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Abstract: The Hilbert space effect algebra is a fundamental mathematical structure
which is used to describe unsharp quantum measurements in Ludwig’s formulation of
quantum mechanics. Each effect represents a quantum (fuzzy) event. The relation of
coexistence plays an important role in this theory, as it expresses when two quantum
events can be measured together by applying a suitable apparatus. This paper’s first goal
is to answer a very natural question about this relation, namely, when two effects are
coexistent with exactly the same effects? The other main aim is to describe all automor-
phisms of the effect algebra with respect to the relation of coexistence. In particular, we
will see that they can differ quite a lot from usual standard automorphisms, which appear
for instance in Ludwig’s theorem. As a byproduct of our methods we also strengthen a
theorem of Molnár.

1. Introduction

1.1. On the classical mathematical formulation of quantum mechanics. Throughout this
paper H will denote a complex, not necessarily separable, Hilbert space with dimension
at least 2. In the classical mathematical formulation of quantum mechanics such a space
is used to describe experiments at the atomic scale. For instance, the famous Stern–
Gerlach experiment (which was one of the firsts showing the reality of the quantum
spin) can be described using the two-dimensional Hilbert space C

2. In the classical
formulation of quantum mechanics, the space of all rank-one projections P1(H) plays
an important role, as its elements represent so-called quantumpure-states (in particular in
the Stern–Gerlach experiment they represent the quantum spin). The so-called transition
probability between twopure states P, Q ∈ P1(H) is the number trP Q, where tr denotes
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the trace. For the physical meaning of this quantity we refer the interested reader to
e.g. [33]. A very important cornerstone of the mathematical foundations of quantum
mechanics is Wigner’s theorem, which states the following.

Wigner’s Theorem. Given a bijective map φ : P1(H) → P1(H) that preserves the
transition probability, i.e. trφ(P)φ(Q) = trP Q for all P, Q ∈ P1(H), one can always
find either a unitary, or an antiunitary operator U : H → H that implements φ, i.e. we
have φ(P) = U PU∗ for all P ∈ P1(H).

For an elementary proof see [11]. As explained thoroughly by Simon in [29], this
theorem plays a crucial role (together with Stone’s theorem and some representation
theory) in obtaining the general time-dependent Schrödinger equation that describes
quantumsystems evolving in time (andwhich is usuallywritten in the form i� d

dt |�(t)〉 =
Ĥ |�(t)〉, where � is the reduced Planck constant, Ĥ is the Hamiltonian operator, and
|�(t)〉 is the unit vector that describes the system at time t).

One of the main objectives of quantummechanics is the study of measurement. In the
classical formulation an observable (such as the position/momentum of a particle, or a
component of a particle’s spin) is represented by a self-adjoint operator. Equivalently, we
could say that an observable is represented by a projection-valued measure E : BR →
P(H) (i.e. the spectral measure of the representing self-adjoint operator), where BR

denotes the set of all Borel sets in R and P(H) the space of all projections (also called
sharp effects) acting on H . If� is a Borel set, then the quantum event that we get a value
in � corresponds to the projection E(�). However, this mathematical formulation of
observables implicitly assumes that measurements are perfectly accurate, which is far
from being the case in real life. This was the crucial thought which led Ludwig to give
an alternative axiomatic formulation of quantummechanics which was introduced in his
famous books [18] and [19].

1.2. On Ludwig’s mathematical formulation of quantum mechanics. This paper is
related to Ludwig’s formulation of quantum mechanics, more precisely, we shall exam-
ine one of the theory’s most important relations, called coexistence (see the definition
later). The main difference compared to the classical formulation is that (due to the fact
that no perfectly accurate measurement is possible in practice) quantum events are not
sharp, but fuzzy. Therefore, according to Ludwig, a quantum event is not necessarily a
projection, but rather a self-adjoint operator whose spectrum lies in [0, 1]. Such an oper-
ator is called an effect, and the set of all such operators is called the Hilbert space effect
algebra, or simply the effect algebra, which will be denoted by E(H). Clearly, we have
P(H) ⊂ E(H). A fuzzy or unsharp quantum observable corresponds to an effect-valued
measure on BR, which is often called a normalised positive operator-valued measure,
see e.g. [13] for more details on this. We point out that the role of effects and positive
operator-valued measures was already emphasised in the earlier book [8] of Davies. For
some of the subsequent contributions to the theory we refer the reader to the work of
Kraus [17] and the recent book of Busch–Lahti–Pellonpää–Ylinen [3].

Let us point out that, contradicting to its name, E(H) is obviously not an actual
algebra. There are a number of operations and relations on the effect algebra that are
relevant in mathematical physics. First of all, the usual partial order ≤, defined by
A ≤ B if and only if 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ H , expresses that the occurrence of
the quantum event A implies the occurrence of B. We emphasise that (E(H),≤) is not a
lattice, because usually there is no largest effect C whose occurrence implies both A and
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B (see [1,25,31] for more details on this). Note that, as can be easily shown, we have
E(H) = {A ∈ B(H) : A = A∗, 0 ≤ A ≤ I }, whereB(H) denotes the set of all bounded
operators on H , A∗ the adjoint of A, and I the identity operator. Hence sometimes the
literature refers to E(H) as the operator interval [0, I ].

Second, the so called ortho-complementation ⊥ is defined by A⊥ = I − A, and it
can be thought of as the complement event (or negation) of A, i.e. A occurs if and only
if A⊥ does not.

We are mostly interested in the relation of coexistence. Ludwig called two effects
coexistent if they can be measured together by applying a suitable apparatus. In the
language of mathematics (see [18, Theorem IV.1.2.4]), this translates into the following
definition:

Definition 1.1. A, B ∈ E(H) are said to be coexistent, in notation A ∼ B, if there are
effects E, F, G ∈ E(H) such that

A = E + G, B = F + G and E + F + G ∈ E(H).

We point out that in the earlier work [8] Davies examined the simultaneous measure-
ment of unsharp position and momentum, which is closely related to coexistence. It is
apparent from the definition that coexistence is a symmetric relation. Although it is not
trivial from the above definition, two sharp effects P, Q ∈ P(H) are coexistent if and
only if they commute (see Sect. 2), which corresponds to the classical formulation. We
will denote the set of all effects that are coexistent with A ∈ E(H) by

A∼ := {C ∈ E(H) : C ∼ A},
and more generally, ifM ⊂ E(H), then M∼ := ∩{A∼ : A ∈ M}.

The relation of order in E(H) is fairlywell-understood. However, the relation of coex-
istence is very poorly understood. In the case of qubit effects (i.e. when dim H = 2) the
recent papers of Busch–Schmidt [4], Stano–Reitzner–Heinosaari [30] and Yu–Liu–Li–
Oh [36] provide some (rather complicated) characterisations of coexistence. Although
there are no similar results in higher dimensions, it was pointed out by Wolf–Perez–
Garcia–Fernandez in [35] that the question of coexistence of pairs of effects can be
phrased as a so-called semidefinite program, which is a manageable numerical mathe-
matical problem. We also mention that Heinosaari–Kiukas–Reitzner in [14] generalised
the qubit coexistence characterisation to pairs of effects in arbitrary dimensions that
belong to the von Neumann algebra generated by two projections.

To illustrate how poorly the relation of coexistence is understood, we note that the
following very natural question has not been answered before—not even for qubit effects:

What does it mean for two effects A and B to be coexistent with exactly the same
effects?

As our first main result we answer this very natural question. Namely, we will show the
following theorem, where F(H) and SC(H) denote the set off all finite-rank and scalar
effects on H , respectively.

Theorem 1.1. For any effects A, B ∈ E(H) the following are equivalent:

(i) B ∈ {A, A⊥} or A, B ∈ SC(H),
(ii) A∼ = B∼.

Moreover, if H is separable, then the above statements are also equivalent to

(iii) A∼ ∩ F(H) = B∼ ∩ F(H).
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Physically speaking, the above theorem says that the (unsharp) quantum events A
and B can be measured together with exactly the same quantum events if and only if
they are the same, or they are each other’s negation, or both of them are scalar effects.

1.3. Automorphisms of E(H) with respect to two relations. Automorphisms of math-
ematical structures related to quantum mechanics are important to study because they
provide the right tool to understand the time-evolution of certain quantum systems (see
e.g. [18, Chapters V-VII] or [29]). In case when this mathematical structure is E(H), we
call a map φ : E(H) → E(H) a standard automorphism of the effect algebra if there
exists a unitary or antiunitary operator U : H → H that (similarly toWigner’s theorem)
implements φ, i.e. we have

φ(A) = U AU∗ (A ∈ E(H)). (1)

Obviously, standard automorphisms are automorphisms with respect to the relations of
order:

A ≤ B ⇐⇒ φ(A) ≤ φ(B) (A, B ∈ E(H)); (≤)
of ortho-complementation:

φ(A⊥) = φ(A)⊥ (A ∈ E(H)); (⊥)

and also of coexistence:

A ∼ B ⇐⇒ φ(A) ∼ φ(B) (A, B ∈ E(H)). (∼)

One of the fundamental theorems in the mathematical foundations of quantummechan-
ics states that every ortho-order automorphism is a standard automorphism, which was
first stated by Ludwig.

Ludwig’s Theorem (1954, Theorem V.5.23 in [18]). Let H be a Hilbert space with
dim H ≥ 2. Assume that φ : E(H) → E(H) is a bijective map satisfying (≤) and (⊥).
Then φ is a standard automorphism of E(H). Conversely, every standard automorphism
satisfies (≤) and (⊥).

We note that Ludwig’s proof was incomplete and that he formulated his theorem
under the additional assumption that dim H ≥ 3. The reader can find a rigorous proof
of this version for instance in [5]. Let us also point out that the two-dimensional case of
Ludwig’s theorem was only proved in 2001 in [22].

It is very natural to ask whether the conclusion of Ludwig’s theorem remains true, if
one replaces either (≤) by (∼), or (⊥) by (∼). Note that in light of Theorem 1.1, in the
former case the condition (⊥) becomes almost redundant, except on SC(H). However,
as scalar effects are exactly those that are coexistent with every effect (see Sect. 2),
this problem basically reduces to the characterisation of automorphisms with respect to
coexistence only—which we shall consider later on.

In 2001, Molnár answered the other question affirmatively under the assumption that
dim H ≥ 3.

Molnár’s Theorem (2001, Theorem 1 in [20]). Let H be a Hilbert space with dim H ≥
3. Assume that φ : E(H) → E(H) is a bijective map satisfying (≤) and (∼). Then φ is
a standard automorphism of E(H). Conversely, every standard automorphism satisfies
(≤) and (∼).

In this paper we shall prove the two-dimensional version of Molnár’s theorem.
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Theorem 1.2. Assume thatφ : E(C2) → E(C2) is a bijective map satisfying (≤) and (∼).
Then φ is a standard automorphism of E(C2). Conversely, every standard automorphism
satisfies (≤) and (∼).

Note that Molnár used the fundamental theorem of projective geometry to prove the
aforementioned result, therefore his proof indeed works only if dim H ≥ 3. Here, as an
application of Theorem 1.1, we shall give an alternative proof of Molnár’s theorem that
does not use this dimensionality constraint, hence fill this dimensionality gap in. More
precisely, we will reduce Molnár’s theorem and Theorem 1.2 to Ludwig’s theorem (see
the end of Sect. 2).

1.4. Automorphisms of E(H) with respect to only one relation. It is certainly a much
more difficult problem to describe the general form of automorphisms with respect to
only one relation. Of course, here we mean either order preserving (≤), or coexistence
preserving (∼) maps, as it is easy (and not at all interesting) to describe bijective trans-
formations that satisfy (⊥). It has been known for quite some time that automorphisms
with respect to the order relation on E(H)may differ a lot from standard automorphisms,
although they are at least always continuous with respect to the operator norm. We do
not state the related result here, but only mention that the answer finally has been given
by the second author in [26, Corollary 1.2] (see also [28]).

The other main purpose of this paper is to give the characterisation of all automor-
phisms of E(H) with respect to the relation of coexistence. As can be seen from our
result below, these maps can also differ a lot from standard automorphisms, moreover,
unlike in the case of (≤) they are in general not even continuous.

Theorem 1.3. Let H be a Hilbert space with dim H ≥ 2, and φ : E(H) → E(H) be
a bijective map that satisfies (∼). Then there exists a unitary or antiunitary operator
U : H → H and a bijective map g : [0, 1] → [0, 1] such that we have

{φ(A), φ(A⊥)} = {U AU∗, U A⊥U∗} (A ∈ E(H) \ SC(H)) (2)

and
φ(t I ) = g(t)I (t ∈ [0, 1]). (3)

Conversely, every map of the above form preserves coexistence in both directions.

