtained from selected literature in which CPT parameters were estimated. 

These studies estimates various value functions (ranging from power to 

exponential) and probability weighting functions (including Prelec I & II, Tversky & 

Kahneman, Goldstein & Einhorn) under different parametric forms. As shown in 

Table 8, Tanaka et al., (2010) and Toubia et al., (2013) estimated a single parameter 

PWF, Abdellaoui et al., (2005), Booij et al., (2010) and Bruhin et al., (2010) estimates 

at least two parameters probability weighting functions. Regarding the shape of the 

value and PWF, several domain specific CPT studies have reported concave shape 

in the gain domain and convex shape in the loss domain i.e. 0 < 𝛼, 𝛽 < 1 and 

inverse-s shape PWF 𝛾 < 1. However, studies including Wilcox (2015), Balcombe & 

Fraser (2015) have reported S-shaped or approaching purely concave or convex 

PWFs. For detailed estimates of studies that employed different parametric 

functional in CPT refer to Stott (2006) for Classical and Balcombe & Fraser (2015) 

for Bayesian approaches. 
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Table 8  
Estimates of utility and probability weighting functions from selected literature 

Author(s)                                          Findings 

α β λ 𝛄+ 𝛄− 𝛅+ 𝛅− 

 Value function 

Power 

Probability weighting function 

Tversky & Kahneman (1992) 

Tversky & Kahneman (1992) 0.88  0.88 2.25 0.61 0.69   

Wu & Gonzalez (1996) 0.50   0.71    

Harrison & Rutström (2009) 0.71  0.72 1.38 0.91 0.91   

Stott (2006) 0.19   0.96    

    Goldstein & Einhorn (1987) 

Abdellaoui et al. (2005) 0.91 0.96  0.83 0.84 0.98 1.35 

Stott (2006) 0.19   1.4  0.96  

    Prelec I (1998) 

Tu (2005) 0.68 0.74 3.2 1.00 0.77   

Donkers et al. (2001) 0.61 †  0.41 0.41   

  Prelec II(1998)   

Stott (2006) 0.19   1.00  1.00  

Bleichrodt &  Pinto (2000) 0.77   0.53  1.08  

Bruhin et al. (2010) 0.94 1.14  0.38 0.40 0.93 0.99 

Zeisberger et al. (2012) 1.00 0.91 1.42 0.86 0.82   

Toubia et al. (2013) 0.46 † 1.78 0.53    

 Exponential Karmarkar (1979)  

Abdellaoui et al. (2005) 0.09 0.05  0.74    

Booij et al. (2010) 0.68 0.83 1.58 0.62 0.59 0.77 1.02  

Lobel et al.  (2017) 0.28 0.09 1.17 0.91    

† indicates β = α  

 

Notably, while there are observable differences in the estimates in Table 8, the 

parameters for the gain and loss domains in each of the studies are very similar as 

regards the shapes of the value and probability weighting function. 

Figures A and B below replicates plots of the value functions of Tversky & 

Kahneman (1992) and Harrison & Rutström (2009) respectively. The value function 

defined by the deviations from the reference point for the former is steeper than the 

latter due to the different values of α, β and λ.  
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Figures A and B: Value functions for different values of α, β and λ defined by 

deviations from the reference point  

       Figure A 

 

       Figure B 
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3.4.1 CPT for Continuous Distributions 

Using CEU under additivity of the discrete subjective probability measures there is 

a direct correspondence with discrete CPT, and thus under additive continuous 

densities CEU can be thought of as a generalisation of CPT to continuous densities. 

This generalisation is discussed in the Section 3.4.2. The CPT as postulated in 

Tversky & Kahneman (1992) can also handle continuous distribution. For 

continuous prospects the CPT evaluation takes the form  

𝑉(𝑥𝑐) = ∫ Γ−[𝐹(𝑥)].  𝑓(𝑥)𝑣−(𝑥)𝑑𝑥  
0

−∞

+∫ Γ+[1 − 𝐹(𝑥)].  𝑓(𝑥)𝑣+(𝑥)𝑑𝑥 
∞

0

 

                                                                                                                       (3.4.13) 

Where 𝐹 and 𝑓 represents CDF and PDF respectively, 𝑣(. ) denotes the function that 

assigns value to outcomes and Γ = 
𝑑𝑤(𝑝) 

𝑑𝑝
.   

Recall the PWF function fitted in Tversky & Kahneman (1992) presented in equation 

3.4.7 substituted into equation 3.4.13 yields the following: 

𝑑𝑤(𝑝) 

𝑑𝑝
= 𝛾𝑝𝛾−1[𝑝𝛾 + (1 − 𝑝)𝛾]

1
𝛾 − 𝑝𝛾[𝑝𝛾−1 − (1 − 𝑝)𝛾−1] [𝑝𝛾 + (1 − 𝑝)𝛾]

−
(𝛾+1)
𝛾   

                                                                                                                                  (3.4.15) 

There are a number of studies in the literature that have extended CPT to 

continuous outcome26 distributions; however it is limited. De Giorgi et al. (2004) 

tested for consistency of the continuous CPT with the Capital Asset Pricing Model, 

Davies & Satchell (2004) extends binary to continuous prospects with the aim of 

modelling individual asset allocation, while behavioural portfolio selection under 

CPT was the centre of attention in the studies of He & Zhou (2011), Pirvu & Schulze 

(2012) and Jin & Zhou (2008). Also, Davies & Satchell, (2007) examined the level to 

which a DM’s actions contradict the beliefs about his/her risk attitude while Nardon 

& Pianca, (2014) focused on examining European financial options in the bounds of 

continuous CPT. Most of these aforementioned works have drawn conclusion that 

the continuous CPT model generalizes the discrete specification.  

                                                           
26 See Davies & Satchell (2004) and Connors & Sumalee, (2009) for detailed mathematical 
derivations. 
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Form a different approach, Kothiyal, Spinu & Wakker (2011) provides a preference 

foundation to define the CPT for continuous distributions; Rieger & Wang (2008) 

appraise the analytical composition of the CPT particularly on conditions 

encompassing continuous outcome distributions. As a build-up on earlier works, 

Rieger & Wang (2008) formulated a non-discrete variant of the CPT while retaining 

its positive properties. Barberis & Huang (2008) examined asset pricing under CPT 

with particular interest on the probability weighting component while Connors & 

Sumalee, (2009) and Tian, Huang & Wang (2012) in separate studies within the 

framework of the CPT examined individual route choice behaviour and risk 

perception on arrival time respectively in a network whose route travel times is a 

continuous distribution.  

Notably, none of these studies have focused on extending CPT to pairwise 

continuous outcome primarily with the aim of examining risk and uncertainty 

attitude using pure monetary ‘gambles’ across different content domains and 

targeted at farmers. Closest to this study in some perspective is the paper of Kontek 

(2009) where the author examined risk behaviour using both discrete and outcome 

having continuous distributions within gains, loss and mixed domains. The author 

compares relative utility theory and prospect theory and argues in favour of the 

former as having descriptive superiority over the CPT. 
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3.4.2 Choquet Expected Utility (CEU)  

Most of the theories in the literature have been targeted at decision making under 

risk with very few showing potential to accommodate uncertainty. One theory that 

has been credited for its efficient handling of uncertainty is that of Schmeidler 

(1982, 1989) and Gilboa (1987) which spearheads Choquet expected utility based 

studies. According to the CEU theory, a DM behaves as though the utility function is 

cardinal, holds subjective non-additive beliefs; and estimate the expected utility of 

each act from which the DM chooses the act assumed to have the greatest expected 

utility. Thus, the CEU is a special generalization of the EUT that permits the 

integration of VNM function with regards to non-additive probability measures 

(Zimper, 2009). The CEU has sufficient and extensive properties to accommodate 

several preference models including the Subjective Expected Utility and the Maxmin 

and Maxmax Expected Utility.   

The CEU model adequately deals with conditions in which objective probabilities 

are unknown and the DM a-priori is unable to extract subjective probabilities over 

the state space (Warshawsky-Livne et al., 2012). The Choquet based models has 

been proven to be flexible and resolve known paradoxes while permitting for 

distinct discernment of uncertainty from outcome valuation. Chateauneuf, (1994) 

provided a simple framework which integrates the various axiomizations of CEU 

independently put forward by Quiggin (1982), Yaari (1987) and Schmeidler (1986, 

1989). Unlike EUT which estimates risk via the curvature of the utility function, the 

Choquet expectation of the utility function is taken with respect to a capacity27 (in 

lieu of probability) which is non-additive (Eichberger, Grant & Kelsey, 2010). The 

work of Chateauneuf, Dana & Tallon (2000) shows the capability of the CEU in 

handling the DM’s preferences in situation of prevalent “ambiguity.” 

Given a DMs’ capacity measure is a function 𝑣 ∶ 2𝑠 → [0,1] that conforms 

with 𝑣(∅) = 0, 𝑣(𝑆) = 1 and 𝑋 ⊆ 𝑌 ⟹ 𝑣(𝑋) ≤ 𝑣(𝑌)for all 𝑋, 𝑌 ∈ 2𝑠 . Where S 

represents the finite states of nature, 2𝑠 designates σ-algebra on S respectively; and 

𝑠 ∈ 𝑆 the 'state' that s will occur. Then according to the CEU the DM ranks acts 𝑓 ∶

                                                           
27 A function [𝑣] that allots more weight to event Y than event X when 𝑋 ⊆ 𝑌 is known as a 
capacity. 
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𝑆 → ℝ under the assumption of a continuous strictly increasing and cardinal utility 

function  𝑈:ℝ+ → ℝ. Thus the Choquet expectation of 𝑓 with respect to a neo-

additive capacity 𝑣 is defined by: 

∫𝑓𝑑𝑣 = ∫ [𝑣({𝑠 ∈ 𝑆 |𝑈(𝑓(𝑠)) ≥ 𝑧}) − 1]𝑑𝑧 + ∫ 𝑣({𝑠 ∈ 𝑆|𝑈(𝑓(𝑠)) ≥ 𝑧})𝑑𝑧     (3.4.16)
∞

0

0

−∞

 

 
In estimating the CEU of an act, the DM typically ranks the different states 𝑠𝑖 

according to their attractiveness that could differ from one prospect to another. The 

preference of one act over another say given two acts 𝑎 and 𝑏 follows that 

 𝑎 is chosen over 𝑏 (𝑎 ≿ 𝑏 ⇔  𝐶𝐸𝑈(𝑎, 𝑣) ≥ 𝐶𝐸𝑈(𝑏, 𝑣)) when the CEU of the former 

is larger compared to the latter.  

The distortions of probabilities in the Choquet expected utility normally results in 

“pessimism” or “optimism” in which case the distortion function 𝑣 of the former 

takes a convex shape while for the latter it is concave (Bassett, Koenker & Kordas, 

2004). A convex capacity within the context of the CEU is represented by:  

𝑣(𝑋) + 𝑣(𝑌) ≤ 𝑣(𝑋 ∩ 𝑌) +  𝑣(𝑋 ∪ 𝑌)      𝑖𝑓 𝑓𝑜𝑟 𝑎𝑙𝑙  X;  Y ∈ 2s,     (3.4.17)    

While a concave capacity is given by:  

𝑣(𝑋) + 𝑣(𝑌) ≥ 𝑣(𝑋 ∩ 𝑌) +  𝑣(𝑋 ∪ 𝑌)      𝑖𝑓 𝑓𝑜𝑟 𝑎𝑙𝑙  X;  Y ∈ 2s,    (3.4.18)  

This implies that an optimistic DM overweight good outcome while a pessimistic 

DM overweight bad outcomes.  

Although the differences between the CPT and CEU are notable in the separate 

treatment of gains and losses in CPT and the way capacities are used to calculate 

decision weights; however the CEU share several similarities with the CPT. The 

capacities attached to events in the CEU are analogous to the probabilities (with 

weights attached) in CPT. Crucially, the CPT reduces to a special case of the CEU28 

𝑖𝑓𝑓 the capacities are additive and preserve first order stochastic dominance. To 

show that both theories coincide, recall that estimating prospects 𝑥1, 𝑋, 𝑥2 within 

the context of the CEU where  𝑥1 ≥ 𝑥2, the value of the prospect is 

                                                           
28 For in-depth discussion, see the papers of Sarin & Wakker (1992, 1994) and Ghirardato & 
Marinacci (2001). Details on how the CEU under probability warping is computed can be found in 
Appendix 8. 
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𝜋1. 𝑢(𝑥1) + 𝜋2. 𝑢(𝑥2)                             (3.4.19) 

Such that the decision weights 𝜋1 and 𝜋2 represented by 

𝜋1 = 𝑣(𝑋) and 𝜋2 = 1 − 𝑣(𝑋)              (3.4.20) 

are based on how the outcomes are ranked under the assumption of a continuous 

strictly increasing and cardinal utility function  𝑢:ℝ+ → ℝ.  Recall in the case of CPT, 

the utility function meets condition 𝑢(0) = 0 and the decision weights are obtained 

via separate weighting function for gains 𝑣+(. ) and losses 𝑣−(. ). In scenario where 

the prospect is strictly in the gain domain, 𝑣+(. ) takes the place of 𝑣(. ) in 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.4.20) while  𝑣−(. ) takes the place of 𝑣(. ) when the prospect is strictly 

in the loss domain. However in the case where prospects is in mixed domain the 

𝜋1 = 𝑣
+(𝑋) and 𝜋2 = 1 − 𝑣

−(𝑆 − 𝑋). Therefore, if for all events X, the utility 

function satisfies 𝑢(0) = 0 under the condition of duality 𝑣−(𝑋) = 1 − 𝑣+(𝑆 − 𝑋) 

then CPT reduces to CEU. 

The advantages of the CEU that makes it suitable to be adopted for this research 

includes its significance in handling uncertainty, the thoroughness of its axiomatic 

foundation, the simple but flexible representations that permits separate 

discernment of uncertainty/risk from outcomes valuation and most importantly its 

capability of handling continuous distributions.   
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3.5 Heuristics and Associated Biases under Uncertainty 

Heuristics gained its popularity in psychology possibly from Newell and Simon 

(1972) application of the word to portray uncomplicated processes that substitute 

complex algorithms. Heuristics are mental shortcuts often applied to speed up 

decision-making process. Although these mental processes may be expedient in 

decision-making where information is imperfect and time is a constraint. Heuristics 

lower the cognitive burden that abound in decision-making (Shah & Oppenheimer, 

2008). It is argued that without applying heuristics in decision-making, simple day-

to-day task will result in mental exhaustion if every decision was subjected to deep 

thinking and evaluations. However, systematic bias and judgement errors have 

been associated with DMs applying heuristics in decision-making. Several types of 

heuristics have been described. A selection of the most documented heuristics are 

discussed as follows.  

3.5.1 Representativeness heuristic 

According to Tversky & Kahneman (1974), the representativeness heuristic is a case 

where the DM’s judgement of probability is based on stereotypes or similarities. A 

typical instance is the propensity to use the semblance of a sample as a prediction 

of the likelihood of an occurrence in the parent population. For instance, when faced 

with a decision problem say A with limited information, and A shares some 

attributes of problem B then it is assumed that problems A and B are identical. For 

example, one might assume that a well-dressed man walking past one’s street has a 

white collar job because it fits one’s mental prototype of an individual who works a 

white collar job. Other biases associated with representativeness heuristic includes 

underestimating the probability of preceding event recurring termed the ‘gamblers 

illusion’ e.g. a favourable outcome is imminent the more the preceding outcomes are 

unfavourable. On the other hand  a DM could cling to the misconception that events 

with unusual events begets more unusual events. 
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3.5.2 Availability heuristic 

In this case, decision maker evaluates the present based on an experience of the past 

and make judgment that are dependent on the ease with which an event can be 

recalled (Tversky & Kahneman, 1973)29. As such, a DM becomes inclined to react 

more to risk in cases where previous occurrence of such risk can be readily called 

to mind. According to Tversky & Kahneman, (1997) the availability heuristic is often 

applied under judgement with comparative basis that entails estimating 

probabilities. For example, if an individual is asked whether the chances of getting 

malaria in greatest in the April and May, he or she will reflect on experiences over 

the past years and the response will reflect his or her most recent experience. The 

consequences of using this heuristics in decision making often result in violating 

probability rules leading to systematic biases and underestimating or 

overestimating outcome probabilities. For instance, Kunreuther (1996), reported 

significant increase in take up of insurance after a natural disaster by DMs that had 

prior to the event considered it unnecessary.  

3.5.3 Anchoring and adjustment heuristic 

Anchoring heuristics stems from the propensity of evaluating unknown values and 

making decision by anchoring on initial point. Research has shown that individuals 

do make estimates beginning with a starting point and subsequently adjust this 

starting point to attain the final estimate (Holtgraves & Skeel 1992; 

Ariyabuddhiphongs, 2011). A typical example is a fish monger who puts a price 

(usually above the “actual value”) on his product with the aim of anchoring the 

buyer to a high price and haggling downwards until the buyer feels the lower price 

(in comparison to the higher price) reflects a good bargain. 

Some biases have been shown to have links with anchoring heuristics. For instance, 

DMs can become risk seeking (due to ‘overconfidence’) after recurrent favourable 

outcome. Such overconfidence arises from the propensity to set excessively 

optimistic prediction of uncertain events. Evidence of anchoring and adjustment in 

lottery task has been documented. For instance, Holtgraves & Skeel (1992) show 

that in lotteries that had same probabilities of wining; respondents perceived a 

                                                           
29 The availability heuristic is discussed in-depth in Tversky & Kahneman (1973) paper. 
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higher probability of winning when the lottery was based on 1/10 compared to 

10/100 or 100/1000. 

3.5.4 Affect heuristic 

The affect heuristics embodies decision-making driven by ‘feelings’ or ‘emotions’ 

with reference to a stimuli such that subjective impressions of ‘good’ or ‘bad’ feeling 

act as heuristics and influences the decisions made by a DM. For instance if a specie 

of a crop failed in a particular season, a farmer might be unhappy and decide not to 

cultivate the crop again generalizing the crop as a failure and disregarding statistics 

which proves otherwise. This implies that the farmer’s previous experiences is 

linked with negative affect that may result in the perceived level of risk being 

overweighted. 

The representations of events in a DM’s memory are marked to different extent with 

affect. During decision-making, DMs depend on the “affect pool” that holds all the 

good and bad tags intentionally or unintentionally connected with the 

representations. Some researchers have asserted that more affective reactions to 

stimuli are more noticeable in situations where a DM lacks time or resources to 

reflect. Thus, it is typically the foremost reactions, occurring spontaneously then 

eventually guiding the manner information is processed and decisions made. 

Several studies have highlighted the role of heuristics in farm decision making. For 

instance, Diggs (1991), Rachlinski (2000) and Menapace, Colson & Raffaelli (2012) 

studies covered issues on heuristics in perception and judgment. These studies 

found that farmers rely on availability and representative heuristic in evaluation of 

risks associated with decision-making. 
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3.6  Decision Rules under Uncertainty 

Decision rules are procedures that guides a DM during decision-making particularly 

when faced with a number of non-stochastically dominated choices under situations 

in which there may be no possibility to apportion valid estimates of probabilities to 

the set of payoffs. Two commonly discussed decision rules are the optimist (e.g. 

maximax) and pessimist (e.g. minimax) rules popularised by Wald (1985). 

3.6.1 Maximax Rule 

Using the maximax criterion, the DM assesses decision based on the highest payoff 

possible. The aim is to maximize the maximum payoff given the DM presumption 

that for all alternatives, the outcome with the maximum payoff will occur. This rule 

is referred to as an optimist approach. The sequence of decision involves isolating 

the maximum payoff of all available options then choosing the option with the 

highest maximum payoff.  

The maximax criterion (𝔪∗) is defined by 

𝔪∗ = max
𝑓∈𝐹

𝔪𝑚𝑎𝑥(𝑓)                  

and 

    𝔪𝑚𝑎𝑥(𝑓) = max𝑠∈𝑆𝑢(𝑓(𝑠))                (3.6.1) 

Where 𝑆, 𝐹, 𝑢 represents the state of nature, set of acts and utility function 

respectively. 

For example, a farmer faced with the options of cowpea variety to sow based on the 

yield in different weather conditions as presented in Table 9 will pick Cowpea B, 

which has the highest of the maximum payoff (i.e. ₦4000). 

Table 9  
Hypothetical Decision table 

 
 

 
Decision 

alternatives 

 State of nature (₦/ha)                   
  Good  Average  Bad  

Cowpea A 3000 1500 -1500 
Cowpea B 4000 1750 -2250 
Cowpea C 2000 1000 -1000 
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Although this criterion has the advantage of being easy to apply, the shortcomings 

of the maxima rule include the insensitivity to relative differences in outcomes that 

might adversely affect the decision criteria. 

3.6.2 Maximin Rule 

In the case of maximin, the DM is most concerned with avoiding the worst possible 

outcome of the worst-case scenario with the belief that the chance that the worst 

case in any event will happen is high. Unlike the maximax, the sequence of decision 

for the maximin DM involves identifying the worst possible outcomes then choosing 

the option that is best among the worst.  

The maximin (𝔪∗) criterion is defined by 

𝔪∗ = max
𝑓∈𝐹

𝔪𝑚𝑖𝑛(𝑓)                    

and  

𝔪𝑚𝑖𝑛(𝑓) = min𝑠∈𝑆𝑢(𝑓(𝑠))                (3.6.2) 
 

With reference to Table 9, the maximin DM believes that the worst state of nature 

(“bad yield”) will occurs thus the DM will pick Cowpea C which maximizes the 

minimum outcome (i.e. -₦1000). Similar to maximax, one criticism of this criterion 

for relying on an overly conservative strategy that depends simply on ranking.   

Other common decision rules includes the minimax regret and the LaPalace 

criterion. For the former, the attention is on that states of nature where the DM’s 

minimizes potential regret while considering opportunity that is forgone. The 

LaPlace-Bayes criterion simply compares prospects based on their averages or 

mean. For instance, a rational LaPlace-Bayes decision maker will choose option B in 

Table 10 as its average returns over all three weather conditions is greater than 

options A and C.  
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3.7 Regret and Disappointment Theories 

These theories are built on the premise that DMs undergo emotions after decision-

making. Thus, anticipated emotions are factored into the decision making process 

which systematically shapes the DM’s choice.  

The Regret theory is based on the premise that post-decision making, the DM makes 

comparison of outcomes between the choices made and otherwise if other available 

alternatives are chosen. With the assumption that the rational DM is 

characteristically regret averse, regret models are hinged on modifications of the 

regret-minimax proposition in which case the DMs objective is to minimise their 

maximum regret by seeking the alternative which results in the least possible 

regret. The works of Bell, (1985), Fishburn, (1984) and Loomes & Sugden (1982) 

were at the forefront in the proposition of decision theory of regret which was 

aimed at justifying decisions taken under uncertainty. According to Loomes & 

Sugden (1982) the sad (happy) feeling which the DM is feels after finding out that 

other available options would have yielded a more (less) desirable payoff is termed 

regret (rejoice).  

There are a number of studies that suggest risk is bi-faceted and is comprised of 

conventional and regret risk. Thus, a utility function is dependent on prospective 

payoff and corresponding regret effect (Somasundaram & Diecidue, 2015; Fox, 

Erner & Walters, 2015). In other words, an individual factors into the utility of the 

preferred prospect, the feeling that arises thereafter from not obtaining the payoff 

of other alternative prospect; this element in the decision making process is 

overlooked by the EUT.  This amalgamates elements of minimax and EU theories in 

the Regret theory. 

Assume 𝑈 constitutes an expected utility representation of preferences and follows 

the regret theory specification that DMs’ aim to optimize expected value. Given that 

the DM choses 𝑎 over 𝑏 then, 

𝑈(𝑎, 𝑏) = 𝑢(𝑎) + 𝑔(𝑢(𝑎) − 𝑢(𝑏))                (3.7.1) 
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Where  𝑢(. )  represents a Bernoulli utility function which satisfies the conditions 

𝑢′ >  0  and 𝑢" < 0; g: ℝ → ℝ symbolizes the regret function which is determined 

by the difference in outcome 𝑎 and 𝑏 wherein 𝑎 >  𝑏 results in disutility.  

Whether regret leads to risk aversion or risk seeking has been debated and findings 

in the literature are mixed. For instance, Josephs, Larrick, Steele & Nisbett (1992); 

Kardes (1994) Richard, Pligt & Vries (1996) reported that regret increases risk 

aversion while Bell (1985) findings suggests risk seeking. Interestingly, Zeelenberg 

et al., (2006) documents both risk averse and seeking behaviours depending on the 

condition of feedback. Simonson (1992) showed that anticipated regret prompted 

risk averse-like behaviour in consumers.  

From a different perspective Zeelenberg, Beattie, Van der Pligt, & de Vries (1996) 

found that DMs choices were driven by regret-minimizing rather than risk-

minimizing. Zeelenberg & Pieters, (2007) asserted that regret aversion can be 

clearly distinguished from risk aversion; and both together and separately has an 

effect on the DM attitude. 

The papers of Bell (1985) and Loomes & Sugden (1986) popularised the theory of 

disappointment that explains a phenomenon wherein a DM experiences a feeling 

that occurs as a result of the outcome falling short of the DM expectation. The feeling 

is driven by the preconceived expectation that the best payoff will be achieved 

within a specific prospect. However, when the outcome is less desirable than 

anticipated the feeling of disappointment sets in. To determine the extent of 

disappointment, the expected utility of a lottery serves as its reference point. 

For instance, given the states of the world that is a finite set S for which the 

probability distribution is known prior to the event and a prospect 𝜑 is a function 

𝑆 → 𝑅. Assuming the payoff if a DM picks prospect 𝜑 and states 𝑠 occurs, then 

𝜑(𝑠) =  𝜀(𝜑(𝑠)) + 𝜀[ 𝑑(𝜑(𝑠) − 𝜀(𝜑(𝑠))]                (3.7.2) 

Where 𝜀>0 represents a constant indicating the extent to which the DM is impacted 

by a unit of disappointment. 𝑑: 𝑅 → 𝑅 meets the assumptions that: when the 

expectation of the DM is met, disappointment does not occur i.e. 𝑑(0) = 0, the rise 

in disappointment is disproportionate to the difference between what occurs and 
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what was expected. If the shape of 𝑑 is concave on (−∞, 0), convex on (0,∞), 

disappointment looms larger than elation i.e. −𝑑(−𝑥) ≥ 𝑒(𝑥). 

Although some studies have used both regret and disappointment interchangeably, 

Zeelenberg, Van Dijk, Manstead & der Pligt (1998) in line with other studies have 

reported statistical difference in how these two differ in the manner it is 

experienced. To distinguish between regret and disappointment, imagine a farmer 

faced with two prospects A and B as presented in Table 10. Let Si represents all the 

possible states of nature the farmer faces. The farmer experiences regret if he or she 

chooses prospect B and state S2 occurs (50kg) because the farmer would otherwise 

have had 100kg had he or she chosen prospect A. On the other hand, if the farmer 

chooses prospect A and states S1 (50kg) occurs, he or she experiences 

disappointment since the outcome is less than S2 (100kg) even though the outcome 

of S1 is as good as the best outcome in prospect B. 

              Table 10  
Hypothetical Payoff table 

                                                  States of Nature 

Prospects S1 S2 S3 

A 50kg 100kg 0kg 

B 25kg 50kg 25kg 

 

In this case, the difference between regret and disappointment is that the emphasis 

of the former is comparing across alternative while the latter is within alternatives. 

This study therefore regards both concepts from these perspectives.  
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3.8 Salience Theory 

The phenomenon “salience” according to Taylor and Thompson (1982) refers to 

information being distorted by the DM as a result of concentrating on the ‘most 

noticeable’ region of the outcome thereby resulting in unbalanced weighting of the 

decision. Salience theory (Bordalo et al., 2012) is designed to model a DM’s context-

dependent representation of lottery choices under risk where decision weights 

(warped to the advantage of salient payoffs) substitute objective probabilities. The 

idea revolves around DMs overweighting of outcomes with large differences, which 

is modelled via event weighting. In Bordalo et al., (2012) salience is determined 

through a function which examines the similarities and differences of the 

characteristic of a lottery in respect of a reference level with the aim of ascertaining 

the extent to which that characteristic is distinctive and attracts the DM’s attention. 

Bordalo et al., (2012) expound that given lottery choices dilemma where 𝑆 

represents states of nature for which the likelihood of occurrence 𝑝𝑠 of each state 

𝑠 ∈ 𝑆 is objective and known i.e. ∑ 𝑝𝑠 = 1 𝑠∈𝑆  and assume a pair of lottery ℒ1 and ℒ2 

that result in outcomes of 𝑥𝑠
𝑖  and 𝑥𝑠

𝑗
 in each state 𝑠. Given that lottery ℒ𝑖  are risky; 

the DM distorts the weights attached to the lottery’s greatest salience states in the 

states of nature 𝑆. For lotteries ℒ𝑖 and ℒ𝑗  (𝑖 ≠ 𝑗), the salience of state 𝑠 is specified 

as a bounded continuous function 𝜎(𝑥𝑠
𝑖  and 𝑥𝑠

𝑗
) that fulfils conditions of: 

Ordering: The distance between the lottery payoff  𝑥𝑠
𝑖  and its alternative 𝑥𝑠

𝑗
 

determines the salience of state i.e. for two states 𝑠 and �̃� and lotteries 𝑖 and 𝑗, 

𝜎(𝑥𝑠
𝑖 , 𝑥𝑠

𝑗
) < 𝜎(𝑥�̃�

𝑖 , 𝑥�̃�
𝑗
) if 𝑥𝑠

𝑚𝑖𝑛, 𝑥𝑠
𝑚𝑎𝑥  is a subset of 𝑥�̃�

𝑚𝑖𝑛 , 𝑥�̃�
𝑚𝑎𝑥 . 

Diminishing sensitivity: A uniform increase in the absolute payoff levels across 

lotteries results in a decline in the salience i.e. 𝜎(𝑥𝑠
𝑖+ 𝜖, 𝑥𝑠

𝑗
+ 𝜖) < 𝜎(𝑥𝑠

𝑖 , 𝑥𝑠
𝑗
) if 𝑥𝑠

𝑛 > 0 

for 𝑛 = 1, 2, then for 𝜖 = 0. 

Reflection: It is not the payoff domain (gain or loss) that controls salience but rather 

the size of the payoffs i.e. 𝜎(𝑥𝑠
𝑖 , 𝑥𝑠

𝑗
) < 𝜎(𝑥�̃�

𝑖 , 𝑥�̃�
𝑗
)  ⇔  𝜎(−𝑥𝑠

𝑖 , −𝑥𝑠
𝑗
) < 𝜎(−𝑥�̃�

𝑖 , −𝑥�̃�
𝑗
)  for 

any 𝑥𝑠
𝑛,  𝑥�̃�

𝑛 > 0. 

The salience function is given by equation 3.8.1 
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𝜎(𝑥𝑠
𝑖 , 𝑥𝑠

𝑗
) =

|𝑥𝑠
𝑖−𝑥𝑠

𝑗
|

|𝑥𝑠
𝑖| + |𝑥𝑠

𝑗
| + 𝜃

                  (3.8.1) 

Where 𝜃 > 0 modulates salience of states when the payoff of a lottery is zero.  A DM 

that is a salient thinker calculates the value of a lottery by 

    𝑉 (ℒ𝑖) =∑ 𝑝𝑠
𝑖𝑣(

 𝑠∈𝑆
𝑥𝑠
𝑖)                   (3.8.2) 

Given that 𝑘𝑠 ∶ 𝑘𝑠  ∈ {1, … , |𝑆|}  represent the salience ranking of state 𝑠 for ℒ1 and 

chooses lottery ℒ1 over ℒ2 𝑖𝑓𝑓 ∑ 𝛿𝑘𝑠 𝑠∈𝑆 𝑝𝑠[𝑣(𝑥𝑠
1) − 𝑣(𝑥𝑠

2)]. If 𝛿 < 1 (i.e. the 

parameter that determines the degree to which salience distorts the weights 

attached to decisions), the DM chooses ℒ1 when its payoff is greater than ℒ2 in the 

states having the most salience.  

Bordalo et al., (2012) salience theory does not rely on the shape of the value 

function30 like the CPT. Rather it is dependent on whether the lottery up and 

downsides are salient i.e. a DM is expected to be risk averse and risk seeking for the 

former and latter respectively. In addition, in salience theory a pair of lotteries from 

which choice is to be made is not considered independent as with the case of the 

CPT. For instance, given the lottery choices: 

Lottery Choices: Would you prefer A or B? 

A: 10% chance of winning $400 B: 10% chance of winning $400 

 30% chance of winning $0   30% chance of winning $60 

 60% chance of winning $200  60% chance of winning $170  

For lotteries A and B, the lowest probability (10%) has the highest possible outcome 

($400). For CPT, lotteries A and B are assumed to be independent thus the DM 

distorts the small probabilities attached to the high outcome. However, because the 

outcome of both lotteries are the same (i.e. $400), the salience of the 10% chance of 

winning $400 in lottery A negates the 10% chance of winning $400 in lottery B; and 

the DM choice is not influenced by the likelihood of winning $400. 

Tsetsos, Chater & Usher (2012) concluded that the factors that affect salience are 

liable to influence the process of decision-making. They further pointed out that in 

                                                           
30 The authors assume that the value function 𝑣  is linear. 
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a typical scenario where the prospect with the largest outcome might be more 

conspicuous or noticeable, the decision maker may fail to consider the lower 

outcome on the left section of the tail and as a result may even choose prospects 

with larger variance. Similarly, Madan, Ludvig & Spetch (2014) and Ludvig, Madan 

& Spetch (2014) pointed out the propensity of individuals to hold fast to salient 

events, which could result in memory bias particularly for extreme outcomes and 

overweighting of similar outcomes in subsequent decisions. This provides 

evidence of extreme outcome rule wherein the probabilities of the largest gains 

and losses are overestimated.  

Bordalo, Gennaioli & Shleifer (2010) study aimed at explaining the role of salience 

on local thinking argues that what holds the attention of the individual is the 

salience of the payoff rather than probabilities. Shleifer, Bordalo & Gennaioli, (2012) 

and Mersinas, Hartig, Martin & Seltzer (2015) found that the EV or variance does 

not matter once the payoff of the choices the DM faces are salient or extreme as the 

focus typically will be on the salient payoff. Chetty, Looney & Kroft (2009) paper on 

salience and taxation further emphasises the crucial role of salience in consumer 

reaction to taxation. 

According to Dertwinkel-Kalt & Köster (2015), susceptibility to salience can explain 

deviations from a number from axioms of expected utility theory. Dertwinkel-Kalt 

& Köster (2015) showed that their extended salience theory can address one of the 

limitations of the CPT; first order stochastic dominance (FOSD) thereby justifying 

the argument in the literature that the salience theory is a credible alternative 

theory. As with several theories however, there are limitations to Salience theory. 

