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ABSTRACT: A nickel(II)/lead(II) coordination polymer [(NCS)Pb(H2O)-
LNi(NCS)]n {H2L = N,N′-bis(3-methoxysalicylidene)propane-1,3-diamine} has
been synthesized and characterized. The band gap (3.18 eV) calculated from
Tauc’s plot suggests the semiconducting nature of the complex. The material has
a photosensitivity of 5.76, indicating its applicability in the fabrication of
photosensitive devices. The complex has been successfully applied in a
technologically challenging thin-film photosensitive Schottky device.

■ INTRODUCTION

Coordination polymers (CPs) have attracted the interest of
coordination chemists for the last few years for their
application in gas absorption, magnetic material, catalysis,
luminescence, drug delivery, sensor technology, etc.1,2

Although application of some organic materials in light-
emitting diodes3 and field effect transistors4 is known,
fabrication of an active electronic device using CPs is not
well explored till date. Some d10 metals have the ability to
increase the intensity and shift the wavelength of emission of
organic ligands by metal coordination, and therefore d10 metal-
based CPs were used in optoelectronic devices.5 There are
reports in the literature regarding the fascinating application of
some semiconducting CPs in photovoltaics6 and other
optoelectronic devices.7 N2O2O2′ donor compartmental Schiff
base ligands have been widely used for the preparation of
hetero-dinuclear complexes.8 These could then be linked using
suitable pseudohalides [NCS−, N3

−, NCO−, and N(CN)2
−] to

generate various CPs.9 Although any member of the first
transition series is a good choice to be placed in the inner
N2O2 compartment of such ligands, nickel(II) is preferred for
its ability and flexibility to bind both hard and soft donor
centers with equal ease and to adopt varieties of geometries
with different coordination numbers, oxidation states, and its
applicability extending from organometallic to biological
chemistry.10 On the other hand, the coordination chemistry
of lead(II) is also interesting for its potential to form hemi- as
well as holo-directed complexes with coordination numbers
ranging from 2 to 10.11 However, it must be remembered that
lead is hazardous to pollution and health12 and must be

handled with great care. Any semiconducting material showing
rectifying nature in a metal−semiconductor (MS) junction can
be applied in the Schottky device.13 The nonlinear rectifying
behavior of I−V characteristics of that material-based device
measured under dark and illumination conditions proves its
photosensitive Schottky diode character.14 However, to the
best of our knowledge, there is no report in the literature to use
any X-ray characterized hetero-bimetallic CP for the
fabrication of any optoelectronic devices till date. In this
work, a compartmental Schiff base ligand has been used to
synthesize a nickel(II) complex, which could then be used as a
metalloligand to prepare a hetero-bimetallic nickel(II)/lead(II)
building block, which in turn, is linked via thiocyanate to form
a coordination polymer (Scheme 1). The band gap (3.18 eV)
has been calculated from Tauc’s plot, and it suggests the
semiconducting nature of the complex. The rectifying nature in
I−V characteristics hints toward its Schottky diode character-
istics. The on−off ratio (70) of the semiconductor device
fabricated with CP is high. This is eventually the first report of
any hetero-bimetallic coordination polymer with photo-
sensitivity, which could be used in the fabrication of a
Schottky diode.

■ EXPERIMENTAL SECTION

Nickel(II) thiocyanate tetrahydrate has been prepared by us
following the literature method.15 Other reagents and solvents
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(AR grade) were used as procured from Sigma-Aldrich without
purification.
Syn the s i s . S yn th e s i s o f H 2 L [N ,N ′ - B i s ( 3 -

methoxysalicylidene)propane-1,3-diamine]. 3-Methoxysali-
cylaldehyde (304 mg, 2 mmol) and 1,3-diaminopropane
(0.13 mL, 1 mmol) were mixed in methanol (20 mL), and
the mixture was refluxed for ca. 1 h to prepare H2L via Schiff
base condensation. The ligand was not isolated and was used
directly for the synthesis of the complex in the next step.
Synthesis of [(NCS)Pb(H2O)LNi(NCS)]n. A methanol (10

mL) solution of lead(II) nitrate (332 mg, 1 mmol) was added
to the methanol solution (20 mL) of H2L, and the resulting
solution was stirred for 15 min. A methanol (10 mL) solution
of nickel(II) thiocyanate tetrahydrate (250 mg, 1 mmol) was
then added to it, and the stirring was continued for about 2 h.
X-ray quality crystalline complexes were obtained after 3−4
days on slow evaporation of the solution in open atmosphere.
Suitable single crystals were isolated from this product for X-
ray diffraction analysis.
Yield: 518 mg (70%). Anal. calcd for C21H22N4NiO5PbS2