Observe that in the above theorem if we assume that our automorphism is continuous
with respect to the operator norm, then up to unitary-antiunitary equivalence we obtain
that φ is either the identity map, or the ortho-complementation: A �→ A⊥. Also note that
the converse statement of the theorem follows easily by Theorem 1.1. As we mentioned
earlier, the description of all automorphisms with respect to (∼) and (⊥) now follows
easily, namely, we get the same conclusion as in the above theorem, except that now g
further satisfies g(1− t) = 1− g(t) for all 0 ≤ t ≤ 1.

1.5. Quantum mechanical interpretation of automorphisms of E(H). In order to explain
the above automorphism theorems’ physical interpretation, let us go back first to
Wigner’s theorem. Assume there are two physicists who analyse the same quantum
mechanical system using the same Hilbert space H , but possibly they might associate
different rank-one projections to the same quantum (pure) state. However, we know that
they always agree on the transition probabilities. Then according to Wigner’s theorem,
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there must be either a unitary, or an antiunitary operator with which we can transform
from one analysis into the other (like a ”coordinate transformation”).

For the interpretation of Ludwig’s theorem, let us say there are two physicists who
analyse the same quantum fuzzy measurement, but they might associate different effects
to the same quantum fuzzy event. If we at least know that both of them agree on
which pairs of effects are ortho-complemented, and which effect is larger than the other
(i.e. implies the occurrence of the other), then by Ludwig’s theorem there must exist
either a unitary, or an antiunitary operator that gives us the way to transform from one
analysis into the other.

As for the interpretation of our Theorem 1.3, if we only know that our physicists
agree on which pairs of effects are coexistent (i.e. which pairs of quantum events can be
measured together), then there is a map φ satisfying (2) and (3) that transforms the first
physicist’s analysis into the other’s.

1.6. The outline of the paper. In the next section we will prove our first main result,
Theorem 1.1, and as an application, we prove Molnár’s theorem in an alternative way
that works for qubit effects as well. This will be followed by Sect. 3 where we prove our
other main result, Theorem 1.3, in the case when dim H = 2. Then in Sect. 4, using the
two-dimensional case, we shall prove the general version of our result. Let us point out
once more that, unless otherwise stated, H is not assumed to be separable. We will close
our paper with some discussion on the qubit case and some open problems in Sects. 5–6.

2. Proofs of Theorems 1.1, 1.2, and Molnár’s Theorem

We start with some definitions. The symbolP(H)will stand for the set of all projections
(idempotent and self-adjoint operators) on H , and P1(H) will denote the set of all rank-
one projections. The commutant of an effect A intersected with E(H) will be denoted
by

Ac := {C ∈ E(H) : C A = AC},
andmore generally, for a subsetM ⊂ E(H)wewill use the notationMc := ∩{Ac : A ∈
M}. Also, we set Acc := (Ac)c and Mcc := (Mc)c.

We continue with three known lemmas on the structure of coexistent pairs of effects
that can all be found in [27]. The first two have been proved earlier, see [4,21].

Lemma 2.1. For any A ∈ E(H) and P ∈ P(H) the following statements hold:

(a) A∼ = E(H) if and only if A ∈ SC(H),
(b) P∼ = Pc,
(c) Ac ⊆ A∼.

Lemma 2.2. Let A, B ∈ E(H) so that their matrices are diagonal with respect to
some orthogonal decomposition H = ⊕i∈I Hi , i.e. A = ⊕i∈I Ai and B = ⊕i∈I Bi ∈
E(⊕i∈I Hi ). Then A ∼ B if and only if Ai ∼ Bi for all i ∈ I.

Lemma 2.3. Let A, B ∈ E(H). Then the following are equivalent:

(i) A ∼ B,
(ii) there exist effects M, N ∈ E(H) such that M ≤ A, N ≤ I − A, and M + N = B.

We continue with a corollary of Lemma 2.1.
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Corollary 2.4. For any effect A and projection P ∈ A∼ we have P ∈ Ac. In particular,
we have A∼ ∩ P(H) = Ac ∩ P(H).

Proof. Since coexistence is a symmetric relation, we obtain A ∈ P∼, which implies
AP = P A. ��

The next four statements are easy consequences of Lemma 2.3, we only prove two
of them.

Corollary 2.5. For any effect A we have A∼ = (A⊥)∼.

Corollary 2.6. Let A ∈ E(H) such that either 0 /∈ σ(A), or 1 /∈ σ(A). Then there exists
an ε > 0 such that {C ∈ E(H) : C ≤ ε I } ⊆ A∼.

We recall the definition of the strength function of A ∈ E(H):

�(A, P) = max{λ ≥ 0 : λP ≤ A} (P ∈ P1(H)),

see [2] for more details and properties.

Corollary 2.7. Assume that A ∈ E(H), 0 < t ≤ 1, and P ∈ P1(H). Then the following
conditions are equivalent:

(i) A ∼ t P;
(ii)

t ≤ �(A, P) + �(A⊥, P). (4)

Proof. By (ii) of Lemma 2.3 we have A ∼ t P if and only if there exist t1, t2 ≥ 0 such
that t = t1 + t2, t1P ≤ A and t2P ≤ A⊥, which is of course equivalent to (4). ��
Corollary 2.8. Let A, B ∈ E(H) such that A∼ ⊆ B∼. Assume that with respect to
the orthogonal decomposition H = H1 ⊕ H2 the two effects have the following block-
diagonal matrix forms:

A =
[

A1 0
0 A2

]
and B =

[
B1 0
0 B2

]
∈ E(H1 ⊕ H2).

Then we also have
A∼
1 ⊆ B∼

1 and A∼
2 ⊆ B∼

2 . (5)

In particular, if A∼ = B∼, then A∼
1 = B∼

1 and A∼
2 = B∼

2 .

Proof. Let P1 be the orthogonal projection onto H1. By Lemma 2.2 we observe that
{[

C 0
0 D

]
∈ E (H1 ⊕ H2) : C ∼ A1, D ∼ A2

}
= Pc

1 ∩ A∼

⊆ Pc
1 ∩ B∼ =

{[
E 0
0 F

]
∈ E (H1 ⊕ H2) : E ∼ B1, F ∼ B2

}
,

which immediately implies (5). ��
Next, we recall the Busch–Gudder theorem about the explicit form of the strength

function, which we shall use frequently here. We also adopt their notation, so whenever
it is important to emphasise that the range of a rank-one projection P is C · x with some
x ∈ H such that ‖x‖ = 1, we write Px instead. Furthermore, the symbol A−1/2 denotes
the algebraic inverse of the bijective restriction A1/2|(Im A)− : (Im A)− → Im (A1/2),
where ·− stands for the closure of a set. In particular, for all x ∈ Im (A1/2) the vector
A−1/2x is the unique element in (Im A)− which A1/2 maps to x .



G. P. Gehér, P. Šemrl

Busch–Gudder Theorem. (1999, Theorem 4 in [2]) For every effect A ∈ E(H) and
unit vector x ∈ H we have

�(A, Px ) =
{‖A−1/2x‖−2, if x ∈ Im (A1/2),

0, otherwise.
(6)

We proceed with proving some new results which will be crucial in the proofs of our
main theorems. The first lemma is probably well-known, but as we did not find it in the
literature, we state and prove it here. Recall that WOT and SOT stand for the weak- and
strong operator topologies, respectively.

Lemma 2.9. For any effect A ∈ E(H), the set A∼ is convex and WOT-compact, hence it
is also SOT- and norm-closed. Moreover, if H is separable, then the subset A∼ ∩F(H)

is SOT-dense, hence also WOT-dense, in A∼.

Proof. Let t ∈ [0, 1] and B1, B2 ∈ A∼. By Lemma 2.3 there are M1, M2, N1, N2 ∈
E(H) such that M1+N1 = B1, M2+N2 = B2, M1 ≤ A, N1 ≤ I−A and M2 ≤ A, N2 ≤
I − A. Hence setting M = t M1 + (1− t)M2 ∈ E(H) and N = t N1 + (1− t)N2 ∈ E(H)

gives M + N = t B1 + (1− t)B2 and M ≤ A, N ≤ I − A, thus t B1 + (1− t)B2 ∼ A,
so A∼ is indeed convex.

Next, we prove that A∼ is WOT-compact. Clearly, E(H) is WOT-compact, as it is a
boundedWOT-closed subset ofB(H) (see [7, Proposition IX.5.5]), therefore it is enough
to show that A∼ isWOT-closed. Let {Bν}ν ⊆ A∼ be an arbitrary net thatWOT-converges
to B, we shall show that B ∼ A holds. For every ν we can find two effects Mν and Nν

such that Mν + Nν = Bν , Mν ≤ A and Nν ≤ I − A. By WOT-compactness of E(H),
there exists a subnet {Bξ }ξ such that Mξ → M in WOT with some effect M . Again, by
WOT-compactness of E(H), there exists a subnet {Bη}η of the subnet {Bξ }ξ such that
Nη → N in WOT with some effect N . Obviously we also have Bη → B and Mη → M
in WOT. Therefore we have M + N = B and by definition of WOT convergence we also
obtain M ≤ A, N ≤ I − A, hence indeed B ∼ A. Closedness with respect to the other
topologies is straightforward.

Concerning our last statement for separable spaces, first we point out that for every
effect C there exists a net of finite rank effects {Cν}ν such that Cν ≤ C holds for all
ν and Cν → C in SOT. Denote by EC the projection-valued spectral measure of C ,

and set Cn = ∑n
j=0

j
n EC

([
j
n ,

j+1
n

))
for every n ∈ N. Clearly, each Cn has finite

spectrum, satisfies Cn ≤ C , and ‖Cn −C‖ → 0 as n →∞. For each spectral projection

EC

([
j
n ,

j+1
n

))
we can take a sequence of finite-rank projections {P j,n

k }∞k=1 such that

P j,n
k ≤ EC

([
j
n ,

j+1
n

))
for all k and P j,n

k → EC

([
j
n ,

j+1
n

))
in SOT as k → ∞. Define

Cn,k :=∑n
j=0

j
n P j,n

k . It is apparent that Cn,k ≤ Cn for all n and k, and that for each n
we have Cn,k → Cn in SOT as k →∞. Therefore the SOT-closure of {Cn,k : n, k ∈ N}
contains each Cn , hence also C , thus we can construct a net {Cν}ν with the required
properties.

Now, let B ∈ A∼ be arbitrary, and consider two other effects M, N ∈ E(H) that
satisfy the conditions of Lemma 2.3 (ii). Set C := M ⊕ N ∈ E(H ⊕ H), and denote
by EM and EN the projection-valued spectral measures of M and N , respectively.

Clearly, EC

([
j
n ,

j+1
n

))
= EM

([
j
n ,

j+1
n

))
⊕ EN

([
j
n ,

j+1
n

))
for each j and n. In the

above construction we can choose finite-rank projections of the form P j,n
k = Q j,n

k ⊕
R j,n

k ∈ P(H ⊕ H) where Q j,n
k , R j,n

k ∈ P(H), Q j,n
k ≤ EM

([
j
n ,

j+1
n

))
and R j,n

k ≤
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EN

([
j
n ,

j+1
n

))
holds for all k, n. Then each element Cν of the convergent net is an

orthogonal sum of the form Mν ⊕Nν ∈ E(H ⊕H)). It is apparent that Mν, Nν ∈ F(H),
Mν ≤ M and Nν ≤ N for all ν, and that Mν → M , Nν → N holds in SOT. Therefore
Mν + Nν ∈ F(H) ∩ A∼ and Mν + Nν converges to M + N = B in SOT, the proof is
complete. ��

We proceed to investigate when do we have the equation A∼ = B∼ for two effects
A and B, which will take several steps. We will denote the set of all rank-one effects by
F1(H) := {t P : P ∈ P1(H), 0 < t ≤ 1}.
Lemma 2.10. Let H = H1 ⊕ H2 be an orthogonal decomposition and assume that
A, B ∈ E(H) have the following matrix decompositions:

A =
[
λ1 I1 0
0 λ2 I2

]
and B =

[
μ1 I1 0
0 μ2 I2

]
∈ E(H1 ⊕ H2) (7)

where λ1, λ2, μ1, μ2 ∈ [0, 1], and I1 and I2 denote the identity operators on H1 and
H2, respectively. Then the following are equivalent:

(i) �(A, P) + �(A⊥, P) = �(B, P) + �(B⊥, P) holds for all P ∈ P1(H),
(ii) A∼ ∩ F1(H) = B∼ ∩ F1(H),
(iii) either λ1 = λ2 and μ1 = μ2, or λ1 = μ1 and λ2 = μ2, or λ1 +μ1 = λ2 +μ2 = 1.