For instance, since the core of Salience theory is intransitivity, it questions its 

widespread applicability in economics and finance. In addition, the two-variable 

function of salience theory results in the theory being overly general. 
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3.9 Summary 

In summary, chapter 3 considered leading theories and models of decision making 

under risk and uncertainty. This chapter was split into three components namely: 

EUT, the non-EU theories and alternative theories. Specifically, the chapter covered 

Expected Utility theory, Mean-Standard deviation theory, Rank Dependant Utility 

theory, Prospect theory, Cumulative Prospect theory, Salience theory, Regret and 

Disappointment theories and decision rules and heuristics. The merits and demerits 

of each theory is highlighted and their application in different scenarios appraised.  

As observed from the literature reviewed in this chapter, several of these theories 

are linked through certain important properties they share. For instance, the EUT 

being equivalence to the MSD for exponential utility function and approximate for 

quadratic utility function or the direct correspondence with CPT and CEU under 

additivity of the discrete subjective probability measures. In addition, the RDU is 

closely related to the CEU wherein the RDU is referred to as a special case of the CEU 

albeit for risk. However, they do not coincide in a several aspects such as treatment 

of reference points, probability transformations, and properties of the value 

function such as global vs. local convexity/concavity. Crucially among these 

theories, the CPT has received much encomium in decision theory literature as a 

reliable alternative to many popular theories including the Expected utility theory. 

In addition, the intuition behind CPT (and equivalent CEU) are credible and can be 

adapted to several different conditions.  

Another key conclusion drawn from this review chapter is that the findings on risk 

and uncertainty attitudes is influenced by the choice of different theories and 

methodologies. In addition, although the EUT arguably remains the benchmark 

theory of decision-making under risk, this theory and several other popular theories 

have their limitations. Several limitations discussed are addressed by the CPT. 

Therefore, the CPT is the main theory around which this study is based.   
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Chapter 4 

Research Methods and Models 
 

4.0 Introduction 

This chapter covers the conceptual framework and the econometric models and 

methods used to test hypotheses and achieve the objectives earlier discussed in 

Chapter 1. To achieve the objective of estimating farmers’ attitudes to risk and 

uncertainty in different context and content domains, this thesis uses both non-

parametric methods - relating to the patterns that characterise participant choices 

and their determinants; and parametric models – based upon CPT as it extends to 

continuous prospects. Specifically, the Bayesian mixed logit is adopted for this 

purpose.  

The Mean-Standard deviation model is used to estimate the determinants of 

prospect choice. The objective of examining the effect of bipolar tendencies on risk 

attitude are determined from estimating multivariate regression while the 

relationship between risk attitude and decision to engage in off-farm income 

generating activities are determined from probit and multinomial probit models 

respectively. 

Specifically, Section 4.1 describes the conceptual framework; section 4.2 explains 

the CPT model, section 4.3 discusses the Bayesian hierarchical model, section 4.4 

describes the Mean-Standard deviation model, section 4.5 details the Simultaneous 

equation model while section 4.6 describes the multinomial probit regression. 
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4.1 Conceptual Framework 

Conceptually the framework for this research pivots on theories of decision-making. 

The thesis examined the capabilities and extent to which the intuition behind the 

selected decision-making theories and models corresponds to actual behaviour of 

DMs’ under risk and uncertainty. It also links issues separately examined in 

previous studies e.g. it connects risk/uncertainty attitudes and decision-making 

behaviour to mental health related factors; and links attitudes to risk and 

uncertainty obtained from parametric estimation as a determinant of farm decision 

making in an econometric model. A graphical representation of the framework 

showing the various components of this study and the hypotheses tested is 

presented in Figure 1.  

Specifically, the hypotheses tested in H1 and H2 are whether attitude towards risk 

and uncertainty depends on content domains. H3 tests if attitude towards risk 

depends on context while H4 tests whether attitudes to risk and uncertainty differ 

within content domain. H5 tests if significant differences exist in a DM’s risk attitude 

under personal and proxy context, H6 whether risk and uncertainty attitude is 

affected by bipolar disorder and H7 farmers risk attitude (in the monetary domain) 

drives decision to engage in off-farm employment  

As reported in chapter 2, several findings based on Non-expected Utility theories 

suggest that individuals are not universally risk-averse i.e. risk attitudes often differ 

across domains. Thus, this thesis tests whether a DM attitude maintains the same 

attitude in different context and content domains using elicitation methods and 

experiments detailed in Chapter 5 that differs from previous studies that have 

tested similar hypothesis. 
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Figure 1. Conceptual Framework  
 

The link between off-farm participation is based on the findings from studies 

examined in section 2.5, which reported that risk and uncertainty attitude 

influences farmers’ decision-making; and specifically literature which are 

predominantly based on the models of risk taking behaviour that have examined 

risk as a determinant of off-farm participation. From this perspective, there is 

literature that suggest that farmers who engage in off-farm income earning activity 
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may have a slightly higher than average level of risk aversion than those who do not. 

While a few report that risk attitude has no significant influence off-farm 

participation decisions. Thus, the proposition tested here is that risk-seeking 

farmers do not participate in off-farm income activities.  

The effects of BD on risk attitude as examined in section 2.4 suggest that individuals 

with BD tend to ‘enjoy’ gains more and ‘suffer’ losses less. Specifically, for an 

individual at the manic phase, the risk orientation is mostly reported to be risk 

seeking. Based on the concept that mental health factors influences risk attitude, 

this study tests the hypothesis that farmers with bipolar disorder are risk and 

uncertainty seeking. 

In summary, the conceptual framework is designed to build on previous studies that 

examines domain-specific risk and uncertainty attitudes and the decision to 

participate in off-farm activities separately. This study goes a step further in linking 

these farm related issues in a single study. Further, it combines researches on 

bipolar disorder (e.g. Yechiam et al., 2008; Martino et al., 2011) with research that 

has been carried out on risk/uncertainty attitude and decision making.  
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4.2 CPT  & CEU Models 

To achieve objectives (i) and (ii) which aims at estimating farmers’ attitudes to risk 

and uncertainty in different context and content domains; the cumulative prospect 

theory parameters as it extends to continuous prospects is estimated using the 

Bayesian mixed logit. Drawing from the literature discussed in Chapter 3, the model 

for this study is built on the CPT and CEU theories. Using Choquet expected utility 

under additivity of the discrete subjective probability measures there is a direct 

correspondence with discrete CPT, and thus under additive continuous densities 

CEU can be thought of as a generalisation of CPT to continuous densities. Thus, in 

discussing the CPT model hereafter this thesis also implies the equivalent CEU 

model. 

Consider that each farmer is presented with a pair prospects with payoff 𝑧𝑖 having 

probability 𝑝𝑖 where 𝑧𝑖 > 𝑧𝑗  ⇔ 𝑖 > 𝑗  and the probability distribution 𝑓 =

(𝑧1, 𝑝1; … ; 𝑧𝑛,𝑝𝑛),  𝑧1 ≤ ⋯ ≤  𝑧𝑘 ≤ 0 ≤  𝑧𝑘+1 ≤ ⋯ ≤ 𝑧𝑛 stipulates the chances of 

choosing a prospect. In line with the discussions in Chapter 3, the overall value of a 

prospect in discrete form is presented as:  

𝑉 =∑𝑣(𝑧𝑖)

𝑘

𝑖=1

(𝑤− (∑𝑝𝑗  

𝑖

𝑗=1

) − 𝑤− (∑𝑝𝑗  

𝑖−1

𝑗=1

))𝑣(𝑧𝑖)

+ ∑ 𝑣(𝑧𝑖)

𝑛

𝑖=𝑘+1

 (𝑤+ (∑𝑝𝑗  

𝑛

𝑗=1

) − 𝑤+( ∑ 𝑝𝑗  

𝑛

𝑗=𝑖+1

))  𝑣(𝑧𝑖)                               (4.2.1) 

Given that 

𝜋+ = 𝑤+ (∑ 𝑝
𝑗
 

𝑛

𝑗=1

) − 𝑤+ (∑ 𝑝
𝑗
 

𝑛

𝑗=𝑖+1

) 

Then expressing the decision weights as  

                 𝜋+(𝑧) ≡ 𝑤+(1 − 𝐹(𝑧))    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑧 ≥ 0                                               

                 𝜋−(𝑧) ≡ 𝑤−(𝐹(𝑧))           𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑧 < 0                                 (4.2.3)  

From which the continuous CPT form is derived as: 

𝑉(𝑧𝑐) = ∫ Γ−[𝐹(𝑧)].  𝑓(𝑧)𝑣−(𝑧)𝑑𝑧  
0

−∞

+∫ Γ+[1 − 𝐹(𝑧)].  𝑓(𝑧)𝑣+(𝑧)𝑑𝑧        (4.2.2)
∞

0
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Where 𝐹 and 𝑓 represents CDF and PDF respectively, 𝑣(. ) denotes the function that 

assigns value to outcomes and Γ = 
𝑑𝑤(𝑝) 

𝑑𝑝
.  𝑤(. ) is the probability transformation 

function with characteristic of 𝑤: [0,1]  →  [0,1]  that strictly increases and satisfies 

𝑤+(0) =  𝑤− (0) = 0 and 𝑤+(1) =  𝑤− (1) = 1. The weighting function 𝑤+ and 𝑤− 

function fitted in this study is Prelec II (Prelec, 1998). The justification for choosing 

this specification is hinged on its ability to adapt to either inverse S-shaped or S-

shaped probability weightings.  As presented in Chapter 3, the discrete Prelec II 

PWF takes the form of:  

𝒲+(𝑝) = 𝑒𝑥𝑝 (−𝛿+(− 𝑙𝑛(𝑝𝑖))
𝛾+)       𝑖𝑓 𝑥 ≥ 0                             

𝒲−(𝑝) =  𝑒𝑥𝑝 (−𝛿−(− 𝑙𝑛(𝑝𝑖))
𝛾−)       𝑖𝑓 𝑥 < 0               (4.2.4)  

However, the continuous Prelec II PWF that is applied in this study takes the form 

of  

Γ(𝑝) =
𝛿+𝛾+

𝑝
(− 𝑙𝑛 𝑝)𝛾

+−1𝑒−𝛿
+(− 𝑙𝑛 𝑝)𝛾

+

      𝑖𝑓 𝑥 ≥ 0                 

     Γ(𝑝) =
𝛿−𝛾−

𝑝
(− 𝑙𝑛 𝑝)𝛾

−−1𝑒−𝛿
−(− 𝑙𝑛 𝑝)𝛾

−

    𝑖𝑓 𝑥 < 0       (4.2.5)   

The parameters 𝛾+ and 𝛾− determines the curvature of the weighting function while 

δ+ and δ− controls the elevation of the weighting function31 in the gain and loss 

domains respectively.  

Following with the deterministic form of the CPT, the prospect having the highest 

subjective value is invariably expected to be chosen by the DM. In reality however 

this is not always the case, therefore supplementing the deterministic form (which 

lacks the capacity to produce choice probabilities) with an error theory via choice 

rule makes it possible to explain stochastic choice of a DM.  In line with several 

studies this study adopts obtaining f ( ) from P ( ) in a pairwise choice 

𝑓(𝐴|𝐵, 𝜃)  =  𝑃(𝑉(𝐴), 𝑉(𝐵))                                                (4.2.6) 

Where f ( ) is the probability with which the model predicts choosing prospect A 

over an alternative prospect B given a set of parameter values θ. 

                                                           
31 The strength of the s-shaped curve increases with decreasing value of 𝛾. Increasing values of 𝛿 
on the other hand increases the elevation of the PWF. 
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For choices between pairs of prospect, the logistic choice function appropriately 

maps properties of prospects onto choice probabilities (see Stott, 2006). Thus the 

probability that Prospect A will be chosen over B is determined by  

𝑃(𝑉(𝐴), 𝑉(𝐵)) =
1

1 + 𝑒− 𝜑(𝑉(𝐴)−𝑉(𝐵))
                               (4.2.7) 

where the parameter φ (response/choice sensitivity parameter) measure 

arbitrariness in the DM choice, 𝑉(𝐴) and 𝑉(𝐵) represents the subjective values of 

the prospects. The closer 𝜑 is to zero, the greater the randomness of choices. 

Following the recommendations of Stott (2006) and Balcombe & Fraser, (2015) 

regarding the best combination of value, weighting and choice functions; the 

estimation of the CPT parameters in this study relies on a combination of value form 

with power specification, Prelec II weighting function and a logit choice function. 
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4.3 Bayesian hierarchical parameter estimation 

The model estimated in this thesis is hierarchical such that it has parameters that 

describes the tendencies of each participant on one hand and parameters that 

accounts for to the distribution of each participants’ parameters within a group on 

the other hand. Thus, the model permits that data from other participants within a 

group has an effect on parameter estimates for each member participant. This 

hierarchical estimation is implemented using Bayesian procedure in Python. The 

choice of hierarchical estimation is to ensure that participants’ risk and uncertainty 

attitudes are not only reliably estimated but maximizes the fit of the data and make 

the most of its potential in connection with out-of-sample data. 

The interpretation accorded probabilities in Bayesian reasoning differs from the 

frequentists’ as probability in the former is interpreted as the degree of belief in the 

likelihood of an event occurring. This approach also permits for the inclusion of 

prior knowledge in the estimation of probabilities by applying Bayes’ theorem. In 

Bayesian reasoning, probability distribution is used to quantify the degree of 

uncertainty and make probability statements about the parameters under the 

assumptions of fixed data and random unknown parameters.  

Assuming the parameter 𝜃 and a data set 𝑌 having distributions Ɣ and 𝑝 such that: 

                𝑌 ∼ Ɣ(. |𝜃), 𝜃 ∼ 𝑝(𝜃)                                        (4.3.1) 

Under Bayesian rules,  

                𝑝(𝜃|𝑌) =  
𝑝(𝑌|𝜃)𝑝(𝜃)

𝑝(𝑌)
                                      (4.3.2) 

From the equations above, it becomes possible to calculate the posterior probability 

distribution 𝑝(𝜃|𝑌) for the parameter 𝜃 (in lieu a single value for each parameter as 

with the case of classical models) taking into consideration the data 𝑌 from some 

prior probabilities for the parameter value 𝑝(𝜃) and the likelihood function 𝑝(𝑌|𝜃). 

Since the marginal likelihood 𝑝(𝑌) only performs a normalizing role, the posterior 

probability distribution can then be represented as: 

                        𝑝(𝜃|𝑌) ∝ 𝑝(𝑌|𝜃)𝑝(𝜃)                                (4.3.3) 

Where the marginal likelihood is  
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                      𝑝(𝑌) = ∫𝑑𝜃 𝑝(𝑌|𝜃)𝑝(𝜃)                           (4.3.4) 

Assuming that the data 𝑌 is described a model having two parameters 𝜃 and 𝜗. The 

hierarchical specification of the joint distribution is given by 

          𝑝(𝑌|𝜃, 𝜗)𝑝(𝜃, 𝜗) = 𝑝(𝑌|𝜃)𝑝(𝜃|𝜗)𝑝(𝜗)                   (4.3.5)      

Following Bayesian reasoning, suppose for person j, 𝑌𝑗   represents observations, 

𝜃𝑗  constitute parameters at unit level that determines observation 𝑌𝑗 . 𝜂 represents 

common parameters with prior density 𝑝(𝜂|𝜗) while 𝜗  is the hyper-parameter that 

determines the distribution of exchangeable parameters 𝜃1, … , 𝜃𝑗  obtained from a 

general population; then the stages in the hierarchy corresponds to a sequence of 

measurements, underlying process and parameter stages.  

From the data collected from the experiment described in Chapter 5, 𝑌𝑖𝑗   𝑗 = 1,… , 𝑛𝑖  

are independent given 𝜃𝑖  having a distribution 𝑝(𝑌|𝜃𝑖). There is reasonable basis to 

suggest the some similarities between the 𝜃𝑖′𝑠. Using a prior distribution where the 

𝜃𝑖′𝑠 are considered as samples originating from a common population distribution, 

the population distribution of the 𝜃𝑖
′𝑠 can be estimated. 

For 𝑌𝑗   corresponding to all responses by the 𝑗𝑡ℎ individual, the hierarchical model 

is given by:  

𝑆𝑡𝑎𝑔𝑒 1 (𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑝𝑟𝑖𝑜𝑟):   𝑌𝑗|𝜃𝑗 ∼ 𝑝(𝑌𝑗|𝜃𝑗) 𝑓𝑜𝑟 𝑗 = 1, … , 𝐾                   

          𝑆𝑡𝑎𝑔𝑒 2 (𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 𝑝𝑟𝑖𝑜𝑟):    𝜃𝑗|𝜂 ∼ 𝑝(𝜃𝑗|𝜂) 𝑓𝑜𝑟 𝑗 = 1,… , 𝐾                          .  

        𝑆𝑡𝑎𝑔𝑒 3 (𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑡𝑎𝑔𝑒 𝑝𝑟𝑖𝑜𝑟):    𝜂 ∼ 𝑝(𝜂|𝜗)                        (4.3.6)                    

In which case the posterior distribution is proportional to 

                           𝑝(𝜃, 𝜗|𝑌) ∝  𝑝(𝑌𝑗|𝜃𝑗)𝑝(𝜃𝑗|𝜂)                                    (4.3.7)                  
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With a joint posterior is presented as: 

           𝑝(𝜃1, … , 𝜃𝑚, 𝜂|𝜗, … , 𝑌𝑚, 𝜗) ∝  [ ∏ 𝑝(𝑌𝑗|𝜃𝑗)𝑝(𝜃𝑗|𝜂)
𝑗

] 𝑝(𝜂|𝜗)     (4.3.8) 

Given that  𝜃𝑗  represents arbitrary model parameter of respondent j under k 

condition. 

                                    𝜃𝑗𝑘 =  ℊ(𝜇𝑘
𝜃 + 𝜈𝑗𝑘

𝜃 )                                                          (4.3.9)  

Where 𝜇𝑘
𝜃 and 𝜈𝑗𝑘

𝜃  represent the group average and the deviation of respondent j 

form the group average. The link function ℊ( ) maps groups and single contributions 

on the range of value which determines  𝜃𝑗𝑘 is. A logit-link function that allows for a 

range of parameters between 0 and an upper limit is used. By formulating a 

Bayesian prior (truncated normal32) distribution on the vector of parameters 𝜃, this 

study simultaneously estimates the parameters for the participants. The prior 

parameter distributions used in this study draws from studies of similar nature. For 

instance using Bayesian hierarchical estimation several authors have impose 

parameter restriction on the CPT parameters. Nilsson, Rieskamp & Wagenmakers, 

(2011) imposed 0 < α ≤ 1; 0 <  β ≤ 1; 0 <  λ  ≤ ∞; 0 < γ ≤ 1; 0 < δ ≤ 1; 0 <  ϕ  ≤ ∞. Suter, 

Pachur & Hertwig, (2013) priors ranged from 0 < α ≤ 1; 0 < γ ≤ 1; 0 < δ ≤ 10; 

0 < φ ≤ 10. Similarly, Broomell & Bhatia (2014) priors ranged from 0 < α ≤ 1; 1 <  λ 

 ≤ 10; 0 < γ ≤ 1; 0 < φ ≤ 1. Parameter ranges in other studies include Toubia, Johnson, 

Evgeniou & Delquié, (2013) 0.05 ≤ α ≤ 2; λ  ≤ 10; 0.05 ≤ γ ≤ 2; Haffke & Hübner, 

(2014)  0 < α ≤ 1, 0 < γ ≤ 1.5, 0 < δ ≤ 4, and 0 < φ ≤ 10 and Glöckner & Pachur (2012) 

that restricted their parameter values to 0 < α ≤ 1, 0 < λ ≤ 10, 0 < γ ≤ 1, 0 < δ ≤ 4,  0 

< φ ≤ 10. This thesis adopts 0.05 ≤ α ≤ 2; 0.05 ≤  β  ≤ 2; 0.05 ≤  λ  ≤ 3; 0.25 ≤  γ  ≤ 2;  

0.25 ≤  δ  ≤ 2;  0 <  ϕ  ≤ ∞. Since the version of CPT in this study is sign-dependent, a 

vector of 8 parameters (α, β, 𝜆 , 𝛾+, 𝛾,− 𝛿+, 𝛿−, 𝜑) is estimated. Implying that the 

entire vector of unknown parameters at group-level is given by:  

         𝜃 = 𝜇𝛼 , 𝜇𝛽 , 𝜇𝜆, 𝜇𝛾, 𝜇𝛿 , 𝜎𝛼 , 𝜎𝛽 , 𝜎𝜆 , 𝜎𝛾 , 𝜎𝛿 , 𝜎φ                              (4.3.10)  

                                                           
32 The truncated normal distribution in this case refers restriction of the upper and lower domains 
to specific range of values. 
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This methodology adopted in this study follows two steps. First, in line with Nilsson 

et al., (2011), individual parameters are obtained from independent group-level 

with logarithm having a normal distributions represented as;  

𝛼𝑗~ 𝑁(𝜇𝛼, 𝜎𝛼);  𝛽𝑗~ 𝑁(𝜇𝛽 , 𝜎𝛽 ); 𝜆𝑗~ 𝑁(𝜇𝜆, 𝜎𝜆 );  𝛾𝑗~𝑁(𝜇𝛾, 𝜎𝛾 );
    

𝛿𝑗~ 𝑁(𝜇𝛿 , 𝜎𝛿 );φ𝑗
~𝑁( 𝜇φ, 𝜎φ )      

                                                                                                                    (4.3.11)  

As regards the group means a standard normal priors is used. The link function 

specified in equation (4.3.9) ensure that transformation result in prior values that 

are uniformly distributed between the lower and the upper boundaries. The next 

step involves the derivation of the posterior distribution of the CPT parameters 

using Markov Chain Monte Carlo (MCMC) algorithms that make it possible to 

approximate the posterior distribution within the context of Bayes' theorem. The 

number of iterations, burn-ins and retained posterior draws are reported in section 

7.1 of Chapter 7. 

Overall, given that some relationships are complex to model, a flexible model like 

the Bayesian hierarchical models can be very reliable. In addition, considering that 

any differences across and similarities between individuals are at the same time 

accommodated in hierarchical models, it is capable of addressing the shortcomings 

of the estimates derived from averaging data or participant level parameter 

estimation. According to Nilsson et al., (2011) and Steyvers & Lee, (2006), 

hierarchical models recognises that while individuals may differ, they may also 

share some similarities; thus each single DM’s parameter estimate in a model is 

believed to have meaningful dependencies on others included in that model.  
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4.4 Generalized Estimating Equations (GEE) Method 

In order to examine the association between the choices made by subjects, the 

magnitude of the prospect (in terms of mean and variance) and domain of the 

prospects; this study uses the Generalized Estimating Equations (GEE) (popularised 

by Liang & Zeger, 1986 and Zeger & Liang, 1986). Liang & Zeger (1986) applied the 

GEEs as an extension of the generalized linear model that could accommodate 

within-subject or within-cluster correlation while producing estimates that are 

reliable and results that are robust. The GEE suits the data analysed in this study for 

the reasons that there may be tendency that the participants’ choice of prospect per 

task have same correlation across observation thereby contravening the 

independence assumptions upon which other regression models are built. Crucially, 

the goal is to reveal differences in the population average response. 

Assuming there exist some correlation between (and independence across) 

responses from participants; we then estimate a model where the dependent 

variable 𝑌𝑖𝑗 indexes the 𝑖𝑡ℎ response (𝑖 = 1, 2, … , 𝑛𝑖) for the 𝑗𝑡ℎ participant 𝑗(𝑗 =

1, 2, … , 𝐾) with a response vector of  𝑌𝑗 = (𝑦𝑗1, … ; 𝑦𝑗𝑘)′, the mean vector denoted by 

𝜇𝑗 = (𝜇𝑗1, … ; 𝜇𝑗𝑘)′ and corresponding covariates 𝑋𝑗 = (𝑥𝑗1, … ; 𝑥𝑗𝑘)′. The 

assumptions of the marginal regression approach of GEE are that the expected value 

take the form of 𝐸(𝑌𝑖𝑗|𝑥𝑖𝑗) = 𝜇𝑖𝑗 and variance  𝑉𝑎𝑟(𝑌𝑖𝑗|𝑥𝑖𝑗) = 𝜙𝑣(𝜇𝑖𝑗). The 

relationship that exists between the covariates and the marginal mean is 

determined the function: 

ℊ(𝜇𝑖𝑗) = 𝑥
′
𝑖𝑗ℬ                                                          (4.4.3) 

 

Where the probit link ℊ(𝜇𝑖𝑗) = Φ
−1(𝜇𝑖𝑗) with a variance of 𝜈(𝜇𝑖𝑗) = 𝜇𝑖𝑗(1 − 𝜇𝑖𝑗) 

and 𝜙 = 1. ℊ, 𝜈, 𝜙, and Φ represents the link function, variance function, dispersion 

parameter and inverse standard normal cumulative distribution function 

respectively.  

The estimation of ϱ parameter is necessary towards obtaining estimates of GEE. 

Thus for the 𝑗𝑡ℎ farmer, the specification of the working variance–covariance matrix 

for 𝑌𝑗  is: 
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𝑉𝑗  =   𝜙𝐴𝑗

1
2𝑅𝑗(𝛼)𝐴𝑗

1
2                                                     (4.4.4) 

where 𝐴𝑗and 𝑅𝑗(ϱ) represents 𝑛 x 𝑛 diagonal and working correlation matrices 

defined by the vector of parameters 𝛼 respectively The regression parameter 𝛽 in 

the GEE model is determined by solving the equation: 

 

𝜔(𝛽) ≡∑
𝜕𝜇𝑖(ℬ)

𝜕ℬ′

𝑁

𝑗=1

[𝑉(ϱ̂)]−1 (𝑦𝑗 − 𝜇𝑗) = 0         (4.4.5) 

The working correlation assumed for the data type is an exchangeable correlation 

structure 𝐶𝑜𝑟𝑟 (𝑌𝑖𝑗 , 𝑌𝑗𝑘) =  ϱ implying that the 𝑗𝑡ℎ person has matching  

correlation at each estimation point.  

The GEE model estimated in this study examines the effect of the mean (ℬ1) and 

standard deviation (ℬ2) of the prospect outcomes on the probability of participants 

j choosing the outer prospect (𝑌) while controlling for prospects (lottery) design33 

(ℬ3 𝑡𝑜 ℬ11). The estimation model specification is: 

𝑌𝑗(1 = 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑝𝑟𝑒𝑓𝑒𝑟 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 (′𝑟𝑖𝑠𝑘𝑦
′) 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡)

= ℬ0 + ℬ1𝑀𝑒𝑎𝑛 +  ℬ2𝑆𝑡𝑑  + ℬ3𝑔𝑎𝑖𝑛 ∗ 𝑆𝐷 + ℬ4𝑙𝑜𝑠𝑠 ∗ 𝑆𝑡𝑑 + ℬ5𝑔𝑎𝑖𝑛 

+ℬ6𝑙𝑜𝑠𝑠 + ℬ7𝑚𝑖𝑥𝑒𝑑 +  ℬ8𝑧𝑒𝑟𝑜𝑏𝑜𝑢𝑛𝑑_𝑜𝑢𝑡𝑒𝑟_𝑔𝑎𝑖𝑛 

+ℬ9𝑧𝑒𝑟𝑜𝑏𝑜𝑢𝑛𝑑_𝑜𝑢𝑡𝑒𝑟_𝑙𝑜𝑠𝑠 +ℬ10 𝑙𝑜𝑤𝑒𝑟_𝑧𝑒𝑟𝑜𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑛𝑒𝑟_𝑚𝑖𝑥𝑒𝑑 

+  ℬ11 𝑢𝑝𝑝𝑒𝑟_𝑧𝑒𝑟𝑜𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑛𝑒𝑟_𝑚𝑖𝑥𝑒𝑑                                                     (4.4.6) 

Where, 

𝑴𝒆𝒂𝒏 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑚𝑒𝑎𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑎𝑦𝑜𝑓𝑓𝑠 𝑜𝑓 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 

𝑺𝑫 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑎𝑦𝑜𝑓𝑓𝑠 𝑜𝑓 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵  

𝒈𝒂𝒊𝒏 = 1 𝑖𝑓 𝑝𝑎𝑦𝑜𝑓𝑓𝑠 𝑎𝑟𝑒 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑜𝑚𝑎𝑖𝑛  

𝒍𝒐𝒔𝒔 = 1 𝑖𝑓 𝑝𝑎𝑦𝑜𝑓𝑓𝑠 𝑎𝑟𝑒 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑜𝑚𝑎𝑖𝑛  

𝒎𝒊𝒙𝒆𝒅 = 1 𝑖𝑓 𝑝𝑎𝑦𝑜𝑓𝑓𝑠 𝑐𝑢𝑡 𝑎𝑐𝑟𝑜𝑠𝑠 𝑔𝑎𝑖𝑛 𝑎𝑛𝑑 𝑙𝑜𝑠𝑠 𝑑𝑜𝑚𝑎𝑖𝑛𝑠  

𝒛𝒆𝒓𝒐𝒃𝒐𝒖𝒏𝒅_𝒐𝒖𝒕𝒆𝒓_𝒈𝒂𝒊𝒏 

= 1 𝑖𝑓 𝑔𝑎𝑖𝑛 𝑡𝑎𝑠𝑘, 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑜𝑢𝑡𝑒𝑟 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡 𝑏𝑜𝑢𝑛𝑑 𝑎𝑡 𝑧𝑒𝑟𝑜  

𝒛𝒆𝒓𝒐𝒃𝒐𝒖𝒏𝒅_𝒐𝒖𝒕𝒆𝒓_𝒍𝒐𝒔𝒔 

=  1 𝑖𝑓 𝑙𝑜𝑠𝑠 𝑡𝑎𝑠𝑘, 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑜𝑢𝑡𝑒𝑟 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡 𝑏𝑜𝑢𝑛𝑑 𝑎𝑡 𝑧𝑒𝑟𝑜  

                                                           
33 The design referred to in this section is presented in Figure 3 and discussed in details in Chapter 
5. 
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𝒍𝒐𝒘𝒆𝒓_𝒛𝒆𝒓𝒐𝒃𝒐𝒖𝒏𝒅_𝒊𝒏𝒏𝒆𝒓_𝒎𝒊𝒙𝒆𝒅 

= 1 𝑖𝑓 𝑚𝑖𝑥𝑒𝑑, 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡 𝑏𝑜𝑢𝑛𝑑 𝑎𝑡 𝑧𝑒𝑟𝑜  

𝒖𝒑𝒑𝒆𝒓_𝒛𝒆𝒓𝒐𝒃𝒐𝒖𝒏𝒅_𝒊𝒏𝒏𝒆𝒓_𝒎𝒊𝒙𝒆𝒅

= 1 𝑖𝑓 𝑚𝑖𝑥𝑒𝑑, 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡 𝑏𝑜𝑢𝑛𝑑 𝑎𝑡 𝑧𝑒𝑟𝑜  

 

Recall that the justification for the estimation model is based on the proposition of 

M-SD. When faced with a risk/uncertain scenario the DM should prefer B whenever: 

the expected value of 𝐵 is greater and SD is smaller than 𝑎; the expected value of 𝐵 

is greater even when 𝐴 and 𝐵 both have equal SD; and (or) the variance of 𝐵 is 

smaller even when both have equal expected value. The preference for standard 

deviation over variance in this specific model is to ensure uniform units of both EV 

and SD.  
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4.5 Probit Model  

In order to achieve objective (v) which is to investigate the relationship between 

risk and uncertainty attitudes and decision to engage in off-farm income generating 

activities (OFIGA), a probit model parameters is estimated. As a special case of the 

Generalised Linear Model, the probit model (Bliss, 1934; Fisher, 1935) is a non-

linear probability econometric model suitable for fitting binary response model by 

defining a function 𝑓(∗) using the cumulative distribution function of the standard 

normal distribution. The elicitation of the probability 𝑃𝑟 of choosing to participate 

in OFIGA is performed as follows. Let 𝑦𝑗  represent a random variable with Bernoulli 

distribution having probability  

𝑃𝑟(𝑦𝑗 = 1|𝑥) = 𝑃𝑟(𝑦𝑗
∗ > 0|𝑥) 

     = 𝑃𝑟(𝑥𝑗
′ℬ + 𝜀𝑗 > 0|𝑥) 

                                    = 𝑃𝑟(𝜀𝑗−𝑥𝑗
′ℬ|𝑥)                           (4.5.1) 

Given the assumptions of independently and normally distributed error 

𝜀𝑖~𝑖. 𝑖. 𝑑. 𝑁(0,1) 

𝑃𝑟(𝑦𝑗 = 1|𝑥) = 1 −Φ(−
𝑥𝑗
′ℬ

𝜎
) , σ ≡ 1 

                                            = Φ(𝑥𝑗
′ℬ)                                (4.5.2) 

Φ represents the standard normal CDF and 𝛽 denotes 𝑘𝑥1 vector of coefficient 

Consider the regression model, 

    𝑦𝑗
∗  = 𝑋𝑗

′ℬ + 𝜀𝑗    

                                                             𝑦𝑗 = {
1       𝑖𝑓 𝑦𝑗

∗ > 0                                                       
               

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  (4.5.3)                       
 

Where 𝑦𝑗
∗ in the case of this study represents farmers’ choice regarding 

participation in off-farm income generating activities, the vectors of explanatory 

variables (described in Table 11) are denoted by 𝑋𝑗; ℬ  is the model coefficients 

representing the magnitude of the explanatory variables.  
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Let 𝑥 denote 𝑘𝑥1 vector of output and 𝑁𝑥1 vector of input represented by 𝑦; the 

product of the likelihoods of the individual observations results in the likelihood of 

the whole sample because observations are independent and identically 

distributed. 

𝑓(𝑦|𝑥, ℬ) =∏Φ(𝑥𝑗
′ℬ)𝑦𝑗 [1 − Φ(𝑥𝑗

′ℬ)](1−𝑦𝑗)     

          𝑓(𝑦|𝑥, ℬ) =∏Φ
𝑗

𝑦𝑗(1 − Φ𝑖)
1−𝑦𝑗                 (4.5.4) 

The Log likelihood function is given by: 

         𝑙𝑛𝐿 =∑𝑦𝑗

.