(FW = 740.46): C, 34.06; H, 2.99; N, 7.57; found: C, 33.9; H,
2.8; N, 7.7%. FT-IR (KBr, cm−1): 1635 (CN); 2112, 2042
(CN). UV−vis [λmax (nm)] [εmax (L mol−1 cm−1)] (DMF):
271 (1.7 × 104); 352 (8.6 × 103); 584 (9.5); 814 (74.1).
Physical Measurements. C, H, and N analysis was

performed using a PerkinElmer 240C elemental analyzer. IR
spectrum in KBr (4500−500 cm−1) was recorded with a
PerkinElmer Spectrum Two spectrophotometer. Electronic
spectrum of the complex in N,N-dimethylformamide (DMF)
was recorded on a PerkinElmer Lambda 35 UV−visible
spectrophotometer. Steady-state photoluminescence spectrum
of the complex in DMF was obtained in Shimadzu RF-5301PC
spectrofluorometer at room temperature. Time-dependent
photoluminescence spectrum was recorded using a Hamamat-
su MCP photomultiplier (R3809) and was analyzed by using
IBHDAS6 software. X-ray diffraction of the powdered sample
was performed on a Bruker D8 instrument with Cu Kα
radiation (λ = 1.5406 Å).
X-ray Crystallography. A suitable single crystal of the

complex was picked and mounted on a glass fiber, and
diffraction intensities were measured with an Oxford
Diffraction X-Calibur diffractometer equipped with Mo Kα
radiation (λ = 0.71073 Å, 50 kV, 40 mA) at 150 K. Data
collection and reduction were performed with the Crysalis
software.16 The structure of the complex was solved by direct
methods using SHELXS-97 and refined by full-matrix least
squares on F2, using the SHELXL-2016 program.17 Non-
hydrogen atoms were refined anisotropically. Hydrogen atoms
attached with oxygen atoms were located by difference Fourier
maps. All other hydrogen atoms were placed in their
geometrically idealized positions and constrained to ride on

their parent atoms. Programs used included PLATON,18

DIAMOND,19 ORTEP,20 and MERCURY.21

Device Fabrication. Electrical characterization was
performed in the complex-based metal−semiconductor (MS)
junction devices. These devices were fabricated by depositing a
thin film of a well-dispersed solution of the synthesized
complex. To develop the thin films, indium tin oxide (ITO)-
coated glass substrates were cleaned by acetone, ethanol, and
distilled water with the help of an ultrasonicator. Thereafter,
the complex was separately mixed with N,N-dimethylforma-
mide (DMF) in the right proportion (20 mg mL−1) and
sonicated for several minutes until it produces a well-stabilized
dispersion. Then, on the top of the cleaned ITO-coated
substrates, stable dispersion of the just prepared complex was
spun first at 600 rpm for 4 min and thereafter at 1000 rpm for
6 min with the help of SCU 2700 spin coating unit. To
evaporate the solvent, as-deposited thin films were annealed
under vacuum at 80 °C for 30 min. For the characterization of
the developed thin film, thickness was measured by a surface
profiler as ∼1 μm. Pure Al (99.99%) was chosen as the metal
electrode and was deposited on to the active thin film to
prepare the metal−semiconductor (MS) interface through a
shadow mask by thermal evaporation technique with the help
of a vacuum-coating unit under a base pressure of 10−6 Torr.
The effective areas of the films were maintained as 7.065 ×
10−2 cm−2. For electrical characterization of the devices, the
current−voltage (I−V) characteristics were recorded under
dark and AM 1.5G radiation with the help of a Keithley 2635B
source meter by a two-probe technique. All preparation and
measurements were performed at room temperature and under
ambient conditions.