Proof. The directions (iii)�⇒(ii) ⇐⇒ (i) are trivial by Lemma 2.1 (a) and Corol-
laries 2.5, 2.7, so we shall only consider the direction (i)�⇒(iii). First, a straight-
forward calculation using the Busch–Gudder theorem gives the following for every
x1 ∈ H1, x2 ∈ H2, ‖x1‖ = ‖x2‖ = 1 and 0 ≤ α ≤ π

2 :

�
(

A, Pcosαx1+sin αx2

) = 1
(

1
λ1

)
· cos2 α +

(
1
λ2

)
· sin2 α

, (8)

where we use the interpretations 1
0 = ∞, 1

∞ = 0, ∞ · 0 = 0, ∞ + ∞ = ∞, and
∞ + a = ∞, ∞ · a = ∞ (a > 0), in order to make the formula valid also for the case
when λ1 = 0 or λ2 = 0. Clearly, (8) depends only on α, but not on the specific choices
of x1 and x2. We define the following two functions

TA :
[
0, π

2

]→ [0, 1], TA(α) = �
(

A, Pcosαx1+sin αx2

)
+ �
(

A⊥, Pcosαx1+sin αx2

)

and

TB :
[
0, π

2

]→ [0, 1], TB(α) = �
(
B, Pcosαx1+sin αx2

)
+ �
(

B⊥, Pcosαx1+sin αx2

)
,

which are the same by our assumptions. By (8), for all 0 ≤ α ≤ π
2 we have

TA(α) = 1
(

1
λ1

)
· cos2 α +

(
1
λ2

)
· sin2 α

+
1

(
1

1−λ1

)
· cos2 α +

(
1

1−λ2

)
· sin2 α

= 1
(

1
μ1

)
· cos2 α +

(
1
μ2

)
· sin2 α

+
1

(
1

1−μ1

)
· cos2 α +

(
1

1−μ2

)
· sin2 α

= TB(α).

(9)

Next, we observe the following implications:
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• if λ1 = λ2, then TA(α) is the constant 1 function,
• if λ1 = 0 and λ2 = 1, then TA(α) is the characteristic function χ{0,π/2}(α),
• if λ1 = 0 and 0 < λ2 < 1, then TA(α) is continuous on

[
0, π

2

)
, but has a jump at

π
2 , namely lim

α→π
2 −

TA(α) = 1− λ2 and TA(π
2 ) = 1,

• if λ1 = 1 and 0 < λ2 < 1, then TA(α) is continuous on
[
0, π

2

)
, but has a jump at

π
2 , namely lim

α→π
2 −

TA(α) = λ2 and TA(π
2 ) = 1,

• if λ1, λ2 ∈ (0, 1), then TA(α) is continuous on
[
0, π

2

]
,

• if λ1 �= λ2, then we have TA(0) = TA(π
2 ) = 1 and TA(α) < 1 for all 0 < α < π

2 .

All of the above statements are rather straightforward computations using the formula
(9), let us only show the last one here. Clearly, TA(0) = TA(π

2 ) = 1 is obvious. As for
the other assertion, if λ1, λ2 ∈ (0, 1), then we can use the strict version of the weighted
harmonic-arithmetic mean inequality:

1
1
λ1

cos2 α + 1
λ2

sin2 α
+

1
1

1−λ1
cos2 α + 1

1−λ2
sin2 α

< (λ1 cos
2 α + λ2 sin

2 α) + ((1− λ1) cos
2 α + (1− λ2) sin

2 α) = 1 (0 < α < π
2 ).

If λ1 = 0 < λ2 < 1, then we calculate in the following way:

1
( 1
0

)
cos2 α + 1

λ2
sin2 α

+
1

cos2 α + 1
1−λ2

sin2 α

= 1

1− sin2 α + 1
1−λ2

sin2 α
< 1 (0 < α < π

2 ).

The remaining cases are very similar.
The above observations together with Corollary 2.5 and (9) readily imply the follow-

ing:

• A ∈ SC(H) if and only if B ∈ SC(H),
• A ∈ P(H)\SC(H) if and only if B ∈ P(H)\SC(H), in which case B ∈ {A, A⊥},
• there exists a P ∈ P(H) \ SC(H) and a t ∈ (0, 1) with A ∈ {t P, I − t P} if and
only if B ∈ {t P, I − t P},
• λ1, λ2 ∈ (0, 1) and λ1 �= λ2 if and only if μ1, μ2 ∈ (0, 1) and μ1 �= μ2.

So what remained is to show that in the last case we further have B ∈ {A, A⊥}, which
is what we shall do below.

Let us introduce the following functions:

TA : [0, 1] → [0, 1], TA(s) := TA(arcsin
√

s) = λ1λ2

λ1s + λ2(1− s)

+
(1− λ1)(1− λ2)

(1− λ1)s + (1− λ2)(1− s)

and

TB : [0, 1] → [0, 1], TB(s) := TB(arcsin
√

s) = μ1μ2

μ1s + μ2(1− s)

+
(1− μ1)(1− μ2)

(1− μ1)s + (1− μ2)(1− s)
.
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Our aim is to prove that TA(s) = TB(s) (s ∈ [0, 1]) implies either λ1 = μ1 and λ2 = μ2,
or λ1 + μ1 = λ2 + μ2 = 1. The derivative of TA is

dTA
ds (s) = (λ1 − λ2)

( −λ1λ2

(λ1s + λ2(1− s))2
+

(1− λ1)(1− λ2)

((1− λ1)s + (1− λ2)(1− s))2

)
,

from which we calculate

dTA
ds (0) = − (λ1 − λ2)

2

(1− λ2)λ2
and dTA

ds (1) = (λ1 − λ2)
2

(1− λ1)λ1
.

Therefore, if we managed to show that the function

F : (0, 1)2 → R
2, F(x, y) =

(
(x−y)2

(1−x)x ,
(x−y)2

(1−y)y

)

is injective on the set � := {(x, y) ∈ R
2 : 0 < y < x < 1}, then we are done (note that

F(x, y) = F(1− x, 1− y)). For this assume that with some c, d > 0 we have

(x − y)2

(1− x)x
= 1

c
and

(x − y)2

(1− y)y
= 1

d
,

or equivalently,

(1− x)x = c(x − y)2 and (1− y)y = d(x − y)2.

If we substitute u = x−y
2 and v = x+y

2 , then we get

(u + v)2 − (u + v) = −4cu2 and (v − u)2 − (v − u) = −4du2.

Now, considering the sum and difference of these two equations and manipulate them a
bit gives

v2 − v = −(2c + 2d + 1)u2 and v = (d − c)u + 1
2 .

From these latter equations we conclude

x − y = 2u =
√

1
(d−c)2+2c+2d+1

and x + y = 2v = 2(d − c)u + 1,

which clearly implies that F is globally injective on �, and the proof is complete. ��
We have an interesting consequence in finite dimensions.

Corollary 2.11. Assume that 2 ≤ dim H < ∞ and A, B ∈ E(H). Then the following
are equivalent:

(i) �(A, P) + �(A⊥, P) = �(B, P) + �(B⊥, P) for all P ∈ P1(H),
(ii) A∼ ∩ F1(H) = B∼ ∩ F1(H),
(iii) either A, B ∈ SC(H), or A = B, or A = B⊥.
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Proof. The directions (i) ⇐⇒ (ii)⇐�(iii) are trivial, so we shall only prove the
(ii)�⇒(iii) direction. First, let us consider the two-dimensional case. As we saw in
the proof of Lemma 2.10, we have A∼ ∩ F1(H) = F1(H) if and only if A is a scalar
effect (see the first set of bullet points there). Therefore, without loss of generality we
may assume that none of A and B are scalar effects. Notice that by Lemma 2.1, A and
B commute with exactly the same rank-one projections, hence A and B possess the
forms in (7) with some one-dimensional subspaces H1 and H2, and an easy application
of Lemma 2.10 gives (iii).

As for the general case, since again A and B commute with exactly the same rank-
one projections, we can jointly diagonalise them with respect to some orthonormal basis
{e j }nj=1, where n = dim H :

A =

⎡

⎢⎢⎢
⎢
⎣

λ1 0 . . . 0 0
0 λ2 . . . 0 0
...

. . .
...

0 0 . . . λn−1 0
0 0 . . . 0 λn

⎤

⎥⎥⎥
⎥
⎦

and B =

⎡

⎢⎢⎢
⎢
⎣

μ1 0 . . . 0 0
0 μ2 . . . 0 0
...

. . .
...

0 0 . . . μn−1 0
0 0 . . . 0 μn

⎤

⎥⎥⎥
⎥
⎦

.

Of course, for any two distinct i, j ∈ {1, . . . , n} we have the following equation for the
strength functions:

�(A, P) + �(A⊥, P) = �(B, P) + �(B⊥, P) (P ∈ P1(C · ei + C · e j )),

which instantly implies
[
μi 0
0 μ j

]∼
∩ F1(C · ei + C · e j ) =

[
λi 0
0 λ j

]∼
∩ F1(C · ei + C · e j ).

By the two-dimensional case this means that we have one of the following cases:

• λi = λ j and μi = μ j ,
• λi �= λ j and either μi = λi and μ j = λ j , or μi = 1− λi and μ j = 1− λ j .

From here it is easy to conclude (iii). ��
The commutant of an operator T ∈ B(H) will be denoted by T ′ := {S ∈

B(H) : ST = T S}, and more generally, if M ⊆ B(H), then we set M′ := ∩{T ′ : T ∈
M}. We shall use the notations T ′′ := (T ′)′ and M′′ := (M′)′ for the double commu-
tants.

Lemma 2.12. For any A, B ∈ E(H) the following three assertions hold:

(a) If A∼ ⊆ B∼, then B ∈ A′′.
(b) If dim H ≤ ℵ0 and A∼ ⊆ B∼, then there exists a Borel function f : [0, 1] → [0, 1]

such that B = f (A).
(c) If B is a convex combination of A, A⊥, 0 and I , then A∼ ⊆ B∼.

Proof. (a): Assume that C ∈ A′. Our goal is to show B ∈ C ′. We express C in the
following way:

C = C� + iC�, C� = C + C∗

2
, C� = C − C∗

2i
where C� and C� are self-adjoint (they are usually called the real and imaginary parts
of C). Since A is self-adjoint, C∗ ∈ A′, hence C�, C� ∈ A′. Let E� and E� denote the
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projection-valued spectral measures ofC� andC�, respectively. By the spectral theorem
([7, Theorem IX.2.2]), Lemma 2.1 and Corollary 2.4, we have E�(�), E�(�) ∈ Ac ⊆
A∼ ⊆ B∼, therefore also E�(�), E�(�) ∈ B ′ for all � ∈ BR, which gives C ∈ B ′.

(b): This is an easy consequence of [7, Proposition IX.8.1 and Lemma IX.8.7].
(c): If A ∼ C , then also A⊥, 0 and I ∼ C . Hence by the convexity of C∼ we obtain

B ∼ C . ��
Now, we are in the position to prove our first main result.

Proof of Theorem 1.1. If H is separable, then the equivalence (ii) ⇐⇒ (iii) is straight-
forward by Lemma 2.9. For general H the direction (i)�⇒(ii) is obvious, therefore
we shall only prove (ii)�⇒(i), first in the separable, and then in the general case. By
Lemma 2.1, we may assume throughout the rest of the proof that A and B are non-scalar
effects. We will denote the spectral subspace of a self-adjoint operator T associated to
a Borel set � ⊆ R by HT (�).

(ii)�⇒(i) in the separable case: We split this part into two steps.
STEP 1: Here, we establish two estimations, (11) and (12), for the strength func-

tions of A and B on certain subspaces of H . Let λ1, λ2 ∈ σ(A), λ1 �= λ2 and
0 < ε < 1

2 |λ1 − λ2|. Then the spectral subspaces H1 = HA ((λ1 − ε, λ1 + ε)) and
H2 = HA ((λ2 − ε, λ2 + ε)) are non-trivial and orthogonal. Set H3 to be the orthogonal
complement of H1 ⊕ H2, then the matrix of A written in the orthogonal decomposition
H = H1 ⊕ H2 ⊕ H3 is diagonal:

A =
⎡

⎣
A1 0 0
0 A2 0
0 0 A3

⎤

⎦ ∈ B(H1 ⊕ H2 ⊕ H3).