𝑗

𝑙𝑛Φ𝑖 + (1 − 𝑦𝑗) 𝑙𝑛(1 − Φ𝑗)             (4.5.5) 

To obtain the average marginal effect for a continuous variable assuming other 

variables are kept at a constant 𝑃𝑟(𝑌 =  1|𝑋 =  𝑥):  

          
𝜕𝑃𝑟

𝜕𝑥𝑗
=
1

𝑛
∑Φ(𝑥𝑗

′ℬ)ℬ

𝑛

𝑗=1

                                         (4.5.6) 

Or discrete for the effect of a change on the probability P(Y = 1|X = x): 

𝜕𝑃𝑟

𝜕𝑥𝑗
=
1

𝑛
∑[Φ(𝑥𝑗

′ℬ|𝑥𝑗
𝑘

𝑛

𝑗=1

= 1) −  Φ(𝑥𝑗
′ℬ|𝑥𝑗

𝑘 = 0)]     (4.5.7) 

While the marginal effect at means for a continuous variable and discrete variables 

respectively is derived by: 

𝜕𝑃𝑟

𝜕𝑥𝑗
= Φ(𝑥𝑗′̅ℬ)ℬ 

𝜕𝑃𝑟

𝜕𝑥𝑖
= Φ(𝑥𝑗′̅ℬ|𝑥𝑗

𝑘 = 1) −  Φ(𝑥𝑗′̅ℬ|𝑥𝑗
𝑘 = 0)]           (4.5.8) 

The independent variables and their expected signs drawing from earlier studies 

discussed in Chapter 2 are presented in Table 11. A-priori it is expected that age, 

gender, farm size and ownership of farm have a negative effect on OFIGA while 

marital status, education and farm hours either have a positive or negative 

relationship with OFIGA. As for the relationship between risk and uncertainty 

attitudes variables and OFIGA, the expectation was a negative relationship exist 

between  α, 𝛾+ and OFIGA.  
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Table 11   
Definition of Variables subjected to Probit and multinomial Probit Regression Models 

Variable ID Description Expected Sign 

Dependent     

𝑌𝑗 1= Farmer engages in off-farm income 
generating activities, 0=otherwise 

  

Independent    

α Numerical value (Lower values = greater 
risk aversion for gains) 

-  

𝛿+ Numerical value (Lower values = higher 
pessimism for gains) 

-/+  

𝛾+. Numerical value (Lower values = inverse S-
shape)  

-/+  

𝛽 Numerical value (Lower values = greater 
risk seeking for losses) 

+  

𝛿− Numerical value (Lower values = higher 
optimism for losses) 

-/+  

𝛾−. Numerical value (Lower values = inverse S-
shape)  

-/+  

Age Number of years -  
Gender 1 male , 0 otherwise -/+  
Marital Status 1 married , 0 otherwise -/+  
Household size Number living in a farm household   
No Education 1 no formal education, 0 

otherwise(Reference) 
-  

Primary Edu. 1 primary education, 0 otherwise +  
Secondary Edu. 1 secondary education, 0 otherwise +  
Tertiary Edu. 1 tertiary education, 0 otherwise  +  
Farm size Number of hectare -  
Farmtenure 1 farm owner, 0 otherwise -  
Farmtype 1 one cycle,  0 otherwise +  
Farmhours Number of hours spent on farm/day -  
Location 1 Rural, 0 otherwise - 
Cooperatives  1 member, 0 otherwise -/+ 

 

Given the variables defined in Table 11 that are guided by the relationships 

identified from literature and discussed in section 2.5 in Chapter 2, the probit model 

estimated in this study examines the effect of risk and uncertainty attitudes and 

socioeconomic characteristics on the probability of farmers’ participation in OFIGA 

(𝑌𝑖). This relationship is tested through estimating the specified probit model 

parameters (4.5.9) using the Maximum Likelihood Estimation (MLE) technique in 

Python software. 
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𝑌𝑗(1 = 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑠 𝑖𝑛 𝑂𝐹𝐼𝐺𝐴, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)  

=  ℬ0 +  ℬ1α+  ℬ2𝛿
+
+  ℬ3𝛾

+
+  ℬ4𝛽+  ℬ5𝛿

−
+  ℬ6𝛾

−
  +  ℬ7𝑎𝑔𝑒

+  ℬ8 𝑔𝑒𝑛𝑑𝑒𝑟 +  ℬ9 𝑚𝑠𝑡𝑎𝑡𝑢𝑠 +  ℬ10 𝑝𝑟𝑖𝑒𝑑𝑢 +  ℬ11 𝑠𝑒𝑐𝑒𝑑𝑢 
+  ℬ12 ℎ𝑖𝑔ℎ𝑒𝑟𝑒𝑑𝑢 +  ℬ13ℎℎ𝑠𝑖𝑧𝑒 +  ℬ14𝑓𝑎𝑟𝑚𝑠𝑖𝑧𝑒 +  ℬ15𝑓𝑎𝑟𝑚ℎ𝑜𝑢𝑟𝑠
+   ℬ16 𝑓𝑎𝑟𝑚𝑡𝑒𝑛𝑢𝑟𝑒 +  ℬ17𝑓𝑎𝑟𝑚𝑡𝑦𝑝𝑒 +   ℬ18𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 
+  ℬ19𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  
+   ℬ20𝑟𝑢𝑟𝑎𝑙                                                                        (4.5.9)  

 

Five (5) models were estimated to determine the effect of selected variables on 

OFIGA participation. Model I estimated the effect of bipolar tendencies alone on 

OFIGA participation, Model II estimated the effect of risk attitudes on OFIGA 

participation while Model III incorporates bipolar tendencies, risk attitudes and 

socioeconomic characteristics in the estimation. Models IV and V are similar to 

Model III and IV respectively but for uncertainty. 

4.5.1 Multinomial Probit Estimation 

In order to identify the determinants of preference for the type of off-farm income 

generating activities, this thesis employs the Multinomial Probit estimation (MNP 

hereafter). The OFIGA types which make up the dependent variable are categorised 

into worker, self-employed and employee with No-OFIGA participation as the base 

outcome  𝑖. 𝑒.  𝑖 = 0, 1, 2, 3 where 0 = 𝑁𝑜 𝑂𝐹𝐼𝐺𝐴 , 1 = 𝑆𝑒𝑙𝑓_𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 , 2 =

𝑤𝑜𝑟𝑘𝑒𝑟 and 3 = 𝑝𝑎𝑖𝑑 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 as such a farmer 𝑗 engages in an OFIGA 𝑖 (𝑖 ∈

𝑁). Assuming the farmer seeks to maximize utility on the types of OFIGA, 𝑈𝑖𝑗 is 

determined by the farmers’ characteristics ℬ′𝑋𝑖𝑗 as well as random error 𝜀𝑖𝑗 

presented as: 

                                                 𝑈𝑖𝑗 =  ℬ
′𝑋𝑖𝑗 + 𝜀𝑖𝑗 ~ 𝑁[0, Σ]                               (4.5.10) 

Thus the choice of OFIGA 𝑖 that maximizes the utility of the 𝑗𝑡ℎ farmer is: 

                             𝑈∗(𝜓) =  𝑈[𝜅𝑏(𝜓)𝜅𝑐(𝜓)]                                                       (4.5.11) 

Where 𝜓, 𝜅𝑏 , 𝜅𝑐 represents the farmers’ characteristics, the base outcome 

occupation (No OFIGA) and the set of OFIGA alternatives. Thus, the probability of 

choosing OFIGA 𝑖 by the 𝑗𝑡ℎ farmer is: 

𝑃(𝑂𝐹𝐼𝐺𝐴 = 𝑖| ℬ, 𝑋𝑖𝑘, Σ
∗) = ∫ …

 ℬ∗𝑋1
∗

−∞

 ∫ 𝑓(𝜀𝑖1,…,
∗ 𝜀𝑗𝑖−1

∗
 ℬ∗𝑋𝑖−1

∗

−∞

)𝜕𝜀𝑖1,…,
∗ 𝜕𝜀𝑗𝑖−1

∗           (4.5.12) 
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In which case the PDF of the multivariate normal distribution is obtained from 𝑓(.) 

under the assumption that the random error 𝑁[0, Σ] having a covariance matrix 

∑=

(

 

𝜎1  
2 𝜎12 … 𝜎1𝑛
𝜎12 𝜎2  

2 ⋮

⋮ ⋱
𝜎1𝑛 ⋯ 𝜎𝑛  

2 )

  

Thus, the model estimating the determinants of preference for the types of off-farm 

income generating activities is presented as: 

𝑌𝑗(1 = 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑓𝑎𝑟𝑚𝑒𝑟 𝑖𝑠 𝑠𝑒𝑙𝑓𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑, 2 = 𝑤𝑜𝑟𝑘𝑒𝑟,3 = 𝑡𝑎𝑘𝑒𝑠 𝑝𝑎𝑖𝑑 𝑤𝑜𝑟𝑘)  

=  ℬ0 +  ℬ1α+  ℬ2𝛿
+
+  ℬ3𝛾

+
+  ℬ4𝛽+  ℬ5𝛿

−
+  ℬ6𝛾

−
  +  ℬ7𝑎𝑔𝑒

+  ℬ8 𝑔𝑒𝑛𝑑𝑒𝑟 +  ℬ9 𝑚𝑠𝑡𝑎𝑡𝑢𝑠 +  ℬ10 𝑝𝑟𝑖𝑒𝑑𝑢 +  ℬ11 𝑠𝑒𝑐𝑒𝑑𝑢 
+  ℬ12 ℎ𝑖𝑔ℎ𝑒𝑟𝑒𝑑𝑢 +  ℬ13ℎℎ𝑠𝑖𝑧𝑒 +  ℬ14𝑓𝑎𝑟𝑚𝑠𝑖𝑧𝑒 +  ℬ15𝑓𝑎𝑟𝑚ℎ𝑜𝑢𝑟𝑠
+   ℬ16 𝑓𝑎𝑟𝑚𝑡𝑒𝑛𝑢𝑟𝑒 +  ℬ17𝑓𝑎𝑟𝑚𝑡𝑦𝑝𝑒 +   ℬ18𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 
+  ℬ19𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  
+   ℬ20𝑟𝑢𝑟𝑎𝑙                                                                                          (4.5.13) 

The socio-economic and risk/uncertainty variables are defined in Table 11 above. 

Similar to the probit model, five (5) models estimated using python were used to 

determine the effect of selected variables on the types of OFIGA engaged in by 

farmers. Model I estimated the effect of bipolar tendencies alone on types of OFIGA, 

Model II estimated the effect of risk attitudes on types of OFIGA engaged in while 

Model III incorporates bipolar tendencies, risk attitudes and socioeconomic 

characteristics in the estimation. Models IV and V are similar to Model III and IV 

respectively but for uncertainty. 
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4.6 Multivariate Multiple Regression  

The objective of examining the effect of bipolar tendencies on risk attitude are 

determined from estimating a multivariate regression model. This model was 

chosen because there was the need to predict multiple response variables 

determined by more than two independent variables taken into consideration 

simultaneously. In addition, unlike the ordinary least square regression the 

multivariate multiple regression has the advantage of allowing tests of the 

coefficients across the different response variables to be carried out. 

Recall from section 4.3 that the farmer risk and uncertainty attitude CPT parameters 

(α, β, 𝜆 , 𝛾+, 𝛾,− 𝛿+, 𝛿−, 𝜑) is determined by the farmers’ mental health related factors 

(bipolar disorder and mood) and other farmer specific characteristics. Thus, in 

general form the multivariate multiple regression model is specified as 

                                                       𝑌 =  ℬ𝛵𝑋                                                       4.6.1 

Where  

Y = row vector of 8 CPT parameters 

X = row vector of bipolar disorder, mood and other farmer specific characteristics 

ℬ = matrix of coefficients obtained from the estimation  

In multivariate multiple regression, each response variable is determined by its own 

regression model presented as: 

(

𝑌1
𝑌2
⋮
𝑌𝓌

) = (

 ℬ01 +  ℬ11 𝑋1 +  ℬ21 𝑋2 +⋯+  ℬ𝓋1 𝑋𝓋
 ℬ02 +  ℬ12 𝑋1 +  ℬ22 𝑋2 +⋯+  ℬ𝓋2 𝑋𝓋

⋮
 ℬ0𝓌 +  ℬ1𝓌 𝑋1 +  ℬ2𝓌 𝑋2 +⋯+  ℬ𝓌2 𝑋𝓌

)+(

𝜀1
𝜀2
⋮
𝜀𝓌

)            4.6.2 

Where the dependent variable is 𝑌𝑗  
𝛵 = (𝑌𝑖0, 𝑌𝑖1, … ; 𝑌𝑖𝓌), predictor variable values 

𝑋𝑖 = (𝑋𝑖0, 𝑋𝑖1, … ; 𝑋𝑗𝓋) and regression coefficients   ℬ𝑖 = (ℬ𝑖0, ℬ𝑖1, … ; ℬ𝑖𝓋). 

Given that 𝐸(𝜀) = 𝐸 ([

𝜀1
𝜀2
⋮
𝜀𝓌

]) = 0, 𝑉𝑎𝑟 (𝜀) = Σ, the multivariate normal distribution 

for 𝑌𝑖𝓌  is 𝑌𝑖𝓌~𝑁𝓌( 𝑋𝑖ℬ,Σ).  
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Thus, the normal multivariate density function (when the Σ is positive definite) is 

𝑓(𝑌𝑗|ℬ,Σ) = (2𝜋)
𝓌
2 |Σ|−

1
2𝑒𝑥 𝑝 (−

1

2
(𝑌𝑗 −   ℬ𝑋𝑗)

𝛵
 𝛴−1(𝑌𝑗 −ℬ𝑋𝑗))            4.6.3 

The matrix ℬ of least-squares estimates of the regression coefficients is obtained 

from 

                                    ℬ̂ = (𝑋𝛵𝑋)−1( 𝑋𝛵𝑌)                                                  4.6.4 

Specifically, the model estimated to examine the effect of bipolar tendencies on risk 

attitude is presented as:  

𝑌(𝐶𝑃𝑇 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠) =  ℬ0 +  ℬ1𝑏𝑖𝑝𝑜𝑙𝑎𝑟 +  ℬ2𝑚𝑜𝑜𝑑 +  ℬ3𝑏𝑖𝑝𝑜𝑙𝑎𝑟 ∗ 𝑚𝑜𝑜𝑑 

+  ℬ4𝑎𝑔𝑒 +  ℬ5𝑔𝑒𝑛𝑑𝑒𝑟 
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4.7 Summary  

This chapter begins with a conceptual framework that show how this thesis is 

designed to build on previous studies but goes further to link issues separately 

examined in previous studies. Specifically it shows how the study is able to examine 

the risk/uncertainty attitudes of participants and the connection between decision-

making behaviour. It also highlights the procedure and methodologies employed to 

link attitudes to risk and uncertainty with mental health related factors.  

To achieve the objective of estimating farmers’ attitudes to risk and uncertainty in 

different context and content domains, this thesis uses both non-parametric 

methods - relating to the patterns that characterise participant choices and their 

determinants; and parametric models – based upon cumulative prospect theory as 

it extends to continuous prospects. This chapter shows how the CEU model 

estimated in this study has direct correspondence with CPT specifically under 

additivity of the subjective probability measures. It describes the steps involved in 

estimating the individual parameters from a Bayesian procedure and rationale 

behind the methods used to make inferences about the parameters. 

In addition, Chapter 4 explains the generalized estimating equations procedure 

used to estimate the determinants of prospect choice. The objective of examining 

the effect of bipolar tendencies on risk attitude are determined from estimating 

multivariate multiple regression while the relationship between risk attitude and 

decision to engage in off-farm income generating activities are determined from 

probit and multinomial probit models respectively. 
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Chapter 5 

Experiment Design and Implementation 
 

5.0 Introduction 

This chapter covers details of the steps and processes of designing the experiment 

to the implementation of the field experiment. The data used in this study was 

obtained using two data gathering tools – experiment and questionnaire. First, data 

relevant to estimating choices and attitudes under conditions of risks and 

uncertainties was collected using an interval ‘lottery-style’ lab-in-field experiment 

that is as realistic as discrete lotteries but more indicative of the kind of choices 

made by farmers on a day-to-day level. Second, a two-part questionnaire was given 

to participants to obtain information relevant to achieving the research objectives. 

The first section of the questionnaire captured socioeconomic characteristics while 

the second section covered bipolar disorder using a modified Bipolar Spectrum 

Diagnostic Scale (by Ghaemi et al., 2005).  

The sections that make up Chapter 5 are as follows. Section 5.1 details the concepts 

on which the experiment pivots, section 5.2 explains the experimental design, 

section 5.3 reports the implementation processes and section 5.4 documents the 

data collection steps. 
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5.1 Continuous or Discrete Prospects? 

This section explains the rationale behind the design of the prospect choice 

experiment before proceeding to explain key concepts associated with the 

experiment. 

The studies reviewed in Chapter 2 shows that the literature is replete with discrete 

lottery choice problems. However, continuous choices problems arguably better 

reflect everyday real world problems. Everyday examples include our daily 

commute time to work, the yield of a crop, the change in an asset price, the interest 

rate on a loan etc. The following examples put in context a typical discrete and 

continuous lotteries in the risk case: 

While a discrete lottery is typically presented as 

Lottery Choices: Would you prefer A or B? 

A: 10% chance of winning $2   B: 10% chance of winning $3.85 

 90% chance of winning $1.6   90% chance of winning $0.10 
 

The continuous lottery on the other hand takes the form of  

Lottery Choices: Would you prefer A or B? 

A: Equal likelihood of winning any B: Equal likelihood of winning any 

 amount between $1.6 and $2              amount between $0.1 and $3.85 

The main distinction between the continuous and discrete lotteries is that the 

number of possible values that the distribution of the continuous lottery has is 

infinite. Thus, the ‘probability’ that the payoff will assume a particular value is zero. 

Despite the prevalence of continuous choices problems in everyday problems, risky 

and uncertain real-life decisions have typically not been modelled using continuous 

lotteries. Instead, researchers relied on lotteries that have discrete probabilities 

attached to outcomes. To bridge this gap, the experiment in this study is based on 

interval prospect-choice design which takes into consideration key factors that 

defines a good elicitation technique.  
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5.1.1 Reality viewpoint 

While this study acknowledges that in economics it is impracticable to exhaustively 

represent reality with pinpoint accuracy in an experiment, however being certain 

that the findings will reflect real life decisions is only possible if the structure of the 

experiments corresponds to the what participants encounter in real life. To bring 

into context the above argument, below is a typical instance where farmers in 

Nigeria were presented with hybrid maize: 

“…under good management and weather, IITA maize hybrids A0905-28 

and A0905-3 are reported to have the capacity to produce 6-9 tons/ha 

(Seed Management Enterprise Institute (SEMI), 2012)”.  

While farmers are also aware that the competition hybrid Oba 98 have potential 

yield of 6.5 – 8 tons/ha. The farmer in reality may (or not) have equally likely chance 

of obtaining a yield between the minimum and maximum ceteris paribus. Presenting 

this information as a discrete lottery for instance say - an equal chance lottery with 

50% chance of 6tons/ha and 50% chance of 9tons/ha will be misleading as it does 

not capture all other yield possibilities in-between. 

One of the arguments often put forward by the proponents of simple discrete 

outcomes in explaining risk attitude is the complexity of the model needed to 

adequately handle experimental designs where lotteries take the form of 

continuous distributions over outcomes since most of the leading theories were 

originally developed to handle discrete outcomes. However, this currently does not 

pose a problem as extensions of most of the leading theories (including the CPT and 

CEU as discussed in Chapter 3) can sufficiently handle such cases. In the light of this 

assertion and particularly as the participants of this study (farmers) are constantly 

being faced with information where possible outcomes are styled as interval 

‘lotteries’, the design of the experiment puts reality before analytical convenience. 
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5.1.2 Cognitive perspective 

Popular elicitation methods have reported inconsistencies when various elicitation 

tools are applied to artefactual experiments in developing countries (see Charness 

& Viceisza 2015; Brick, Visser & Burns 2012). It has been argued by some studies 

(e.g. Jacobson & Petrie, 2009) that inconsistencies arise from cognition among 

several popular elicitation techniques. Even comparison between methods using 

the same participants has resulted in significantly different effects. For instance the 

EG method discusses in Chapter 2 has been reported (see Dave, Eckel, Johnson & 

Rojas, 2010) to outperform the HL task in terms of ease of comprehension and 

reliability. Albert & Duffy (2012) criticised the EG task based on its complexity and 

low intuitiveness in the way it is portrayed to participants. Similarly, Coot et al., 

(2013) have reported high percentage of misunderstanding in a modified HL task 

even when effort was made to modify the task to the level of participants. Csermely 

& Rabas (2015) corroborates this finding and reported that varying both the 

possible outcomes and probabilities imposes cognitive burden, which leads to 

inconsistencies. 

In the works of Sutter et al., (2015) and Dasgupta et al., (2016) the importance of 

taking into consideration the cognitive load at the design phase such that the 

experiments are simple enough to comprehend while simultaneously presenting 

little or no difficulties to implement is emphasised. However, experiments 

(especially the MPL’s) can only be successful if participants show good 

understanding of basic probability concepts. Researchers have made significant 

efforts to simplify the process using techniques such as coloured marbles in a bag 

(see Humphrey &  Verschoor  2004; Harrison et al., 2010) balls in an urn (Tanaka et 

al., 2010; Abdellaoui, Klibanoff & Placido, 2015). However, the explanation of 

probabilities still proves difficult to communicate to participants with low level of 

education. The quest to simplify some of the aforementioned techniques has pushed 

the design even further away from reflecting day-to-day real problems. 

Consequently, this thesis is built on evidence that changing probabilities while 

keeping the outcomes fixed is not the most suitable elicitation instrument to be used 
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in developing countries given the complexity this design possess34. In addition, 

graphical compared to tabular presentation and numerical probabilities enhances 

cognition35 and retains concentration. Therefore, the need for a tailored experiment 

that is realistic and suits the level of cognition of the participants was one of the 

drivers of this study. As discussed in section 5.2 this thesis strips the ‘lottery’ design 

of changing probabilities and fixing outcomes (e.g. as in Holt & Laury, 2002). 

Similarly, this study avoids fixing (discrete) probabilities and changing outcomes 

(for example in Jacobson & Petrie, 2007). This study altogether circumvent such 

mathematical jargon36 by replacing lotteries that have discrete probabilities with 

lotteries having continuous probability distribution. 

In summary, the applied work in this thesis is motivated by the fact that continuous 

lotteries are at least as realistic as discrete lotteries and more indicative of the kind 

of choices made by farmers on a day-to-day level.  Moreover, continuous lotteries 

appear not to be any more cognitively demanding than discrete lotteries. Indeed, 

they may be even simpler to comprehend. 

  

                                                           
34 Brick, Visser & Burns (2012) is one of the literature that provides such evidence. 
35 Further evidence in favour of this arguments can be found in Bodemer & Gaissmaier, (2012); 
Visschers, Meertens, Passchier & de Vries, (2009), Armel, Beaumel & Rangel, (2008); Krajbich, Armel 
& Rangel, (2010) and Dambacher, Haffke, Groß & Hübner (2016). 
 

36 By using simple concept such as “equally likely” it was possible to avoid the cognitive load that 
accompanies communicating probabilities to participants. 
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5.1.3 The “equally likely” Concept 

For a continuous prospect under risk, the density needs to be specified. The simplest 

way to do this is to specify a uniform distribution thereby making the term “equally 

likely” a key concept in this thesis. The term equally likely was communicated to 

participants as a case where all events of a sample space have the same likelihood 

of occurring. Notably the context in which this term was used in this thesis differ 

from the discrete case with finite outcomes e.g. “50/50” prospect in which a 

probability mass function is specified. Rather the focus here was on a uniform 

distribution in which infinite number of outcomes are equally likely to occur. For 

equally likely lotteries with uniform continuous outcomes, the chances of any one 

payoff value occurring is zero (i.e. for all values of 𝑥, 𝑃(𝑋 = 𝑥) = 0) since the 

possibilities of any real number within the interval say [a, b] is infinite.  

Attitudes towards risk as opposed to uncertainty, were elicited by specifying that 

all outcomes over the specified interval were ‘equally likely’. Uncertainty was 

communicated by indicating to farmers that one outcome within the specified 

interval would be realised but without the specification of an associated probability 

density. For example, Figure 3a in section 5.2 below is a uniform continuous 

distribution in which prospect A is equally likely to take any value in the range of 

[₦4,280 to 7,358]. While prospect B is equally likely to take any value in the range of 

[₦5,361 to ₦6,315] (thus specifying a uniform probability density). It was 

emphasised and demonstrated to participants’ that in the case of risk, each prospect 

resulted in an infinite number of possible payoffs within the given range [i.e. ₦4280 

to ₦7358 for prospect A and ₦5,361 to ₦6,315 for prospect B]. Thus, there was no 

reason to believe that the frequency of occurrence differ for any value within the 

given interval of values. As for the case of uncertainty, when the set of continuous 

prospects are presented, the information about probability density is withheld. 

Details of the techniques used to distinguished risk from uncertainty in the field in 

a manner that participants understood the tasks under both conditions is discussed 

in subsections 5.4.2 and 5.4.3. 
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5.2 The Design 

The experiment used in this study was designed to examine the risk and uncertainty 

attitudes of participant by observing their preference over a series of prospect pairs. 

The seven (7) types of prospect pair are presented in Figure 2. Of each of the seven 

(7) types of prospect pairs, the top prospect (prospect A hereafter) was more ‘risky’ 

and had a greater variance than the bottom (prospect B hereafter).  

 

Figure 2. Types of prospect pairs 

Type 1 is unconstrained in the gain domain. As an illustration under conditions of 

risk, the set of prospects presented in Figure 3a is Type1 and shows that a DM is 

equally likely to earn any amount between ₦4280 and ₦7358 if he/she chooses 

Prospect A; while for Prospect B he/she is equally likely to earn any amount between 

₦5361 and ₦6315. Type 2 has the lower bound of the outer prospect at zero in gain 

domain. For example, the set of prospects presented in Figure 3b is Type2 and shows 

that a DM is equally likely to earn any amount between ₦0 and ₦8662 if he/she 

chooses Prospect A; while for Prospect B he/she is equally likely to earn any amount 

between ₦3579 and ₦6108. Comparing Type 1 to Type 2 it becomes clear that while 

both are within the gain domain, the lower limit of prospect A in Type 1 never drops 

to zero unlike Type 2 where the lower limit of prospect A is always ‘pegged’ at zero. 
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Similarly, for the time context under risk; the set of prospects presented in Figure 

3c is Type3 and shows that a DM is equally likely to lose 54 minutes and 8 hours 36 

minutes should the DM choose prospect A or equally likely to lose 4 hours 36 

minutes and 5 hours 24 minutes if the DM picks prospect B. On the other hand, the 

set of prospects presented in Figure 3d is Type4.  The difference between Type 3 to 

Type 4 is that while both are within the loss domain, the lower limit of prospect A in 

Type 3 never drops to zero unlike Type 4 where the lower limit of prospect A is 

always ‘pegged’ at zero. Details of the manner in which the entire experiment was 

presented to respondent is reported in Appendix 3. 

 
 

Figure 3a. Sample of Type 1 prospect in monetary context (gain domain)  
 

  

Figure 3b. Sample of Type 2 prospect in monetary context (gain domain)  

 

Figure 3c. Sample of Type 3 prospect in time context (loss domain) 

 

 

Figure 3d. Sample of Type 4 prospect in time context (loss domain)  

 

 

Prospect B 

Prospect A 
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In summary, Type 1 is unconstrained in the gain domain. Type 2 has the lower bound 

of the outer prospect at zero in gain domain. Type 3 is unconstrained in the loss 

domain. Type 4 has its upper bound of the outer prospect at zero in the loss domain, 

Type 5 - unconstrained in the mixed domain, Type 6 has the inner prospect of the 

lower bound constrained to zero in the mixed domain, Type 7 has its inner prospect 

upper bound constrained to zero in the mixed domain. The essence of the different 

types37 was to cover as many domains of interest to this study and as wide a range 

as possible38. 

The prospects were computer generated random uniform lotteries on the 0 -100 

interval.   A large number of prospects pairs of each of the 7-types where generated 

in the first instance. The certainty equivalents of each of the prospect pairs were 

then calculated under expected utility for a ladder of “symmetric” power utilities 

across the gain and loss domains. These spanned from substantial risk seeking to 

strong risk aversion (2|2, 1.25|1.25, .99|.99, .5|5, .1|.1, .05|.05). Prospects pairs were 

kept only if there would be a switch from one of the prospects to another over this 

range of preferences. Thus, a prospect pair were retained when there was a 

difference in the certainty equivalents that would ensure there would be a 

difference in the choices made by participants’ with different “risk profiles”. Then, 

the prospect pairs where ranked according to those where switches would be made 

at different points in risk preference ladder (for all 7-types). Finally, a subset of the 

prospect pairs were chosen that had a range of switching points at different points 

in the ladder. 

Each participant had to make a choice between Prospects A or B in which case 

Prospect A was by nature more ‘risky’ than B since prospect B is always contained 

in Prospect A and Prospect A always had a higher variance. This process continued 

along the choice tasks beginning with Prospect A having a smaller EV compared to 

Prospect B, as such a risk averse participant is expected to choose Prospect B over 

A. As the EV of Prospect A becomes larger than B in subsequent choice pairs, a risk 

                                                           
37 Note.  Type1 and Type2 are subtasks framed as a gain and jointly referred to hereafter as gain 
domain task. Similarly, Type3 and Type4 are subtasks framed as a loss and jointly referred to 
hereafter as loss domain task while Type5, Type6 and Type7 are subtasks which consist of both 
gains and losses and jointly referred to hereafter as mixed domain task. 
 

38 The entire experiment is presented in Appendix 3. 
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averse participant is expected to switch to Prospect A from B. Using both parametric 

and non-parametric approaches, the study estimates risk and uncertainty attitudes 

from the choice of the prospects of participants and the switching point of each 

participant. 

Monotonic switching is not imposed in this study. One of the main reason for this 

was to ensure participants behaviour were observed when faced with real problems 

without imposing added assumptions on preferences. Further, it provides the 

platform to possibly examine any inconsistencies in choices. The proportion of 

participants that violated monotonic switching was minimal (accounting for only 

about 6%). This low percentage suggest that it was the innate behaviour of 

participants was captured rather than artefacts of the experiment. 

The participants were expected to choose between a pair of prospects under each 

condition as shown in Figure 3. The conditions (risk and uncertainty) consisted of 

decision task covering monetary and non-monetary39 context; across the gains, 

losses and mixed content domains as presented in Figure 4.  

 

 

Figure 4. Conditions, Contexts and Contents domains 

 

Each participant was presented with 90 pairs of prospect choice tasks spread across 

the different context and content domains under risk and uncertainty.  Specifically, 

                                                           
39 The non-monetary context was not tested under conditions of uncertainty as the resources needed 
by the researcher and mental effort on the respondents would have been enormous given the large 
number of choice task each respondent would have had to be presented with. 
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10 tasks was allocated to the gain content domain under proxy-monetary context, 

10 task each to gain and loss content domains under self-monetary context and 15 

tasks to the mixed content domains under self-monetary context. For the time 

context, 10 tasks was allocated to the loss content domain. Similar proportions to 

the self-monetary context under conditions of risk was allocated to the content 

domains under uncertainty. The pattern of experiment for risk and uncertainty was 

largely similar. However, the difference was the introduction the “equally likely” 

concept (as discussed in 5.1.3 and detailed in the questionnaire in appendix) for the 

risk experiment while in the case of uncertainty this information was not provided.  

Finally, a questionnaire (details in Appendix 4) which covered socio-demographic 

characteristics and information on participation in off-farm income generating 

activities as well as bipolar disorder tendencies was also administered to 

participants to obtain other relevant data to meet the objectives of this study. 
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5.3 Implementation 

This section documents the activities carried out prior to and during the field 

survey. Specifically it covers the preparation and procedure employed during the 

pilot survey and data collection. 

5.3.1 Survey Location 

The survey location was Edo and Delta State of Nigeria as shown in Figure 5a. The 

coordinates for Delta and Edo States are 5.5325° N, 5.8987° E and 6.5438° N, 

5.8987° E respectively. 

  

Figure 5a. Map Showing the Study Area 
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5.3.2 Selection of participants 

The study relied on data obtained from 160 small farm households with the target 

respondent being the household heads since they are responsible for decision-

making. Multistage sampling technique was used to obtain the respondents of the 

study. As shown in Figure 5b, the first and second stages depended on purposive40 

selection of the country Nigeria and then two states (Delta and Edo) within Nigeria.  

 

Figure 5b. Stages in Obtaining Respondents 

Stage 3 involved the random selection of 4 Local Government Areas (LGA’s) form 

each of the States (bringing the total LGA’s to 8) while in stage 4, twenty (20) 

farmers each form the 8 LGA’s were randomly picked to obtain the final sample size 

of 160 respondents.  

5.3.3 Training of enumerators 

Enumerators that assisted in carrying out the survey were trained by the researcher 

to ensure that they were familiar with the research and survey objectives as well as 

understood the questionnaire. They were also trained on how to make use of all 

supporting materials and administer the survey accurately and consistently without 

introducing any form of bias or noise. Overall, the researcher was fully responsible 

for coordinating the survey team. 

                                                           
40 Delta State is purposively selected because part of the funding for the PhD research is provided by 
the Delta State University, Nigeria whose primary research interest lies within Delta State, while Edo 
State is chosen because it is broadly classified as having similar farming systems and agro-climatic 
conditions to Delta State but have its distinct cultural background. Hsee & Weber, (1999) find that 
culture has a significant impact on risk attitude.  
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5.3.4 Pilot 

At the early stages of designing the experiment, a pre-pilot was conducted using 

volunteers from different background i.e. 4 farmers, 9 PhD students and 6 

pensioners. The main reason for this was to obtain feedback from respondents of 

different education level on the simplicity and clarity of the experiment. The 

feedback obtained was used to further enhance the efficiency and effectiveness of 

the data collection instrument.  

A pilot survey was conducted (using the target group i.e. smallholder farmers in 

Nigeria in this case) to determine how well the questions were understood and 

whether the content of each question was consistently given the same meaning by 

each respondent. This made it possible to identify ambiguous areas in the 

experiment. In addition, the pilot survey made it possible to estimate the resources 

and time required for each respondent to complete the experiment and 

questionnaire. 

To achieve the objectives of conducting the pilot, the survey was completed by 30 

farmers randomly selected from two communities via a recruitment process 

facilitated through extension agents and community leaders. The average time 

taken to complete the questionnaire was 1hour and 4 mins. The results for the 

pilot41 is presented in Appendix 10. The main findings from the pilot were that 

participants’ choices differ across content (i.e. gain, loss, mixed) domains. 

Specifically, under conditions of risk or uncertainty; majority of participants find the 

inner prospect more attractive for gains (and mixed task) and the outer prospect 

more attractive for losses. The proportion of participants that violated monotonic 

switching was minimal accounting for only about 11%42.  

The main feedback received was regarding the initial challenges in transiting from 

risk to uncertainty choice tasks. That is, some participants found it difficult to ‘erase’ 

from their memory equal likelihood when the instruction for subsequent choice 

task did not provide information regarding the specification of an associated 

                                                           
41 Participants that took part in the pilot study were excluded from the main study and no data 
from the pilot study was included in the main results. 
 

42 This proportion reduced to 6% after incorporating feedback from the pilot. 
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probability density. In other to address this issue and assist with smooth 

transitioning between concepts; the demonstration using a wheel spinner (as 

discussed in section 5.4.2) was introduced to reflect the relevant concepts until 

respondents showed full understanding. Although this approach was time 

consuming as it increased the average completion time to 1hour 22mins, however 

it proved to be efficient and reliable as respondents’ choices were their reflected 

uninfluenced independent decisions.  