■ RESULTS AND DISCUSSION

Synthesis. H2L is a N2O2O2′ donor Schiff base ligand, and
it has been prepared by refluxing 1,3-diaminopropane and 3-
methoxysalicylaldehyde in methanol following the literature
method.22 The ligand (H2L) on reaction with lead(II) nitrate
followed by the addition of nickel(II) thiocyanate tetrahydrate
formed the complex. Formation of the complex has been
shown in Scheme 1.

Structure Description. [(NCS)Pb(H2O)LNi(NCS)]n. The
complex crystallizes in monoclinic Space group P21/n.
Selected crystallographic data have been summarized in
Table 1. Significant bond lengths and bond angles have been
gathered in Tables 2 and S1 (Supporting Information),
respectively.
The complex consists of a chain system with the repeating

hetero-dinuclear neutral units, [(NCS)Pb(H2O)LNi(NCS)]n,
joined through two μ1,3-thiocyanate bridge. In each bimetallic
unit, the nickel(II) and lead(II) centers, respectively, occupy

Scheme 1. Schematic Representation for the Synthetic Route to the Complex

ACS Omega Article

DOI: 10.1021/acsomega.8b02025
ACS Omega 2018, 3, 12788−12796

12789

http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b02025/suppl_file/ao8b02025_si_002.pdf
http://dx.doi.org/10.1021/acsomega.8b02025


the inner N2O2 and outer O2O2′ sites of the potential N2O2O2′
donor deprotonated compartmental Schiff base, L2−. A
perspective view of the asymmetric unit of the complex with
selective atom numbering scheme is depicted in Figure 1. Both
nickel(II) and lead(II) have pseudo octahedral geometries.
Ni(1) is coordinated by two imine nitrogen atoms, N(19) and
N(23), and two phenoxo oxygen atoms, O(11) and O(31), of
the deprotonated potential N2O2O2′ donor compartmental
Schiff base ligand (L)2−, which constitute the equatorial plane.
The deviation of the coordinating atoms N(19), N(23),

O(11), and O(31) from the least-square mean plane through
them is −0.037(5), 0.038(5), 0.044(4), and −0.043(4) Å,
respectively, and that of Ni(1) from the same plane is
0.0025(7) Å. The fifth coordination site is occupied by one
nitrogen atom, N(2), from a thiocyanate anion. A nitrogen
atom, N(1)#, from a symmetry-related (1/2 − x, −1/2 + y, 1/2
− z) thiocyanate anion coordinates nickel(II) in its sixth
coordination site to form a distorted octahedron. On the other
hand, lead(II) is coordinated by two phenoxo oxygen atoms,
O(11) and O(31), and two ethoxy oxygen atoms, O(131) and
O(291), which constitute the equatorial plane. The fifth
coordination site is occupied by an oxygen atom, O(1), from a
water molecule. A sulfur atom, S(1), from an end-to-end
bridged thiocyanate coordinates with lead(II) in its sixth
coordination site to complete its distorted octahedral
geometry. Nickel(II) and lead(II) centers are bridged by two
phenoxo oxygen atoms, O(11) and O(31), with Ni(1)···Pb(1)
distance being 3.458(7) Å. The bridging angles, Ni(1)−
O(11)−Pb(1) and Ni(1)−O(31)−Pb(1), are 104.5(2) and
105.3(2)°, respectively. The Ni(1)−O(11)−O(31)−Pb(1)
core is almost planar (the dihedral angle is close to ∼5.32°).

Supramolecular Interaction. The complex forms an
interesting supramolecular structure via π···π interactions. π···π
interactions have been observed between the phenyl ring
C(12)−C(13)−C(14)−C(15)−C(16)−C(17) and symmetry-
related (−x, −y, −z) phenyl ring C(12)−C(13)−C(14)−
C(15)−C(16)−C(17). These interactions form a two-dimen-
sional (2D) structure (Figure 2). Details of the geometric
features of π···π interactions have been given in Table 3.

Morphological Analysis. Microstructure of the complex
has been studied by field emission scanning electron
microscope (FESEM) and presented in Figure 3. The
micrograph states featherlike morphology of the complex.