Note that H3 might be a trivial subspace. Since by Corollary 2.4 A and B commute with
exactly the same projections, the matrix of B in H = H1 ⊕ H2 ⊕ H3 is also diagonal:

B =
⎡

⎣
B1 0 0
0 B2 0
0 0 B3

⎤

⎦ ∈ B(H1 ⊕ H2 ⊕ H3).

At this point, let us emphasise that of course Hj , A j and B j ( j = 1, 2, 3) all depend
on λ1, λ2 and ε, but in order to keep our notation as simple as possible, we will stick
with these symbols. However, if at any point it becomes important to point out this
dependence, we shall use for instance B(λ1,λ2,ε)

j instead of B j . Similar conventions
apply later on.

Observe that by Corollary 2.8 we have
[

A1 0
0 A2

]∼
=
[

B1 0
0 B2

]∼
.

Now, we pick two arbitrary points μ1 ∈ σ(B1) and μ2 ∈ σ(B2). Then obviously, the
following two subspaces are non-zero subspaces of H1 and H2, respectively:

Ĥ1 := (H1)B1

(
(μ1 − ε, μ1 + ε)

)
, Ĥ2 := (H2)B2

(
(μ2 − ε, μ2 + ε)

)
.

Similarly as above,wehave the followingmatrix formswhere Ȟ j = Hj�Ĥ j ( j = 1, 2):

B1 =
[

B̂1 0
0 B̌1

]
∈ B(Ĥ1 ⊕ Ȟ1) and B2 =

[
B̂2 0
0 B̌2

]
∈ B(Ĥ2 ⊕ Ȟ2)
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and

A1 =
[

Â1 0
0 Ǎ1

]
∈ B(Ĥ1 ⊕ Ȟ1) and A2 =

[
Â2 0
0 Ǎ2

]
∈ B(Ĥ2 ⊕ Ȟ2).

Note that Ȟ1 or Ȟ2 might be trivial subspaces. Again by Corollary 2.8, we have
[

Â1 0
0 Â2

]∼
=
[

B̂1 0
0 B̂2

]∼
.

Let us point out that by construction σ( Â j ) ⊆ [λ j − ε, λ j + ε] and σ(B̂ j ) ⊆ [μ j −
ε, μ j + ε]. Corollary 2.7 gives the following identity for the strength functions, where
Î j denotes the identity on Ĥ j ( j = 1, 2):

�

([
Â1 0
0 Â2

]
, P

)
+ �

([
Î1 − Â1 0

0 Î2 − Â2

]
, P

)

= �

([
B̂1 0
0 B̂2

]
, P

)
+ �

([
Î1 − B̂1 0

0 Î2 − B̂2

]
, P

) (∀ P ∈ P1
(
Ĥ1 ⊕ Ĥ2

))
.

(10)

Define

� : R → [0, 1], �(t) =
⎧
⎨

⎩

0 if t < 0
t if 0 ≤ t ≤ 1
1 if 1 < t

,

and notice that we have the following two estimations for all rank-one projections P:

�

([
�(λ1 − ε) Î1 0

0 �(λ2 − ε) Î2

]
, P

)

+ �

([
�(1− λ1 − ε) Î1 0

0 �(1− λ2 − ε) Î2

]
, P

)

≤ the expression in (10)

≤ �

([
�(λ1 + ε) Î1 0

0 �(λ2 + ε) Î2

]
, P

)

+ �

([
�(1− λ1 + ε) Î1 0

0 �(1− λ2 + ε) Î2

]
, P

)
(11)

and

�

([
�(μ1 − ε) Î1 0

0 �(μ2 − ε) Î2

]
, P

)

+ �

([
�(1− μ1 − ε) Î1 0

0 �(1− μ2 − ε) Î2

]
, P

)

≤ the expression in(10)

≤ �

([
�(μ1 + ε) Î1 0

0 �(μ2 + ε) Î2

]
, P

)

+ �

([
�(1− μ1 + ε) Î1 0

0 �(1− μ2 + ε) Î2

]
, P

)
. (12)
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Note that the above estimations hold for any arbitrarily small ε and for all suitable choices
of μ1 and μ2 (which of course depend on ε).

STEP 2:Herewe show that B ∈ {A, A⊥}. Let us define the following set that depends
only on λ j :

C j = C(λ j )

j :=
⋂{

σ
(

B(λ1,λ2,ε)
j

)
: 0 < ε < 1

2 |λ1 − λ2|
}

=
⋂{

σ
(
B|HA((λ j−ε,λ j+ε))

) : 0 < ε
}

( j = 1, 2).

Notice that as this set is an intersection ofmonotonically decreasing (as ε ↘ 0), compact,
non-empty sets, it must contain at least one element. Also, observe that if μ1 ∈ C1 and
μ2 ∈ C2, then (11) and (12) hold for all ε > 0.

We proceed with proving that either C1 = {λ1} and C2 = {λ2}, or C1 = {1 − λ1}
and C2 = {1− λ2} hold. Fix two arbitrary elements μ1 ∈ C1 and μ2 ∈ C2, and assume
that neither λ1 = μ1 and λ2 = μ2, nor λ1 + μ1 = λ2 + μ2 = 1 hold. From here our
aim is to get a contradiction. As we showed in the proof of Lemma 2.10, there exists an
α0 ∈
(
0, π

2

)
such that we have

1
(

1
λ1

)
· cos2 α0 +

(
1
λ2

)
· sin2 α0

+
1

(
1

1−λ1

)
· cos2 α0 +

(
1

1−λ2

)
· sin2 α0

�= 1
(

1
μ1

)
· cos2 α0 +

(
1
μ2

)
· sin2 α0

+
1

(
1

1−μ1

)
· cos2 α0 +

(
1

1−μ2

)
· sin2 α0

where we interpret both sides as in (8). Notice that both summands on both sides depend
continuously on λ1, λ2, μ1 and μ2. Therefore there exists an ε > 0 small enough and a
rank-one projection P = Pcosα0 x̂1+sin α0 x̂2 , with x̂1 ∈ Ĥ1, x̂2 ∈ Ĥ2, ‖x̂1‖ = ‖x̂2‖ = 1,
such that the closed intervals bounded by the right- and left-hand sides of (11), and those
of (12) are disjoint—which is a contradiction.

Observe that as we can do the above for any two disjoint elements of the spectrum
σ(A), we can conclude that one of the following possibilities occur:

{λ} =
⋂{

σ
(
B|HA((λ−ε,λ+ε))

) : ε > 0
}

(λ ∈ σ(A)) (13)

or
{1− λ} =

⋂{
σ
(
B|HA((λ−ε,λ+ε))

) : ε > 0
}

(λ ∈ σ(A)). (14)

From here, we show that (13) implies A = B, and (14) implies B = A⊥. As the
latter can be reduced to the case (13), by considering B⊥ instead of B, we may assume
without loss of generality that (13) holds. By Lemma 2.12 and [7, Theorem IX.8.10],
there exists a function f ∈ L∞(μ), where μ is a scalar-valued spectral measure of A,
such that B = f (A). Moreover, we have B = A if and only if f (λ) = λ μ-a.e, so we
only have to prove the latter equation. Let us fix an arbitrarily small number δ > 0. By
the spectral mapping theorem ( [7, Theorem IX.8.11]) and (13) we notice that for every
λ ∈ σ(A) there exists an 0 < ελ < δ such that

μ− essran
(

f |(λ−ελ,λ+ελ)

) = σ
(
B|HA((λ−ελ,λ+ελ))

) ⊆ (λ− δ, λ + δ), (15)

where μ − essran denotes the essential range of a function with respect to μ (see [7,
Example IX.2.6]). Now, for every λ ∈ σ(A) we fix such an ελ. Clearly, the intervals
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{(λ − ελ, λ + ελ) : λ ∈ σ(A)} cover the whole spectrum σ(A), which is a compact set.
Therefore we can find finitely many of them, let’s say λ1, . . . , λn so that

σ(A) ⊆
n⋃

j=1

(
λ j − ελ j , λ j + ελ j

)
.

Finally, we define the function

h(λ) = λ j , where |λ− λi | ≥ ελi for all 1 ≤ i < j and |λ− λ j | < ελ j .

By definition we have ‖h − idσ(A)‖∞ ≤ δ where the ∞-norm is taken with respect to
μ and idσ(A)(λ) = λ (λ ∈ σ(A)). But notice that by (15) we also have ‖h − f ‖∞ ≤ δ,
and hence ‖ f − idσ(A)‖∞ ≤ 2δ. As this inequality holds for all positive δ, we actually
get that f (λ) = λ for μ-a.e. λ.

(ii)�⇒(i) in the non-separable case: It is well-known that there exists an orthogonal
decomposition H = ⊕i∈I Hi such that each Hi is a non-trivial, separable, invariant
subspace of A, see for instance [7, Proposition IX.4.4]. Since A and B commute with
exactly the same projections, both are diagonal with respect to the decomposition H =
⊕i∈I Hi :

A = ⊕i∈I Ai and B = ⊕i∈I Bi ∈ E(⊕i∈I Hi ).

By Corollary 2.8 we have A∼
i = B∼

i for all i ∈ I, therefore the separable case implies

either Ai = Bi , or Bi = A⊥
i , or Ai , Bi ∈ SC(Hi ) (i ∈ I).

Without loss of generality we may assume from now on that there exists an i0 ∈ I so
that Ai0 is not a scalar effect. (In case all of them are scalar, we simply combine two
subspaces Hi1 and Hi2 so that σ(Ai1) �= σ(Ai2)). This implies either Ai0 = Bi0 , or
Bi0 = A⊥

i0
. By considering B⊥ instead of B if necessary, we may assume from now on

that Ai0 = Bi0 holds.
Finally, let i1 ∈ I \{i0} be arbitrary, and let us consider the orthogonal decomposition

H = ⊕i∈I\{i0,i1}Hi ⊕ K where K = Hi0 ⊕ Hi1 . Similarly as above, we obtain either
Ai0 ⊕ Ai1 = Bi0 ⊕ Bi1 , or Bi0 ⊕ Bi1 = A⊥

i0
⊕ A⊥

i1
, but since Ai0 = Bi0 , we must have

Ai1 = Bi1 . As this holds for arbitrary i1, the proof is complete. ��
Now, we are in the position to give an alternative proof of Molnár’s theorem which

also extends to the two-dimensional case.

Proof of Theorem 1.2 and Molnár’s theorem. By (a) of Lemma 2.1 and (∼) we obtain
φ(SC(H)) = SC(H), moreover, the property (≤) implies the existence of a strictly
increasing bijection g : [0, 1] → [0, 1] such that φ(λI ) = g(λ)I for every λ ∈ [0, 1].
By Theorem 1.1 we conclude

φ(A⊥) = φ(A)⊥ (A ∈ E(H) \ SC(H)).

We only have to show that the same holds for scalar operators, because then the theorem
is reduced to Ludwig’s theorem. For any effect A and any set of effects S let us define
the following sets A≤ := {B ∈ E(H) : A ≤ B}, A≥ := {B ∈ E(H) : A ≥ B} and
S⊥ := {B⊥ : B ∈ S}. Observe that for any s, t ∈ [0, 1] we have

(
(s I )≤ ∩ (t I )≥ \ SC(H)

)⊥ = (s I )≤ ∩ (t I )≥ \ SC(H) �= ∅ (16)
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if and only if t = 1− s and s < 1
2 . Thus for all s < 1

2 we obtain

∅ �= ((g(s)I )≤ ∩ (g(1− s)I )≥ \ SC(H)
)⊥ = φ

((
(s I )≤ ∩ ((1− s)I )≥ \ SC(H)

)⊥)

= φ
(
(s I )≤ ∩ ((1− s)I )≥ \ SC(H)

) = (g(s)I )≤ ∩ (g(1− s)I )≥ \ SC(H),

which by (16) implies g(1− s) = 1− g(s) and g(s) < 1
2 , therefore we indeed have (⊥)

for every effect. ��

3. Proof of Theorem 1.3 in Two Dimensions

In this section we prove our other main theorem for qubit effects. In order to do that we
need to prove a few preparatory lemmas. We start with a characterisation of rank-one
projections in terms of coexistence.

Lemma 3.1. For any A ∈ E(C2) the following are equivalent:

(i) there are no effects B ∈ E(C2) such that B∼
� A∼,

(ii) A ∈ P1(C
2).

Proof. The case when A ∈ SC(C2) is trivial, therefore we may assume otherwise
throughout the proof.