In addition, in response to the feedback from the participants, each of task was 

presented in the response sheets showing upper and lower bounds (an 

improvement to the initial blank answer sheet provided in the pilot) on which 

participants ticked their chosen options.  

The observation on the field that continuous prospects are less cognitively 

demanding than discrete prospects and more related to decision problems farmers 

face on a day-to-day basis, the success in recruiting participants and in executing 

the experiment in line with the research plan jointly indicated that the main 

experiment was feasible subject to the aforementioned modifications. 
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5.4 Data collection procedure 

Two sessions of data collection (morning and afternoon) ran per day with each 

session consisting of five participants. At the end of data collection, a total 158 

respondents fully participated in the survey. The procedure adopted during the field 

survey consisted of four main sections namely; arrival and documentation check, 

introduction and briefing, choice task and decision experiment and submission. 

5.4.1 Arrival and documentation check 

Each meeting with respondents took place in a familiar location in each community 

were participants were drawn from. The field team that consisted of the PhD 

researcher and four (4) enumerators (who were trained by the researcher to assist 

in data collection) were responsible for welcoming participants. Each participant 

was required to present evidence of invitation (household ID number) provided by 

the local extension agent.  

5.4.2 Introduction and briefing  

The research aims and terms of participation were communicated to the 

participants in English and local languages after which the participants were asked 

if they understood and that they consented to these terms. At the beginning of the 

experiments a detailed explanation of the necessary concepts (described in section 

5.1.3) relating to the choice task were explained using an unbiased wheel spinner. 

For the case of risk, a uniform probability density was specified by informing 

participants that all outcomes over the specified interval were ‘equally likely’. Then 

the example in Figure 3b (which specifies that a DM is equally likely to earn any 

amount between ₦0 and ₦8662 if he/she chooses Prospect A) was repeatedly spun 

on the spinner. This demonstration continued for about 10 rounds until participants 

were sufficiently convinced from the outcome of the spins that every payoff point 

between ₦0 and ₦8662 was equally likely to occur and remains so if the spinner is 

spun repeatedly. For uncertainty, a similar demonstration to that of the conditions 

under risk was made however the key difference was that while the proportions on 

the spinner remain fixed for all 10 rounds under the risk demonstration, the 

proportions was repeatedly changed before each spin under uncertainty. 
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Specifically, participants’ were told that they could earn any amount between ₦0 

and ₦8662 if he/she chooses Prospect A but the associated probability density was 

not specified. Thus, each time before the dial is rotated the proportions ‘allocated’ 

to the payoffs between ₦0 and ₦8662 was varied. Such that in some cases it was 

possible for payoffs around the middle or within the boundaries (₦0 and ₦8662) to 

have greater likelihood of occurring (signifying ‘not equally likely’) as well as some 

rounds in which all payoffs within the interval had equal likelihood of occurrence. 

Through this demonstration, participants grasped the concept that under 

uncertainty there was no specific information about the probability density as it 

could take any form ranging from uniform (equally likely) to non-uniform (not 

equally likely) should the spinner be spun repeatedly. This step was necessary to 

prevent noise that otherwise arose from cognitive barrier in the pilot.  

Further, it was emphasised that there was no right or wrong answer. Thus, it was 

expected that participants provided genuine answers regarding their choice among 

the task. Participants were also informed that one of their prospect choices would 

determine payment for participation at the end of the experiment for those who 

completed the interview. Thereafter, participants were requested to work 

independently. 

5.4.3 Choice task and decision experiment 

For the experimental sessions, the farmers were randomly placed in groups. Each 

group consisted of five (5) farmers who performed the tasks independently. 

Participants were presented with coded cards which determined the order43 in 

which each set of experiment was presented. The set of experiments consisted of 

series of lottery-styled choice list from which participants were required to make 

choices between prospects. Each task was presented to respondents one after the 

other in the form of choice cards. This process ensured that respondents made their 

                                                           
43 The 6 orders of experiment designed were ABCD, ABDC, ACBD, ACDB, ADBC and ADCB where A 

= Risk in monetary domain (gain, loss, mixed) B = Uncertainty in monetary domain (gain, loss, mixed)  C 

= Risk in time domain (loss only)  D = Risk in proxy monetary domain (gain only). There was no order 

effect in results reported in Chapters 6 and 7 tested using multivariate regression to examine the effect 

of order on risk and uncertainty attitudes. 
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choice on a particular prospect before proceeding to the next. Four trial questions 

preceded the actual experiment to test respondents’ understanding and if 

respondents asked questions and raised concerns this were addressed by the 

enumerator.  

With the onset of a new set of choice tasks such as from gains to losses respondents 

attention were drawn by the researcher and necessary explanations made (e.g. 

reminding participants that they have finished a gain domain task and are now 

moving to a task framed as losses). Further, moving from risk to uncertainty 

participants were also reminded of the outcome of the demonstration using the 

wheel spinner in order to ensure that no issues arising from comprehension of the 

concepts were created when participant progressed from one condition, content or 

context domain to another. This was also necessary to forestall the earlier 

challenges reported in the feedback from the pilot regarding transitioning between 

concepts as discussed in 5.3.4. However, care was taken to avoid causing a gain vs. 

loss or risk vs. uncertainty effect by making sure the reminder was subtle and 

emphasising that there was no wrong or right answer so participants are free to 

report their genuine preferences. 

Furthermore, a two-part questionnaire was given to participants to obtain 

information relevant to achieving other research objectives. The first section of the 

questionnaire captured socioeconomic characteristics while the second section 

covered bipolar disorder using a modified Bipolar Spectrum Diagnostic Scale (by 

Ghaemi et al., 2005). 

5.4.4 Submission and payment procedure 

For the sake of establishing incentive compatibility, participants were told 

beforehand that after the experiment they would be paid according to the choices 

they had made earlier in the experiment for one prospect chosen at random44. Due 

to practical and ethical issues one of each participants’ choice from the gains only 

domain was selected and played using a uniform random number generator in 

                                                           
44 Similar to the findings from other studies, Azrieli, Chambers & Healy (2018) test for incentive 
compatibility in lottery based experiment and reports that selecting and paying for one randomly-
chosen problem stands out as more often than not as a credible incentive compatible mechanism. 
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which the integer had a value between (and inclusive of) the upper and lower 

bounds of the prospect selected. As for uncertainty, payment was determined from 

the gains only domain using a using a Gaussian random number generator. On 

average, the payment to each participant based on the prospect selected was ₦3245 

(£7.20). In addition, participants were also given monetary payment by the 

researcher. The payment they received was equivalent to an average two days wage 

as compensation for time spent during the experiment. Notably, participants were 

not told beforehand that they would be compensated for their time to ensure that 

only those genuinely interested in participating in the experiment took part and to 

avoid any effect the payment will have on their decision. The total amount spent on 

the monetary for compensation of all 160 respondents for their time was ₦464,000 

(£1031).  

Participants were also provided with contact details of the researcher should they 

wish to be informed about the findings from the research. Two respondents 

withdrew during the survey without providing the reason for withdrawal since 

respondents were under no obligation to do so. However, no respondent indicated 

interest to withdraw post-field survey. Overall, the field survey response was 

successful as about 98% response rate was achieved. 
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5.5 Summary  

In summary, Chapter 5 sets the context for the choice of continuous over discrete 

prospects, discussed the steps in designing the experiment and its implementation 

in the field. This study relied on cross-sectional primary data collected from 

farmers’ using a combination of lab-in-the-field experiment and questionnaire. The 

experiments depended on continuous prospects, which is less cognitively 

demanding than discrete prospects and more related to decision problems farmers 

face on a day-to-day basis. Attitudes towards risk as opposed to uncertainty, were 

elicited by specifying that all outcomes over the specified interval were ‘equally 

likely’. Thus, specifying a uniform probability density. Uncertainty was 

communicated by indicating to farmers that one outcome within the specified 

interval would be realised but without the specification of an associated probability 

density. With the aid of the experiment (split into Types 1-7 prospects that spread 

across the gain domain, loss domain and mixed domains); data relevant to achieving 

objectives I-III i.e. evaluating risk and uncertainty attitudes was obtained. Also, 

questionnaires that covered both socio-demographic characteristics and bipolar 

disorder tendencies was used to obtain relevant data relevant to achieving 

objectives IV-V. 
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Section 2 – Empirical Results, Discussions and 

Implications 
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Chapter 6 

Data Description  

6.0 Introduction 

This chapter describes the data obtained from farmers that participated in the 

experiment. It consists of demographic and socioeconomic characteristics of the 

sample as well as a detailed description of the farmers’ preferences with respect to 

choice task experiment. 

Chapter 6 uses graphs, proportions and non-parametric tests to describe and 

explain the choices made by participants during the experiment. In line with the 

Mean-Standard deviation theory discussed in Chapter 3 participants’ choices under 

risk and uncertainty attitudes is estimated using GEE and Probit regressions. 

The results reported here covers participants’ choices patterns in different content 

(gain, loss & mixed) domains under conditions of risk and uncertainty. It also 

includes participants’ choices in monetary & time context under risk. It concludes 

with results showing the effect of attributes of the interval prospect experiment on 

participants’ choices.   

Chapter 6 comprises three main sections. Section 6.1 is made up of summary 

statistics of demographic and socioeconomic variables, section 6.2 describes the 

choices over gains, losses and mixed prospects under risk and uncertainty while 

section 6.3 comprises results and discussions of mean-standard deviation 

estimation. 
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6.1 Demographic and Socioeconomic Characteristics 

The data analysed in this section was obtained from the questionnaire 

accompanying the experiment as discussed in Chapter 5. As reported in section 5.4, 

160 framers participated in the experiment of which 2 farmers withdrew before 

collation of the results. Therefore, the summary statistics presented in Figures 6-9 

and Table 12 is obtained from the sample of 158 farmers. As shown in Figure 6, the 

age range of subjects is between 27 to 87 years with the largest population of age 

group falling into the 51-60 years category. The average age of 56 years suggests 

that farmers in this region are middle aged. As presented in Figure 7, there were 

more males (70%) than females (30%) in the sample. This dominance of males 

could be attributed to selection of participants based on household head who are 

the main decision makers.  

 

 

Figure 6. Age distribution. 

 

 

 

Figure 7. Gender distribution. 
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Figure 8. Household size distribution. 

 

Figure 9. Education distribution. 
 

As shown in Figure 8, farmers have an average household size of five (5) members. 

Figure 9 is a plot of the distribution of educational level attained. It shows that the 

level of formal education attained is low with about 65% completing primary 

education at the most. As presented in Table 12, the predominant primary 

occupation is farming accounting for about (95%). The average farm size was 

approximately one (1) hectare. About 88% of farmers’ own their farms thus were 

directly responsible for making important economic decisions for the farm 

business. As shown in Table 12, the predominant categories of secondary 

occupation are employee, self-employed and worker. On average, the number of 

years in which farmers have engaged in farming is about 18 years while the average 

number of years that farmers have had secondary occupations was 10 years. This 

relatively long duration in occupation is a reflection of the fact that the sample 

consisted of farmers that have several years of experience at the helms of decision-

making. 
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Table 12  
Farmers’ Economic Characteristics 

Characteristics Frequency Distribution (%) 

Primary Occupation Type   
Farmer 150 95.0 
Others 8 5.0 
Ownership of Primary Occupation   
Own business 139 88.0 
Family (wage) 1 0.6 
Family (unpaid) 8 5.1 
Private Enterprise 7 4.4 
Government owned 2 1.3 
Others 1 0.6 
Secondary Occupation   
Yes 116 78.5 
No 42 21.5 
Secondary Occupation Type   
Employee 36 31.0 
Worker 43 37.1 
Self employed 37 31.9 
 
Years in Primary Occupation 
Years in Secondary Occupation 
Farm Size (ha) 

Mean        SD 
 18.49       12.40 
 10.18          8.74 
    1.08         0.59 

Min Max 
  2.0 54 
  1.0 54 
   0.2 4.0 

 

In comparison to the most comprehensive agricultural data currently available in 

Nigeria i.e. Living Standard Measurement Survey (LSMS) - Integrated Surveys on 

Agriculture in Nigeria45; the sample characteristics in this study is representative of 

the farming population characteristics reported in the 2015/2016 LSMS. For 

instance, the LSMS reports that mean age is 49 years while the findings of this study 

is an average age of 56 years. According to the LSMS, 71% of the farming household 

head are male. This is similar to the 70% found in the sample data for this study. 

The LSMS reports average household size is 4 persons which also is similar to the 

average household size (of 5) recorded in the sample in this study. Finally, the 

average farm size as reported by the LSMS is 1.25 ha per household while the 

average farm size for farmers interviewed in this study was approximately 1ha per 

household.  

                                                           
45 The Nigerian National Bureau of Statistics and Federal Ministry of Agriculture and Rural 
Development carried out the survey in 2015/16 with support from the World Bank. 



140 
 

6.2 Description of choice over gains, losses and mixed prospects 
under risk and uncertainty 

Prior to presenting results obtained from a model-based analysis, preliminary 

results which categorises farmers as ‘risk or uncertainty liking’ or ‘risk or 

uncertainty avoiding’ based on their preference in the experiments (without taking 

into account any functional form or model) is presented. As deduced from the 

review of literature in chapters 2 and 3, in terms of estimating a DM’s risk and 

uncertainty attitudes no estimation method is without limitations. Thus, applying a 

non-model based analysis will provide preliminary indication of the risk and 

uncertainty attitude of farmers’ without the restriction that arises from assuming a 

specific model. Therefore, this section uses graphs, proportions and non-parametric 

methods to describe and explain the choices made by participants during the 

experiment. 

6.2.1 Statistics of choices under risk and uncertainty (pooled subtasks) 

The results presented in this section describes participants’ choices under risk and 

uncertainty when participants were presented with the experiment described in 

Chapter 5. Recall, the experiment was designed such that participants had to make 

a choice between Prospects A or B wherein Prospect A was by nature ‘more risky 

(uncertain)’ than B since prospect B is always contained in Prospect A.  

As discussed in Chapter 5, the nature of the prospects to which participants’ choice 

was elicited is such that there was a difference in the certainty equivalents that 

would ensure there would be differences in the choices made by participants’ with 

different “risk profiles”. In addition, the prospect pairs where ranked according to 

those where switches would be made at different points in risk preference ladder 

e.g. as the EV of Prospect A becomes larger than B, a risk averse participant is more 

likely to switch to Prospect A from B.  

A-priori it was expected that participants switch at some point (i.e. change their 

preference from Prospect A to Prospect B or vice versa as the experiment 

progressed) across all domains. However, not all the choices made by participants 

were in conformity with a-priori expectations. In addition, participants’ choices 
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differed across context and content domains as discussed in the sections that 

follows.  

For the pooled subtask choices, all subtasks46 within each specific domain are 

aggregated (pooled) into content (gain, loss, mixed) domain tasks. For example, the 

monetary task in the gain only domain consist of two subtasks. Recall in Chapter 5, 

Figure 2 showing the 7 types of prospect pairs; in the gain domain there are two 

types of prospect pairs i.e. Types 1 and 2 which are each subtasks in the gain domain 

and jointly referred to as gain domain task in the pooled results. In the loss domain 

there are also two types of prospect pairs i.e. Types 3 and 4. These loss domain 

subtasks (Types 3 and 4) are jointly referred to as loss domain task; while in the 

mixed domain there are three types of prospect pairs i.e. Types 5, 6 and 7 that consist 

of subtask spanning both gains and losses simultaneously and jointly referred to as 

mixed domain task in the pooled results presented in Figure 10. 

A graphical presentation of the choices made by participants in conditions of risk 

and uncertainty is presented in Figure 10. A priori it was expected that participants 

will fall into two main groups consisting of ‘switchers’ within and across subtask. 

On the contrary, four patterns emerge from the results that portray participants' 

behaviour under risk and uncertainty suggesting heterogeneous attitudes toward 

risk as well as uncertainty. First those that switched their choice of prospect at some 

point within a subtask; for instance switched (i.e. from prospect A to B or vice versa) 

in a specific subtask (e.g. within Type 1). Second, participants that switched (i.e. from 

prospect A to B or vice versa) across subtask (e.g. choose prospect A throughout in 

Type 1 and switched to prospect B at some point in Type 2 or vice versa). Third, 

participants that consistently chose prospect B in each particular domain. Fourth, 

participants that always chose prospect A in each specific domain. 

                                                           
46 Following the discussions in section 5.2 in Chapter 5, Figure 2 shows the 7 prospect pairs referred 
to as subtasks. Types 1 and 2 are jointly pooled to make a gain domain task. Types 3 and 4 pooled to 
make a loss domain task while Types 5, 6 and 7 jointly make up what is referred to as a mixed domain 
task. 
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Note: M = Monetary prospect, T= Time Prospect, P=Proxy monetary prospect 
 

 

Figure 10. Participants’ patterns of behaviour under different conditions, context 

and content domains  
 
 

6.2.1.1 Gain Domain 

As presented in Figure 10, in gains domain tasks (referring to Types 1 & 2) 

participants' choices under risk and uncertainty fall into four patterns.  This consist 

of individuals’ that: (a) switched their choice of prospect at some point within a 

subtask, (b) participants that switched across subtask, (c) participants that 

consistently chose prospect B (inner prospect) in each particular domain and (d) 

participants that consistently chose prospect A (outer prospect) in the gain domain 

task. 
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Risk versus Uncertainty 

Participants that switched within subtask for risk were approximately 6%. Out of 

the 94% that did not switch within subtask, over 51% of these did not switch from 

the ‘safer’ prospect B. This statistics suggests risk avoidance among majority of 

participants. The proportion is similar for participants’ choices across subtask as 

about 18% only switched (e.g. in the first instance choose prospect A for Type 1 tasks 

then switched to prospect B in Type 2 or vice versa). As for the participants’ choices 

under uncertainty as presented in Figure 10, those who switched within subtask 

were approximately 11%. Also, 19% switched across subtasks. Notably, 51% under 

uncertainty did not switch at all i.e. consistently choosing the inner prospect 

(prospect B) for all gain domain tasks. Thus, whether it is for risk or uncertainty; 

participants at the aggregate level find the inner prospect more attractive for gains. 

Since the inner prospect is by nature less “risky”, this finding is an indication of 

participants’ dislike for risk and uncertainty in the gain domain.  

Hypothesis 4.1: Attitudes to risk differ from uncertainty (for gains) 

McNemar’s (1947) test that permits for evaluation of occurrence of statistically 

significant changes in proportions on a dichotomous variable between two groups 

of the same population was used to determine whether the proportion of the outer 

prospect as opposed to the inner prospect chosen by participants under conditions 

of risk is similar to conditions of uncertainty. The result presented in Table 12B 

show no statistical significant difference in the choices made in the gain domain 

under conditions of risk and uncertainty at the 1% level, (χ2 = 1.74, p > 0.187). 

Therefore, we fail to reject the hypothesis that participants’ choices under risk do 

not differ from uncertainty in the gain domains. 

Do attitudes to risk differ when making decision on behalf of others (Proxy-gain vs. 

Self-gains)? 

Comparing the choices made across the context domains of proxy-gain47 versus self-

gains only tasks; a smaller number of participants i.e. 37% (compared to 51% for 

                                                           
47 For clarification wherein self-gain and proxy-gain are mentioned in the same sentence, ‘self-gain’ 
refers to risk for oneself in the monetary domain framed as pure gain only while proxy implies taking 
risk on behalf of ‘other’ person in the monetary domain also framed as pure gain only. In this thesis, 
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self-gain) continually picked the inner prospect suggesting significantly lower 

proportion48 preferring the less ‘risky’ prospect when the decision was taken ‘on 

behalf of another’ compared to self.  

Hypothesis 5: There is significant difference in a DM’s risk attitude when making 

personal vs. proxy decision. 

McNemar’s test was used to determine if there are differences in the overall choices 

farmers made in the proxy-gain and self-gains context domains. The result show 

statistical significant difference in the choices at the 1% level (χ2 = 23.2, p < 0.001). 

This statistical difference suggest context-specific risk attitudes i.e. risk attitude 

differ when faced with risk for oneself or risk on behalf of others. Hence, we reject 

the hypothesis that there is no significant difference in a DM’s risk attitude under 

personal and proxy context. While further econometric tests are used to confirm the 

reason behind the significant difference in the choices farmers made in the proxy-

gain and self-gains domain, however it may be as a result of responsibility effect and 

possibly the scales of the payoffs.  

6.2.1.2 Loss Domain 

The results presented here was obtained from participants’ choices in subtasks 

framed as losses across both monetary and time contexts. Similar to the gain 

domain, participants are also categorised into four groups. This consist of 

individuals’ that: (a) switched their choice of prospect at some point within a 

subtask, (b) participants that switched across subtask, (c) participants that 

consistently chose prospect B (inner prospect) in each particular domain and (d) 

participants that consistently chose prospect A (outer prospect) in the gain domain 

task. 

Risk versus Uncertainty 

In the loss domain task (Types 3 & 4), there was switching within subtask under risk 

by 15% of the farmers while 18% switched across subtasks. However, for 

uncertainty 12% switched within subtasks while 20% switched across tasks as 

                                                           
proxy is only tested in the gain domain. This study tested proxy only in the gain domain under 
conditions of risk. 
48 Chi-square test of the proportion confirms this ( χ2 = 6.26, p = 0.01) 



145 
 

shown in Figure 10. The choice participants made in the loss-only domain is 

reversed compared to the preference in the gain domain tasks. Unlike the gain 

domain where the inner prospect was largely preferred, the predominant prospect 

choice in the loss domain was the outer prospect as observed by the majority (56% 

and 59% under risk and uncertainty respectively) picking the outer prospect 

overall. Notably, 38% in the case of risk and 42% under uncertainty did not switch 

at all (i.e. these group consistently chose only the outer prospect along all loss 

domain tasks) thereby portraying consistent risk/uncertainty seeking behaviour. 

This finding suggest that for both risk and uncertainty, participants at aggregate 

level behaves as though the outer prospect is more attractive for losses. Since the 

outer prospect is by design more “risky”, these choice patterns are possible 

indicators of participants’ risk and uncertainty seeking attitude in the loss domain. 

Hypothesis 4.2: Attitudes to risk differ from attitudes to uncertainty (for losses) 

To determine whether there was any significant difference in overall choices under 

conditions of risk and uncertainty in the loss domain, McNemar’s paired test was 

performed. The result shows statistical significant difference in the choices made in 

the loss domain for risk compared to uncertainty as obtained from the test at the 

5% level, (χ2 = 6.11, p = 0.013). The mean values49 indicate that under uncertainty 

(compared to risk), participants on average preferred the outer prospect (having 

larger variance) to the inner prospect. Thus, the hypothesis that attitudes to risk 

differ from uncertainty for losses cannot be rejected.  

Do attitudes to risk differ with context domains (Time-loss vs Monetary-loss)? 

A comparison of the choices made in the time-loss50 context with the money-loss 

context domain task show some variation51 in the number of participants that 

continually picked the outer prospect without switching (42% in the time context 

vs. 38% in the monetary context for losses). Similarly, there was difference in the 

proportion of participants that switched within subtask (15% in the monetary 

                                                           
49  The proportion that chose the outer prospect for risk is 56% while for uncertainty 59%. 
50 Money-loss refers to risk for oneself in the monetary domain framed as pure loss only while time-
loss implies risk framed as a loss to otherwise productive farm hours. In this thesis, time is only 
tested in the loss domain under risk. 
51 Albeit not statistically significant 
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context vs. 22% in the time context for loss) and across subtask (18% in the 

monetary context vs. 22% in the time context). 

Hypothesis 3: There is difference in DM’s risk attitude under time and monetary context 

Non-parametric test was used to test for significance difference in the choices 

farmers made in the time-loss and money-loss context domains. The result show 

statistical significant difference in the choices as obtained from the McNemar’s test 

at the 1% level (χ2 = 16.9, p < 0.001). This significant statistical difference indicates 

that risk attitude differ across context. Thus, the hypothesis that attitudes to risk do 

not depend on context is rejected.   

Do attitudes to risk and uncertainty differ with content domains? 

Having examined and cross-compared attitudes to risk to that of uncertainty in the 

gain domain on one hand and in the loss domain on the other hand in the preceding 

subsection; here the comparison is a condition specific test of choices within content 

domains. That is comparing gain vs. loss under risk as presented in Hypothesis 1 and 

gain vs. loss under uncertainty as proposed under Hypothesis 2.     

Hypothesis 1: Attitudes to risk depends on content domains 

Non-parametric test was used to test for significance difference in the choices 

farmers made in gain and loss content domains under risk. The result show 

statistical significant difference in the choices as obtained from the McNemar’s test 

at the 1% level (χ2 = 113.3, p < 0.001). This significant statistical difference indicates 

that risk attitude differ across content domains. Thus, the hypothesis that attitudes 

to risk does not depend on content domains is rejected.   

Hypothesis 2: Attitudes to uncertainty depends on content domains 

Similarly, under uncertainty the result show statistical significant difference in the 

choices farmers made in gain and loss content domains under uncertainty as 

obtained from the McNemar’s test at the 1% level (χ2 = 198.9 p < 0.001). This 

significant statistical difference suggest that risk attitude differ across content 

domains. Therefore, the hypothesis that attitudes to uncertainty does not depend 

on content is rejected.   



147 
 

6.2.1.3 Mixed Domain 

The results presented here was obtained from participants’ choices in subtasks 

framed as mixed i.e. having both gains and losses as possible outcomes. The 

proportion of choices in the mixed domain task (Types 5, 6 & 7) is presented in 

Figure 10.   

Risk versus Uncertainty 

The pattern indicates greater switching within and across subtasks in the mixed 

domain compared to either the gain and loss domains. 36% under risk (resp. 31% 

for uncertainty) switched within subtask while 19% and 28% under risk and 

uncertainty respectively across subtasks. The most preferred choice in the mixed 

domain tasks was the inner prospect as over 63% and 62% under risk and 

uncertainty respectively picked the inner prospect overall. This predominant 

preference for the inner prospect in the mixed domain tasks is similar to the choice 

pattern reported for gains only tasks, which suggest participants’ dislikes risk and 

uncertainty in the mixed domain. 

Hypothesis 4.3: Attitudes to risk differ from uncertainty (for mixed) 

McNemar’s test was used to test for significance in the choices made in the mixed 

domains under conditions of risk and uncertainty. The result show no statistical 

significant difference in the overall choices of participants in the mixed domain for 

risk and uncertainty at the 10% level (χ2 = 2.06, p = 0.151) in which case we fail to 

reject the hypothesis that in the mixed domain, attitudes to risk differ from 

uncertainty. 

6.2.2 Statistics of choice under risk and uncertainty (separate subtasks) 

Figures 11 and 12 show the choice pattern further examined by sub-tasks under 

risk and uncertainty respectively but in the monetary context only52. The choices 

made under both conditions of risk and uncertainty have similarities as well as 

differences across the various content and context domains. The findings and 

discussion are presented. Recall that section 5.2 in Chapter 5 explains the 7 Types 

of prospect pairs; Type 1 and Type 2 being subtasks in gain domain task. Type 3 and 

                                                           
52 Comparison between subtasks in the time and proxy cases are presented in Appendix 6 
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Type 4 are subtasks in the loss domain task; while Type 5, Type 6 and Type 7 are 

subtasks which consist of a mixture of both gains and losses and jointly referred to 

as mixed domain tasks.  
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6.2.2.1 Gain Domain 

As shown in Figure 11, a significant proportion consisting of 52% and 72% in the 

subtasks (Type1 and Type2 respectively) never switched within a subtask as they 

always preferred the inner prospect under conditions of risk. Overall a larger 

proportion picked the inner prospect for Type2 (74%) compared to Type1 (56%).   

 
 

Note. Gain1 = Type 1 - unconstrained in the gain domain, Gain2 = Type 2 - lower bound of the 

outer prospect at zero in gain domain, Loss1 = Type 3 - unconstrained in the loss domain, Loss2 

= Type 4 upper bound of the outer prospect at zero in the loss domain, Mixed1 = Type 5 - 

unconstrained in the mixed domain, Mixed2 = Type 6 - inner prospect of the lower bound 

constrained to zero in the mixed domain, Mixed3 = Type 7 - inner prospect upper bound 

constrained to zero in the mixed domain. 
 

Figure 11. Patterns of behaviour by subtasks type under risk. 
 

Similarly, under conditions of uncertainty, majority of participants (consisting of 

56% and 70% for Type1 and Type2 respectively) chose the inner prospect 

consistently without switching under gains-only subtasks as presented in Figure 12. 

In aggregate, a larger proportion at some point in experiment picked the inner 

prospect for Type2 (72%) compared to Type1 (61%).   
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Note. Gain1 = Type 1 - unconstrained in the gain domain, Gain2 = Type 2 - lower bound of the 

outer prospect at zero in gain domain, Loss1 = Type 3 - unconstrained in the loss domain, Loss2 

= Type 4 upper bound of the outer prospect at zero in the loss domain, Mixed1 = Type 5 - 

unconstrained in the mixed domain, Mixed2 = Type 6 - inner prospect of the lower bound 

constrained to zero in the mixed domain, Mixed3 = Type 7 - inner prospect upper bound 

constrained to zero in the mixed domain. 
 

Figure 12. Patterns of behaviour by subtasks type under uncertainty. 
 

Hypothesis 1.1: Attitudes to risk differ within gain content domains 

McNemar’s test for differences in the overall choices farmers made in the Type1 and 

Type2 subtasks under risk show statistical significant difference in the choices at the 

1% level, (χ2 = 123, p < 0.001). The hypothesis that there is no significant difference 

in the choices of farmers within the gain domain under risk is rejected.  

Hypothesis 1.2: Attitudes to uncertainty differ within gain content domains 

Similarly, the McNemar’s test result for differences in the aggregate choices farmers 

made in the Type1 and Type2 subtasks under uncertainty show statistical significant 

difference in the choices made at the 1% level  (χ2 =41.5 P < 0.001). Thus, the 

hypothesis that there is no significant difference in the choices of farmers in the gain 

domain under uncertainty is rejected. These findings suggest that the attitudes to 
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risk and uncertainty depends also on the size of the prospects. While further 

analysis is needed to explain this significant difference between Type1 and Type2 

(under both risk and uncertainty), this difference however could possibly be 

attributed to outer prospect of Type2 being bound between zero and a positive 

payoff as against Type1 in which both prospect payoffs are positive but non-zero 

bound. 

6.2.2.2 Loss domain 

As presented in Figures 11 and 12, the choices in the loss-only subtasks (Types 3 & 

4) are reverse of the gains domain case. The predominant preference of participants 

under risk for losses was the outer prospect. The proportion that picked the outer 

prospect overall for Type3 is 54% compared to 57% for Type4. Under uncertainty, a 

larger proportion (58%) picked the outer prospect for Type3 compared to Type4 

(60%).  

Hypothesis 1.3: Attitudes to risk differ within loss content domains  

Non-parametric McNemar’s test used to determine significance in the overall 

choices farmers made in the Type3 and Type4 subtasks under risk show statistical 

significant difference in the choices as obtained from the McNemar’s test at the 5% 

level (χ2 = 4.6, p = 0.032). Thus we reject the hypothesis that attitudes to risk do not 

differ within loss content domains. 

Hypothesis 1.4: Attitudes to uncertainty differ within loss content domains  

In the same vein, under uncertainty the result show significant difference in the 

choices as obtained from the McNemar’s test at the 10% level (χ2 = 3.53, p = 0.060). 

In which case, the hypothesis that there is no significant difference in the choices of 

farmers the loss domain under uncertainty is rejected. 

Again the choice pattern across the different loss subtasks are subjected to further 

statistical estimations due to significant difference in the proportion of participants’ 

choice in Type3 and Type4. In line with the previous postulation, the difference 

observed could be attributed to outer prospect of Type4 being bound between zero 

and a negative payoff as against Type3 in which both prospect payoffs are negative 

non-zero bound. However, it goes to suggest that the attitudes to risk and 
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uncertainty depends also on the size of the prospects even in the same content 

domain. 

6.2.2.3 Mixed domain 

Figure 11 and Figure 12 show that in the mixed subtasks (Type5, Type6 and Type7) 

that the inner prospect was consistently chosen under risk and uncertainty 

respectively. Contrasting the choices in the subtask Type5 (which is unconstrained 

in the mixed domain) against Type6 (which had its inner prospect of the lower 

bound constrained to zero) yielded some interesting results.  

Hypothesis 1.5: Attitudes to risk differ within mixed content domains  

McNemar’s test for significance in the overall choices farmers made in the Type5 

and Type6 subtasks under risk show statistical significant difference in the choices 

at the 10% level (χ2 = 3.5, p = 0.061). In addition, a comparison of the choices in the 

subtask Type5 (which is unconstrained in the mixed domain) versus Type7 (which 

had its inner prospect upper bound constrained to zero) show statistical significant 

difference in the choices at the 1% level (χ2 = 46.2, p < 0.001). Thus, the hypothesis 

that there is no significant difference in the choices of farmers within the mixed 

domain under risk is rejected.  

Hypothesis 1.5: Attitudes to uncertainty differ within mixed content domains  

For uncertainty the results are different from risk as there is no significant 

difference in the choices at the 10% level, (χ2 = 1.37, p=0.241). On the other hand, a 

comparison of the choices in the subtask Type5 versus Type7 show statistical 

significant difference in the choices at the 1% level (uncertainty: χ2 = 81.2, p < 

0.001). Therefore, hypothesis that there is no significant difference in the choices of 

farmers within the mixed domain under uncertainty cannot be rejected. 

This significant difference in the population choice between Type5 and Type6 on one 

hand and Type5 and Type7 on the other hand may be connected with their design 

characteristics. For the Type6 case, there is no chance of a getting a negative payoff 

compared to Type5 while for the Type7 case there is no chance of a getting a positive 

payoff compared to Type5. This may well result in farmers showing greater 

preference for the prospect that presents the possibility of attaining some ‘desired 
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levels’; in this case a possibility of making a gain. In addition, there may be the 

possibility that participants treat zero payoffs as either positive or negative relative 

to the value of other payoff in the same prospect. These possibilities are investigated 

in Chapters 7 and 8. 