Optical Analysis. The Tauc plot (the details have been
given in the Supporting Information) of the material has been
presented in Figure 4. From Tauc’s plot, the direct energy
band gap (Eg) of the material has been estimated as 3.18 eV by
measuring the x-intercept of the extrapolated linear part of the
plot (αhν)2 vs (hν). The analysis for taking direct band gap has
been provided in the Supporting Information.
As the band gap suggests that the complex is semiconducting

in nature, there is a possibility to apply the complex in a

Table 1. Crystal Data and Refinement Details

formula C21H22N4NiO5PbS2
formula weight 740.46
temperature (K) 150
crystal system monoclinic
space group P21/n
a (Å) 12.3716(6)
b (Å) 9.6865(3)
c (Å) 20.7826(13)
β (°) 105.941(6)
Z 4
dcalc (g cm−3) 2.054
μ (mm−1) 8.022
F (000) 1432
total reflections 15 388
unique reflections 6823
observed data [I > 2σ (I)] 5172
no. of parameters 326
R (int) 0.051
R1, wR2 (all data) 0.0798, 0.0987
R1, wR2 [I > 2σ (I)] 0.0538, 0.0916

Table 2. Selected Bond Lengths (Å) of the Complex

Ni(1)−O(31) 2.034(4) Pb(1)−O(11) 2.328(4)
Ni(1)−N(23) 2.030(5) Pb(1)−O(131) 2.655(6)
Ni(1)−N(19) 2.029(6) Pb(1)−O(31) 2.310(4)
Ni(1)−O(11) 2.039(4) Pb(1)−O(291) 2.645(6)
Ni(1)−N(2) 2.154(6) Pb(1)−S(1) 2.867(2)
Ni(1)−N(1)a 2.112(5) Pb(1)−O(1) 2.703(7)

aSymmetry transformations = 1/2 − x, −1/2 + y, 1/2 − z.

Figure 1. (a) Perspective view of the complex (asymmetric unit) with a selective atom numbering scheme; (b) the polymeric structure of the
complex. Only the relevant atoms have been shown for clarity in both cases.
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semiconducting device. But there has always been techno-
logical difficulty in application of these materials in active
devices. Thus, to check the possibility of device application,
fabrication of a metal−semiconductor-based thin-film Schottky
diode has been tried. As the electronic charge transport
properties determine the performance of the devices, it is very
important to analyze charge transport properties in detail.
Electrical Characterization. The current−voltage (I−V)

measurements of the device [schematic diagram (Figure S2)
has been given in the Supporting Information] fabricated with
CP have been done in dark and under AM 1.5G light
illumination in the voltage range of −2 to +2 V. Experimentally
obtained I−V curves of the device under dark and illumination
are shown in Figure 5. The inset in Figure 5 represents the
curve in log scale.
The nonlinear I−V curve of the device under both the

conditions indicates that the fabricated metal−semiconductor
junction is a Schottky junction. From the I−V curve,
rectification ratios have been calculated, which are 70 and 89
under dark and illumination condition, respectively. This
proves the successful application of the complex material in an
active electronic device. The estimated conductivity of the thin
film has been increased from 2.02 × 10−4 S cm−1 under dark to
8.55 × 10−4 S cm−1 under light. The conductivity data for the
crystal has also been provided in the Supporting Information.
To assess the potentiality of the fabricated device for

application in a photodetector, we have estimated important
parameters like photosensitivity (S = Iph/ID where Iph is the
photocurrent and ID is the dark current Idark), specific
detectivity (D*), and responsivity (R). Photosensitivity of
our device is 5.76, and this has been compared with the other
reported devices and presented in Table 4.23

Responsivity (R) of the device can be estimated from the
following equation

R
I

P A
ph

in
=

Here, A is the effective area of the diode and Pin is the incident
power of the light. For our device, the responsivity is 1.69 A
W−1, which is significant for this kind of device. The specific
detectivity (D*) has been estimated from the equation

D
R

qI(2 )D
1/2* =

where q is the charge of electron. The specific detectivity of the
device has been estimated as 6.55 × 1010 Jones, which is again

Figure 2. Perspective view of 2D structure formed by π···π
interactions of the complex. Only the relevant atoms have been
shown for clarity.