(i)�⇒(ii): Suppose that A /∈ P1(C
2), then by Corollary 2.6 there exists an ε > 0

such that {C ∈ E(C2) : C ≤ ε I } ⊆ A∼. Let B ∈ P1(C
2) ∩ Ac, then we have B∼ =

Bc = Ac ⊆ A∼. But it is very easy to find a C ∈ E(C2) such that C ≤ ε I and C /∈ Bc,
therefore we conclude B∼

� A∼.
(ii)�⇒(i): If A ∈ P1(C

2), B ∈ E(C2) and B∼
� A∼, then also Bc

� Ac, which is
impossible. ��

Note that the above statement does not hold in higher dimensions, see the final
section of this paper for more details. We continue with a characterisation of rank-one
and ortho-rank-one qubit effects in terms of coexistence.

Lemma 3.2. Let A ∈ E(C2) \ SC(C2). Then the following are equivalent:

(i) A or A⊥ ∈ F1(C
2) \ P1(C

2),
(ii) There exists at least one B ∈ E(C2) such that B∼

� A∼, and for every such pair of
effects B1, B2 we have either B∼

1 ⊆ B∼
2 , or B∼

2 ⊆ B∼
1 .

Moreover, if (i) holds, i.e. A or A⊥ = t P with P ∈ P1(C
2) and 0 < t < 1, then we

have B∼ ⊆ A∼ if and only if B or B⊥ = s P with some t ≤ s ≤ 1.

Proof. First, notice that by Theorem 1.1 and Lemma 2.12 (c) we have

(s P)∼ ⊆ (t P)∼ ⇐⇒ t ≤ s (P ∈ P1(C
2), t, s ∈ (0, 1]).

(i)�⇒(ii): If we have B∼ ⊆ (t P)∼ with some rank-one projection P , t ∈ (0, 1]
and qubit effect B, then by Lemma 2.12 (b) we obtain P ∈ Bc and B /∈ SC(C2).
Furthermore, since B∼ ∩ F1(C

2) ⊆ (t P)∼ ∩ F1(C
2), by Corollary 2.7 we obtain

TB(α) ≤ Tt P (α) (0 ≤ α ≤ π
2 ),

where we use the notation from the proof of Lemma 2.10. Thus, the discontinuity of
Tt P (α) at either α = 0, or α = π

2 , implies the discontinuity of TB(α) at the same α.
Whence we conclude either B = s P , or B = I − s P with some t ≤ s ≤ 1.
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0

P P⊥

I

A

A⊥

λ1P
(1− λ2)P⊥

Fig. 1. The figure shows all effects commuting with A ∈ E(C2) \ SC(C2), whose spectral decomposition is
A = λ1P + λ2P⊥ with 1 > λ1 > λ2 > 0

(ii)�⇒(i): By Lemma 3.1, (ii) cannot hold for elements of P1(C
2), so we only have

to check that if A, A⊥ /∈ F1(C
2) ∪ SC(C2), then (ii) fails. Suppose that the spectral

decomposition of A is λ1P + λ2P⊥ where 1 > λ1 > λ2 > 0. Then by Lemma 2.12
(c) we find that (λ1P)∼ ⊆ A∼ and

(
(1− λ2)P⊥)∼ ⊆ A∼ (see Figure 1), but by the

previous part neither (λ1P)∼ ⊆ ((1− λ2)P⊥)∼, nor
(
(1− λ2)P⊥)∼ ⊆ (λ1P)∼ holds.

��
For a visualisation of (t P)∼ ∩F1(C

2) see Sect. 5. Before we proceed with the proof
of Theorem 1.3 for qubit effects, we need a fewmore lemmas about rank-one projections
acting on C

2.

Lemma 3.3. For all P, Q ∈ P1(C
2) we have

‖P − Q‖2 = − det(P − Q) = 1− trP Q = 1− ‖P⊥ − Q‖2. (17)

Proof. Since tr(P−Q) = 0, the eigenvalues of the self-adjoint operator P−Q are λ and
−λ with some λ ≥ 0. Hence we have ‖P − Q‖2 = − det(P − Q). Applying a unitary
similarity if necessary, we may assume without loss of generality that (1, 0) ∈ Im P .
Obviously, there exist 0 ≤ ϑ ≤ π

2 and 0 ≤ μ ≤ 2π such that (cosϑ, eiμ sin ϑ) ∈ Im Q.
Thus the matrix forms of P and Q in the standard basis are

P = P(1,0) =
[
1
0

]
·
[
1
0

]∗
=
[
1 0
0 0

]
(18)

and

Q = P(cosϑ,eiμ sin ϑ) =
[

cosϑ

eiμ sin ϑ

]
·
[

cosϑ

eiμ sin ϑ

]∗
=
[

cos2 ϑ e−iμ cosϑ sin ϑ

eiμ cosϑ sin ϑ sin2 ϑ

]
,

(19)
where we used the notation of the Busch–Gudder theorem. Now, an easy calculation
gives us det(P − Q) = − sin2 ϑ and trP Q = cos2 ϑ . Hence the second equation in
(17) is proved, and the third one follows from trP⊥Q = 1− trP Q. ��

For P ∈ P1(C
2) and s ∈ [0, 1], let us use the following notation:

MP,s :=
{

Q ∈ P1(C
2) : ‖P − Q‖ = s

}
.

Next, we examine this set.
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Lemma 3.4. For all P ∈ P1(C
2) the following statements are equivalent:

(i) s = sin π
4 ,

(ii) there exists an R ∈ MP,s such that R⊥ ∈ MP,s ,
(iii) for all R ∈ MP,s we have also R⊥ ∈ MP,s .

Proof. One could use the Bloch representation (see Sect. 5), however, let us give here a
purely linear algebraic proof. Note that for any R1, R2 ∈ P1(C

2)wehave ‖R1−R2‖ = 1
if and only if R2 = R⊥

1 . Without loss of generality we may assume that P has the matrix
form of (18). Then for any 0 ≤ ϑ ≤ π

2 and R1, R2 ∈ MP,sin ϑ we have

R1 =
[

cos2 ϑ e−iμ1 cosϑ sin ϑ

eiμ1 cosϑ sin ϑ sin2 ϑ

]
and

R2 =
[

cos2 ϑ e−iμ2 cosϑ sin ϑ

eiμ2 cosϑ sin ϑ sin2 ϑ

]

with some μ1, μ2 ∈ R. Hence, we get

‖R1 − R2‖ =
√
1− trR1R2 =

√
sin2 ϑ cos2 ϑ(2− ei(μ1−μ2) − ei(μ2−μ1))

= |eiμ1 − eiμ2 | cosϑ sin ϑ = 1
2 |eiμ1 − eiμ2 | sin(2ϑ).

Notice that the right-hand side is always less than or equal to 1.Moreover, for anyμ1 ∈ R

there exist a μ2 ∈ R such that ‖R1 − R2‖ = 1 if and only if ϑ = π
4 . This completes the

proof. ��
Lemma 3.5. Let P, Q ∈ P1(C

2) and s, t ∈ (0, 1). Then the following are equivalent:

(i) t P ∼ s Q
(ii) either Q = P, or Q = P⊥, or

s ≤ 1
1

1−t ‖P⊥ − Q‖2 + ‖P − Q‖2 .

Proof. The case when Q ∈ {P, P⊥} is trivial, so from now on we assume otherwise.
Recall that two rank-one effects with different images are coexistent if and only if their
sum is an effect, see [20, Lemma2]. Therefore, (i) is equivalent to I−t P−s Q ≥ 0. Since
tr(I − t P−s Q) = 2− t−s > 0, the latter is further equivalent to det(I − t P−s Q) ≥ 0.
Without loss of generality we may assume that P and Q have the matrix forms written
in (18) and (19) with 0 < ϑ < π

2 . Then a calculation gives

det(I − t P − s Q) = s(t − 1) sin2 ϑ − s cos2 ϑ + 1− t = 1− t − s + ts‖P − Q‖2.
From the latter we get that det(I − t P − s Q) ≥ 0 holds if and only if

s ≤ 1− t

1− t‖P − Q‖2 ,

which, by (17) is equivalent to (ii). ��
Note that we have

0 <
1

1
1−t ‖P⊥ − Q‖2 + ‖P − Q‖2 < 1 (t ∈ (0, 1), P, Q ∈ P1(C

2), Q /∈ {P, P⊥}).

We need one more lemma.
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Lemma 3.6. Let P, Q ∈ P1(C
2). Then there exists a projection R ∈ P1(C

2) such that

‖P − R‖ = ‖Q − R‖ = sin π
4 .

Proof. Again, one could use the Bloch representation, however, let us give here a purely
linear algebraic proof. We may assume without loss of generality that P and Q are of
the form (18) and (19). Then for any z ∈ C, |z| = 1 the rank-one projection

R = 1√
2

[
1
z

]
·
(

1√
2

[
1
z

])∗
= 1

2

[
1 z
z 1

]

satisfies ‖P − R‖ = sin π
4 . In order to complete the proof we only have to find a z with

|z| = 1 such that trRQ = 1
2 , which is an easy calculation. Namely, we find that z = ieiμ

is a suitable choice. ��
Now, we are in the position to prove our second main result in the low-dimensional

case.

Proof of Theorem 1.3 in two dimensions. The proof is divided into the following three
steps:

1 we show some basic properties of φ, in particular, that it preserves commutativity in
both directions,

2 we show that φ maps pairs of rank-one projections with distance sin π
4 into pairs of

rank-one projections with the same distance,
3 we finish the proof by examining how φ acts on rank-one projections and rank-one

effects.

STEP 1: First of all, the properties of φ imply

φ(A)∼ = φ(A∼) (A ∈ E(C2)),

and
B∼ ⊆ A∼ ⇐⇒ φ(B)∼ ⊆ φ(A)∼ (A, B ∈ E(C2)).

Hence, it is straightforward from Lemma 2.1 that there exists a bijection g : [0, 1] →
[0, 1] such that

φ(t I ) = g(t)I (t ∈ [0, 1]). (20)

Also, by Lemma 3.1 we easily infer

φ(P1(C
2)) = P1(C

2),

thus, in particular, we get

φ(Pc) = φ(P∼) = φ(P)∼ = φ(P)c (P ∈ P1(C
2)).

By Theorem 1.1 we also obtain

φ(A⊥) = φ(A)⊥ (A ∈ E(C2) \ SC(C2)).

Now, we observe that φ preserves commutativity in both directions. Indeed we have the
following for every A, B ∈ E(C2) \ SC(C2):

AB =B A ⇐⇒ A∼ ∩ P1(C
2) = B∼ ∩ P1(C

2) = {P, P⊥} for some P ∈ P1(C
2)
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⇐⇒ φ(A)∼ ∩ P1(C
2) = φ(B)∼ ∩ P1(C

2)

={Q, Q⊥} for some Q ∈ P1(C
2)

⇐⇒ φ(A)φ(B) = φ(B)φ(A).

Note that we easily get the same conclusion using (20) if any of the two effects is a scalar
effect.

Next, notice that Lemma 3.2 implies

A or A⊥ ∈ F1(C
2) \ P1(C

2) ⇐⇒ φ(A) orφ(A)⊥ ∈ F1(C
2) \ P1(C

2).

Therefore, by interchanging the φ-images of t P and I − t P for some 0 < t < 1 and
P ∈ P1(C

2), we may assume without loss of generality that

φ
(
F1(C

2) \ P1(C
2)
)
= F1(C

2) \ P1(C
2).

Hence we obtain the following for all rank-one projections P:

φ
(
{t P, t P⊥ : 0 < t ≤ 1}

)
= φ
(

Pc ∩ F1(C
2)
)
= φ(P)c ∩ F1(C

2)

= {tφ(P), tφ(P)⊥ : 0 < t ≤ 1}.
Thus, again by interchanging the φ-images of P and P⊥ for some P ∈ P1(C

2), and
using Lemma 3.2, we may assume without loss of generality that for every P ∈ P1(C

2)

there exists a strictly increasing bijective map fP : (0, 1] → (0, 1] such that

φ(t P) = fP (t)φ(P) (0 < t ≤ 1, P ∈ P1(C
2)). (21)

STEP 2: We define the following set for any qubit effect of the form t P , 0 < t <

1, P ∈ P1(C
2):

�t P :=
{

1
1

1−t ‖P⊥ − Q‖2 + ‖P − Q‖2 Q : Q ∈ P1(C
2) \ {P, P⊥}

}

. (22)

(For a visualisation of �t P see Sect. 5.) Using Lemma 3.5 we see that

�t P = ((t P)∼ \ ∪{(s P)∼ : t < s < 1}) ∩ F1(C
2) (0 < t < 1, P ∈ P1(C

2)).