Table 12B 
Summary of the Test of Hypotheses 

Hypotheses χ2 p-value Significance 

Attitudes to risk differ from 
uncertainty (for gains) 

1.74 p > 0.187 Not significant 

Attitudes to risk differ from 
uncertainty (for losses) 

6.11 p= 0.013 Significance at 5% level 

Attitudes to risk differ from 
uncertainty (for mixed) 

2.06,  p= 0.151 Not significant 

There is difference in DM’s risk 
attitude under personal and proxy 
context 

23.2  P< 0.001 Significance at 1% level 

Attitudes to risk depends on context 
domains 

16.9  P< 0.001 Significance at 1% level 

Attitudes to risk depends on content 
domains 

198.9  P< 0.001 Significance at 1% level 

Attitudes to risk differ within gain 
content domains 

123 P< 0.001 Significance at 1% level 

Attitudes to risk differ within loss 
content domains 

4.6 p= 0.032 Significance at 5% level 

Attitudes to risk differ within mixed 
content domains 

3.50 P= 0.061 Significance at 10% level 

Attitudes to uncertainty differ within 
gain content domains 

41.5 P< 0.001 Significance at 1% level 

Attitudes to uncertainty differ within 
loss content domains 

3.53 p= 0.060 Significance at 10% level 

Attitudes to uncertainty differ within 
mixed content domains 

81.2 P< 0.001 Significance at 1% level 

 

In summary, the results presented in section 6.2 suggest that participants’ choices 

in the experiment are heterogeneous given the four patterns that portray 

participants' behaviour under risk and uncertainty. Also, whether faced with 

conditions of risk or uncertainty, participants find the inner prospect more 

attractive for gains (and mixed task) and the outer more attractive for losses. Since 

the inner prospect is by nature less ‘risky’, this finding is an indication of 

participants’ dislike for risk and uncertainty in the gain (and mixed) domain; and 

liking for risk and uncertainty in the loss domain. The results also suggest that 

participants’ choices differ across content (gain, loss, mixed) domains.   
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6.3 Results of Mean-Standard deviation Estimation  

GEE regression follows an estimation of the model in equation 4.4.1iv in Chapter 4 

and the results are presented in Table 13. In accordance with the literature 

discussed in Chapter 3, the Mean-Standard deviation (MSD) measures risk by its 

variance or standard deviation. In a scenario where a DM is faced with a risky and 

uncertain choice task; the ‘rational’ risk averse DM would a-priori prefer the option 

that has both the greater expected value and smaller SD. In the case where the 

expected values of the choice task are equal then the risk averse DM should prefer 

the alternative with the smallest SD. 

Recall from section 4.4.1 in Chapter 4 that for the variables in Table 13 ‘Mean’ and 

‘SD’ refers to the differences in mean and standard deviation respectively between 

the payoffs of prospects A and B. ‘Gain’, ‘loss’ and ‘mixed’ indicates that the payoffs 

are strictly positive, strictly negative or mixed domains. ‘ZB_outer_gain’ implies that 

the gain domain task has the lower limit of the outer prospect bound at zero. 

‘ZB_outer_loss’ means that the loss domain task has the upper limit of the outer 

prospect bound at zero. Similarly, ‘lower_ZB_inner_mix’ indicates a mixed domain 

tasks having the lower limit of inner prospect bound at zero while for 

‘upper_ZB_inner_mix’ the mixed domain task has the upper limit of inner prospect 

bound at zero. In line with the predictions of the M-SD theory, an increase in the 

difference between the means of the outer and inner prospects will result in the rise 

in the likelihood of choosing the outer option. 

As discussed in Chapter 4, the model from which the result in Table 13 is obtained 

includes content domain specific variables (i.e. gain, loss and mixed) in addition to 

zero constrained prospects.  The dependent variable is binary which signifies the 

DM ‘prefers the prospect with greater variance (prospect A) = 1’; 0 otherwise53.  

  

                                                           
53 The proportion of 1 and 0 in the data was  approximately 1:2 so this was not an issue for 
estimation. 
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Table 13   
GEE and Probit results showing marginal effect for determinants of lottery choice 

 GEE (Probit) Probit 
 I II III IV V VI 
Variables Pooled Risk Uncertainty Pooled Risk Uncertainty 
Mean 0.019*** 0.024*** 0.014*** 0.019*** 0.024*** 0.014 

 (0.006) (0.007) (0.009) (0.004) (0.004) (0.005) 
SD -0.005 0.012** -0.002 -0.005 -0.012 0.002 

 (0.010) (0.015) (0.013) (0.004) (0.005) (0.006) 
Gain x SD 0.012 0.001 0.010 0.012 0.001 0.010 

 (0.018) (0.026) (0.027) (0.008) (0.008) (0.008) 
Loss x SD 0.001 0.000 -0.003 0.001 0.000 -0.003 

 (0.015) (0.031) (0.019) (0.006) (0.010) (0.007) 
Gain -0.089*** -0.051 -0.114*** -0.089*** -0.052** -0.114*** 

 (0.016) (0.025) (0.021) (0.032) (0.035) (0.035) 
Loss 0.058* 0.049 0.071* 0.057*** 0.048* 0.071*** 

 (0.016) (0.027) (0.023) (0.032) (0.036) (0.036) 
Mix -0.161*** -0.168*** -0.154*** -0.161*** -0.169*** -0.154*** 

 (0.020) (0.029) (0.028) (0.031) (0.034) (0.037) 
ZB&_Outer_Gain -0.157*** -0.189*** -0.127*** -0.157*** -0.189*** -0.127*** 

 (0.017) (0.024) (0.027) (0.028) (0.032) (0.038) 
ZB_Outer_Loss 0.038 0.044 0.036 0.038** 0.044 0.036 

 (0.017) (0.029) (0.024) (0.029) (0.036) (0.037) 
Lower_ZB_Inner_Mix -0.043 -0.044 -0.040 -0.043** -0.044* -0.040 

 (0.018) (0.025) (0.027) (0.028) (0.031) (0.038) 
Upper_ZB_Inner_Mix 0.183*** 0.217*** 0.150*** 0.183*** 0.217*** 0.150*** 

 (0.018) (0.026) (0.026) (0.034) (0.039) (0.042) 
& ZB= zerobound             *** p<0.01, ** p<0.05 and * p<0.1                
Standard errors are in parentheses 
No. of Observations = 11060 for pooled, 5530 for all others 
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Three variations of the GEE model are estimated; models I, II and III representing 

pooled (risk and uncertainty combined), risk only and uncertainty only respectively. 

In addition, three probit models (IV, V, VI) are estimated since its result is similar to 

the GEE under independence structure. Overall, the results indicate that the mean 

payoff of the prospect, the content domain (gain, loss or mixed) determine the 

likelihood of choosing the outer option i.e. prospect A. Note that a positive 

coefficient denotes the corresponding variable increases the likelihood of picking 

the outer prospect and vice versa.  

Mean – As shown in Table 13, the coefficient of the ‘mean’ effect is significant and 

positive for all estimated models. In line with the predictions of the MSD theory, the 

results show that for all six models, an increase in the difference between the means 

of the outer and inner prospects will result in the rise in the likelihood of choosing 

the outer option i.e. prospect A. However, this effect is relatively weak as evident 

from the small values of the estimated marginal effects.   

Standard deviation (SD) – There was no significant effect of SD on the choice of 

prospects in all estimated Models except for Model II where there is negative 

significant relationship (β =-0.05, z = -2.28, p<.05) between standard deviation and 

prospect choice. This significant relationship denotes that as the SD increases, it 

decreases the likelihood of picking the outer prospect under risk condition. Again, 

this effect is relatively weak as the values of the estimated marginal effects are small 

however; this findings conforms to a-priori expectations. 

Gain - The coefficient of  ‘gain’ is negative and significant in Models I (β = .038, z = -

2.67, p<.01), III (β = 0.49, z = -3.12, p<.01) and IV (β =-0.23, z = -5.50, p<.01) 

suggesting that when a gain domain task is presented to the participants, there was 

increased likelihood of avoiding the outer prospect.  

Loss – In contrast to the ‘gain’ effect, ‘loss’ has a significant but positive effect on 

prospect choice. This significant effect in Models I (β = .024, z = 1.91, p<.10), III (β = 

.30, z = 1.73, p<.10) and IV (β = .15, z = 3.52, p<.01) indicates that the likelihood of 

choosing the outer prospect increases when the task is in the loss domain. These 

findings are consistent with numerous findings in the literature predicting of risk 

avoidance for gains and risk seeking for losses. 
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Mixed - The mixed domain effect is negative and significant for models I, II, III and 

IV (β = -0.70, z = -4.74, p<.01), (β = -0.74, z = -4.55, p<.01), (β = -0.66, z = -3.85, p<.01), 

(β = -0.43, z = -8.05, p<.01) respectively; indicating greater likelihood of avoidance 

of the outer prospect in the mixed domain task. Notably, the increase in the 

probability of choosing the outer prospect is higher in the mixed domain than the 

gains only domain. Again, these results are in consonance with the findings in 

several risk/uncertainty decision-making literature.  

Zero bounds prospects- The effect of zero-bound-outer prospect in the gain domain 

are negative and significant for models I, II III and IV (β = -0.69, z = -5.52, p<.01), (β 

= -0.83, z = -5.57, p<.01), (β = -0.56, z = -3.32, p<.01), (β = -0.42, z = -8.93, p<.01)54 

respectively. The relatively large estimated marginal effect in all four models 

supports previous findings in Section 6.2 that not only are participants more likely 

to avoid the outer prospect in the gains domain; but there is higher likelihood to 

specifically avoid the outer prospect when its lower bound is at zero. This result 

highlights the preference for substantive deterministic gains. In contrast, the 

coefficient of the zero-bound-outer in the loss domain (statistically significant in 

Model IV) highlights the findings in Section 6.2 that in the loss domain participants 

prefer the outer prospect i.e. prospect A; and are markedly more likely to choose the 

outer prospect when its upper bound is zero. Similarly, the effect of lower-zero-

bound-inner in the mixed domain are negative and significant for models IV and 

positively significant for upper-zero-bound-inner in all six models thus further 

indicating that participants are likely to prefer the more risky/uncertain prospect if 

the alternative prospect has likelihood of a strictly negative loss occurring. This 

study refers to these attitudes hereafter as ‘negligible gain avoidance’ (NGA) and 

‘negligible loss seeking’ (NLS). These unusual but insightful finding that it does 

matter to participants when one of the bound of the prospect was pegged at zero 

but the payoffs still remained strictly positive (or negative) was a-priori not 

expected.  

                                                           
54 In addition, the significant negative (resp. positive) coefficient of lower-zerobound-inner (resp. 
upper-zerobound-inner) in the mixed domain for model IV implies that when the payoffs of the inner 
lotteries are confined to a negative (resp. positive) domain compared to the alternative lottery that 
is spread between gain and loss, the likelihood that participants prefer the outer lottery decreases 
(resp. increases). 
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One possible argument could be that ‘NGA’ and ‘NLS’ are nothing more than artefact 

of the design. This assertion is investigated and the findings presented in section 8.1 

in Chapter 8. From a different perspective, it could be that participants adopted 

different decision rules that may well reflect those that are used in their day-to-day 

decision making even if it may not be “rational”. Thus, the rest of Chapter 8 

examined decision rules and alternative theories with the aim of providing further 

explanation on the phenomenon highlighted in this Chapter. The Chapter that 

follows is focused on further examining the risk and uncertainty attitudes of farmers 

using Bayesian procedure on CPT and the extent to which these aforementioned 

behaviours can be reconciled with CPT. 
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6.4 Summary 

Recall that section 5.2 in Chapter 5 explains the 7 Types of prospect pairs; Type 1 

and Type 2 being subtasks in gain domain task. Type 3 and Type 4 are subtasks in 

the loss domain task; while Type 5, Type 6 and Type 7 are subtasks which consist of 

a mixture of both gains and losses and jointly referred to as mixed domain task. The 

results obtained from graphs, proportions and non-parametric tests suggest that 

participants’ fall into four choice patterns. First those that switched their choice of 

prospect at some point within a subtask; for instance switched (i.e. from prospect A 

to B or vice versa) in a specific subtask (e.g. within Type 1). Second, participants’ 

that switched (i.e. from prospect A to B or vice versa) across subtask (e.g. choose 

prospect A throughout in Type 1 but switched to prospect B at some point in Type 2 

or vice versa). Third, participants’ that consistently chose prospect B in each 

particular content domain. Fourth, participants’ that always chose prospect A or B 

in each specific content domain. Further, participants reacted differently to Types 2, 

6, 4 and 7 where the prospects’ upper or lower bound were constrained at zero. 

Also, the findings suggest that participants’ choices differ across context (personal, 

proxy & time) and content (gain, loss, mixed) domains. 

Further, the results of GEE and probit estimation showed that the mean value of the 

prospects had effect on the choices participants’ made and crucially, an increase in 

the difference between the means of the outer and inner prospects will result in the 

increase in the likelihood of choosing the outer prospects. The results also show that 

under risk and uncertainty; participants find the inner prospect more (less) 

attractive for gains (resp. losses). Since the inner prospect is by nature less “risky”, 

this finding is an indication of participants’ dislike (resp. love) for risk and 

uncertainty in the gain (loss) domain. Overall, there was higher likelihood of 

specifically avoiding the outer prospect when its lower bound is at zero – a 

phenomenon this thesis referred to as negligible gain avoidance. Similarly, in the 

loss domain participants’ were more likely to choose the outer lottery when its 

upper bound was zero in what is referred to in this thesis as negligible loss seeking. 

In Chapter 7, the result in Chapter 6 is subjected to Hierarchical Bayesian CPT 

estimation to broaden the findings on participants’ attitudes and further elucidate 

negligible gain avoidance and negligible loss seeking.   
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Chapter 7 

Cumulative Prospect Theory (CPT) Results and 

Discussion 

7.0 Introduction  

The chapter presents and discusses results obtained from estimating the 

Hierarchical Bayesian CPT model discussed in Chapters 3 and 4. The results 

reported here will cover only (monetary) risk and uncertainty obtained from 

participants’ responses to task Types 1-7. The results have been limited to these two 

cases primarily due to time and resource constraints of the author as well as the fact 

presenting results for every case would require a number of very long sections. 

Thus, the CPT analysis has been constrained to what the author considers the two 

most important cases (monetary risk and uncertainty).  Therefore the analysis in 

this chapter is based on data obtained from 158 participants’ over monetary pure 

gains, losses and mixed tasks along 35 decision rows resulting in a total of 5530 risk 

choices and 5530 uncertainty choices.  

Although the estimates of the individual parameters were derived from a Bayesian 

procedure, inference about the parameters was via classical non-parametric test 

applied to the individual parameters extracted from the Bayesian mixed logit.  A 

proviso the analysis below is therefore that this is a two-stage procedure and as with 

all two stage procedures there will be an associated bias to these tests. Notably, the 

standard CPT function is likely to struggle to deal with the behaviour highlighted in 

the section 6.3 in Chapter 6 i.e. phenomenon of NGA and NLS and significantly large 

number of non-switching at different points in risk preference ladder. This 

possibility leads to the bunching of individuals at the end of the parameter space 

implying appropriateness of using non-parametric tests. 

Chapter 7 comprises of three main sections. Section 7.1 describes participants’ risk 

attitudes over gains, losses and mixed prospects, section 7.2 describes participants’ 

risk attitudes under uncertainty while section 7.3 compares the results in 7.1 and 

7.2. 
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7.1 Attitudes to Monetary Risk  

As discussed in Chapters 3 and 4, the utility and weighting functions fitted in this 

study are power utility (see equation 3.4.3) and Prelec II weighting function (see 

equation 3.4.9) functions respectively. The CPT estimation permitted different 

subjective value function for gains (α), losses (β) in addition to accommodating 

separate weighting function for gains (𝛾+ and 𝛿+) and losses (𝛾−and 𝛿−). This thesis 

impose restriction on the CPT parameters. The restriction are α ∈ [0.05, 2], β ∈ [0.05, 

2], λ ∈ (0.05, 3), γ+ ∈ [0.25, 2], γ- ∈ [0.25, 2], δ+ ∈ [0.25, 2], δ- ∈ [0.25, 2],  φ ∈ [0, ∞] 

to enable the possibility of capturing different shapes of the value and probability 

weighting function.  

The joint posterior parameter distributions which was estimated in python 

software55 was obtained from Monte Carlo Markov Chain (MCMC) algorithm for 

12,000,000 iterations out of which 2,000,000 iterations were discarded as burn-ins 

thus was not used to represent the posterior.  In order to reduce correlation across 

retained posterior draws, 1 in every 1000 draws was extracted resulting in a total 

of 10,000 iterations. Visual observation of the trace plots confirms convergence of 

the MCMC draws. 

To prevent misleading and unrepresentative values that might arise from reporting 

only the median as in Resende & Tecles, (2011), Abdellaoui et al. (2008) this study 

reports both the mean and median values. A description of the estimated 

parameters under risk is presented in Table 14. These results confirm the presence 

of heterogeneity among respondents (for instance 25%, 50% and 75% of the sample 

have β value of at most 0.12, 0.57 and 1.42 respectively). This corroborates the 

findings of Abdellaoui et al. (2008) and Resende & Tecles, (2011), that parameter 

estimates at individual level provides evidence of heterogeneity among 

participants. 

The results in Table 14 further underline the non-normality of the distributions of 

individual preference parameters, also highlighting that using the underlying mean 

and variance parameters from the mixed logit as being indicative of the population 

                                                           
55 I acknowledge and express my gratitude to my supervisor for writing the codes used for this 
estimation. 
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would be misleading. Therefore, for testing hypotheses, the individual preference 

parameters are used, in conjunction with non-parametric tests. 

Table 14  
Descriptive Statistic for CPT Risk Parameter under risk 

Variables Mean Median SD Min 25% 50% 75% Max 

α 0.53 0.06 0.73 0.05 0.05 0.06 1.30 1.99 

β 0.76 0.57 0.68 0.05 0.12 0.57 1.42 1.93 
𝛾+ 0.73 0.34 0.59 0.26 0.27 0.35 1.33 1.96 
𝛾− 0.80 0.65 0.52 0.25 0.31 0.65 1.16 1.90 
𝛿+ 0.71 0.45 0.52 0.25 0.29 0.45 1.27 1.92 
𝛿− 0.86 0.42 0.66 0.25 0.26 0.42 1.58 1.99 

λ 1.90 1.90 0.97 0.50 0.84 1.90 2.95 3.00 

φ 20.87 20.56 16.51 0.19 5.52 20.56 34.97 55.87 

 

7.1.1 Utility Parameters under Risk 

Recall from Chapter 3 that for the CPT model estimated in this thesis, the curvature 

of the value function is determined by α and β. Also in line with the definition of risk 

aversion/seeking in Chapter 2 in respect of the curvature of the value function; 

values of 0 < α, β < 1 implies risk aversion and risk seeking in the domains of gains 

and losses respectively. The parameter λ on the other hand symbolizes differences 

in the weight attached to loss compared to gain. 

Figures 13 and 14 are plots showing the distribution of α and β parameters of the 

value function at individual level.  Figure 13 shows that of the 158 participants, 

majority (over 72%) have α < 1 parameter value. This indicates that the curvature 

of majority of the value function for gains was concave. Thus, in line with the 

definition adopted in section 2.1.1 in Chapter 2 describing risk aversion in respect 

of the curvature of the value function; farmers were prevalently risk averse in the 

gain domain (although to varying degrees as shown across the different percentiles 

in Table 14).  The distribution of the value function for losses as presented in Figure 

14  confirms that for about 54% of participants β < 1 implying a majority had convex 

value function in the loss domain and indicating predominantly risk seeking attitude 

towards losses.  
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Notably, the results in Table 14 and distributions in Figures 13 & 14 show that 

preferences of many respondents could only be modelled using “extreme curvature” 

of the value function. The masses clustered at the lower limit of the restriction for 

both α and β indicates extreme behaviour i.e. excessive risk aversion (as presented 

in the 50th percentile) and risk seeking in the gains and loss domains respectively, 

which is line with the findings reported in Chapter 6.  

A one sample Wilcoxon Signed-Rank test show that the parameters α and β are 

significantly less than 1 at the 1% level (Z = -7.50, p < 0.001 and Z = -5.08, p < 0.001 

respectively) thereby we reject the hypothesis of domain specific risk neutrality.  

Hypothesis 1: Attitudes to risk depends on content domains 

A Wilcoxon Signed-Rank test to compare sample distribution of α and β parameters 

shows statistically significant difference between α and β at the 1% level (Z = -3.16, 

p < 0.001) in which case the hypothesis that the sample distributions are equal i.e. 

α = β is rejected in favour of α < β. This significant difference denotes that the 

curvature of the value function is content domain specific. That is risk attitude is 

distinctive across gains and losses. This finding corroborates the results in Chapter 

6. Past studies using CPT (including the pioneers Tversky & Kahneman, 1992) have 

reported similar findings.  
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Figure 13-18: Histogram of the CPT parameter for the beta distribution under risk 

 
 

Figure 13. α parameter 

 
 

Figure 14. β parameter 

 
Figure 15. γ+ parameter 

 
Figure 16. γ− parameter 

 
Figure 17. δ+ parameter  

Figure 18. δ− parameter 
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The coefficient of the DM’s relative sensitivity to gain and loss (λ) show that 

participants with λ >1 made up over 64%. In aggregate, an estimated mean value 

for λ is 1.90 is obtained as shown in Table 14. This mean value reflects a kink that is 

not too sharp at the reference point. The mean coefficient (λ = 1.90) in this study is 

close to the value (λ = 1.87) reported in Booij and van de Kuilen (2007).  However, 

as discussed in Balcombe et al. (2018), when a symmetry restriction is not imposed 

on the power parameters, the interpretation of this coefficient is complex. 

 

 
Figure 19. Average value function for α and β under risk. 

Figure 19 is a plot of the results reported for the value function computed from the 

means of α, β and λ parameter estimates. As shown in the plot, the concavity for 

gains and convexity for losses is a pointer to risk aversion and risk seeking 

respectively and is in line with several previous findings of inverse S-shaped value 

function. Notably, the loss arm is steeper than the gains. This finding provides 

evidence in support of greater sensitivity to losses compared to gains; however not 

as intense as that reported in previous studies e.g.  Tversky & Kahneman (1992) and 

Abdellaoui et al. (2007).  
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7.1.2 Probability Weighting Parameters under Risk 

The distribution of the gamma parameter in the domains of gain γ+ and loss  γ− 

presented above in Figures 15 and 16 respectively shows that about 65% and 69% 

respectively fell within the group with  0 < 𝛾+, 𝛾− < 1. This represents a 

predominant inverse S-shape for the parameters 𝛾+ and 𝛾− which determines the 

curvature of the weighting function. That is, overweighting low probability and 

underweighting high probability. Further, a one sample Wilcoxon Signed-Rank test 

of the hypothesis that  γ+ = 1 and γ− = 1 provides the basis for rejecting the null 

hypothesis given the parameters are significantly less than 1 at the 1% level (Z = -

5.24, p < 0.001 and Z = -4.87, p< 0.001). This finding is an indication of probability 

warping. This proof supports the hypothesis that that participants do warp 

probabilities and it corroborates Tversky & Kahneman, (1992); Mattos, Garcia & 

Pennings, (2007) that DM are sensitive to probability changes along the spectrum 

of unlikely to likely.  

Although the mean and median of 𝛾− is arithmetically larger than 𝛾+ as commonly 

reported in past studies56, a Wilcoxon Signed-Rank test show that there is no 

significant statistical difference between 𝛾+ and 𝛾− at the 5% level (Z = -1.29, p = 

0.19). Thus the hypothesis that the sample distributions are equal i.e. 𝛾+ = 𝛾− cannot 

be rejected. This finding indicates that under risk, domain specificity have no 

significant effect on weights attached to events.  

The weighting function parameters δ+ and δ− which measures the level of optimism 

is presented in Figure 17 and 18. A significant proportion (consisting of about 70% 

and 63% respectively) of participants fell within the 0 < δ < 1 bracket. A one sample 

Wilcoxon Signed-Rank test show that the parameters δ+ and δ− are significantly less 

than 1 at the 1% (Z = -6.19, p<0.001) and 5% (Z = -2.71, p=0.028) level respectively. 

This finding corresponds to the behaviour commonly reported in the literature as 

pessimism for gains and optimism for losses. On this basis, the hypothesis of a single 

but dominant risk attitude for gains and losses is rejected. This finding corroborates 

the hypothesis tested in Chapter 6. 

                                                           
56 Glöckner & Pachur, (2012), Fox & Poldrack, (2008)  are typical cases 
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A Wilcoxon Signed-Rank test used to compare sample distribution of the weighting 

parameter δ+ and δ− show no significant statistical difference between δ+ and  δ− 

at the 5% level (Z = -1.29, p = 0.19). Thus, the hypothesis of similar elevation across 

domains cannot be rejected. 

 

 
 

Figure 20. Prelec II probability weighting 
function for values 𝜸+𝐚𝐧𝐝 𝛅+ under risk.  

 

 
 

Figure 21. Prelec II probability 
weighting function for values 𝛄−𝐚𝐧𝐝 𝛅− 
under risk. 

 

Note: The yellow lines in each plot represents the functions for individual DMs, the blue line shows 
the group-level mean, and the red line symbolizes the identity line 

 

Figure 20 and 21 are plots of the probability weighting function for the parameters  

𝛾+, δ+ and 𝛾−, δ− respectively. The shape of the plots for the group-level mean 

confirms that on average the DMs overweighting of large probabilities in the gains 

domain is greater compared to loss. While both plots have an inverse S-shape 

however, there exists some difference in the weighting functions that arises from 

the inflection points and elevation in the gain domain relative to the loss domain.  

Overall the attitudes to risk of farmers does not coincide with risk neutral EUT as 

the test of the various hypothesis (α = 𝛽 = 1;  λ = 1;  γ+ = γ− = 1) earlier reported 

provide sufficient evidence to reject the EU maximizer hypothesis given the 

prevalence of outcome and probability sensitivity. However, the findings that 

farmers’ did not regard equally likely outcomes as ‘equally likely’ contradicts the 

assertion of Levy & Levy (2002) that subjective probability warping does not 

feature in the case of equally likely outcomes.   



168 
 

7.1.3 Choice sensitivity 

Recall that the estimated value of the choice sensitivity parameter φ determines 

whether the choice made by a DM is random or driven by subjective values. 

Typically, the smaller the value of the estimates of 𝜑, the more random the decision 

and vice versa. An estimated mean (median) value for 20.87 (resp. 20.56) shown in 

Table 14 suggest that on average, participants choice pattern was influenced by the 

subjective valuations of prospects; indicating that participant choices where not 

utterly random. 

 

  



169 
 

7.2 Attitudes to Monetary Uncertainty  

Similar to the model for risk, the uncertainty model was estimated with provision 

for different subjective value function for gains (α), losses (β), weighting function 

for gains (𝛾+and 𝛿+) and losses (𝛾−and 𝛿−). A description of the estimated 

parameters under risk is presented in Table 15. An observation of the results 

confirms heterogeneity among the respondents for all the parameters - a finding 

similar to the CPT estimation for risk. 

Table 15  
Descriptive Statistic for CPT Uncertainty Parameter under uncertainty 

Variables Mean Median SD Min 25% 50% 75% Max 

α 0.57 0.09 0.72 0.05 0.05 0.09 1.20 1.97 

β 0.93 0.86 0.82 0.05 0.06 0.86 1.83 1.99 

𝛾+ 0.81 0.37 0.66 0.25 0.30 0.37 1.54 1.99 

𝛾− 1.15 1.10 0.75 0.25 0.28 1.10 1.97 2.00 

𝛿+ 0.79 0.68 0.31 0.33 0.56 0.69 1.12 1.57 

𝛿− 0.94 0.68 0.68 0.25 0.26 0.68 1.65 1.97 

λ 1.87 2.03 0.87 0.52 1.06 2.04 2.68 2.97 

𝜑 13.78 6.18 13.69 0.17 1.31 6.18 30.87 41.89 

7.2.1 Utility Parameters under Uncertainty 

An examination of the distribution of the α and β parameter values predicted at 

individual level by the CPT model is presented in Figure 22 and 23. The majority of 

the participants accounting for over 75% had α < 1 parameter values implying 

concave curvature of the value function for gains. However, for the β parameter this 

was much less, as about 53% of the estimated value parameter for losses conformed 

to β < 1. This pattern is similar to the findings in the monetary risk domain where 

participants were predominantly risk averse for gains and risk seeking for losses. 

Similar to the results reported in Chapter 6, the preferences of many respondents 

could only be modelled using extreme curvature of the value function. There are 

masses clustered at the lower limit of the restriction for both α and β. A large 

proportion of participants were excessively risk averse in the gain domains and risk 

seeking in the loss domain evident from the 50th percentile in Table 15 and 

distribution in Figures 22 & 23.   
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Figure 22-27: Histogram of the CPT parameter for the beta distributions under 

uncertainty. 
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Figure 22. α parameter 

 

Figure 23. β parameter 

 

Figure 24. γ+ parameter 

 

Figure 25. 𝛾− parameter 

 

Figure 26. δ+ parameter  

Figure 27. δ− parameter 
 

In aggregate, the results presented in Table 15 show the median (mean) value for α 

is 0.09 (0.57) and β is 0.86 (0.93). A one sample Wilcoxon Signed-Rank test show 
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that the parameters α is significantly less than 1 at the 1% level (Z = -7.20, p < 0.001) 

thus the hypothesis α = 1 implying risk neutrality or linear sensitivity to outcomes 

in the gain domain is rejected. Similarly, the hypothesis that β = 1 is rejected at the 

1% level (Z = -3.13, p < 0.001).  

Hypothesis 2: Attitudes to uncertainty depends on content domains 

In other to test the hypothesis that α = β, a Wilcoxon Signed-Rank test was used to 

compare sample distribution of α and β parameters. The result shows statistically 

significant mean difference between α and β at the 1% level (Z = 3.23, p < 0.001). 

This implies that under uncertainty the curvature of the value function is domain 

specific and is asymmetric across gains and losses thus rejecting the hypothesis that 

attitudes to uncertainty does not depends on content domains (α = β) and conclude 

that the alternative hypothesis is true at 95% confidence level.  

The distribution of the coefficient of the DM’s relative sensitivity to gain and loss (λ) 

show that participants with λ >1 made up over 72%. This proportion suggest that 

majority of farmers were more sensitive to losses than they are to gains of equal 

proportion. On average, the value for the estimated λ is 1.89 (with a median value 

of 2.03) as shown in Table 15. The above interpretation of λ are purely descriptive 

as in line with Balcombe et al. (2018), when a symmetry restriction is not imposed 

on the power parameters, the interpretation of this coefficient is complex.   
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Figure 28. Average value function for α and β under Uncertainty. 

Figure 28 shows the value function computed from the average parameter values of 

α, β and λ parameter estimates. As shown in the plot, the concavity for gains and 

convexity for losses is an indication of risk aversion and risk seeking respectively. 

Notably, the loss region is steeper than the gains region with a kink that is not too 

sharp at the reference point. Again, this finding provides evidence in line with 

several previous findings that reported inverse S-shaped value function. 

  



174 
 

7.2.2 Probability Weighting Parameters under Uncertainty 

Figures 24 and 25 are plots of the distribution of γ+ and γ− parameters under 

uncertainty. Inverse S-shape (0 < 𝛾+< 1) was predominantly observed across DMs 

for the gain parameters 𝛾+ while S-shape (𝛾− > 1) was most prevalent for losses 

given the proportion of 63% and 51% having the aforementioned shapes for gain 

and loss respectively. This result differs from the inverse S-shape for both 𝛾+ and 

 𝛾− shown by participants under risk. This inverse S-shape (S-shape) implies 

overestimation (underestimation) of low probabilities and underestimation 

(overestimation) of high probabilities for gain (loss).  

Using Wilcoxon Signed-Rank  test, the hypothesis that  γ+ = 1 and γ− = 1 is rejected 

given the 𝛾+ parameter is significantly less than 1 and the 𝛾− is significantly greater 

than 1 at the 1% a (Z = -3.11, p < 0.001; Z = -3.94, p < 0.001 respectively). This pattern 

is an evidence of probability warping.  

Aggregate level predictions of the estimation of the gamma parameter for the beta 

distribution that characterise gain γ+ and loss  γ− are presented in Table 12. The 

statistics show a median value of 0.37 for 𝛾+and 1.10 for 𝛾−. A Wilcoxon Signed-

Rank test used to compare sample distribution of the weighting parameter γ+  and 

γ− suggest significant statistical difference between γ+  and γ−  at the 1% level (Z = 

-3.54, p < 0.001). Therefore, the hypothesis that 𝛾+= 𝛾− is rejected. This finding is 

different from what was obtained under risk and favours the suggestion that under 

uncertainty, the weights attached to probabilities depend on content domain.  

Figure 26 and 27 are plots of the distribution of the weighting function parameters 

δ+ and δ−which defines the degree of elevation of the PWF and the attractiveness of 

the prospects. The plots confirm that a large proportion (consisting of about 70% 

and 63% respectively) of participants fell within the 0 < δ < 1 bracket. A one sample 

Wilcoxon Signed-Rank  test show that the parameters δ+ is significantly less than 1 

at the 1% level (Z = -7.06, p < 0.001). However for δ−, the hypothesis that and δ−=1 

cannot be rejected (Z = -0.63, p = 0.26). This finding corresponds to pessimism for 

gains and (near) neutrality for losses. As such, the hypothesis of a single but 

dominant attitude for both gains and losses is rejected. 
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The elevation parameters  δ+ had a median (mean) of 0.68 (0.79) while the 

elevation parameters δ− had a median (mean) of 0.68 (0.94). A Wilcoxon Signed-

Rank test used to compare sample distribution of the weighting parameter γ+  and 

γ− suggest significant statistical difference between γ+  and γ−  at the 5% level (Z = 

-2.12, p = 0.03). Thus, the hypothesis of identical elevation across domains is 

rejected and conclude that the hypothesis of difference in elevation of the weighting 

function for losses than for gains is true at 95% confidence level.  

 
 

Figure 29. Probability weighting function 
for values  𝜸+𝐚𝐧𝐝 𝛅+ under Uncertainty 

 
 

Figure 30. Probability weighting 
function for values  𝜸−𝐚𝐧𝐝 𝛅− under 
Uncertainty 

 

Recall: The yellow lines in each plot represents the functions for individual DMs, the blue line shows 
the group-level mean, and the red line symbolizes the identity line 

 

The probability weighting function for values 𝛾+, δ+ and 𝛾−, δ− are presented in 

Figure 29 and 30. The shape of the group-level mean plots confirms an inverse S-

shape for gains and S-shape for losses suggesting that the DMs underweights large 

probabilities for gain but overweights large probabilities of loss. Other difference in 

the weighting functions is notable in the inflection points and elevation for in the 

gain domain relative to the loss domain.  

Overall, the behaviour of farmers does not coincide with EUT as the test of the 

various hypothesis (α = 𝛽 = 1;  λ = 1;  γ+ = γ− = 1) earlier reported provide 

reason to reject the EU maximizer hypothesis at 95% confidence level given that 

outcome and probability sensitivity are observed.  
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7.2.3 Choice sensitivity 

As discussed in the previous section that the estimated value of the choice 

sensitivity parameter φ determines if the choice made by a DM is random or driven 

by subjective values. Smaller values of the estimates of φ imply randomness in the 

decision and vice versa. An estimated mean (median) value for 13.7 (6.18) shown 

in Table 15 suggest that participant choices where not utterly random but 

determined by the subjective values. However, comparing the result to that of risk 

however, participants made less random choices on average under risk than 

uncertainty as expected a priori. 