Table 3. Geometric Features (Distances in Å and Angles in °) of the π···π Interaction Obtained for the Complex

Cg(ring I)···Cg(ring J) Cg···Cg (Å) α (°) Cg(I)···perp(Å) Cg(J)···perp(Å)

Cg(1)···Cg(1)a,b 3.763(4) 0 3.471(3) 3.471(3)

aSymmetry transformations = −x, −y, and −z. bα = Dihedral angle between ring I and ring J; Cg(I)···perp = perpendicular distance of Cg(I) on
ring J; Cg(I)···perp = perpendicular distance of Cg(J) on ring I. Cg(1) = center of gravity of the ring C(12)−C(13)−C(14)−C(15)−C(16)−
C(17), for the complex.

Figure 3. FESEM image of the complex.

Figure 4. UV−vis absorption spectra (inset) and Tauc’s plot for the
complex.
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significant. All device parameters indicate that the fabricated
device has a great potential in the field of active electronic
device.
Further analysis of the different device parameters has been

done by thermionic emission theory given by the following
equation

i
k
jjj

y
{
zzzI I

qV
nKT

exp 10= [ − ]

Here, the forward current is represented by I, reverse
saturation current by I0, V denotes the applied bias voltage,
q is the electronic charge, k represents the Boltzmann constant,
T gives the absolute temperature, and n denotes the ideality
factor (IF). I0 is expressed by

i
k
jjj

y
{
zzzI AA T

q

KT
exp0

2 Bφ
= *

−

The effective area of the diode (A) is taken to be 7.065 × 10−2

cm2, A* denotes the Richardson constant whose value is 32 A
K−2 cm−1, and ϕB is the Schottky barrier height.
By using following Cheung’s equations24 given below, other

different Schottky parameters have also been calculated

i
k
jjjjj

y
{
zzzzz

V
I

kT
q

IR
d

d ln S
η= +

i
k
jjj

y
{
zzzH I V

kT
q

I
AA T

( ) ln 2
η= −

*

H I IR( ) S Bηϕ= +

Here, the series resistance is given by RS and all other notations
are kept same.
The intercept of the dV/d ln I vs I plot shown in Figure 6 is

used to estimate the ideality factor. Determination of the
barrier potential height and the series resistance is done using
the intercept and slope of H(I) vs I plot given in Figure 7. The
various parameters calculated are enlisted in Table 5.
The ideality factor should be unity, but here it is less than 1,

which can be due to the presence of inhomogeneities at the
Schottky junction.25

For the assessment of charge transport behavior of the
device, mobility and diffusion length of charge carriers are the
two important parameters. So the charge transport mechanism
has been analyzed through the metal−semiconductor contact.
Here, we have estimated mobility (μeff), lifetime (τ), carrier
concentration (N), and diffusion length (LD) by applying space
charge limited current (SCLC) theory. Figure 8 shows the I−V
curve in a double logarithmic scale. The graph presented in
Figure 8 can be divided into three regions with different slopes.
Region 1 (Reg 1), which represents the lower bias, follows
ohmic nature with current being directly proportional to
voltage. The origin of the current is from the bulk generated
electrons of the film, rather than the injected free carriers.
Here, tunneling is the main contributing factor that can be
observed from the I−V curve.26

In Figure 8, the slope of Reg 2 is increased compared with
Reg 1. Within the material, a part of the injected carriers is
trapped within the traps present and a part remains free. With
the increase of applied voltage, traps within the material are
filled with a higher number of injected carriers.27 As the
current increases rapidly, the Fermi level (EF) moves through a
trap level.28 The slope of this region increases sharply as the
traps are being filled up rapidly by the carriers. The second
region is known as the trap filling region.28 When almost all
traps are filled, the slope of the third region decreases as result
of slower carrier movement. Here, current follows the
relationship I ∝ V2, which is the feature of trap-free space
charge limited current (SCLC) regime.27,28

So, effective carrier mobility (μeff) has been estimated from I
vs V2 graph (Figure 9) of the trap-free SCLC region using the
Mott−Gurney equation29 given by

Figure 5. Current−voltage characteristics curve in dark and under
light.