By the properties of φ we obtain

φ(�t P) = �φ(t P) = � fP (t)φ(P) (0 < t < 1, P ∈ P1(C
2)). (23)

Next, using the set introduced in (22), we prove the following property of φ:

‖P − Q‖ = sin π
4 ⇐⇒ ‖φ(P) − φ(Q)‖ = sin π

4 (P, Q ∈ P1(C
2)). (24)

By a straightforward calculation we get that

�t P ∩ �r P⊥ =
{

1− t

1− t · s(t, r)2
Q : Q ∈ P1(C

2), ‖P − Q‖ = s(t, r)

}

(t, r ∈ (0, 1), P ∈ P1(C
2))
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where

s(t, r) :=
√√√√

t
1−t

t
1−t +

r
1−r

.

Note that s(t, r) = sin π
4 holds if and only if t = r . By Lemma 3.4, this is further

equivalent to the following:

∀ A1 ∈ �t P ∩ �r P⊥ , ∃ A2 ∈ �t P ∩ �r P⊥ , A1 �= A2 : (A1)
∼ ∩ P1(C

2) = (A2)
∼ ∩ P1(C

2).

Notice that by (23) this is equivalent to the following:

∀ B1 ∈ � fP (t)φ(P) ∩ � fP⊥ (r)φ(P)⊥ , ∃ B2 ∈ � fP (t)φ(P) ∩ � fP⊥ (r)φ(P)⊥ , B1 �= B2 :
(B1)

∼ ∩ P1(C
2) = (B2)

∼ ∩ P1(C
2),

which is further equivalent to fP (t) = fP⊥(r).
Hence we can conclude a few important properties of φ. First, we have

fP (t) = fP⊥(t) (0 < t ≤ 1, P ∈ P1(C
2)).

Second, since for every 0 < t < 1 and P ∈ P1(C
2) we have

{
fQ

(
1−t
1−t/2

)
φ(Q) : Q ∈ P1(C

2), ‖P − Q‖ = sin π
4

}
= φ
(
�t P ∩ �t P⊥

)

= � fP (t)φ(P) ∩ � fP (t)φ(P)⊥ =
{

1− fP (t)
1− fP (t)/2 R : R ∈ P1(C

2), ‖φ(P) − R‖ = sin π
4

}
,

therefore using (21) gives (24).
Furthermore, we also obtain

fQ

(
1−t
1−t/2

)
= 1− fP (t)

1− fP (t)/2

(
0 < t < 1, P, Q ∈ P1(C

2), ‖P − Q‖ = sin π
4

)
. (25)

By Lemma 3.6, for all Q1, Q2 ∈ P1(C
2) there exists a rank-one projection P such that

‖Q1 − P‖ = ‖Q2 − P‖ = sin π
4 .

Therefore, applying (25) and noticing that t �→ 1−t
1−t/2 is a strictly decreasing bijection

of (0, 1) gives that

fQ1(t) = fQ2(t) (t ∈ (0, 1), Q1, Q2 ∈ P1(C
2)).

Thus we conclude that there exists a strictly increasing bijection f : (0, 1] → (0, 1]
such that

φ(t P) = f (t)φ(P) (0 < t ≤ 1, P ∈ P1(C
2)). (26)

We also observe that (25) implies

f
(

1−t
1−t/2

)
= 1− f (t)

1− f (t)/2 , (27)

therefore we notice that
f
(
2−√

2
)
= 2−√

2, (28)
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which is a consequence of the fact that the unique solution of the equation t = 1−t
1−t/2 ,

0 < t < 1, is t = 2−√
2.

STEP 3: Next, applying [12, Theorem 2.3] gives that there exists a unitary or antiu-
nitary operator U : C

2 → C
2 such that we have

U∗φ(P)U ∈ {P, P⊥} (P ∈ P1(C
2)).

Since either both U∗φ(·)U and φ(·) satisfy our assumptions simultaneously, or none of
them does, therefore without loss of generality we may assume that we have

φ(P) ∈ {P, P⊥} (P ∈ P1(C
2)).

We now claim that

either φ(P) = P (P ∈ P1(C
2)), or φ(P) = P⊥ (P ∈ P1(C

2)). (29)

Let us assume otherwise, then there exist two rank-one projections P and Q such
that ‖P − Q‖ < sin π

4 , φ(P) = P and φ(Q) = Q⊥. Note that ‖P − Q⊥‖ =√
1− ‖P − Q‖2 > sin π

4 > ‖P − Q‖. By (23) and (28) we have

{ √
2−1

1−(2−√2)‖P−R‖2 R : R ∈ P1(C
2) \ {P, P⊥}

}
= �

(2−√2)P = φ
(
�
(2−√2)P

)

=
{

f
( √

2−1
1−(2−√2)‖P−R‖2

)
φ(R) : R ∈ P1(C

2) \ {P, P⊥}
}

. (30)

Therefore putting first R = Q and then R = Q⊥ gives

φ
( √

2−1
1−(2−√2)‖P−Q‖2 Q

)
= f
( √

2−1
1−(2−√2)‖P−Q‖2

)
φ(Q)

= f
( √

2−1
1−(2−√2)‖P−Q‖2

)
Q⊥ =

√
2−1

1−(2−√2)‖P−Q⊥‖2 Q⊥

and

φ
( √

2−1
1−(2−√2)‖P−Q⊥‖2 Q⊥) = f

( √
2−1

1−(2−√2)‖P−Q⊥‖2
)

φ(Q⊥)

= f
( √

2−1
1−(2−√2)‖P−Q⊥‖2

)
Q =

√
2−1

1−(2−√2)‖P−Q‖2 Q.

But this implies that f interchanges two different numbers which contradicts to its strict
increasingness—proving our claim (29).

Note that for every 0 ≤ ϑ ≤ π
2 and 0 ≤ μ < 2π we have

(P(cosϑ,eiμ sin ϑ))
⊥ =
[

sin2 ϑ −e−iμ cosϑ sin ϑ

−eiμ cosϑ sin ϑ cos2 ϑ

]

=
[
0 1
−1 0

]
(P(cosϑ,eiμ sin ϑ))

t
[
0 1
−1 0

]∗

where ·t stands for the transposition, and we used the notation of the Busch–Gudder
theorem. It is well-known, and can be verified by an easy computation, that we have
At = K AK ∗ for every qubit effect A, where K is the coordinate-wise conjugation
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antiunitary operator: K (z1, z2) = (z1, z2) (z1, z2 ∈ C). Therefore from now on we may
assume without loss of generality that we have

φ(P) = P (P ∈ P1(C
2)), (31)

i.e. φ fixes all rank-one projections.
Finally, observe that (30) and (31) implies

f
( √

2−1
1−(2−√2)τ

)
=

√
2−1

1−(2−√2)τ
(0 < τ < 1),

thus we obtain φ(t P) = t P for all P ∈ P1(C
2) and

√
2 − 1 < t < 1. But this further

implies
{

1−t
1−t‖P−Q‖2 Q : Q ∈ P1(C

2) \ {P, P⊥}
}
= �t P = φ (�t P )

=
{

f
(

1−t
1−t‖P−Q‖2

)
Q : Q ∈ P1(C

2) \ {P, P⊥}
}

for all
√
2− 1 < t < 1, from which we conclude

φ(t P) = t P (0 < t < 1), (32)

i.e. φ fixes all rank-one effects. From here we only need to apply Corollary 2.11 and
transform back to our original φ to complete the proof. ��

4. Proof of Theorem 1.3 in the General Case

Here we prove the general case of our main theorem, utilising the above proved low-
dimensional case. We start with two lemmas.

Lemma 4.1. Let P ∈ P(H) \ SC(H) and A ∈ E(H) \ {P, P⊥}. Then there exists a
rank-one effect R ∈ F1(H) such that R ∼ A but R �∼ P.

Proof. Assume that A ∈ E(H) such that A∼ ∩ F1(H) ⊆ P∼ = Pc holds. We have
to show that then either A = P , or A = P⊥. Clearly, A is not a scalar effect. By
Corollary 2.7 we obtain that

�(A, Q) + �(A⊥, Q) ≤ �(P, Q) + �(P⊥, Q) (Q ∈ P1(H)).

Notice that the set

supp
(
�(P, ·) + �(P⊥, ·)

)
:=
{

Q ∈ P1(H) : �(P, Q) + �(P⊥, Q) > 0
}

has two connected components (with respect to the operator norm topology), namely

{Q ∈ P1(H) : Im Q ⊂ Im P} and {Q ∈ P1(H) : Im Q ⊂ KerP} . (33)

However, by the Busch–Gudder theorem we obtain that

{Q ∈ P1(H) : Im Q ⊂ Im A ∪ Im (I − A)}
⊆
{

Q ∈ P1(H) : Im Q ⊂ Im A1/2 ∪ Im (I − A)1/2
}
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⊆ supp
(
�(A, ·) + �(A⊥, ·)

)
⊆ supp

(
�(P, ·) + �(P⊥, ·)

)
.

Since supp
(
�(P, ·) + �(P⊥, ·)) is a closed set, we obtain

{
Q ∈ P1(H) : Im Q ⊂ (Im A)− ∪ (Im (I − A))−

}

=
{

Q ∈ P1(H) : Im Q ⊂ (KerA)⊥ ∪ (Ker(I − A))⊥
}

⊆ supp
(
�(P, ·) + �(P⊥, ·)

)
. (34)

Notice that the left-hand side of (34) is connected if and only if A is not a projec-
tion, in which case it must be a subset of one of the components of the right-hand
side. However, this is impossible because the left-hand side contains a maximal set
of pairwise orthogonal rank-one projections. Therefore A ∈ P(H), and in particular
supp
(
�(A, ·) + �(A⊥, ·)) has two connected components. From here using (33) for

both A and P we easily complete the proof. ��
We introduce a new relation on E(H) \SC(H). For A, B ∈ E(H) \SC(H) we write

A ≺ B if and only if for every C ∈ A∼ \ SC(H) there exists a D ∈ B∼ \ SC(H) such
that C∼ ⊆ D∼. Clearly, for every non-scalar effect B we have B ≺ B and B⊥ ≺ B. In
particular ≺ is a reflexive relation, but it is not antisymmetric. It is also straightforward
from the definition that ≺ is a transitive relation, i.e. A ≺ B and B ≺ C imply A ≺ C .

We proceed with characterising non-trivial projections in terms of the relation of
coexistence.

Lemma 4.2. Assume that A ∈ E(H) \ SC(H). Then the following two statements are
equivalent:

(i) A ∈ P(H),
(ii) #{B ∈ E(H) \ SC(H) : B ≺ A} = 2.

Proof. (i)�⇒(ii): Suppose that B ∈ E(H) \ SC(H), B �= A, B �= A⊥ and B ≺ A. We
need to show that this assumption leads to a contradiction. By Lemma 4.1 there exists
a rank one effect t Q, with some Q ∈ P1(H) and t ∈ (0, 1], such that t Q ∼ B but
t Q �∼ A. From B ≺ A we know that there exists a non-scalar effect D such that

(t Q)∼ ⊆ D∼ and D ∼ A.

By Lemma 2.12 (a) we have

D ∈ (t Q)′′ ∩ E(H) = Q′′ ∩ E(H) =
{

s Q + r Q⊥ ∈ E(H) : s, r ∈ [0, 1]
}

,

where the latter equation is easy to see (even in non-separable Hilbert spaces). Since we
also have D ∈ Ac, we obtain Q ∈ Ac, hence the contradiction t Q ∈ Ac = A∼.

(ii)�⇒(i): Here we use contraposition, so let us assume that A ∈ (E(H) \ P(H)) \
SC(H). We shall construct a non-trivial projection P (which is obviously different from
both A and A⊥) such that P ≺ A. First, notice that there exists an 0 < ε < 1

2 such
that HA ((ε, 1− ε]) /∈ {{0}, H}. Indeed, otherwise an elementary examination of the
spectrum gives that σ(A) ⊆ {ε0, 1 − ε0} holds with some 0 < ε0 < 1

2 . As A is non-
scalar, we actually get σ(A) = {ε0, 1 − ε0}, which implies that HA ((ε0, 1− ε0]) is a
non-trivial subspace.
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Let us now consider the orthogonal decomposition H = H1 ⊕ H2 ⊕ H3 where

H1 = HA ([0, ε]) , H2 = HA ((ε, 1− ε]) and H3 = HA ((1− ε, 1]) .