Unlike the Mean-Standard deviation estimation in Chapter 6 where it is assumed 

participants exclusively evaluate specific properties of the distribution such as the 

mean and standard deviation; on the contrary the CPT parameter estimation 

indicated that participants possibly made decisions by means of putting into 

operation an intricate weighting of outcomes across the distribution. One 

postulation is that participants inferred correspondence between the two prospects 

and possibly mapped values across prospect which translates to some form of 

ranking.  

Also, despite using continuous prospects; respondents did not treat equally likely 

outcomes as ‘equally likely’ and appear to demonstrate cumulative probability 

distribution warping consistent with the Cumulative Prospect Theory (CPT).   
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7.3 Comparing Risk and Uncertainty Attitudes 

The different (combinations of) shapes of α and 𝛽 parameters demonstrate that risk 

and uncertainty attitude are not homogenous among farmers. By grouping 

participants according to the shape of their value function57 for both gains and 

losses under risk as shown in Figure 31, the largest proportion of participants 

(about 58%) had concave (convex) value function for gain (loss) followed by (about 

55%) concave value function in both gain and loss domains. This finding 

corroborates the results of Resende & Tecles, (2011)58. 

 

 
 
 
 
 
 
 
 
Figure 31. Shape of the value function for 
gains and losses under risk 

 

 
 
 
 

 
 
 

 
Figure 32. Shape of the value function 
for gains and losses under 
Uncertainty 

Concave (G) = Concave in gain domain, Concave (L) = Concave in loss domain, Convex (G) = Convex in 
gain domain & Convex (L) = Convex in loss domain 

                                                           
57 Participants are distributed according to the shape of the value function jointly considering the 
shape of α and corresponding β. 
58 Resende & Tecles, (2011) reports concavity in both gain and loss domains however they point out 
that in their case, concave utility suggest but did not directly express risk aversion  

Shape Shape 
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However, under uncertainty this pattern is different as presented in Figure 32. The 

predominant pattern was concave α and β followed by concave (convex) value 

function for gain (loss). Abdellaoui & Kemel, (2013) obtained similar pattern of 

predominant concavity for both gains and losses followed by concavity for gains and 

convexity for losses albeit under risk.  

Hypothesis 4: Attitudes to risk and uncertainty differ within context domain 

A Wilcoxon Signed-Rank test to compare sample distribution of α’s for risk and 

uncertainty shows no statistically significant difference between α’s under risk and 

uncertainty at the 5% level (Z = -1.57, p = 0.11) in which case the hypothesis that 

the sample distributions are equal cannot be rejected. On the other hand, a Wilcoxon 

Signed-Rank test to compare sample distribution of β’s for risk and uncertainty 

shows statistically significant difference between β’s under risk and uncertainty at 

the 5% level (Z = -2.19, p = 0.02). This, significant difference denotes that the 

distribution of the curvature of the value function within a specific context (loss 

domain in this case) depends on conditions (risk vs uncertainty) and corroborates 

the results reported in Chapter 6. 

Taken together on average however, farmers are risk averse for gains and risk 

seeking for losses under both risk and uncertainty. Specifically, the study finds 

evidence of a gain-loss asymmetry in the utility function parameters. While the 

shape of the gain arm of the value function under risk and uncertainty appears 

similar at aggregate level, the loss arm under risk was more convex (indicating 

higher risk seeking for losses) compared to uncertainty.  

Overall, there is sufficient reason to dispute linear probability weighting both for 

risk as well as for uncertainty since the results provide evidence of probability 

weighting for gains and losses. However, the weighting pattern is different across 

risk and uncertainty. While participants overweight low probabilities for gains and 

losses on average under risk, for uncertainty overweighting of small probabilities 

did not apply to losses. As expected a-priori, a comparison of the structural “noise” 

parameter (μ) of risk and uncertainty shows that choices made under risk were less 

random than under uncertainty and the mean differences were statistically 

significant. 



179 
 

Although on average while the estimated parameters (α, β, 𝜆 ,  𝛾+, 𝛾−, 𝛿+, 𝛿−, μ) for 

risk and uncertainty appear similar, however overall there is weak (though 

significantly positive) correlation between these parameters across risk and 

uncertainty as shown in Figure 33(A-G).  

Figure 33(A-G). Scatterplots for the association between value and probability 
weighting parameters under conditions of risk vs. uncertainty.  

 

Figure 33A. Association between α value for 
risk and uncertainty. 

 

Figure 33B. Association between β value for 

risk and uncertainty. 

 

Figure 33C. Association between 𝛾+ value for 

risk and uncertainty. 

 

Figure 33D. Association between 𝛾− value for 

risk and uncertainty. 
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Figure 33E. Association between 𝛿+ value for 

risk and uncertainty. 

 

Figure 33F. Association between 𝛿+ value for 

risk and uncertainty. 

 
Figure 33G. Association between 𝜆 value for 

risk and uncertainty. 

 

Figure 33H. Association between μ value for 

risk and uncertainty. 

Two arguments are put forward to explain the observed differences between the 

risk and uncertainty parameter estimates. First, there may well be genuine 

differences in individual behaviour under risk and uncertainty among the 

participants. Acknowledging the distinction between conditions of risk and 

uncertainty, a rational choice under risk may not necessarily be the same under 

uncertainty. This does not suggest that DMs are incoherent but given different 

conditions, DMs may act differently. Second, the different parameter values 
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obtained under risk and uncertainty for the same participant (for instance the 

characterisation of an individual whose choice follows a sequence of say inner-

outer-inner under risk versus inner-outer-inner under uncertainty results in 

different CPT parameter values), could possibly have arisen from estimating the 

CPT parameters under mis-specified model. By forcing the model unto the data that 

is inconsistent with the model create dependence on the parameter values which 

otherwise should not arise in a true model. 

Crucially, some of the findings in this study raises concerns about the CPT model as 

it may not have sufficient descriptive strength required to explain all participants’ 

attitudes. First, at the individual level, there is much heterogeneity in the behaviour 

and average behaviour is not supported by individual behaviour. Second, the 

standard CPT function struggled to deal with certain behaviour (including 

phenomenon of negligible gain avoidance and negligible loss seeking and significant 

number of non-switching at different points in risk preference ladder) highlighted 

in Chapters 5 and 6 evident from the significant bunching of individuals at the end 

of the parameter space. Thus, the preferences of many respondents could only be 

modelled using “extreme curvature” of the value function.  

Although the CPT provides a useful method to characterize heterogeneity however, 

relying on the CPT alone to draw conclusions especially for evidence-based 

recommendations in the face of the aforementioned concerns is limiting. This 

deduction is in line with the conclusion of previous studies including Harrison & 

Swarthout (2016) and Bruhin, Fehr‐Duda & Epper (2010). Therefore, the Chapter 8 

examines the data in the light of other decision theories. 
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7.4 Summary 

In summary, Chapter 7 covers results obtained from estimating parameters of the 

Hierarchical Bayesian CPT model. The CPT analysis in this chapter was constrained 

to the two most important cases (monetary risk and uncertainty).  Although the 

estimates of the individual parameters were derived from a Bayesian procedure, 

inference about the parameters was by classical tests applied to the parameters 

extracted from the Bayesian mixed logit.  

Key findings are that attitudes differ under the different conditions (risk and 

uncertainty) and content (gain, loss and mixed) domains. Using continuous 

prospects, respondents did not treat equally likely outcomes as ‘equally likely’ and 

appear to demonstrate cumulative probability distribution warping consistent with 

the Cumulative Prospect Theory (CPT).  In aggregate however, farmers are risk 

averse for gains and risk seeking for losses under both risk and uncertainty. 

However, there is reason to doubt the adequacy of the CPT model to handle the data 

in this case since the preferences of many respondents could only be modelled using 

“extreme curvature” of the value function. This was induced by “negligible gain 

avoidance’’ (i.e. avoiding prospects with zero lower bound in the gain domain) or 

“negligible loss seeking’’ (i.e. preferring prospects with zero upper bound in the loss 

domain) behaviours. The behaviours were bound to be reflected in this way under 

the CPT as the aforementioned phenomenon and the significantly large number of 

non-switching at different points in risk preference ladder resulted in bunching of 

individuals at the end of the parameter space. 

Arguably, the CPT model may not be the most appropriate to be applied in this 

context since the extreme parameter values are detrimental for model prediction 

accuracy and limits the capability of the CPT to effectively describe participants’ 

behaviour. However, it serves as a good basis for describing how DM’s decision 

makers act. Alternatives theories that may rationalize the NGA and NLS 

phenomenon are explored in Chapters 8.  
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Chapter 8 

Alternative Explanatory Theories - Results and 

Discussions 
 

8.0 Introduction 

The results in Chapter 7 indicates that the attitude to risk and uncertainty cannot be 

entirely justified by the EUT, as there is empirical evidence of probability warping. 

Similarly, the CPT does not fit the data sufficiently from the perspectives of 

modelling participants’ attitudes; as many respondents could only be modelled 

using extreme curvature of the value function. The CPT also struggled to deal with 

the behaviour highlighted in the previous sections.  

Chapter 8 examined decision rules and alternative theories with the aim of 

providing further explanation to the findings in previous Chapters. It pivots on 

testing the proposition that ‘NGA’ and ‘NLS’ are nothing more than artefact of the 

design. In addition, it examines a different perspective that it could be that 

participants may have adopted different decision rules which may well reflect those 

used in participants’ day-to-day decision-making.  

The sequence of discourse in Chapter 8 is as follows. Section 8.1 examines 

participants’ level of comprehension 8.2 presents results of selected heuristics and 

decision rules, section 8.3 discusses findings from salience theory while sections 8.4 

examines the role of zero avoidance in participants’ decision. 
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8.1 Evaluating Participants’ Comprehension 

As pointed out in Chapter 6, this section investigates the possibility that the 

phenomenon of ‘negligible gain avoidance’ and ‘negligible loss seeking’ could be 

nothing more than artefact of the design. Participants understanding of the 

experiment was tested before and after the experiment. As discussed in section 5.2 

in Chapter 5, at the beginning of the experiments a detailed explanation of the 

necessary concepts relating to the choice task were explained using an unbiased 

spinner and demonstration continued until participants showed complete 

understanding of the concepts. Thereafter, four trial choice tasks preceded the 

actual experiment to test respondents’ understanding. With the onset of a new set 

of choice tasks such as - risk to uncertainty or from gains to losses, respondents 

attention were drawn by the researcher and necessary explanations made.  

Post-experiment, each farmer participated in a follow-up experiment. However, 

unlike the main experiment, the prospects pair presented to each participant 

consisted of ‘biased’ and ‘stochastically dominated’ prospects. The prospect pairs 

were designed such that Prospect A has a likelihood of the best outcome on the 

upside and was at least as good as prospect B on the downside, so that a rational DM 

is expected to pick Prospect A. The need for this section of experiment was to test 

whether level of understanding of the experiment affected participants’ risk seeking 

or risk avoidance attitude as well as influenced the phenomenon of ‘negligible gain 

avoidance’ and ‘negligible loss seeking’. An example of the experiment59 presented to 

participant is presented in Figure 34. 

  

                                                           
59 Details of the experiment is reported in Appendix 3. 
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Figure 34a. Examples of ‘stochastically dominated’ prospects in gain domain 

Since Prospect A dominates B, a rational participant would avoid B. This a-priori 

expectation is met as the result show that no participant (0%) picked any 

stochastically dominated prospect. This finding suggests that is not simply a 

deficient level of understanding of the experiment that has led to what we have 

termed ‘negligible gain avoidance’ and ‘negligible loss seeking’. 

Further, participants were given experiments which were flipped version of the 

main experiment as shown in Figure 34b. In this case, Prospect B was more ‘risky’ 

in terms of wider variance. A-priori it was expected that participants choices would 

be consistent such that those participants that chose Prospect A in the main 

experiment should choose prospect B in the follow-up.  

 

Figure 34b. Examples of ‘flipped’ version of prospects in gain domain 
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The results presented in Figure 35 indicates that all participants’ (100%) in the 

loss domain under risk made consistent choices when presented with the flipped 

lotteries. 

 

 

 Figure 35. Histogram showing participants’ switching across domains 
 

Across other domains however, about than 5% made inconsistent choices in the 

gain domain under uncertainty while about 2% of participants were inconsistent in 

their choices in the gain domain under risk. This result subjected to a paired sample 

t-test show no statistical significant difference in the choices made during the 

experiment and post-experiment under conditions of risk (t = -0.81, p > 0.41) and 

uncertainty (t = 0.70, p > 0.47) at the 10% level. This finding again suggest that 

participants’ understood the experiment and their decisions where not merely 

artefact of the experiment design.   
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8.2 Selected Heuristics and Decision Rules 

In Figures 36 and 37, the proportion of choices under risk and uncertainty that 

conforms with the prediction of maximin and maximax is presented. As discussed 

in section 3.6 in Chapter 3, using the maximax criterion; the DM assesses prospects 

based on the highest payoff possible. The DM’s aim is to maximize the maximum 

payoff. The sequence of decision-making involves isolating the maximum payoff of 

all available options then choosing the option with the highest maximum payoff. On 

the other hand, in the case of maximin; the DM is most concerned with avoiding the 

worst possible outcome of the worst-case scenario with the belief that the chance 

that the worst case in any event will happen is high. Thus, the DM identifies the 

worst possible outcomes then choose the option that is best among the worst. 

Under risk (uncertainty respectively) in the gain domain, the choices made by about 

65% (67%) conforms with the expectations of minimax heuristic. Similarly, in the 

mixed domain under risk and uncertainty about 56% and 59.1% of choices 

respectively coincides with the predictions of the minimax heuristic. For the loss 

domain however, the predominant heuristic was the maximax heuristic as 56% and 

59% of the choices made under risk and uncertainty respectively was in line with 

maximax heuristic prediction. 

  

Figure 36. Proportion of choices under 
risk similar to the prediction of 
maximin and maximax 

Figure 37. Proportion of choices under 
uncertainty similar to the prediction of 
maximin and maximax 
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An asymptotic McNemar's test confirmed that in the gain domain there is statistically 

significant differences between the proportion of choices made by participants’ and 

the prediction of the maximin χ= 534, p < .001 (resp. maximax χ =1033, p < .001). 

Similarly in the loss domain there is statistically significant differences between the 

proportion of choices taken by participants’ and the predictions of the maximin 

χ=693, p < .001 (resp. maximin χ= 883, p < .001). Finally in the mixed domain, the 

test for statistically significant differences between the proportion of choices made 

by participants and the prediction of the maximin also suggest that there is 

statistically significant χ= 856, p < .001 (resp. maximax χ =1501, p < .001). The 

implication for this finding is that although certain proportion of the sample choices 

conforms to maximin and minimax predictions, this is not statistically sufficient to 

conclude that the maximin and minimax heuristic predicts the predominant choices 

overall.  
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8.3 Salience Theory 

This section briefly examines the possibilities of participants allotting weight to 

judgments for salient payoffs. As discussed in section 3.8 of Chapter 3 salience is 

determined through a function that examines the similarities and differences of the 

characteristic of prospects in respect of a reference level with the aim of 

ascertaining the extent to which that characteristic is distinctive and attracts the 

DM’s attention. Specifically, this section sought to provide answers to the questions; 

are zero payoffs salient? If yes, was it overweighted?  

Recall from the discussion in Chapter 3 that the CPT overweight tail events i.e. 

attaching more weights to outcomes that are unlikely or events that are rare. 

However, Salience theory suggest that the differences in payoffs is key to weighting 

payoffs. Thus only when the greatest difference is salient are tail events then 

overweighted. 

There are two main assumptions regarding the densities that could be made herein. 

First, complete independence between prospects. Second, participants’ may have 

inferred correspondence between the two prospects and possibly mapped values 

across prospect such that for every value in Prospect A, there is an equivalent value 

in B which translates to some form of ranking and correspondence between both 

prospect. The certainty equivalent under salience with power utility for these two 

assumptions was estimated. 

By treating the lotteries as discrete uniform lotteries with 1000 increments between 

the upper and lower limits’ approximating the continuous case was possible. For the 

assumptions of complete independence and correlation, the baseline parameter 

values from Bordalo et al., (2012) was adopted where θ = 0.1, δ = 0.7 and a power 

utility coefficient α = 0.25. Recall that θ > 0, permits for the possibility of prospects 

with zero payoffs to be less salient than non-zero payoffs provided there is sufficient 

distance between payoffs of one prospect and its alternative. It was expected a-

priori for instance in the gain domain where the lower bound of the ‘risky’ prospect 

is more salient, the DM would avoid taking risk i.e. the salience of the worst payoff 

will result in the risky prospect appearing less attractive.  
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The results however provides evidence to conclude that salience does not explain 

participants’ zero averse/liking. Notably, for those prospects with zero bounds, 

salience theory suggest that it may not have been the zero payoff that resulted in  

‘negligible gain avoidance’ or ‘negligible loss seeking’  but some of the other payoff 

values may have been extremely salient. Changing the values of θ and δ parameters 

did not change the results much; thereby suggesting minimal sensitivity to the θ and 

δ values. Although participants may have put some additional weights to salient 

payoffs, however the extent to which it is overweighted is not determined and it 

may well differ across participants.  Crucially, it gives an indication that salience 

however can result in participants, making ‘unusual’ choices. 

While Salience theory provide some insight into participants’ attitude, other areas 

require investigating perhaps using a combination of theories; for instance salience 

with regret or disappointment. Since additional data is required to permit 

statistically reliable conclusions, the suggestions hereof is for future research. 

  



191 
 

8.4 Avoidance/Seeking of payoffs in the Neighbourhood of Zero 

The discussion here builds on the principles driving zero avoidance (seeking) in the 

case of discrete prospect that when a DM is ‘guaranteed’ a non-zero strictly positive 

(negative) payoff compared to an alternative prospect with a downside (upside) 

having the possibility of zero payoff; a zero averse DM will avoid (choose) the 

alternative prospect. This suggest that in the gain domain for instance, the reason 

that drives the decision of a zero-averse (seeking) DM is the dislike for zero payoff 

rather than the attraction of the non-zero outcomes. However, in the case of 

continuous prospects employed in this study, this dislike or attraction is not zero 

avoidance/liking but avoidance/seeking of the area in the neighbourhood of zero. 

To investigate possible existence of avoidance of the area in the neighbourhood of 

zero, first a piecewise power utility function was set up with a kink in the middle 

obtained from inserting a steep linear component around some narrow region 

around zero as shown in blue line representing the piecewise power in Figure 38.  

 
 

Figure 38. Power utility function 
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The effect of avoidance of the area in the neighbourhood of zero on certainty 

equivalents for the discrete case estimation relied on payoffs of 50/50 prospects 

with two payoffs wherein the upper bound is 50 and the lower bound decreasing 

progressively towards zero. A plot of the data is presented in Figure 39. The CE plot 

of this hypothetical data does not show ‘abnormal’ behaviour in regions close to 

zero.  

 

Figure 39. EV and CE of 50-50 lottery 
 

Further, presented in Figure 40 is the continuous equivalent of Figure 39 showing a 

combination of extreme probability weightings (the beta weighting scheme is 

employed in this case) that permits quite ‘extreme’ zero avoidance whereby DMs 

are not actually avoiding zero but regions in the neighbourhood of zero. However, 

plotting the CE of uniform prospect and beta weightings show that; where the 

regions do have neighbourhoods close to zero (suggested by the green line in Figure 

40) the attitude of the DM does not suggest extreme risk aversion that was reported 

for participants’ in the Bayesian mixed logit in Chapter 7. 
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Figure 40. EV and CE of uniform prospect and beta weighting 
 

In line with arguments of the few studies that have reported zero avoidance (e.g. 

Payne (2005), Ert & Erev (2010), Cettolin & Tausch (2015)); one possible 

explanation for the difference in risk and uncertainty attitude between strict gains 

for instance and zero-bound gains could be dependent on participants’ 

unwillingness to take chances which may result in not getting a strict positive 

payoff. In the real world, the economic situation of the participants’ may have 

skewed their preferences by influencing their perception of zero payoffs 

notwithstanding its possibility of occurring is zero. Thus, zero may have been 

treated as a ‘loss’ in the gain domain and vice-versa suggesting that a guarantee of 

winning something or not losing anything at the very least may be the main 

aspiration for DMs. The implication of this behaviour is participants’ may choose 

prospects that increases (reduces) the likelihood of a strict gain (loss) even at the 

expense of lower expected value.  

It is not within the scope of this thesis to attempt a full implementation of this model 

as an extension of the mixed logit model earlier presented. However, future work 

may investigate this as a possible extension. 
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8.5 Summary 

This chapter focuses on exploring decision rules and alternative theories with the 

aim of shedding light on the finding in Chapters 6 and 7 relating to significantly large 

number of non-switching at different points in risk preference ladder, bunching of 

individuals at the end of the parameter space and ‘negligible gain avoidance’ 

(‘negligible loss seeking’) in the gain (loss) domain.   

In summary, although we find that zero outcomes may have generated certain 

‘biases’, the decision taken by participants in accordance with their choices was not 

muddled by misunderstanding as participants’ showed they understood the 

experiment. Also, certain proportion of the sample choices conforms to maximin 

and minimax predictions. However, it was not statistically sufficient to conclude 

that the maximin and minimax heuristic predicts the predominant choices overall. 

As for salience theory, it failed to justify the findings of ‘negligible gain avoidance’ 

and ‘negligible loss seeking’. This limitation could stem from the fact that it is 

primarily designed for discrete lotteries that are state contingent. However, the 

prospect used in this study are continuous and do not fit states settings. Although 

this does not rule out the possibility that DMs implicitly imputed or assumed state 

dependence before making comparison. Also, DMs may have inferred covariance 

between outcomes implying a joint distribution rather than marginal distribution. 

These presumptions need detailed investigation in future studies. 

The avoidance of the area in the neighbourhood of zero is used to explain the 

‘negligible gain avoidance’ and ‘negligible loss seeking’ by employing a combination 

of extreme probability weightings that allows the presence of quite “extreme” 

avoidance in the neighbourhood of zero. The results show that when the regions do 

have neighbourhoods close to zero the behaviour of the DM becomes “normal”. 

Crucially, this Chapter finds that no single heuristics or theories single-handedly 

justifies all the observed behaviours of participants. However, each theory 

contributed to explaining certain behaviour of participants thus indicating that 

typologies of individuals may have adopted different decision rules that may well 

reflect those that are used in their day-to-day decision making even if it may not be 

rational.  
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Chapter 9 

Risk and Uncertainty Attitudes - Implications for 

Farm Decision Making 
 

9.0 Introduction 

This chapter utilizes the estimated parameter values under risk and uncertainty 

attitudes obtained in Chapter 7 to ascertain the relationship between  farmers’ risk 

and uncertainty attitudes and bipolar disorder tendencies and; risk/uncertainty 

attitudes and decision to participate in off-farm income earning activities.  

As detailed in Chapter 4, the probit equation presented in equation 4.5.9 is estimated 

in other to determine the relationship between risk attitude and decision to engage 

in off-farm income generating activities. To determine factors that influences 

preference for the type of off-farm income generating activities (OFIGA), the 

multinomial probit presented in equation 4.6.13  is estimated while the effect of 

bipolar tendencies on risk attitude is determined from estimating a multivariate 

multiple regression. 

This chapter consist of three sections as follows. In section 9.1 the relationship 

between risk/uncertainty attitudes and bipolar propensities is reported. In section 

9.2 the results of empirical test of relationship between risk/uncertainty attitudes 

and off-farm participation decisions are presented; followed by determinants of the 

type of off-farm income generating activities chosen by farmers in section 9.3. 
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9.1 Risk and Uncertainty Attitudes and Bipolar Disorder 
Tendencies    

This section reports the results of the effect of bipolar disorder tendencies on 

risk/uncertainty attitudes. In order to test the hypothesis that BD affects 

risk/uncertainty attitude, this study draws from the psychological concept of 

outcome sensitivity suggesting that a priori, farmers with BD tendencies are more 

sensitive to changes in outcome as they move further from the reference point. In 

addition, it is expected a priori that that BD tendencies also affect the elevation and 

slope of the probability weighting function such that farmers with BD tendencies60 

will be more optimistic (pessimistic) for gains (losses). 

As discussed in Chapter 2, bipolar disorder tendencies and farmers’ mood during 

the duration of the experiment are the key variables in the regression model. Recall 

in Chapter 7 the interpretation accorded the CPT parameters that the curvature of 

the value function that describes the risk/uncertainty attitude is determined by α 

and β for the domains of gains and losses respectively. The parameter λ on the other 

hand symbolizes differences in the weight attached to loss compared to gain. As for 

the elevation captured by δ, higher values represent more optimism in the gain 

domain. While for the curvature of the probability weighting function determined 

by γ captures the strength of the deviation of the probability weighting function 

from linear. 

Two models were estimated with the key dependent variables being bipolar 

tendencies and mood. Bipolar tendencies (Bipolar) describes the effect of 

borderline to severe bipolar tendencies on risk and uncertainty. Mood captured the 

state of mind/feeling prior to the risk and uncertainty experiment. In addition to the 

main variables of interest, other control variables included in the estimated models 

are age and gender. Model I estimated the effect of Bipolar, mood and Bipolar*Mood 

on all the 8 CPT parameters (α, β, 𝜆 , 𝛾+, 𝛾,− 𝛿+, 𝛿−, 𝜑) under risk while model II 

estimated the same parameters but under uncertainty. 

                                                           
60 Bipolar disorder as discussed in Chapter 2 is characterised by episodes of both elevated and 
depressed mood thus the above  expectation is referring to a case when the participant is in a good 
mood.  
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The results discussed hereafter are from the regression examining the effect of 

bipolar disorder tendencies on risk attitude only (since bipolar disorder tendencies 

has no significant effect on most uncertainty attitude parameters. The estimated 

model has a Roy's largest root of 4.30 (for model II 2.04) with a p-value below 

0.01(resp. 0.05), suggesting therefore that there are significant differences in the 

group means for the combination of regressors. 

As presented in Table 16, the variable ‘bipolar tendencies’ is significant and has a 

positive effect on the shape of the subjective value function for losses (β). This result 

implies that farmers’ with bipolar disorder tendencies show greater risk aversion 

for losses. The implication of this finding is that characterizing DMs having bipolar 

tendency by a generalized propensity to take risk without reference to domains and 

mood/state of mind when the decision is taken may be misleading. This finding 

corroborates Chandler et al., (2009) findings that compared to healthy controls; the 

choices of participants BD were less risk seeking when presented with loss framed 

gambles.  

Bipolar tendencies is significant and has a positive relationship with the elevation 

of the probability weighting function in both the gain and loss domains (i.e. 𝛿+ and 

𝛿−) which translates to farmers with bipolar disorder tendencies are more likely to 

be more optimistic for gains and pessimistic for losses. This behaviour differ from 

the results in Chapter 7 that show the average farmer is pessimistic for gains and 

optimistic for losses. This behaviour could be justified from the point that in certain 

states of BD, there is very low threshold of describing gains  which resulting in 

excessively optimistic attitudes. 

In addition, bipolar tendencies is significant and has a positive relationship with the 

curvature of the PWF for gains 𝛾+; suggesting that the probability weighting 

function of farmers’ having bipolar propensities is closer to being linear compared 

to farmers’ that do not show bipolar propensities. Bipolar tendencies also has a 

significant and negative relationship with choice sensitivity 𝜑 suggesting that 

farmers that have bipolar propensities are more likely to make random choices 

compared to those without. This finding suggest that BD affect attitudes and may 

impede optimal decision which can have negative consequences. 



198 
 

Table 16  
Multivariate Regression Examining the effect of Bipolar Disorder Tendencies on Risk Attitude 

  Risk Uncertainty 
Dependent 
Variable 

Independent 
Variable Coeff. Std. Err. Coeff. Std. Err. 

α Bipolar 0.787 0.527 0.299 0.527 
 Mood 0.211 0.327 0.197 0.327 
 Bipolar*Mood -0.539 0.571 -0.016 0.571 
  Age 0.172*** 0.058 0.071 0.058 
 Gender 0.008 0.126 0.233** 0.126 

β Bipolar 1.380*** 0.490 0.441 0.599 
 Mood 0.442 0.303 0.500 0.371 
 Bipolar*Mood -1.192*** 0.531 -0.359 0.649 
  Age 0.061 0.054 -0.087 0.066 
 Gender 0.042 0.117 0.175 0.143 

λ Bipolar 0.816 0.713 0.185 0.485 

 Mood 0.223 0.442 0.104*** 0.300 

 Bipolar*Mood -0.854 0.773 -0.020 0.525 

  Age -0.084 0.078 0.110 0.053 

 Gender 0.144 0.171 0.127 0.116 

𝛾+ Bipolar 0.743* 0.423 0.189 0.546 

 Mood 0.255 0.262 0.439 0.339 

 Bipolar*Mood -0.479 0.458 -0.256 0.592 

  Age 0.140*** 0.046 -0.125 0.060 

 Gender 0.007 0.101 0.083 0.131 

𝛾− Bipolar 0.562 0.387 0.009 0.231 

 Mood 0.243 0.240 0.152 0.143 

 Bipolar*Mood -0.481 0.419 0.044 0.250 

  Age -0.023 0.042 0.010** 0.025 

 Gender -0.008 0.093 0.045 0.055 

𝛿+ Bipolar 0.792** 0.376 0.703 0.500 

 Mood 0.307 0.233 -0.003 0.310 

 Bipolar*Mood -0.590 0.408 -0.723 0.542 

  Age 0.076* 0.041 0.035** 0.055 

 Gender 0.060 0.090 -0.014 0.120 

𝛿− Bipolar 0.863* 0.481 -0.769 0.644 

 Mood 0.496* 0.298 0.063 0.399 

 Bipolar*Mood -0.762 0.521 0.786 0.697 

  Age 0.102* 0.053 -0.050 0.071 

 Gender -0.065 0.115 0.040 0.154 

𝜑 Bipolar -21.288** 12.178 0.372 10.149 

 Mood -8.093 7.545 -1.445 6.287 

 Bipolar*Mood 16.790 13.195 -1.928 10.996 

  Age -1.169 1.336 -1.034 1.113 

 Gender 0.586 2.914 -3.074 2.429 

*** p<0.01, ** p<0.05 and * p<0.1.          
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Hypothesis 6: DMs having bipolar disorder tendencies have significantly 

different risk and uncertainty attitude from DMs with no bipolar disorder. 

In other to test the above hypothesis, a Welch’s t-test 61 was used to compare the 

average risk and uncertainty attitude of both groups. The result show statistically 

significant mean difference between the risk attitude of farmers having bipolar 

disorder tendencies and those without at the 10% level (t = -1.79, p < 0.092) in the 

gains domains only. Therefore, the null hypothesis is rejected and the conclude that 

the hypothesis that farmers having bipolar disorder tendencies have significantly 

different risk attitude from farmers with no bipolar disorder is true at 95% 

confidence level. 

Mood is positive and significant for the elevation parameter 𝛿− suggesting that 

farmers in good mood attach substantially higher weights to probabilities 

associated with losses. Thus, they show more pessimism for losses compared to 

farmers in bad mood. This finding conforms with that of Kliger & Kudryavtsev, 

(2014), Arkes, Herren & Isen, (1988) and Isen, & Geva, (1987) and possibly supports 

the position of the mood-maintenance hypothesis that suggest DMs tend to be risk 

averse when in a positive mood so as not to interfere with their current state. In 

other words, DMs become reluctant to take risks particularly if the possible 

outcomes bring about losses that consequently switch the state of good to bad 

mood. 

Since bipolar disorder is characterised by episodes of depression and mania, the 

interaction between bipolar tendencies and mood test the hypothesis that there is 

difference in the effect between bipolar disorder and risk parameters in good mood 

compared to the bad mood. The negatively significant mood x bipolar coefficient 

suggests that bipolar tendencies and mood interact in influencing risk attitude. This 

means that the effect of bipolar disorder is smaller among farmers that are in good 

mood compared to those in bad mood. 

Age has a significant and positive relationship with curvature of the value function 

in the gains domain α, indicating that additional years to the age of the farmers result 

                                                           
61 The Welch (1947) t-test is chosen based on its reliability in cases where unequal sample sizes 
and variances occur. 
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in increased risk seeking for gains. In addition, the coefficient of δ+ and δ− further 

suggest that age increases optimism for gains and decreases pessimism for losses.  

The key findings of the above results is that risk and uncertainty attitudes are 

temporally variable and influenced by the mental health of the DM, which in turn 

influences decision-making behaviour. Specifically, DMs’ mood determines the 

weights attached to probabilities and bipolar disorder tendencies influences the 

formation (curvature and elevation) of the probability weighting function. Crucially, 

individuals with BD tendencies are more likely to make random choices. The 

implication of this is that a DMs’ reasoning and behaviour may be distorted which 

may result in behaviour that is less ‘rational’ and perhaps unrealistic. 
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9.2 Risk/Uncertainty Attitudes and Decision to Participate in 
Off-farm Income Earning Activities  

Recall that the Probit model presented in Chapter 4 estimates the effect of risk and 

uncertainty attitudes on off-farm income earning activities (OFIGA) participation. 

The results obtained from the Probit regression are presented in Table 16. Five (5) 

models were estimated to determine the effect of ‘selected variables’ on OFIGA 

participation. This selection was guided by the relationships identified from 

previous studies in the literature and discussed in section 2.5 in Chapter 2.  

Model I estimated the effect of bipolar tendencies alone on OFIGA participation, 

Model II estimated the effect of risk attitudes (using parameters obtained from the 

CPT in Chapter 7) on OFIGA participation while Model III incorporates bipolar 

tendencies, risk attitudes and socioeconomic characteristics in the estimation. 

Models IV and V are similar to Model III and IV respectively but for uncertainty. 

Wald test confirm that the variables included in all five models are not 

simultaneously equal to zero at the 5% level (Model I: χ2 (1) =3.85, p = 0.04, Model 

II: χ2 (6) =29.94, p < 0.001, Model III: χ2 (21) =78.51, p < 0.001, Model IV: χ2 (6) 

=15.03, p = 0.02, Model V: χ2 (21) =66.71, p < .0001). Models III and V had the highest 

chi square values. These significant chi square values suggest that the inclusion of 

these variables enhances the model and results in a better fit. Models III and IV is 

chosen for discussion hereafter based on goodness of fit criteria including the AIC, 

pseudo R2, likelihood ratio (lr) test and Wald test. 

The results for the models incorporating risk and uncertainty parameters are 

similar. Therefore, the discussion in this section will be concurrent with any major 

differences highlighted. Whether or not farmers engaged in OFIGA was a-priori 

expected to be explained by risk and uncertainty parameters and bipolar tendencies 

while controlling for age, gender, marital status, education, farm size, farm 

ownership, geographic location and time spent on the farm.   