Table 4. Previously Reported X-ray Characterized Photosensitive Complexesa

complex conductivity in dark conductivity under light photosensitivity ref

[CdL1(μ1,3-SCN)2]n 1.01 × 10−8 2.16 × 10−8 14.36 23a
[Cu2(adc)(4-pic)6(H2O)4][ClO4]2 8.21 × 10−4 11.84 × 10−4 1.83 23b
{[Zn(adc)(4-spy)2(H2O)2]}n 5.12 × 10−4 16.48 × 10−4 1.96−2 23c
{[Cd(adc)(4-spy)2-(H2O)2]}n 6.54 × 10−4 28.77 × 10−4 3.5 23c
[Cd(2,2′-dsb)(4-nvp)(DMF)(H2O)] 6.60 × 10−4 10.71 × 10−4 0.54 23d
[Cu2(L

1)2(μ-1,3-SCN)2]n 3.63 × 10−5 4.13 × 10−5 2.83 23e
[{CuLNa}2(μ1,1,3-NCS)HgCl2(μ1,3-NCS)]n 1.48 × 10−6 8.40 × 10−5 57 23f
[(NCS)Pb(H2O)LNi(NCS)]n 6.02 × 10−6 3.47 × 10−5 5.76 this work

aWhere HL1 = 2-(2-(ethylamino)ethyliminomethyl)-6-ethoxyphenol, H2adc = acetylenedicarboxylic acid, 4-pic = 4-picolene, 4-spy = 4-
styrylpyridine, H22,2′-dsb = 2,2′-disulfanediyldibenzoic acid (2,2′-dsba), and 4-nvp = 4-(1-naphthylvinyl)pyridine.
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2
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μ ε ε
=

where I is the current, ε0 is the permittivity of free space, εr is
the dielectric constant, and d is the thickness of the film (about
1 μm).
There are few more important charge transport parameters

like carrier concentration and transit time, which determine the
device performance. The carrier concentration (N), transit
time (τ), and diffusion length (LD) is estimated with the
following set of equations30

N
q eff

σ
μ

=

i
k
jjj

y
{
zzz

A
d

V
I

9
8
0 rτ

ε ε
=

where D is the diffusion coefficient. The diffusion coefficient
has been calculated by employing the Einstein−Smoluchowski
equation31

qD
kTeffμ =

By analyzing the charge transport parameters, it is seen that the
diffusion length and carrier mobility increased and transit time
decreased after light illumination, which indicates that the
device could be very useful for photosensitive device
applications.

■ CONCLUSIONS
Although the nonlinear rectifying behavior of I−V character-
istics of few semiconducting material-based devices measured
under dark and illumination conditions proves their photo-

Figure 6. dV/d ln I vs current plot in dark and light conditions.

Figure 7. H vs current graph in dark and light conditions.

Table 5. Different Charge Transport and Device-Related Parameters

RS (kΩ)

conditions on/off ratio σ (S cm−1) IF dV/d ln I H(I) ΦB (eV) μeff (cm
2 V−1 s−1) N (m−3) × 1023 τ (μs) D (m2 s−1) × 10−8

LD
(nm)

dark 70 2.02 × 10−4 0.52 0.94 1.07 0.71 9.46 × 10−3 1.33 0.35 8.85 248
light 89 8.55 × 10−4 0.79 0.80 0.86 0.55 3.42 × 10−2 1.56 0.11 2.45 273
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sensitive Schottky diode character, there was no report in the
literature to use any X-ray-characterized hetero-bimetallic
coordination polymer for the fabrication of any optoelectronic
device before the present work. In this article, synthesis, X-ray
structure, and electronic properties of a hetero-bimetallic
nickel(II)/lead(II) CP has been described. The band gap (3.18
eV) of the material indicates that it belongs to the
semiconductor family. Intermolecular interactions play a key
role for molecular conductors and semiconductors. The
present complex forms a one-dimensional (supramolecular)
structure via coordinate bond. This coordinate bond formation
helps the complex to show very high conductivity. The
complex has been successfully applied in technologically
challenging thin-film Schottky diodes with appraised different
charge transport and device related parameters. The results
indicate that the material can be applied to photosensitive
active devices. The preparation of the complex thus illustrates a
potentially versatile approach to the construction of hetero-
bimetallic coordination polymers and their potential applica-
tion in the field of optoelectronics.
We are still working in the laboratory to get better yield of