With respect to this orthogonal decomposition we have

A =
⎡

⎣
A1 0 0
0 A2 0
0 0 A3

⎤

⎦ ∈ E(H1 ⊕ H2 ⊕ H3).

Since coexistence is invariant under taking the ortho-complements, we may assume
without loss of generality that H3 �= {0}. Let us set

P =
⎡

⎣
I 0 0
0 I 0
0 0 0

⎤

⎦ /∈ SC(H1 ⊕ H2 ⊕ H3).

Our goal is to show that P ≺ A. Let C be an arbitrary non-scalar effect coexistent with
P . Then, since C and P commute, the matrix form of C is

C =
⎡

⎣
C11 C12 0
C∗
12 C22 0
0 0 C33

⎤

⎦ ∈ E(H1 ⊕ H2 ⊕ H3).

Consider the effect D := ε · C and notice that

ε ·
⎡

⎣
C11 C12 0
C∗
12 C22 0
0 0 0

⎤

⎦ ≤ I − A and ε ·
⎡

⎣
0 0 0
0 0 0
0 0 C33

⎤

⎦ ≤ A.

Clearly, by Lemmas 2.3 and 2.12 we have D ∼ A and C∼ ⊆ D∼, which completes the
proof. ��

Next, we characterise commutativity preservers onP(H). We note that the following
theorem has been proved before implicitly in [23] for separable spaces, and was stated
explicitly in [24, Theorem 2.8]. In order to prove the theorem for general spaces, one
only has to use the ideas of [23], however, we decided to include the proof for the sake
of completeness and clarity.

Theorem 4.3. Let H be a Hilbert space of dimension at least three and φ : P(H) →
P(H) be a bijective mapping that preserves commutativity in both directions, i.e.

P Q = Q P ⇐⇒ φ(P)φ(Q) = φ(Q)φ(P) (P, Q ∈ P(H)). (35)

Then there exists a unitary or antiunitary operator U : H → H such that

φ(P) ∈ {U PU∗, U P⊥U∗} (P ∈ P(H)).

Proof. For an arbitrary setM ⊆ P(H) let us use the following notations:Mc := Mc∩
P(H) andMcc := (Mc)c. By the properties ofφwe immediately getφ(Mc) = φ(M)c

and φ(Mcc) = φ(M)cc for all subset M.
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Next, let P and Q be two arbitrary commuting projections. Then (for instance by the
Halmos’s two projections theorem) we have

P =
⎡

⎢
⎣

I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎦ and Q =

⎡

⎢
⎣

I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

⎤

⎥
⎦ ∈ B(H1 ⊕ H2 ⊕ H3 ⊕ H4)

where H1 = Im P∩Im Q, H2 = Im P∩KerQ, H3 = KerP∩Im Q, H4 = KerP∩KerQ
and H = H1 ⊕ H2 ⊕ H3 ⊕ H4. Note that some of these subspaces might be trivial. We
observe that

{P, Q}cc = ({P, Q}c)c =

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

R1 0 0 0
0 R2 0 0
0 0 R3 0
0 0 0 R4

⎤

⎥
⎦ : R j ∈ P(Hj ), j = 1, 2, 3, 4

⎫
⎪⎬

⎪⎭

c

=

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

λ1 I 0 0 0
0 λ2 I 0 0
0 0 λ3 I 0
0 0 0 λ4 I

⎤

⎥
⎦ : λ j ∈ {0, 1}, j = 1, 2, 3, 4

⎫
⎪⎬

⎪⎭
.

Hence we conclude that #{P, Q}cc = 2#{ j : Hj �={0}}. In particular, #{P, Q}cc = 2 if
and only if P, Q ∈ {0, I }, and #{P, Q}cc = 4 if and only if either P /∈ {0, I } and
Q ∈ {I, 0, P, P⊥}, or Q /∈ {0, I } and P ∈ {I, 0, Q, Q⊥}.

Now, we easily conclude the following characterisation of rank-one and co-rank-one
projections:

P or P⊥ ∈ P1(H) ⇐⇒ #{P, Q}cc ∈ {4, 8} holds for all Q ∈ Pc.

This implies that

φ({P : P or P⊥ ∈ P1(H)}) = {P : P or P⊥ ∈ P1(H)}.
Note that we also have φ(P⊥) = φ(P)⊥ for every P ∈ P(H), as Pc = Qc holds
exactly when P = Q or P + Q = I . Since changing the images of some pairs of ortho-
complemented projections to their orto-complementations does not change the property
(35), we may assume without loss of generality that φ(P1(H)) = P1(H). It is easy to
see that two rank-one projections commute if and only if either they coincide, or they
are orthogonal to each other. Thus, as dim H ≥ 3, Uhlhorn’s theorem [32] gives that
there exist a unitary or antiunitary operator U : H → H such that

φ(P) = U PU∗ (P ∈ P1(H)).

Finally, note that for every projection Q ∈ P(H) we have

Qc ∩ P1(H) = {P ∈ P1(H) : Im P ⊂ Im Q ∪ KerQ},
from which we easily complete the proof. ��

Before we prove Theorem 1.3 in the general case, we need one more technical lemma
for non-separableHilbert spaces.Wewill use the notation E f s(H) for the set of all effects
whose spectrum has finitely many elements.
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Lemma 4.4. For all A ∈ E f s(H) we have

Acc = A′′ ∩ E(H) = {p(A) ∈ E(H) : p is a polynomial}.
Proof. We only have to observe the following for all A ∈ E(H) with #σ(A) = n ∈ N,
where E1, . . . En are the spectral projections and Hj = Im E j ( j = 1, 2, . . . n):

Acc =
⎛

⎝
n⋂

j=1

Ec
j

⎞

⎠

c

=
⎧
⎨

⎩

n⊕

j=1

B j : B j ∈ E
(
Hj
)
for all j

⎫
⎬

⎭

c

=
⎧
⎨

⎩

n∑

j=1

μ j E j : μ j ∈ [0, 1] for all j

⎫
⎬

⎭

=
⎧
⎨

⎩

n⊕

j=1

Tj : Tj ∈ B(Hj ) for all j

⎫
⎬

⎭

′
∩ E(H) =

⎛

⎝
n⋂

j=1

E ′
j

⎞

⎠

′
∩ E(H) = A′′ ∩ E(H).

��
Now, we are in the position to prove our second main theorem in the general case.

Proof of Theorem 1.3 for spaces of dimension at least three. The proof will be divided
into the following steps:

1 we show that φ maps E f s(H) onto itself,
2 we prove that φ has the form (2) on E f s(H) \ SC(H),
3 we show that φ has the form (2) on E(H) \ SC(H).

STEP 1: First, similarly as in the previous section, we easily get the existence of a
bijective function g : [0, 1] → [0, 1] such that

φ(t I ) = g(t)I (t ∈ [0, 1]).
Of course, the properties of φ imply φ(A)∼ = φ(A∼) for all A ∈ E(H), and also

B∼ ⊆ A∼ ⇐⇒ φ(B)∼ ⊆ φ(A)∼ (A, B ∈ E(H)). (36)

From the latter it follows that

B ≺ A ⇐⇒ φ(B) ≺ φ(A) (A, B ∈ E(H) \ SC(H)). (37)

Hence by Lemma 4.2 we obtain

φ(P(H) \ {0, I }) = P(H) \ {0, I },
and therefore Lemma 2.1 (b) implies that the restrictionφ|P(H)\{0,I } preserves commuta-
tivity in both directions. Applying Theorem 4.3 then gives that up to unitary–antiunitary
equivalence and element-wise ortho-complementation, we have

φ(P) = P (P ∈ P(H) \ {0, I }). (38)

From now on we may assume without loss of generality that this is the case.
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Next, by the spectral theorem [7, Theorem IX.2.2] we have

Ac =
⋂

�∈B[0,1]

E A(�)c =
⋂

�∈B[0,1]

E A(�)∼ (A ∈ E(H)).

Therefore we obtain

φ(Ac) =
⋂

�∈B[0,1]

φ(E A(�))∼ =
⋂

�∈B[0,1]

E A(�)∼ = Ac (A ∈ E(H)),

and thus also

φ(Acc) = φ

(
⋂

B∈Ac

Bc

)

=
⋂

B∈Ac

φ
(
Bc) =

⋂

B∈Ac

Bc = Acc (A ∈ E(H)).

In particular, we have
φ(A) ∈ Acc (A ∈ E(H)).

Hence for all A ∈ E f s(H) there exists a polynomial pA such that pA(σ (A)) ⊂ [0, 1]
and

φ(A) = pA(A) (A ∈ E f s(H)).

As a similar statement holds for φ−1, we immediately get φ(E f s(H)) = E f s(H). Also,
notice that #σ(φ(A)) = #σ(pA(A)) ≤ #σ(A) and #σ(φ−1(A)) ≤ #σ(A) hold for all
A ∈ E f s(H). Whence we obtain

#σ(φ(A)) = #σ(A) (A ∈ E f s(H)). (39)

In particular, the restriction pA|σ(A) is injective.
STEP 2: Now, let M be an arbitrary two-dimensional subspace of H and let PM ∈

P(H) be the orthogonal projection onto M . Consider two arbitrary effects A, B ∈
(PM )∼ ∩ E f s(H) which therefore have the following matrix representations:

A =
[

AM 0
0 AM⊥

]
and B =

[
BM 0
0 BM⊥

]
∈ E f s(M ⊕ M⊥).

Obviously,

φ(A) = pA(A) =
[

pA(AM ) 0
0 pA(AM⊥ )

]
and φ(B) = pB(B) =

[
pB(BM ) 0

0 pB(BM⊥ )

]
.

Note that by (39), the polynomial pA acts injectively on σ(A), therefore

AM ∈ SC(M) ⇐⇒ pA(AM ) ∈ SC(M),

andof course, similarly for B.Weobserve that byLemma2.2 the following two equations
hold:

A∼⋂
[

I 0
0 0

]∼⋂
⎛

⎝
⋂

P∈P1(M⊥)

[
0 0
0 P

]∼
⎞

⎠ =
{[

D 0
0 λI

]
: D ∼ AM , λ ∈ [0, 1]

}
(40)
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and

φ(A)∼
⋂[I 0

0 0

]∼⋂
⎛

⎝
⋂

P∈P1(M⊥)

[
0 0
0 P

]∼
⎞

⎠ =
{[

D 0
0 λI

]
: D ∼ pA(AM ), λ ∈ [0, 1]

}
. (41)

It is important to observe that by (38) the set in (41) is the φ-image of (40). Thus we
obtain the following equivalence if AM /∈ SC(M):

BM ∈ {AM , A⊥
M } ⇐⇒ A∼

M = B∼
M

⇐⇒
{[

D 0
0 λI

]
: D ∼ AM , λ ∈ [0, 1]

}

=
{[

E 0
0 μI

]
: E ∼ BM , μ ∈ [0, 1]

}

⇐⇒
{[

D 0
0 λI

]
: D ∼ pA(AM ), λ ∈ [0, 1]

}

=
{[

E 0
0 μI

]
: E ∼ pB(BM ), μ ∈ [0, 1]

}

⇐⇒ (pA(AM ))∼ = (pB(BM ))∼

⇐⇒ pB(BM ) ∈ {pA(AM ), I − pA(AM )} . (42)

Now, we are in the position to use the previously proved two-dimensional version.
Let

E(M) :=
{{

D, D⊥} : D ∈ E(M) \ SC(M)
}
∪ {SC(M)},

and let us say that two elements of E(M) are coexistent, in notation ≈, if either one of
them is SC(M), or the two elements are {D, D⊥} and {E, E⊥} with D ∼ E . Clearly,
the bijective restriction

φ|(PM )∼∩E f s (H) : (PM )∼ ∩ E f s(H) → (PM )∼ ∩ E f s(H)

induces a well-defined bijection on E(M) by

SC(M) �→ SC(M), {AM , A⊥
M } �→ {pA(AM ), pA(AM )⊥} (AM /∈ SC(M)).

Notice that this map also preserves the relation ≈ in both directions. Indeed, for all
A, B ∈ (PM )∼ ∩ E f s(H), AM , BM /∈ SC(H) we have

{AM , A⊥
M } ≈ {BM , B⊥

M } ⇐⇒ Â :=
[

AM 0
0 0

]
∼ B̂ :=

[
BM 0
0 0

]

⇐⇒
[

pÂ(AM ) 0
0 pÂ(0)I

]
∼
[

pB̂(BM ) 0
0 pB̂(0)I

]

⇐⇒ {pÂ(AM ), pÂ(AM )⊥} ≈ {pB̂(BM ), pB̂(BM )⊥}
⇐⇒ {pA(AM ), pA(AM )⊥} ≈ {pB(BM ), pB(BM )⊥}.