As presented in Table 17, bipolar disorder has a significant negative relationship 

with OFIGA participation. This implies that a change from no-bipolar to bipolar 

tendencies decreases the probability of participating in OFIGA by about 28% 

suggesting that farmers’ having bipolar disorder tendencies are less likely to 
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participate in OFIGA. One explanation for this could be adduced from the discussion 

Section 2.4 in Chapter 2 regarding the challenge mental health related factors has 

on job performance and the resultant difficulty people with BD have at their place 

of work thereby they may be less inclined to participate in OFIGA.  

β is positive and significant suggesting that farmers that are more risk averse in the 

loss domain are more likely to participate in OFIGA. In other words, a one-unit 

increase in the β increases the probability of participating in OFIGA by 17%. This is 

rational, as farmers who engage in OFIGA may have done so to complement farm 

income with OFIGA that may have much lower income ‘uncertainties’ and possibly 

lower chances of monetary losses. Hence, this findings can possibly explain the view 

point of Canning (1992) and Bardhan et al., (2006) that OFIGA participation is 

mostly a risk management tool that ‘pulls’ risk averse farmers (particularly for 

monetary gains) to participate in; with the objective of  “cushioning” uncertainties 

associated with farm income.  

𝛿− is negative and significantly affects OFIGA suggesting that a unit increase in 𝛿− 

(that being less pessimistic) will decreases the probability of participating in OFIGA 

by about 15% holding other independent variables constant. In contrast with the 

findings regarding β, this result show that the manner in which farmers use 

probabilities may not reflect their risk preferences in its entirety since a risk averse 

farmer may be optimistic in terms of probability weightings. 

As for the control variables, age has a significant negative relationship with OFIGA 

participation indicating that older farmers are less likely to partake in OFIGA 

compared to younger farmers. A year increase in age decreases the probability of 

participating in OFIGA by 1%. This is justifiable as it is common in the study area for 

younger farmers to have the physical capabilities to work off-farm. Bhatta & 

Arethun, (2013) and Agwu, Nwankwo & Anyanwu (2014) in different context have 

reported similar results. 
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Table 17  
Marginal Effect after Probit Regression Estimating the Effect of Risk/Uncertainty Attitudes on Off-farm Participation Decision 

 No Risk or Uncertainty With Risk Parameters With Uncertainty Parameters 
 Model I Model II                              Model III  Model IV                               Model V 

Variables dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. 

Bipolar -0.223** 0.109   -0.285*** 0.078   -0.279*** 0.079 
α   -0.191** 0.094 0.075 0.080 -0.030 0.082 0.115 0.076 

β   -0.021 0.077 0.117** 0.067 -0.353** 0.139 -0.150 0.124 
𝛾+.    -0.009 0.112 -0.118 0.080 0.100 0.093 -0.079 0.092 
𝛾−.    0.195** 0.089 -0.072 0.072 0.470** 0.165 0.146 0.144 
𝛿+.    0.169 0.131 -0.066 0.103 -0.044 0.148 -0.126 0.156 
𝛿−.    0.014 0.071 -0.156** 0.064 -0.035 0.051 -0.142** 0.072 
Age     -0.010*** 0.003   -0.009*** 0.003 
Gender     -0.076 0.061   -0.053 0.061 
MStatus     -0.120 0.124   -0.251* 0.129 
PriEdu     -0.072 0.073   -0.066 0.073 
SecEdu     0.129 0.089   0.111 0.091 
HigherEdu     -0.100 0.103   -0.127 0.124 
HHsize     0.001 0.013   0.001 0.014 
Farm Type     -0.448*** 0.161   -0.507*** 0.169 
Farm Tenure     0.267** 0.117   0.217* 0.125 
Farmhours     -0.030 0.019   -0.033 0.023 
Farmsize     -0.204*** 0.052   -0.206*** 0.051 
Location     0.113** 0.054   0.177*** 0.060 

Cooperative     -0.147** 0.073   -0.122 0.077 
Rural     -0.340*** 0.092   -0.120* 0.065 

Note. Dependent variable = Participation in off-farm income generating activities (OFIGA) where OFIGA= 1 if Farmer engages in off-farm income 
generating activities, 0 otherwise             *** p<0.01, ** p<0.05 and * p<0.1.        
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Against a-prior expectation, education had no significant effect on the probability of 

being involved in OFIGA. This finding may be attributed to the significantly large 

proportion of the sample (65%) having either no formal or completing primary 

education at the most. Typically, in Nigeria smallholder farming is considered a 

‘residual’ occupation that accommodates mostly those with little or no capacity to 

seek other non-farm alternatives.  This result is in consonance with Beyene (2008) 

who reports that household participation in off-farm activities is not influenced by 

level of education. However, it contradicts Babatunde, (2013) and McCarthy & Sun, 

(2009) findings that individuals with higher level of education tend to allocate more 

time to off-farm income generating activities. 

Marital status has a significant negative effect on OFIGA participation though for 

uncertainty only. A change from single to married decreases the probability of 

participating in OFIGA by 25%. This indicates that married farmers are less likely to 

engage in OFIGA that their single counterparts. This finding is similar to De Brauw 

& Rozelle, (2008). 

Farm type is negative and significant for OFIGA participation indicating that farmers 

operating monoculture62 have a lower likelihood of engaging in OFIGA. This suggest 

that a change in farm type decreases the probability of participating in OFIGA by 

44%. This inverse relationship could be attributed to risk/uncertainty attitude as 

farmers who practice monoculture may be more risk seeking (for gains) hence 

invest all their resourses in one crop or animal despite the risk of losing everything. 

Farm size is negative and significant for OFIGA participation indicating that farmers 

cultivating larger farm have a lower likelihood of engaging in OFIGA. A one-unit 

increase in farm size decreases the probability of participating in OFIGA by 20%. 

This inverse relationship may be related to wealth levels associated with farm size 

and a reflection that land constraints possibly encourages off-farm participation. 

This result supports Alasia et al., (2009) and Fernandez-Cornejo et al., (2007) 

separate findings of inverse relationship between income from off-farm and farm 

size. 

                                                           
62 Monoculture is an agricultural practice whereby a farmer grows only one crop type or raises a 
single species of animal. The alternative to monoculture is polyculture. 
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In addition, there is significant positive relationship between farm tenure and 

OFIGA participation indicating that farmers who own their land are more likely to 

participate in OFIGA than those who rented land. While this is Contrary to VanWey 

& Vithayathil (2013) and may appear counter intuitive at first instance, however 

farmers that operate on rented or leased land have additional burden of paying rent 

out of their farm returns compared to their counterpart that own land. This may 

induce renters to work the land more compared to landowners so that they can get 

maximum benefit from their investment. Finally, farmers in rural areas are less 

likely to participate in OFIGA. A change from urban to rural decreases the 

probability of participating in OFIGA by 34%. This could be justified from the 

perspective that compared to urban dwellers there may be less off-farm income 

generating activities available to rural dweller.  
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9.3 Determinants of Preference for the Types of Off-farm Income 
Generating Activities  

In line with the discussion in Chapter 4, for the multinomial probit regression (MPR 

hereafter) the comparison is between the baseline "No OFIGA" and the three OFIGA 

categories i.e. employee, worker and self-employed. The results of the marginal 

effect after multinomial probit regression examining the determinants of the choice 

of OFIGA are presented in Table 18.  

Similar to section 9.2, five (5) models estimated the effect of selected variables on 

the types of OFIGA engaged in by farmers. Model I estimated the effect of bipolar 

tendencies alone on types of OFIGA, Model II estimated the effect of risk attitudes 

on types of OFIGA engaged in while Model III incorporates bipolar tendencies, risk 

attitudes and socioeconomic characteristics in the estimation. Models IV and V are 

similar to Model III and IV respectively but for uncertainty. A confirmation that the 

models are not simultaneously equal to zero was obtained from the Wald test at the 

5% level (Model I: χ2 (3) =5.64, p = 0.14 NS, Model II: χ2 (18) =30.19, p =0.03, Model 

III: χ2 (63) =169.30, p < 0.001, Model IV: χ2 (18) =39.54, p = 0.002, Model V: χ2 (63) 

=177.03, p < .0001). Thus, the inclusion of these variables enhances the model and 

results in a better fit. Given the results for the risk and uncertainty models are 

similar, subsequent discussion in this section will refer to both models concurrently. 

Models III and IV are the most preferred models based on the criteria of the AIC, 

pseudo R2, likelihood ratio (lr) test and Wald test. 
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Table 18  Marginal Effect after Multinomial Probit Examining the Determinants of the Type of OFIGA 

  No Risk or Uncertainty With Risk Parameters With Uncertainty Parameters 

Variables dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. 

1 = Employee                 

Bipolar -0.212 0.153   -0.262 0.166     -0.282* 0.148 

α    -0.005 0.102 -0.038** 0.134 0.085 0.105 0.231* 0.140 

β    0.172* 0.073 0.189 0.092 0.085 0.112 0.244* 0.134 
 

   0.088 0.114 0.095 0.134 -0.008 0.117 -0.171 0.145 
 

   -0.051 0.090 -0.037 0.108 0.032 0.135 -0.169 0.158 
 

   -0.192 0.126 -0.163 0.175 -0.612*** 0.206 -0.766*** 0.267 

    -0.079 0.080 -0.043 0.099 -0.248*** 0.089 -0.388*** 0.114 

Age      0.003 0.004     0.005 0.004 

Gender      -0.053 0.094     -0.052 0.094 

MStatus      0.357 0.226     0.349* 0.208 

PriEdu      0.173 0.107     0.156 0.103 

SecEdu      0.030 0.134     0.019 0.120 

HigherEdu     0.054 0.178     0.029 0.169 

HHsize      -0.024 0.019     -0.027 0.019 

Farm Type     -0.427** 0.171     -0.363** 0.179 

Farm Tenure     0.068 0.127     0.003 0.138 

Farmhours     -0.057** 0.029     -0.066** 0.031 

Farmsize     -0.111 0.071     -0.101 0.081 

Location     0.135 0.083     0.177** 0.087 

Cooperative     -0.044 0.127     -0.105 0.117 

Rural         -0.090 0.123     -0.124 0.093 
N = 158, Reference = Farmer not participating in any off-farm job.   
*** p<0.01, ** p<0.05 and * p<0.1.         
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  No Risk or Uncertainty With Risk Parameters With Uncertainty Parameters 

Variables dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. 

2 = Worker                 

Bipolar -0.132 0.109   -0.118 0.184     -0.103*** 0.175 

α    -0.166 0.114 -0.189 0.139 -0.330*** 0.108 -0.442 0.130 

β    -0.122 0.086 -0.111 0.105 -0.114 0.126 -0.123*** 0.150 
 

   -0.102 0.127 -0.105 0.152 0.346*** 0.122 0.420 0.135 
 

   0.102 0.099 0.063 0.13 0.255* 0.149 0.263 0.179 
 

   0.236* 0.139 0.227 0.174 -0.034 0.208 0.104 0.242 
 

   0.070 0.079 0.040 0.104 0.114 0.099 0.215* 0.120 

Age      -0.002 0.005     -0.005 0.004 

Gender      -0.011 0.094     0.024 0.102 

MStatus      -0.310* 0.168     -0.381** 0.164 

PriEdu      0.051 0.113     0.039 0.118 

SecEdu      0.283** 0.140     0.325** 0.134 

HigherEdu     -0.121 0.197     0.006 0.191 

HHsize      0.004 0.020     0.010 0.021 

Farm Type     0.026 0.216     -0.128 0.211 

Farm Tenure     -0.126 0.173     0.055 0.183 

Farmhours     -0.033 0.034     -0.020 0.035 

Farmsize     -0.147* 0.088     -0.174* 0.090 

Location     0.042 0.087     0.028 0.094 

Cooperative     0.202 0.148     0.211 0.139 

Rural         -0.075 0.166     -0.059 0.109 
N = 158, Reference = Farmer not participating in any off-farm job.     
*** p<0.01, ** p<0.05 and * p<0.1.         
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  No Risk or Uncertainty With Risk Parameters With Uncertainty Parameters 

Variables dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. dy/dx Std. Err. 

3 = Self-employed                

Bipolar 0.094 0.121   0.000 0.128     0.011 0.134 

α     0.117 0.100 0.305*** 0.117 0.317** 0.124 0.388*** 0.122 

β    -0.053 0.083 0.056 0.095 -0.158 0.110 -0.234* 0.131 
 

   -0.034 0.102 -0.135 0.117 -0.377*** 0.139 -0.419*** 0.137 
 

   0.057 0.094 -0.108 0.116 -0.024 0.131 0.004 0.158 
 

   -0.125 0.116 -0.138 0.143 0.426** 0.208 0.524* 0.225 
 

       -0.127* 0.071 -0.196** 0.087 -0.022 0.099 -0.009 0.119 

Age      -0.015*** 0.004     -0.013*** 0.004 

Gender      -0.023 0.096     -0.015 0.099 

MStatus      -0.223 0.156     -0.299* 0.160 

PriEdu      -0.314*** 0.105     -0.273*** 0.103 

SecEdu      -0.154 0.116     -0.191* 0.109 

HigherEdu     -0.039 0.156     -0.159 0.172 

HHsize      0.023 0.020     0.022 0.019 

Farm Type     -0.221 0.158     -0.175 0.183 

Farm Tenure     0.463*** 0.160     0.278 0.171 

Farmhours     0.055** 0.030     0.045 0.030 

Farmsize     -0.005 0.078     0.018 0.082 

Location     -0.019 0.078     0.030 0.077 

Cooperative     -0.367*** 0.132     -0.276* 0.143 

Rural         -0.285** 0.120     0.005 0.094 
N = 158, Reference = Farmer not participating in any off-farm job.     
*** p<0.01, ** p<0.05 and * p<0.1.         
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9.3.1 Employee relative to No-OFIGA  

As presented in Table 18, bipolar disorder has a significant negative relationship 

with the type of OFIGA participation. This implies that a change from no-bipolar to 

bipolar tendencies decreases the probability of taking up fixed regular paid 

employment by about 28% suggesting that farmers’ having bipolar disorder 

tendencies are less likely to engage in regular paid employment compared to relying 

on income derived solely from farming. In line with the reasons adduced earlier in 

Section 9.2, the challenge mental health related factors has on job performance and 

the resultant difficulty people with BD have at their place of work could be 

responsible for this effect. 

The significant negative value of α indicates that the relative probability of taking 

up fixed regular paid employment63 compared to engaging solely in farming reduces 

by 3% as farmers becomes less risk averse by one unit. That is, the chances of 

choosing to take up a regular paid employment are lower amongst farmers that are 

more risk seeking for gains. This is rational as it is expected to find more risk averse 

farmers participating in this category of OFIGA since risk averse farmers will prefer 

the ‘assured’ but possibly lower earnings from paid employment than to ‘gamble’ at 

earning more (albeit with possibility of earning less or nothing) by relying solely on 

farming. Thus, farmers taking up fixed regular paid employment as an off-farm 

activity may do so for the reason of providing a buffer against anticipated farm risk 

and as a “necessity” rather than taking advantage of an “opportunity” to make 

additional income as characterised by their risk seeking counterpart.  

The result is however different for attitudes to uncertainty given that the probability 

of taking up fixed regular paid employment compared to engaging solely in farming 

increases by 23% with a unit increase in α. This suggest that the likelihood of 

choosing to take up a regular paid job is higher amongst farmers that are more 

uncertainty seeking for gains. This finding does not conform to a-priori expectation 

as the greater tendency would have been to observe farmers that are uncertainty 

                                                           
63 Jobs captured in the employee category were mainly off-farm fixed regular (weekly or monthly) 
wage employment including teaching, shop keeping, security guards etc.  
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averse for gains having greater tendency to participating in all categories of OFIGA. 

A possible explanation could be that DMs become uncertainty seeking (possibly due 

to ‘overconfidence’). Such overconfidence may arise from the propensity to set 

excessively optimistic prediction of uncertain events in the case where the 

probability density of outcomes are not clearly defined. 

The significant positive value of β suggest that a unit increase in β will increase the 

chances of engaging in fixed regular paid employment by 24%. In other words, 

farmers that are less risk seeking for losses under uncertainty are more likely to 

engage in fixed regular paid employment. This could be justified from the 

perspective that since the farm prospect has likelihood of loss in farm income, thus 

farmers that are averse to uncertainty will prefer the ‘assured’ earnings from OFIGA 

to complement farm income rather than rely solely on the farm earnings.  

As for the socioeconomic variables; marital status and location have positive effect 

on the type of OFIGA while farm tenure and time spent farming have negative effects 

on the type of OFIGA. 

9.2.2 Worker relative to No-OFIGA  

Bipolar disorder has a significant negative relationship with the type of OFIGA 

participation. This implies that a change from no-bipolar to bipolar tendencies 

decreases the probability of taking up causal wage employment by about 10% 

suggesting that farmers’ having bipolar disorder tendencies are less likely to engage 

in causal wage employment compared to relying on income derived solely from 

farming. Again, the reasons adduced earlier regarding mental health related factors, 

employment difficulty and job performance could be responsible for this effect.  

As presented in Table 18, the variable β is negative and significant for worker64 

indicating that relative probability of taking up causal work compared to not 

participating in any OFIGA decreases by 12%, as uncertainty aversion in the case of 

losses increases by one unit. In other words, being uncertainty averse for losses 

decreases the probability of choosing to work off-farm in the worker category. 

                                                           
64 OFIGA classified as worker refers to causal wage employment such as labourer, temporary factor 
workers etc. 
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Similar to the case of employee, this finding could be justified from the perspective 

that when the farm prospect has possibility of loss in farm income, farmers that are 

averse to uncertainty may prefer the ‘assured’ earnings from OFIGA.  

Regarding the controls, married farmers are less likely fall in the worker category; 

secondary education is significant and positive suggesting that the relative 

probability of working off-farm in the worker category against having no OFIGA is 

higher for farmers that have secondary education compared to those without any 

formal education. The size of the farm is significant and negatively related to 

farmers in the worker category indicating that probability of taking up paid 

employment reduces as farm size increases. 

9.2.3 Self-employed relative to No-OFIGA  

As presented in Table 18, the risk attitude variables α is significant with a positive 

value indicating that the relative probability of being self-employed65 compared to 

engaging solely in farming increases for farmers that are risk and uncertainty 

seeking for gains. That is, the relative probability of starting one’s own business 

alongside farming compared to not participating in any OFIGA increases by 30% 

(38%) when risk (uncertainty) aversion for monetary gains decreases by one unit. 

One explanation for this could be that not all farmers necessarily engage in OFIGA 

as a cushion for risk as often reported in the literature but rather may be driven by 

“opportunities” to make supplementary income not withstanding having to face 

additional uncertainties and risks. 

In addition, β and 𝛿− are significant negative determinants of the type of OFIGA 

under uncertainty as presented in Table 18. This suggest that the relative 

probability of becoming self-employed alongside farming compared to engaging 

solely in farming decreases as uncertainty aversion and pessimism for losses 

increases. In other words, a unit increase in uncertainty aversion and pessimism for 

losses will decrease the chances of becoming self-employed by 23%  and 19% 

respectively. This could be justified from the perspective that when off-farm 

prospects have possibilities of resulting in income losses, farmers that are averse to 

                                                           
65 OFIGA classified as self-employed includes jobs such as food processors, hairdressing, 
transporting, tailoring, cobbling etc. 
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uncertainty will be less willing to exploit off-farm “opportunities” to make 

supplementary income from self-employment specifically as the success of starting 

and sustaining a business involves a lot of decision making under uncertainties. 

Finally, considering the control variables; age, primary education and membership 

to cooperatives have negative effect on being self-employed.  
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9.4 Summary 

In summary, this Chapter presents results and discusses the empirical findings of 

three issues. First, the relationship between risk and uncertainty attitudes and 

decisions to be involved in off-farm income earning activities was examined. 

Second, the link between risk and uncertainty attitudes and the nature or type of 

off-farm activity engaged in was explored. Third, the effect of mental health related 

factors on attitudes to risk and uncertainty of farmers in the study area is 

investigated. The probit equation was estimated to determine the relationship 

between risk attitude and decision to engage in off-farm income generating 

activities. To determine factors that influences preference for the type of off-farm 

income generating activities (OFIGA), the multinomial probit presented was 

estimated while the effect of bipolar tendencies on risk attitude was determined 

from estimating a multivariate multiple regression. 

The main findings in Chapter 9 are; risk and uncertainty attitudes are influenced by 

mental health of the DM, which in turn influences decision-making behaviour. 

Specifically, a DMs’ mental health determines the weights attached to probability 

and bipolar disorder tendencies influences the formation (curvature and elevation) 

of the probability weighting function. Precisely, farmers’ with bipolar disorder 

tendencies show greater risk aversion for losses. In addition, farmers with bipolar 

disorder are more likely to show higher optimism for gains and pessimism for 

losses. This behaviour differs from the results in Chapter 7 that show the average 

farmer is pessimistic for gains and optimistic for losses. Crucially, farmers that have 

bipolar disorder propensities are more likely to make random choices compared to 

those without bipolar. Other findings are that the effect of bipolar disorder is 

smaller among farmers who are in good mood compared to those in bad mood. 

Further, the results suggest risk aversion (for losses) increases participation in off-

farm income generating activities (OFIGA). Similarly, farmers’ likelihood of 

engaging in specific types of OFIGA (self-employed, worker and employee) is 

determined by their risk and uncertainty attitudes as well as mental health related 

factors. 
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Chapter 10 

Summary, Conclusion and Recommendation 

10.1 Summary 

Attitudes to risk have generated a lot of attention over the years due to its vital 

importance in decision-making processes that are necessary for life and livelihoods. 

Attitudes towards uncertainty have received less attention even though arguably 

most important decisions are under uncertainty rather than risk. In addition, many 

studies modelling attitudes to risk have adopted experiments that place significant 

cognitive burden on respondents. Crucially, they are also framed in a way that do 

not reflect everyday problems. Specifically, the most common way of eliciting 

attitudes is to ask people to choose between discrete monetary lotteries with known 

probabilities attached to the payoffs. Yet, the vast majority of choices that people 

make in their day-to-day lives are with respect to continuous non-monetary 

outcomes. As a result, several questions have so far arisen. For instance, are there 

any methods that best measure risk and uncertainty? Are these measures 

consistent?  Are DMs generally risk averse regardless of domain? Do DMs have the 

same attitudes e.g. to financial versus health uncertainties? This study was designed 

to examine the risk and uncertainty attitude of a farm-household decision maker. 

Specifically, the sub-objectives were to examine: (a) farmers’ attitude towards risk 

in different contexts and content domains; (b) farmers’ uncertainty attitude in 

different content domains; (c) compare risk and uncertainty attitudes (d) examine 

risk attitude of farmers when taking decision for others. (e) determine the 

relationship between bipolar tendencies and risk attitudes; (f) examine the 

relationship between risk attitude and decision to engage in off-farm income 

generating activities. 

This thesis reviewed literature on theories of decision-making, the approaches to 

eliciting attitudes to risk and uncertainty as well as the role of risk and uncertainty 

attitude on farmers’ decision making with the aim of providing direction to this 

study. The literature reviewed in this study suggested that theories (including the 

CPT and CEU) which relies on both the utility function and probability weightings 
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to explain risk attitude does a better job at explaining behaviour compared to those 

that implicitly assumes expected utility maximisation. Also, predominant elicitation 

methods in the literature relied mostly on binary lottery choices designs with very 

limited studies showing interest in extending popular theories to continuous 

prospects tasks. The review of literature also highlights the fact that risk attitudes 

in proxy decision in developing countries have not been widely researched. In 

addition, literature providing empirical evidence on risk and uncertainty attitudes 

and the relationship between the decision to engage in off-farm income earning 

activities, the link between risk attitude and type of off-farm activity and the effect 

of bipolar disorder on farmers’ risk attitude was limited.  

To achieve the objective of estimating farmers’ attitudes to risk and uncertainty in 

different context and content domains, Bayesian hierarchical CPT model was 

estimated. The GEE and probit model was used to estimate the determinants of 

prospect choice. The objectives of examining the relationship between risk and 

uncertainty attitudes and decision to engage in (as well as the type of) off-farm 

income generating activities on one hand; and effect of bipolar tendencies on risk 

attitudes on the other hand were determined from estimating the probit regression 

and multivariate multiple regression models respectively. 

The data used in this study was obtained using two data gathering tools. First, 

choices under conditions of risks and uncertainties were obtained using an interval 

‘lottery-style’ experiment that is least as realistic as discrete prospects but more 

indicative of the kind of choices made by farmers on a day-to-day level. Attitudes 

towards risk as opposed to uncertainty were elicited by specifying that all outcomes 

over the specified interval were ‘equally likely’ (thus specifying a uniform 

probability density).  Uncertainty was communicated by indicating that one 

outcome within the specified interval would be realised but without the 

specification of an associated probability density. Second, a two-part questionnaire 

with the first section capturing socioeconomic characteristics and the second 

section modified Bipolar Spectrum Diagnostic Scale (originally designed by Ghaemi 

et al., 2005) was issued to participants. Multistage sampling technique was used to 

obtain the respondents of the study. The number of participants that took part in 

the experiment and completed the questionnaire was 158. 
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By relying on graphs, proportions and non-parametric tests to describe and explain 

the choices made by participants during the experiment, the results presented 

suggests that participants’ choices in the experiment are heterogeneous. In addition, 

under conditions of risk or uncertainty; participants find the inner prospect more 

attractive for gains (and mixed task) and the outer more attractive for losses. Since 

the inner prospect is by nature less ‘risky’, this finding indicated participants’ dislike 

for risk and uncertainty in the gain (and mixed) domain; and love for risk and 

uncertainty in the loss domain. Further hypotheses testing suggest that 

participants’ choices differ across content (gain, loss, mixed) domains. In addition, 

the results suggest that participants’ choices differ with context (i.e monetary vs. 

time). Participants prefer the ‘risky’ prospect more when making choices on money 

compared to time i.e. participants took more ‘risk’ when making choices on money 

compared to time. Regarding whether attitudes to risk differ when making decision 

on behalf of others; the results show that participants prefer less ‘risky’ prospect 

more when making choices for themselves compared to the choice on behalf of 

others i.e. participants disliked ‘risk’ more when making choices for themselves 

compared to the choice on behalf of others. 

The results obtained from Hierarchical Bayesian CPT model estimation suggest that 

at individual level, risk and uncertainty attitudes are not homogenous across 

content (gain, loss and mixed) domains. In aggregate, farmers are risk averse for 

gains and risk seeking for losses under both risk and uncertainty. However, the test 

of hypothesis suggest significant difference in the distribution of the curvature of 

the value function under risk compared to uncertainty implying that attitudes differ 

under both conditions. In addition, there is evidence of probability weighting for 

gains and losses. This finding of subjective probability warping in the case of equally 

likely outcomes imply that farmers’ did not always regard equally likely outcomes 

as ‘equally likely’. However, there were behaviours that were difficult to reconcile 

with CPT, as the preferences of many respondents could only be modelled using 

“extreme curvature” of the value function. This was induced by what is termed 

negligible gain avoidance (i.e. avoiding prospects with zero lower bound in the gain 

domain) or negligible loss seeking (i.e. preferring prospects with zero upper bound 

in the loss domain) behaviours. 
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By exploring decision rules and alternative theories with the aim of shedding light 

on the phenomenon of negligible gain avoidance and negligible loss seeking in the 

gain and loss domains respectively, the findings suggests that is not simply a 

deficient level of understanding of the experiment that has led the aforementioned 

behaviour. Typologies of individuals may have adopted different decision rules that 

may well reflect those used in their day-to-day decision making even if it may not 

be “rational”.  

Finally, the estimation of the effect of bipolar tendencies on risk attitude farmers 

suggest that risk and uncertainty attitudes are influenced by the mental health of 

the DM, which in turn influences decision-making behaviour. Specifically, a DMs’ 

mood determines the weights attached to probabilities and bipolar disorder 

tendencies influences the formation (curvature and elevation) of the probability 

weighting function. Specifically, farmers’ with bipolar disorder tendencies show 

greater risk aversion for losses. In addition, farmers with bipolar disorder are more 

likely to show higher optimism for gains and pessimism for losses. This behaviour 

differs from the results in Chapter 7 that show the average farmer is pessimistic for 

gains and optimistic for losses. Crucially, farmers that have bipolar disorder 

propensities are more likely to make random choices compared to those without 

bipolar. Other findings are that the effect of bipolar disorder is smaller among 

farmers who are in good mood compared to those in bad mood. 

Finally, the results from the estimation of the relationship between risk attitude and 

decision to engage in off-farm income generating activities show that risk aversion 

for losses increases OFIGA participation. As for the factors that determines 

preference for the type of off-farm income generating activities (OFIGA), the results 

indicates that farmers’ likelihood to engage in specific types of OFIGA is determined 

by their risk and uncertainty attitudes and bipolar tendencies decreases the 

probability of taking up fixed regular paid and causal wage employment.  
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10.2 Concluding Statement 

Measuring farmers’ risk and uncertainty attitudes using interval prospect-choice 

experiment has highlighted the potential to investigate the vast majority of choices 

people make in their day-to-day lives with respect to both continuous monetary and 

non-monetary outcomes without placing significant cognitive burden on 

respondents. Notably, this unique experiment enables this thesis contribute to the 

literature examining risk and uncertainty attitudes separately; and underscores the 

nomenclature where risk and uncertainty is being used in a non-standardised way 

as the results show attitudes differ under different conditions (risk and 

uncertainty). Despite facing decisions with continuous prospects, DM do not treat 

equally likely outcomes as ‘equally likely’ but demonstrate cumulative probability 

distribution warping consistent with the Cumulative Prospect Theory. However, not 

all behaviours can be reconciled with CPT, Salience theory, Heuristics and other 

theories as reported in this thesis thus accentuating earlier speculations regarding 

the extent to which these theories reflect actual behaviour under risk and 

uncertainty. Crucially, in evaluating the determinants of risk/uncertainty attitudes 

it is important not to overlook biological/physiological traits. Integrating aspects of 

mental health related issues into the broad decision making literature is justified 

from several perspectives including the implications of making random choices 

(consistent with DMs that have bipolar disorder) on lives and livelihood.  
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10.3 Risk and Uncertainty Attitudes and Implications for Policy 
Design 

From the view-point of policy design implications, the assumed stereotypic 

homogenous ‘risk averse’ attitudes attributed to farmers’ and the assumption that 

there is no difference between attitudes under risk and uncertainty by the 

government could be one of the reasons why in many cases the objectives of policies 

and projects from successive Nigerian governments are not met. In Nigeria where 

farmers rely on the government for all kinds of support, this speculative stance may 

result in inappropriate policies and ill-judged farm support. Since the strength of 

any policy depends on the quality of empirical findings which drives it, studies of 

this nature which provide valid empirical based information regarding the risk and 

uncertainty attitudes of farmers in specific contexts is relevant to assist policy 

makers take informed decisions.  

The findings from this thesis that only the mean (average) rather that both mean 

and variance had significant effect on the prospect chosen by farmers has 

implications for policy. Broadly, an intervention or policy that may appear as an 

advancement or development when viewed from the perspective of smaller 

variance of expected effect (compared to what already exist) may not necessarily be 

preferred by farmers especially in the case where farmers focus are on the average 

benefit they expect to derive. Findings of this nature can help policy makers to 

thoroughly understand and synchronise farmers’ expectations with intervention 

goals.  

Crucially, in designing and executing policies; attention should be paid to framing to 

avoid unconsciously swaying attitudes under conditions of risk or uncertainty. This 

is important as the manner in which policies and interventions are framed i.e. either 

as a ‘welfare gain’ or ‘hardship reduction’ has the possibility of affecting risk and 

uncertainty attitudes. In addition, any intervention in which the worst-case scenario 

has the possibility to leave farmers’ with zero benefit may not yield the desired goal 

as the possibility of ‘zero benefit’ may result in farmers rejecting such intervention.  

Regarding differences in farmers’ characteristics, the findings from this study brings 

to attention the need for tailored policy that accommodates socioeconomic and 
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biological/physiological diversity. With respect to the findings that mental health 

related factors plays a significant role in determining risk and uncertainty attitudes 

is a pointer that the farming population also includes vulnerable individuals which 

government in Nigeria should consider providing targeted support when 

introducing policies or intervention programmes.   
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10.4 Contribution to Knowledge and Literature 

The contributions of this thesis to knowledge and literature is both methodological 

and outcome related. These are summarised as follows: 

1. By expanding discrete to continuous prospects and testing in a different 

setting, this study shows the applicability of the interval prospect 

experiment to different contexts. The findings highlights the continuous 

prospect experiments are as realistic as discrete lotteries, less cognitively 

demanding than discrete lotteries and more indicative of the kind of choices 

made by farmers on a day-to-day level.  

2. This thesis subjects decision theories and phenomena including CPT, 

salience theory and heuristics to experiments involving continuous outcome 

thereby exposing their capabilities and extent to which their intuition 

corresponds to actual behaviour of DMs’ under risk and uncertainty. Eliciting 

attitudes with respect to continuous outcomes highlights certain behaviours 

that are difficult to reconcile with these theories. It further shows that DM’s 

in many cases adopt different rules and heuristics that may not be “rational” 

in certain context but are crucial in simplifying day-to-day decisions.  

3. The findings of probability warping by respondents in this study bring to the 

fore further evidence that DMs’ do not handle ‘equally likely’ outcomes as 

though all events of a sample space have the same likelihood of occurring. 

This finding draws attention to the function of subjective weighting in 

decision-making and challenges the conclusion of studies that assume that 

probability weighting can be overlooked for continuous prospects. Thus, it 

disputes any interpretation that arise from such assumption.  

4. Another key finding of this thesis is that attitudes differ under different 

conditions (risk vs. uncertainty), contexts (monetary & time) and domains 

(gain, loss & mixed). In addition, this thesis is one of few studies that 

examines risk attitude when a DM is faced with losses in the time context 

domain; and compares it with attitudes to losses in other contexts. 

5. As a contribution to the limited investigation on the possible temporal 

variability in risk/uncertainty attitudes and the effect physiological traits of 

a DM has on these attitudes; this thesis amalgamates otherwise independent 
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ideas of mental health related factors and risk/uncertainty attitudes with the 

wider implications of understanding how these factors interact and affect 

decision making. 

6. This thesis employs a combination of parameters that measures subjective 

values of gains/losses and subjective probabilities as a determinant of 

farmers (off-farm participation) decision-making. From this perspective, it 

differs from previous studies on two grounds. First, rather than inputting 

risk and uncertainty attitudes in the estimation model as one single factor 

affecting decision making as done in previous studies; this study treats risk 

and uncertainty attitudes as separate variables.  Second, the attitudes to risk 

and uncertainty was obtained by parametric estimation prior to being used 

as a determinant in the econometric model.  

7. This thesis contributes to the broader literature examining risk attitudes in 

proxy decision in Agricultural Economics (that focuses on farmers in 

developing countries) which have not been widely researched.  