Therefore, using the two-dimensional version of Theorem 1.3, we obtain a unitary or
antiunitary operator UM : M → M such that

pA(AM ) ∈ {UM (AM )U∗
M , UM (AM )⊥U∗

M } (A ∈ (PM )∼∩E f s(H), AM /∈ SC(M))
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and
pA(AM ) ∈ SC(M) (A ∈ (PM )∼ ∩ E f s(H), AM ∈ SC(M)).

Observe that this implies the following: for any pair of orthogonal unit vectors x, y ∈
M wemust have eitherUM (C·x) = C·x andUM (C·y) = C·y, orUM (C·x) = C·y and
UM (C · y) = C · x . As UM is continuous, we have either the first case for all orthogonal
pairs C · x, C · y, or the second for every such pair. But a similar statement holds for
all two-dimensional subspaces, therefore it is easy to show that the second possibility
cannot occur. Consequently, we haveUM (C · x) = C · x for all unit vectors x ∈ M , from
which it follows that UM is a scalar multiple of the identity operator. Thus we obtain the
following for every two-dimensional subspace M :

pA(AM ) ∈ {AM , A⊥
M } (A ∈ (PM )∼ ∩ E f s(H), AM /∈ SC(M)).

From here it is rather straightforward to obtain

φ(A) = pA(A) ∈ {A, A⊥} (A ∈ E f s(H) \ SC(M)). (43)

STEP 3: Observe that (43) holds for every A ∈ F(H), therefore an application of
Theorem 1.1 and Corollary 2.5 completes the proof in the separable case. As for the
general case, let us consider an arbitrary effect A ∈ E(H) \ E f s(H) and an orthogonal
decomposition H = ⊕i∈I Hi such that each Hi is a separable invariant subspace of A.
By (38) and Lemma 2.1 (b), each Hi is an invariant subspace also for φ(A), in particular,
we have

A = ⊕i∈I Ai , and φ(A) = ⊕i∈IAi ∈ E(⊕i∈I Hi ).

Without loss of generality we may assume from now on that there exists an i0 ∈ I so
that Ai0 is not a scalar effect.

Now, let i ∈ I, F ∈ F(H) and Im F ⊆ Hi be arbitrary. Then by (43) we have

Ai ∼ Pi F |Hi ⇐⇒ A ∼ F ⇐⇒ φ(A) ∼ F ⇐⇒ Ai ∼ Pi F |Hi .

In particular, A∼
i ∩F(Hi ) = A∼

i ∩F(Hi ), therefore by Theorem 1.1 we get that for all
i we have either Ai ,Ai ∈ SC(H), or Ai = Ai , orAi = A⊥

i . By considering A⊥ instead
of A if necessary, wemay assume that we have Ai0 = Ai0 . Finally, for any i1 ∈ I\{i0} let
us consider the orthogonal decomposition H = ⊕i∈I\{i0,i1}Hi ⊕ (Hi0 ⊕ Hi1). Similarly
as above, we then get Ai0 ⊕ Ai1 = Ai0 ⊕Ai1 , and the proof is complete. ��

5. A Remark on the Qubit Case

Here we visualise the set A∼ ∩ F1(C
2) for a general rank-one qubit effect A. First, let

us introduce Bloch’s representation. Consider the following vector space isomorphism
between the space of all 2× 2 Hermitian matrices Bsa(C2) and R

4, see also [4]:

ρ : Bsa(C2) → R
4, ρ(A) = ρ(x0σ0 + x1σ1 + x2σ2 + x3σ3) = (x0, x1, x2, x3),

where

σ0 =
[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]

are the Pauli matrices. Clearly, we have ρ(0) = (0, 0, 0, 0), ρ(I ) = (1, 0, 0, 0). The
Bloch representation is usually defined as the restriction ρ|P1(C2) which maps P1(C

2)

onto a sphere of the three-dimensional affine subspace {(1/2, x1, x2, x3) : x j ∈ R, j =
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1, 2, 3} with centre at (1/2, 0, 0, 0) and radius 1/2. Indeed, as the general form of a
rank-one projection in C

2 is

P(cosϑ,eiμ sin ϑ) =
[

cosϑ

eiμ sin ϑ

] [
cosϑ

eiμ sin ϑ

]∗
=
[

cos2 ϑ e−iμ cosϑ sin ϑ

eiμ cosϑ sin ϑ sin2 ϑ

]

where 0 ≤ ϑ ≤ π
2 and 0 ≤ μ < 2π , a not too hard calculation gives that

ρ(P(cosϑ,eiμ sin ϑ)) = 1
2 · (1, cosμ sin 2ϑ, sinμ sin 2ϑ, cos 2ϑ). (44)

Recall the remarkable angle doubling property of the Bloch representation, namely, we
have ‖P − Q‖ = sin θ if and only if the angle between the vectors ρ(P) − 1

2e0 and
ρ(Q)− 1

2e0 is exactly 2θ .
Next, we call a positive (semi-definite) element of Bsa(C2) a density matrix if its

trace is 1, or in other words, if it is a convex combination of some rank-one projec-
tions. Therefore ρ maps the set of all 2× 2 density matrices onto the closed ball of the
three-dimensional affine subspace {(1/2, x1, x2, x3) : x j ∈ R, j = 1, 2, 3} with centre
at (1/2, 0, 0, 0) and radius 1/2. Hence, we see that the cone of all positive (semi-definite)
2 × 2 matrices is mapped onto the infinite cone spanned by (0, 0, 0, 0) and the afore-
mentioned ball. Thus ρ maps E(C2) onto the intersection of this cone and its reflection
through the point ρ( 12 I ) = ( 12 , 0, 0, 0).

We can re-write (44) as follows:

ρ(P(cosϑ,eiμ sin ϑ)) = 1
2 · (e0 + sin 2ϑ · eμ + cos 2ϑ · e3), (45)

where

e0 := (1, 0, 0, 0), eμ := (0, cosμ, sinμ, 0), e3 := (0, 0, 0, 1)

is an orthonormal system in R
4. Let Sμ be the three-dimensional subspace spanned by

e0, eμ, e3. Then the set ρ(E(C2)) ∩ Sμ can be visualised as a double cone of R
3, by

regarding e0, eμ, e3 as the standard basis of R
3, see Figure 2. Note that ρ(P1(C

2))∩ Sμ

is the circle where the boundaries of the two cones meet.
We continue with visualising the set (t P(1,0))

∼ for an arbitrary 0 < t < 1. Note that
thenvisualising (t P)∼ for a general rank-oneprojection P is very similar,we simplyhave
to apply a unitary similarity (whichbywell-knownproperties of theBloch representation,
acts as a rotation on the sphere ρ(P1(C

2))). Equation (9) gives the following:

�
(
t P(1,0), P(cosϑ,eiμ sin ϑ)

)
+ �
(
I − t P(1,0), P(cosϑ,eiμ sin ϑ)

)

= 1
1
t cos

2 ϑ +
( 1
0

)
sin2 ϑ

+
1

1
1−t cos

2 ϑ + sin2 ϑ
=
{ 1

1
1−t cos2 ϑ+sin2 ϑ

if ϑ > 0

1 if ϑ = 0
.

(46)

Now, let us consider the vector

u = (2− t) · e0 + t · e3,

which is orthogonal to

ρ
(
(1− t)P(1,0) − P⊥

(1,0)

)
= − 1

2 [t · e0 + (t − 2) · e3] .
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Fig. 2. Illustration of ρ(E(C2)) ∩ Sμ. The circle is ρ(P1(C
2)) ∩ Sμ

Fig. 3. Illustration of ρ
(
(t P(1,0))

∼) ∩ ρ
(
F1(C

2)
)
∩ Sμ (thick ellipse, thick line segment and the shaded

area). The dotted circle is ρ(P1(C
2)) ∩ Sμ

From here a bit tedious computation gives

〈

u,
1

1
1−t cos

2 ϑ + sin2 ϑ
· ρ (P(cosϑ,eiμ sin ϑ)

)− ρ
(

P⊥
(1,0)

)〉

= 0 (0 ≤ ϑ ≤ π
2 ).

Therefore by Corollary 2.7 and (46) we conclude that ρ
(
(t P(1,0))

∼ ∩ F1(C
2)
)
is the

union of the line segment {ρ (s P(1,0)
) : 0 < s ≤ 1} = { s

2e0 + s
2e3 : 0 < s ≤ 1} and of

the area on the boundary of ρ(E(C2)) which is either on, or below the affine hyperplane
whose normal vector is u and which contains ρ(P⊥

(1,0)), see Figure 3. We note that using
the notation of (22), the ellipse on the boundary is exactly the set

(
ρ(�t P(1,0) ) ∪

{
(1− t) · ρ(P(1,0)), ρ(P⊥

(1,0))
}) ∩ Sμ.

Therefore ρ(�t P(1,0) ) is a punctured ellipsoid.
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If one illustrates the set ρ ((A)∼)∩ρ
(
F1(C

2)
)∩Sμ with A, A⊥ /∈ SC(C2)∪F1(C

2)

in the way as above, then one gets a set on the boundary of the cone which is bounded
by a continuous closed curve containing the ρ-images of the spectral projections.

6. Final Remarks and Open Problems

First, we prove the analogue of Lemma 3.1 for finite dimensional spaces of dimension
at least three.

Lemma 6.1. Let H be a Hilbert space with 2 ≤ dim H < ∞ and A ∈ E(H). Then the
following are equivalent:

(i) 0, 1 ∈ σ(A),
(ii) there exists no effect B ∈ E(H) such that B∼

� A∼.

Proof. If dim H = 2, then (i) ⇐⇒ (ii) was proved in Lemma 3.1, so from now on we
will assume 2 < dim H < ∞. Also, as the case when A ∈ SC(H) is trivial, we assume
otherwise throughout the proof.

(i)�⇒(ii): Suppose that 0, 1 ∈ σ(A) and consider an arbitrary effect B with B∼ ⊆
A∼. By Lemma 2.12, A and B commute. If 0 = λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn = 1 are
the eigenvalues of A, then the matrices of A and B written in an orthonormal basis of
joint eigenvectors are the following:

A =

⎡

⎢
⎢⎢⎢
⎣

0 0 . . . 0 0
0 λ2 . . . 0 0
...

. . .
...

0 0 . . . λn−1 0
0 0 . . . 0 1

⎤

⎥
⎥⎥⎥
⎦

and B =

⎡

⎢
⎢⎢⎢
⎣

μ1 0 . . . 0 0
0 μ2 . . . 0 0
...

. . .
...

0 0 . . . μn−1 0
0 0 . . . 0 μn

⎤

⎥
⎥⎥⎥
⎦

with some μ1, . . . μn ∈ [0, 1]. Notice that by Corollary 2.8, for all 1 ≤ i < j ≤ n we
have [

μi 0
0 μ j

]∼
⊆
[
λi 0
0 λ j

]∼
. (47)

In particular, choosing i = 1, j = n implies either μ1 = 0 and μn = 1, or μ1 = 1 and
μn = 0. Assume the first case. If we set i = 1, then Lemma 3.2 and (47) imply μ j ≥ λ j
for all j = 2, . . . , n − 1. But on the other hand, setting j = n implies μi ≤ λi for all
i = 2, . . . , n − 1. Therefore we conclude B = A. Similarly, assuming the second case
implies B = A⊥.

(ii)�⇒(i): Assume (i) does not hold, then there exists a positive number ε such that
σ(A) ⊆ [0, 1 − ε] or σ(A⊥) ⊆ [0, 1 − ε]. Suppose the first possibility holds, then
1

1−ε
A /∈ {A, A⊥} and

(
1

1−ε
A
)∼ ⊆ A∼. The second case is very similar. ��

We only proved the above lemma and Corollary 2.11 in the finite dimensional case.
The following two questions would be interesting to examine:

Question 6.2. Does the statement of Corollary 2.11 remain true for general infinite
dimensional Hilbert spaces?

Question 6.3. Does the statement of Lemma 6.1 hold if dim H ≥ ℵ0?



Coexistency on Hilbert Space Effect Algebras and a Characterisation

Finally, our first main theorem characterises completely when A∼ = B∼ happens for
two effects A and B. However, we gave only some partial results about when A∼ ⊆ B∼
occurs, e.g. Lemma 2.12.

Question 6.4. How can we characterise the relation A∼ ⊆ B∼ for effects A, B?

Webelieve that a complete answer to this latter question would represent a substantial
step towards the better understanding of coexistence.
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