8. Lastly, this thesis contributes to the literature given the dearth of studies 

addressing the issues above in developing countries where famers risks their 

livelihoods by being exposed to arguably much larger risks/uncertainties 

than farmers in developed countries.   
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10.5 Limitations and Suggestions for future Research 

The definition for risk aversion adopted in this thesis restricts the term to describe 

the value function albeit recognises that this does not necessarily correspond to a 

DM choosing a prospect on the basis of mean preserving spreads. Although this is 

rationalised from the perspective that the manner in which probabilities are 

handled by DMs does not actually reflect their risk preferences as such, this 

definition however have its limitations. To extend the above definition will require 

that a probability-payoff domain is defined with clear sub-domains over which the 

DM is risk averse/seeking; however this will lead to further complications and 

muddling of the nomenclature. 

The number of respondents’ (N=158) although adequate for the objectives of this 

thesis considering practical limitations; however, findings that are more incisive 

could be obtained on a larger sample size and the findings generalized to the 

population. Crucially, increasing the sample size is required where the goal is to link 

attitudes to risk and uncertainty with farm decisions for the sake of providing 

empirical evidence to drive future policies.  

In designing the experiment, the aim of the thesis was to study several context 

(monetary and time) and domains (gain, loss and mixed) where participant were 

presented with 90 pairs of prospect choice task spread across the different context 

and content domains under risk and uncertainty respectively. This approach had its 

demerits as the quest to avoid fatigue and cognitive burden became a trade-off with 

the number of choice tasks presented to each respondents’ across each context and 

domain. Although this does not in any way disparage the outcome from the 

experiment, future research however could focus on less context and (or) content 

domains and increase the number of tasks presented to participants. 

The finding in this thesis that it matters to participants when the bound of the 

prospect was pegged at zero but the payoffs still remained strictly positive (or 

negative) brings to light the possibility of enhancing future visuals presentation the 

experiment. For instance, by adding cues such as the mid-point to each pair of 

prospect, excluding from the visual presentation to participants any real numbers 

that fall within the prospects intervals or adding alongside the continuous prospect 
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a discrete choice problem and possibly introducing more ‘zero-bound’ lottery pairs 

could provide further insight to DMs behaviour. However, these suggestions should 

be introduced with caution as there are associated shortcomings. 

This thesis did not compare different elicitation designs applicable to continuous 

prospect on participant so cannot conclude that individual heterogeneity is not 

partly influenced by elicitation method. In future studies, it may be necessary to 

investigate if individual heterogeneity found among participants is a result of 

experiment design by comparing different designs on participants in the same 

study.  

Decision-making models including those not identified in this thesis need to be 

subjected to further rigorous test specifically one that involves continuous 

prospects to further assess and possibly compare their performances. Although, it 

has been contended that a CPT model with an extremely steep section provides a 

framework for the phenomena of NGA and NLS, however the problem remains that 

this phenomena has not been widely reported in the context of discrete prospect 

experiments. 

Also, it is not within the scope of this thesis to attempt a full implementation of the 

model that combine extreme probability weightings to investigate zero 

avoidance/seeking of payoffs in the neighbourhood of zero as an extension of the 

mixed logit model used in this study. However, future work may investigate this as 

a possible extension. 

Finally, with respect to developing countries specifically there is prospect for future 

research to be extended to investigate other types of decision-making such as 

linking risk and uncertainty attitudes with farmers’ adoption, migration, investment 

or savings decisions. Such finding will have enormous impact on farmers who risks 

their entire livelihoods by being exposed to arguably much larger 

risks/uncertainties compared to farmers in developed countries.   
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Appendix 1: Definition of variables 

Variable Description 

AGE Age in Years 

GENDER 1 = Male, 0 = otherwise 

M.STATUS Married = 1, 0 = otherwise 

L.EDU No formal Education = Reference 

Primary School = 1, 0 = otherwise 

Secondary School  = 1, 0 = otherwise 

Higher Education = 1, 0 = otherwise 

H.H SIZE Number of Persons 

P.OCC.TYPE Farmer  = 1, 0 = otherwise 

OWNER.P Own business = 1, 0 = otherwise 

N.YEARS.P Number of years in primary occupation 

TIME.SPENT Hours spent  per day in primary occupation 

SEC.OCCU Yes = 1, 0 = otherwise 

SEC.OCCU.TYPE Crop Farmer  = 1, 0 = otherwise 

OWNER.S Own business = 1, 0 = otherwise 

N.YEARS.S Number of years in secondary occupation 

TIME.SP.SEC Hours spent  per day in secondary occupation 

FARM.SIZE Farm size in hectare(s) 

OFIGA 1 = participate in off-farm income gen. 

activities, 0 = otherwise 

BPDt 1 = Bipolar tendencies, 0 = otherwise 
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Appendix 2: Participant level curvature of the subjective value 
and probability weighting functions 

 Risk   Uncertainty 

ID α β 𝜸+ 𝜸− α β 𝜸+ 𝜸− 

1 X X S IS X X S IS 
2 C C IS S C C IS S 
3 X X S IS X X S IS 
4 X X S IS X X S IS 
5 C X IS IS C X IS IS 
6 C C S IS C C S IS 
7 X X S IS X X S IS 
8 C C IS IS C C IS IS 
9 C X IS S C C IS S 

10 C X IS S C X IS S 
11 C X IS IS C X IS IS 
12 C C IS IS C C IS IS 

13 X X S IS C X S IS 
14 X C S S X X S S 
15 C X IS S C X IS S 
16 X C S S C X S S 
17 X C S S X C S S 
18 X X S IS C C S IS 
19 X X IS S C X IS S 
20 X C S S X C S S 
21 X X S IS X C S IS 

22 C C IS IS C C IS IS 
23 C C IS S C C IS S 
24 C C IS IS C C IS IS 
25 C C IS S C C IS S 
26 C X IS IS C X IS IS 
27 C X S IS X C S IS 
28 X C S S X C S S 
29 C X IS IS X X IS IS 
30 C C IS S C C IS S 
31 X C S IS C X S IS 
32 C X IS IS C X IS IS 
33 C C S IS C X S IS 
34 C C S IS X X S IS 

35 C X IS S C C IS S 
36 C X IS IS C X IS IS 
37 C X S IS C X S IS 
38 C C IS IS X C IS IS 
39 X C S S X X S S 
40 C C IS IS C C IS IS 
41 C C S S C X S S 
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42 X X S IS X X S IS 

43 C X IS IS C C IS IS 
44 X X S IS C X S IS 
45 C C IS IS C X IS IS 
46 X X S S X X S S 
47 C X IS IS C X IS IS 
48 X X S IS X X S IS 
49 C X IS IS C C IS IS 
50 C X IS IS X X IS IS 
51 C X IS IS X C IS IS 
52 X X S IS C X S IS 
53 C X IS IS C C IS IS 
54 X X S IS X X S IS 
55 C X IS IS X C IS IS 

56 C X IS IS C C IS IS 
57 X C S S C C S S 
58 X X IS IS C X IS IS 
59 C X IS IS X X IS IS 
60 C C IS S X X IS S 
61 X X IS IS C X IS IS 
62 C C IS IS C C IS IS 
63 C C IS IS C X IS IS 
64 C C IS IS C X IS IS 
65 C X IS S X C IS S 
66 C X IS S X C IS S 
67 X X S IS C X S IS 

68 C C IS IS C C IS IS 
69 C C IS S C C IS S 
70 C X IS IS C X IS IS 
71 C C S IS X X S IS 
72 X X IS IS X X IS IS 
73 C C IS IS C C IS IS 
74 C X S IS C X S IS 
75 C X IS S C C IS S 
76 X C S S X C S S 
77 C X S IS C X S IS 
78 C X IS IS C X IS IS 
79 X C S S X C S S 
80 C X S IS C X S IS 

81 C C IS S C C IS S 
82 C X IS IS C X IS IS 
83 X X S IS X X S IS 
84 C C IS IS C C IS IS 
85 X X S IS X X S IS 
86 X X S IS X X S IS 
87 C C IS S C C IS S 
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88 X C S S X C S S 

89 C C IS S C C IS S 
90 C X IS IS C X IS IS 
91 C X IS IS C C IS IS 
92 C X IS IS C X IS IS 
93 C X IS IS C X IS IS 
94 C C IS S C C IS S 
95 C X IS IS C X IS IS 
96 C C IS IS X C IS IS 
97 C C IS S C C IS S 
98 C C IS IS C C IS IS 
99 C X IS IS C X IS IS 
100 C X IS IS C X IS IS 
101 C X IS IS C X IS IS 

102 C C IS IS C C IS IS 
103 C X S IS C X S IS 
104 C X IS IS C C IS IS 
105 C C IS S C X IS S 
106 C C IS IS C C IS IS 
107 C X IS IS C X IS IS 
108 C C S S X X S S 
109 C X IS IS C X IS IS 
110 X X S S X X S S 
111 X X IS S C X IS S 
112 X X S IS X X S IS 
113 C X IS S C C IS S 

114 C C IS IS C X IS IS 
115 C X IS IS C X IS IS 
116 C C S S X C S S 
117 C X IS IS C C IS IS 
118 C C IS IS C C IS IS 
119 X X S IS X X S IS 
120 C C S S C X S S 
121 C X IS IS C C IS IS 
122 X X S S C X S S 
123 C X IS IS X C IS IS 
124 C C IS S C C IS S 
125 C X S IS C X S IS 
126 X C S S X X S S 

127 C C S IS C X S IS 
128 C X IS IS C C IS IS 
129 X X IS IS C C IS IS 
130 C C IS IS X C IS IS 
131 X X IS IS C X IS IS 
132 C C IS S C C IS S 
133 C X IS IS C X IS IS 
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134 C C IS S C C IS S 

135 C C IS IS C C IS IS 
136 C X IS IS C X IS IS 
137 C X IS IS C X IS IS 
138 X X S IS X X S IS 
139 C X IS IS C X IS IS 
140 C X IS IS C C IS IS 
141 C C IS IS C X IS IS 
142 C C IS S C C IS S 
143 C C IS IS C C IS IS 
144 C C S IS X C S IS 
145 C C IS S C C IS S 
146 C C IS IS C C IS IS 
147 C X IS S C X IS S 

148 C X IS IS C X IS IS 
149 X X IS IS C X IS IS 
150 C C IS IS C C IS IS 
151 C C IS IS C C IS IS 
152 C C IS IS C C IS IS 
153 C C IS IS C C IS IS 
154 C X IS IS C C IS IS 
155 X X S IS C C S IS 
156 C X IS S X X IS S 
157 X C S IS C C S IS 
158 C C IS IS C C IS IS 

Key: C=Concave, X= Convex, IS=Inverse-S shape, S = S-shape 
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Appendix 3: Questionnaire 

HOUSEHOLD ID: ……………………………………….    DATE:………………… 

STATE………………………………          

COMMUNITY/VILLAGE……………………………………… 

Interview is administered to the household head ( ) 1  

Interview is administered to a close family member ( ) 2 * 

* Relationship with household head…………………………………………….. 
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Example: Section A 

Here is an example of a farmer who was faced with two choice situations regarding 

time taken to get vaccinated. 

 

The farmer was informed that two NGO’s were running new health centres in his 

Local Government Area with facilities on opposite wings in the same building 

however with same level of service provision. Generally, there was a processing 

(registration) time between arrival and when the vaccine was administered. The 

malaria vaccine was available for free for a limited number of days and he was 

expected to arrive at 9am if he decides to attend one of the clinic sessions. 

The processing time for the first NGO presented as prospect A will take 30 minutes 

(i.e. it will take 30 minutes to complete his registration) after which he will be 

equally likely to be called in for the vaccine at any time between 30 minutes and 6 

hours. While for the second NGO presented as prospect B, the registration time will 

take 2 hours after which he will be equally likely to be called in for the vaccine at any 

time between 2 hours and 3 hours 30 minutes. Given that he had to make a choice 

between prospects A or B, 

The farmer chose Prospect A. 

That means he choose the prospect where it was equally likely to take him any-time 

54 minutes and 8 hours 36 minutes to get to vaccinated. 

In the section that follows, you will be asked similar questions and will be expected 

to provide you own genuine answer. 

  

 

 

 

 

 

 

Prospect B 

Prospect A 
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A. 

Two NGO’s are running new health centres in the Local Government Area with 

facilities on opposite wings in the same building however with same level of service. 

Generally, there is a processing (registration) time between arrival and when the 

vaccine will be administered. At the moment, this malaria vaccine will be available 

for free for a limited number of days and you are expected to arrive at 9am if you 

decide to attend one of the clinic sessions. 

 

In Question 1 (presented below) the processing time for the first NGO with prospect 

A will take 54 minutes (i.e. it will take 54 minutes to complete your registration) 

after which you are equally likely to be called in for the vaccine at any time between 

54 minutes and 8 hours 36 minutes.  

While for the second NGO with prospect B the registration time will take 4 hours 36 

minutes after which you are equally likely to be called in for the vaccine at any time 

between 4 hours 36 minutes and 5 hours 24 minutes. Given that you have to make 

a choice between prospects A or B which one of the two will you choose?  
 

Note  

Provide your answer by ticking the box beside your preferred prospect. 

 
 

 

 

1. 

 
 

 

Prospect A 

Prospect B 
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Prospect B 
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7. 
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8. 

 
 

 

Prospect B 
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9. 

 
 

 

Prospect B 

Prospect A 

 

10. 

 
 

 

Prospect B 

Prospect A 
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Example: Section B 

Here is an example of a farmer who was presented with a set of monetary prospects 

as shown below. 

 
 

For Prospect A, he was equally likely to earn any amount between ₦2000 and ₦6000. 

For Prospect B he was equally likely to earn any amount between ₦3500 and ₦4500.  

The farmers chose Prospect B. 

Thus, the farmer was equally likely to earn any amount between ₦3500 and ₦4500. 

In the section that follows, you will be asked similar questions and will be expected 

to provide you own genuine answer.  

 

 

 

 

Prospect A 

Prospect B 
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B. 

Imagine you are faced with a similar set of monetary prospects as presented below.  

In question 1, you are equally likely to earn any amount between ₦4280 and ₦7358 

if you choose Prospect A. While you are equally likely to earn any amount between 

₦5361 and ₦6315 if you choose Prospect B.  

Given that you have to make a choice between prospects A or B which one of the 

two will you choose? 

Note 

Provide your answer by ticking the box beside your preferred prospect. 
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Example: Section C 

Here is an example of a farmer who is employed by an agricultural firm as a farm 

manager with the responsibility of taking decision on this large farm. He reached an 

agreement with his employer over returns from his decisions - that for any decision 

taken he will get 5% of the total payoff.  

 

In this case for Prospect A, the firm was equally likely to earn any amount between 

₦428000 and ₦7358000. This implies that the farmer’s 5% was equally likely to be 

any amount between ₦21400 and ₦36970 if he chooses Prospect A. While for 

Prospect B the firm was equally likely to earn any amount between ₦536100 and 

₦631500. This implies that the farmer’s 5% was equally likely to be any amount 

between ₦26805 and ₦31575 if he chooses Prospect B.  

The farmers chose Prospect A. 

Thus the firm was equally likely to earn any amount between ₦428000 and 

₦7358000 while the farmer was equally likely get any amount between ₦21400 and 

₦36970. 

In the section that follows, you will be asked similar questions and will be expected 

to provide you own genuine answer.  

 

 

 

 
 

 

 

 
 

 

Overall to firm 

Amount to farm manager 

Prospect B 

Prospect B 

Prospect A 

Prospect A 

Amount to Firm 

Amount to you 
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C. 

Suppose that you are employed by an agricultural firm as a farm manager and you 

have the responsibility of taking decision on this large farm. Currently you are faced 

with the following situations.  

In prospect A, overall the firm is equally likely to earn any amount between 

₦636146 and ₦858691; and the 5% that accrue to you if you choose prospect A is 

equally likely to be any amount between ₦31807.3 and ₦42934.55. 

While for prospect B overall the firm is equally likely to earn any amount between 

₦694532 and ₦804389; and the 5% that accrue to you if you choose prospect  

B is equally likely to be any amount between ₦34726.6 and ₦40219.45 

Given that you have to make a choice between either prospects, which of the 

prospects will you choose? 

Note: The pair of prospect from which you are to make the decision on behalf of the 

firm is the top graph named “Amount to firm”. The bottom graph directly below 

named “Amount to you” is a representation of the 5% you are equally likely to earn 

from the decision you make as a manager in the firm.  

Provide your answer by ticking the box beside your preferred prospect.  
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Example: Section D 

A farmer was presented with a set of monetary prospects as shown below. 

 

In the case of Prospect A, he was informed he will earn any amount between ₦2000 

and ₦6000 which may or may not be equally likely.  

While for Prospect B he will earn any amount between ₦3500 and ₦4500 which may 

or may not be equally likely.  

The farmers choose Prospect B. 

This implies that the farmer will earn any amount between ₦3500 and ₦4500 which 

may or may not be equally likely. 

In the section that follows, you will be asked similar questions and will be expected 

to provide you own genuine answer.  

 

 

 

 

Prospect A 

Prospect B 
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D. 

Imagine you are faced with a set of monetary prospects as presented below. In 

question 1, you may be or may not be equally likely to earn any amount between ₦0 

and ₦2800) if you choose Prospect A, while for Prospect B you may be or may not be 

equally likely to earn amount between ₦800 and ₦1200. Given that you have to make 

a choice between prospects A or B which one of the two will you choose?  

Note 

Provide your answer by ticking the box beside your preferred prospect.  
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E. Mood Evaluation Scale 

Please fill in the blank space by choosing the any option from 1-5 as it describes how you 

feel. 

(1) Not at all   (2) Just a little (3) Somewhat (4) Moderately (5) Quite a lot (6) Very 
much 
 

I notice that my mood and/or energy levels shift drastically from time to time___.  

I notice that, at times, my mood and/or energy level is very low, and at other times, very 

high___.  

During this ‘‘low’’ phase I often feel a lack of energy; a need to stay in bed or get extra 

sleep; and little or no motivation to do things I need to do___.  

I often put on weight during these periods___.  

During my low phases, I often feel sad all the time or depressed___.  

Sometimes, during these low phases, I have a feeling of low self-confidence___.  

My ability to function at work or socially is impaired___.  

Typically, these low phases last for a few weeks, but sometimes they last only a few 

days___.  

With this type of pattern I may experience a period of ‘‘normal’’ mood in between mood 

swings, during which my mood and energy level feels ‘‘right’’ and my ability to function is 

not disturbed___.  

I may then notice a marked shift or ‘‘switch’’ in the way I feel___.  

My energy increases above what is normal for me, and I often get many things done they 

would not ordinarily be able to do___. 

Sometimes, during these ‘‘high’’ periods, I feel as if they have too much energy or feel 

‘‘hyper’’___.  

During these high periods, I may feel irritable, ‘‘on edge’’, or aggressive___.  

During these high periods, I take on too many activities at once___.  

During these high periods, I become totally confident that everything I do will succeed___. 

During these high periods, I may spend money unusually___.  

I may be more talkative, outgoing during these periods___.  

Sometimes, my behaviour during these high periods seems strange or annoying to 

others___.  

Sometimes, I get into difficulty with others during these high periods___. 

How would you describe your general mood today?----------- 
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F. Mood Evaluation Scale Scoring 

 

The scoring66 for the test questions as presented in Mood Evaluation Scale is: 

0 points - Not at all 

1 point - Just a little 

2 points - Somewhat 

3 points - Moderately 

4 points - Quite a lot 

5 points - Very much 

 

The likelihood of having BD increases with a higher score. Scores for each respondent 

were cumulated and matched with the screening test scoring ranges: 

0-10 No BD Likely  

11-18 Possible Mild BD   

19-22 Borderline BD  

23-37 Mild-Moderate BD  

38-56 Moderate - Severe BD  

≥ 57  Severe BD  

  

                                                           
66 Respondents were not shown this section 
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G. Socioeconomic Characteristics 

1 Age of Respondent: ............  

2.  Gender............  

3. Marital Status............  

4. Highest Level of Education Completed............  

5. Household Size............  

6. Primary occupation? ............  

7. Who do you work for in Primary Occupation? ............  

8. How long have you been in Primary Occupation? ............  

9. How much time do you spend per day in Primary Occupation?  

10. Do you have any Secondary Occupation? ............ 

If yes proceed to A11  

if no skip questions A11- A17  

 

11. Secondary occupation? ............  

12. Who do you work for in Secondary Occupation? ............  

13. How long have you been in Secondary Occupation?...........  

14. How much time do you spend per day in Secondary Occupation? 

............ 

 

15. *What is the total size of farm?............  

16. Who own the land on which you farm? ............  

17. Are you a member of farmers’ cooperative? ............  
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H. Pre-Test Questionnaire Evaluation Sheet 

1. Did you understand the questions presented in the questionnaire? 

_____________ 

(1) Not at all   (2) Just a little (3) Somewhat (4) Moderately (5) Quite a lot (6) 
Very well 
If you choose 1-5 above please proceed to the next question. Otherwise 

proceed to question 4. 

 

2. What question(s)/section(s) did you not understand?___________ 

3. What did you not find clear in these question(s)/section(s)______________ 

4. Did you find the any question in the Modified Bipolar Spectrum Diagnostic 

Scale too personal? 

5. What suggestions do you have to improve the questionnaire generally? 
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Appendix 4: Follow up Experiment 

Dear Respondent, 

Thank you for participating in this research earlier in the year. I am currently collating 

results and have summarized your response from the experiments. 

As agreed in our previous meeting, I am contacting you regarding the choices you 

made during the experiment. According to the choices you made earlier, you will 

Choose Prospect 1 over 2 in the following: 

Please confirm if Prospect 1 reflects your personal choice or otherwise. 

 

Please confirm if Prospect 1 reflects your personal choice or otherwise. 

 

In total participants were presented with 5 variants of ‘stochastically dominated’ 

prospects as above. In addition, participants repeated experiments which were 

flipped version of the main experiment reported in Appendix 4 i.e. Prospect B was 

more ‘risky’ in terms of wider variance. 

Finally, can you provide any reason(s) why you have made this choice?  

Thank you for accepting to be contacted once again. 
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Appendix 5: Procedures for generating prospects* 
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*I acknowledge my supervisor Professor Kelvin Balcombe for sharing these codes. 
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Appendix 6: Descriptive Statistics  

For the proxy-gain subtasks, participants’ made decision on behalf of others on 

tasks in the gain only domain to permit comparison between the monetary decision 

for oneself versus others; thus the design followed the monetary decision for self in 

the gain domain (i.e. Types 1 & 2) presented in Figure 2 in Chapter 5. The result 

presented in Figure 13 show that 54% (resp., 71%) for Type1 (resp., Type2) subtask 

picked the outer (resp., inner) prospect overall. An examination of the proxy 

subtasks show that of this overall proportion, 48% constantly chose the outer 

prospect for Proxy1 while 67% consistently picked the inner prospect for Type2.  

 

Note. Proxy1 = Type 1 - unconstrained in the gain domain, Proxy2 = Type 2 - upper bound of the 

outer prospect at zero in the gain domain 
 

Figure 41. Choice by subtask type for proxy-gain under risk. 
 

 

McNemar’s test to determine the significance in the overall choices farmers made in 

the Type1 and Type2 subtasks under risk however show statistical significant 

difference in both choices at the 1% level (χ2 = 149, p < 0.001) thus the hypothesis 

that there is marginal homogeneity in the aggregate choices of farmers within a 

specific content domain is rejected. 
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Finally, paired t-test to determine whether choices farmers made in the self and 

Proxy tasks under risk show statistical significant difference between both choices 

at the 1% level (t(1579)=-4.89, p<0.001) thus the hypothesis that there is no 

significant difference in a DM’s choice pattern under personal and proxy context is 

rejected. However under uncertainty, the hypothesis that there is no significant 

difference in a DM’s choice pattern under personal and proxy context cannot be 

rejected at 1%  level (t(1579)=1.03, p=0.301). 

As for switching behaviour by subtask type for time under risk, a histogram of the 

time subtasks is presented in Figure 14. Recall in Chapter 5 for time context, 

participants’ made decision on time tasks in the loss only domain to permit 

comparison between the monetary decisions versus time; thus the design followed 

the monetary decision in the loss domain (i.e. Types 3 & 4) presented. The results 

presented in Figure 14 indicate that the choice made under time context has some 

similarities to monetary context in the loss domain.  

 

Note. Time1 = Type1 - unconstrained in the loss domain, Time2 = Type 2 - lower bound of the 

outer prospect at zero in loss domain 
 

Figure 42. Switching behaviour by subtask type for time under risk. 
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There was a strong preference for the outer prospect among participants in the time 

context. This is evident from 50% and 58% of participants’ for Type3 and Type4 

respectively that never switched choice in the loss domain along the entire 

experiment. McNemar’s test to determine significance in the overall choices farmers 

made in the Type3 and Type4 subtasks under risk however show no statistical 

significant difference in both choices at the 10% level, (χ2 = 0.70, p = 0.402). Thus, 

the hypothesis that there is marginal homogeneity in the aggregate choices of 

farmers within a specific content domain cannot be rejected.  

Finally, paired t-test to determine whether choices farmers made in the monetary 

and time framed tasks under risk show no statistical significant difference between 

both choices at the 10% level, t(1579)=-0.99, p=0.321 thus the hypothesis that there 

is no significant difference in a DM’s choice pattern under personal and proxy 

context cannot be rejected. However under uncertainty, the hypothesis that there is 

no significant difference in a DM’s choice pattern under personal and proxy context 

is rejected at 10% level, t(1579)=2.46, p=0.014). 
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Appendix 7: Stochastic dominance  

In the decision theory literature, stochastic dominance is a type of ordering (albeit 

partial) by which prospects with different probabilistic outcomes are ranked.  

First order stochastic dominance (FODs) 

Given two prospects A and B having CDFs FA and FB. Suppose prospects A and B 

have a bounded support [0,∞] such that 𝐴(0) = 𝐵(0) = 0 then prospect A first-

order stochastically dominates B when a DM that maximizes expected utility prefer 

A to B iff 

            𝐴(𝑥) ≤ 𝐵(𝑥)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥 

Provided the DM’s utility function (𝑢) is non-decreasing 𝑢:ℝ → ℝ, 𝑖𝑓𝑓 𝐴 first-order 

stochastically dominates B 

𝑈(𝐴) = ∫𝑢(𝑥) 𝑑𝐴(𝑥) ≥ ∫𝑢(𝑥) 𝑑𝐵(𝑥) = 𝑈(𝐵) 

Second order stochastic dominance (SODs) 

While FOSD implies SOSD, the reverse does not necessarily apply. As for second 

order stochastic dominance, A SOSD B iff 

∫ 𝐵
𝑥

0

(𝑥)𝑑𝑥 ≥ ∫ 𝐴
𝑥

0

(𝑥)𝑑𝑥 for all values of 𝑥  ∈ [0,∞] 

Given the two prospects A and B having CDFs FA and FB, assuming 

∫ 𝑢(𝑥) 𝐹𝐵(𝑥)𝑑𝑥
∞

0

≥ ∫ 𝑢(𝑥) 𝐹𝐴(𝑥)𝑑𝑥
∞

0

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥 

and 𝐹𝐵(𝑥
∗) − 𝐹𝐴(𝑥

∗) for some 𝑥∗ then prospect A dominates B from the position of 

second-order stochastic dominance (SODs). 
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Appendix 8: Obtaining CEU under probability warping  

The link between non-linear mathematical expectation and probability measure 

referred to the Choquet expectation is denoted by 

∫𝑓𝑑𝑣 = ∫ [𝑣({𝑠 ∈ 𝑆 |𝑈(𝑓(𝑠)) ≥ 𝑧}) − 1]𝑑𝑧
0

−∞

+∫ 𝑣({𝑠 ∈ 𝑆|𝑈(𝑓(𝑠)) ≥ 𝑧})𝑑𝑧       (3.4.21)
∞

0

 

Representing outcome in 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.4.21) under state 𝑠 by 𝑓(𝑠) = 𝑠  gives 

  ∫ 𝑓𝑑𝑣 = ∫ [𝑣({𝑠 ∈ 𝑆 |𝑈(𝑠) ≥ 𝑧}) − 1]𝑑𝑧
0

−∞

+ ∫ 𝑣({𝑠 ∈ 𝑆|𝑈(𝑠) ≥ 𝑧})𝑑𝑧              (3.4.22) 
∞

0

 

In the case where it is established 𝑣 is a true probability distribution then 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.4.21) reduces to 

     𝑣({𝑠 ∈ 𝑆}:𝑈(𝑠) > 𝑧) = 1 − 𝐹𝑠(𝑈
−1(𝑧))                (3.4.23) 

where 𝐹𝑠 is the cumulative distribution function of s.  

The expected utility is given as 

                  𝑉 = 𝐸𝑠(𝑈) = ∫ 𝑈(𝑠)𝑑𝐹𝑠(𝑠)                       (3.4.24)
∞

−∞

 

Suppose the distribution of the prospect outcomes follow a generalised beta67 

𝑠 ~ 𝑓𝑔𝑏𝑒𝑡𝑎(𝑠|𝛼, 𝛽, 𝑙, 𝑞) 

Then 

                 𝑈(𝑠) > 𝑧 ⇒ 𝑠 > 𝑈−1(𝑧)                                  (3.4.25) 

Thus 

𝑣({𝑠}: 𝑈(𝑠) > 𝑧) = 1 − 𝐹𝑔𝑏𝑒𝑡𝑎(𝑈
−1(𝑧)|𝛼, 𝛽, 𝑙, 𝑞)         (3.4.26) 

                                                           
67 Given P which represents an absolutely continuous random variable on the interval [0,1], P is 
characterised by  a Beta distribution with shape parameters  𝛼 and 𝛽 in the case where its PDF 𝑓(𝑝) is 

defined as  𝑓𝑝(𝑝) = {
𝑝𝛼−1(1−𝑝)𝛽−1

𝐵(𝛼,𝛽)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}      

Where a generalised Beta distributed random variable is  𝑠 = 𝑙 + 𝑝(𝑞 − 𝑙) 𝑤ℎ𝑒𝑟𝑒 𝑥~𝑓𝑔𝑏𝑒𝑡𝑎(𝑝|𝛼, 𝛽) 

Thus  𝑓𝑔𝑏𝑒𝑡𝑎(𝑠|𝛼, 𝛽, 𝑙, 𝑞) =
𝑓𝑏𝑒𝑡𝑎(

𝑠−𝑙

𝑞−𝑙
|𝛼,𝛽)

𝑞−𝑙
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Rearranging the above equation, 

𝑣({𝑠}: 𝑈(𝑠) > 𝑧) = 1 − 𝐹𝑔𝑏𝑒𝑡𝑎 (
𝑈−1(𝑧) − 𝑞

𝑞 − 𝑙
|𝛼, 𝛽)        (3.4.27) 

Obtaining the EU therefore, is possible from estimating the equation 

𝑉 =  ∫ 𝑈(𝑠)𝑑𝐹𝑔𝑏𝑒𝑡𝑎(𝑠|𝛼, 𝛽, 𝑙, 𝑞) 
𝑞

𝑙

       (3.4.28) 

𝑉 = ∫ 𝑈(𝑙 + 𝑥 (𝑞 − 𝑙))𝑑𝐹𝑔𝑏𝑒𝑡𝑎 (
𝑥 − 𝑙

𝑞 − 𝑙
|𝛼, 𝛽) 

1

0

       (3.4.29) 
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Appendix 9: Statistics on Bipolar Disorder in Nigeria 

 

Figure 43. The ranking of bipolar disorder with other disorders in Nigeria  

 

Figure 44. The prevalence of bipolar disorder in by gender Nigeria 
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Figure 45. The proportion of the population with bipolar disorder in Nigeria 

 

Figure 46. The prevalence of bipolar disorder by age in Nigeria. 
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Appendix 10: Pilot survey results and discussion 

Recall that a pilot survey was conducted to determine how well the questions were 

understood, whether the content of each question was consistently given the same 

meaning by each respondent and most importantly if the main experiment was 

feasible. In order to achieve these objectives of conducting the pilot, 30 farmers 

randomly selected from two communities via a recruitment process facilitated 

through extension agents and community leaders participated in the experiment. 

The results presented here describes participants’ choices under risk and 

uncertainty when presented with the pilot experiment described in Chapter 5. 

 
 

Figure 47. Participants’ patterns of behaviour under different conditions and 
content domains 

 

In the gain domain, participants that switched within subtask for risk were 

approximately 7%. This statistic suggests that extreme risk preference among 

majority of participants’ as over 57% did not switch from the ‘safer’ prospect B. As 

for participants’ choices across subtasks, only about 7% switched. The proportion 

of participants’ choices under uncertainty also presented in Figure 47 show that 

those who switched within subtask were approximately 3% while 10% switched 

across subtasks. Notably, a larger proportion under uncertainty (accounting for 

60%) compared to risk did not switch at all i.e. they consistently choose the inner 

prospect (prospect B) for all gain domain tasks. This behaviour suggest that both 
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for risk and uncertainty, participants at the aggregate level find the inner prospect 

more attractive for gains. Since the inner prospect is by nature less “risky”, this 

finding might be an indication of participants’ dislike for risk and (and even greater 

dislike for) uncertainty in the gain domain. These findings are in line with what was 

reported using data obtained from the main experiment. 

In the loss domain task (Types 3 & 4), there was switching within subtask under 

risk by 10% of the participants while 13% switched across subtasks. However, for 

uncertainty 7% switched within subtasks and across tasks as shown in Figure 47. 

Unlike the gain domain where the inner prospect was largely preferred, prospect 

choice in the loss domain was the outer prospect. Notably, 47% in the case of risk 

and 33% under uncertainty did not switch at all (i.e. these group consistently chose 

only the outer prospect along all loss domain tasks) thereby portraying extreme 

risk/uncertainty seeking behaviour. These findings are indications that both under 

risk and uncertainty, participants at aggregate level consider the outer prospect 

more attractive for losses. Again, since the outer prospect is by design more “risky”, 

these choice patterns are possible indicators of participants’ risk and uncertainty 

seeking in the loss domain. 

The main differences between the results of the pilot and the main study was that 

the proportion of participants that violated monotonic switching was higher in for 

the former compared to the latter. In addition, there was more switching within 

subtask in the main experiment. Although these identified differences were not 

subjected to further statistical tests, it is surmised that the incorporation of 

feedback discussed in 5.3.4 in Chapter 5 might have contributed to improving the 

quality of the data. 

Finally, we asked participants to provide reason the main reason that influenced 

their choice of prospects. As presented in Figure 48, about 80% percent mentioned 

the size of the prospects and 3% reporting the mood during the experiment as the 

main driver of their decision. 
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Figure 48. Participant reasons for choosing (or avoiding) a prospect  
 

In addition, 10% said that they focused mainly on the portions that they desire in 

the gain domain (or dislike in the loss domain) suggesting that these group of 

participants inferred correspondence between the two prospects and possibly 

mapped values across prospect such that for every value in Prospect A there 

assumed an equivalent value in B. 

In summary, the pilot experiment made it possible to identify ambiguous areas in 

the experiment. In addition, the pilot survey enabled the researcher estimate the 

resources and time required for each respondent to complete the experiment. 