the product and to develop and characterize more systems
based on this strategy to generalize the concept.
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Schröder, M. Compartmental Schiff-base ligands as selective double-
loaded extractants for copper(II). Chem. Commun. 2002, 340−341.
(9) (a) Sun, H.-L.; Wang, Z.-M; Gao, S. Synthesis, Crystal
Structures, and Magnetism of Cobalt Coordination Polymers Based
on Dicyanamide and Pyrazine-dioxide Derivatives. Inorg. Chem. 2005,
44, 2169−2176. (b) Roy, S.; Bhattacharyya, A.; Purkait, S.; Bauza,́ A.;
Frontera, A.; Chattopadhyay, S. A combined experimental and
computational study on supramolecular assemblies in heterotetranu-
clear nickel(II)/cadmium(II) complexes with N2O4-donor compart-
mental Schiff bases. Dalton Trans. 2016, 45, 15048−15059.
(10) (a) James, T. L.; Smith, D. M.; Holm, R. H. Stereoelectronic
Preferences in Electron Transfer Series of Nickel with Tridentate
Ligands Containing Hard-Soft Donor Sets. Inorg. Chem. 1994, 33,
4869−4877. (b) Kruger, H.-J.; Holm, R. H. Stabilization of trivalent
nickel in tetragonal NiS4N2 and NiN6 environments: synthesis,
structures, redox potentials and observations related to [NiFe]-
hydrogenases. J. Am. Chem. Soc. 1990, 112, 2955−2963. (c) Masgood,
M. A.; Hodgson, D. J. Five- and Six-Coordinate Nickel(II) Complexes
of New Multidentate Ligands Containing 2,9-Disubstituted-1,10-
Phenanthroline and Pyrazolyl Units. Inorg. Chem. 1994, 33, 3038−
3042. (d) Lovecchio, F. V.; Gore, E. S.; Busch, D. H. Oxidation and
reduction behavior of macrocyclic complexes of nickel. Electro-
chemical and electron spin resonance studies. J. Am. Chem. Soc. 1974,
96, 3109−3118. (e) Musker, W. K.; Hussain, M. S. Medium-ring
complexes. III. Comparison of planar and pyramidal copper(II) and
planar nickel(II) complexes containing seven- and eight-membered-
ring diamines. Inorg. Chem. 1969, 8, 528−536.
(11) (a) Gourlaouen, C.; Parisel, O.; Gerard, H. Revisiting the holo-
and hemidirected structural transition within the [Pb(CO)n]

2+ model
series using first-principles Molecular Dynamics. Dalton Trans. 2011,
40, 11282−11288. (b) Shimoni-Livny, L.; Glusker, J. P.; Bock, C. W.
Lone Pair Functionality in Divalent Lead Compounds. Inorg. Chem.
1998, 37, 1853−1867. (c) Davidovich, R. L.; Stavila, V.; Marinin, D.
V.; Voit, E. I.; Whitmire, K. H. Stereochemistry of lead(II) complexes
with oxygen donor ligands. Coord. Chem. Rev. 2009, 253, 1316−1352.
(d) Davidovich, R. L.; Stavila, V.; Whitmire, K. H. Stereochemistry of
lead(II) complexes containing sulfur and selenium donor atom
ligands. Coord. Chem. Rev. 2010, 254, 2193−2226. (e) Holloway, C.
E.; Melnik, M. Lead coordination and organometallic compounds:
Classification and analysis of crystallographic and structural data.
Main Group Met. Chem. 1997, 20, 399−495. (f) Parr, J. Some recent
coordination chemistry of lead(II). Polyhedron 1997, 16, 551−566.
(g) Parr, J. Germanium, Tin, and Lead, in Comprehensive Coordination
Chemistry II; Elsevier: Oxford, 2004; Vol. 3, p 545. (h) Hino, S.;
Brynda, M.; Phillips, A. D.; Power, P. P. Synthesis and Character-
ization of a Quasi-One Coordinate Lead Cation. Angew. Chem., Int.
Ed. 2004, 43, 2655−2658. (i) Imran, M.; Mix, A.; Neumann, B.;
Stammler, H.-G.; Monkowius, U.; Gründlinger, P.; Mitzel, N. W.
Hemi- and holo-directed lead(II) complexes in a soft ligand
environment. Dalton Trans. 2015, 44, 924−937.
(12) (a) Harrison, R. M.; Laxen, D. R. H. Lead Pollution, Chapman
& Hall: London, 1981. (b) Christensen, J. M.; Kristiansen, J. In
Handbook of Metals in Clinical and Analytical Chemistry; Seiler, H. G.,
Sigel, A., Sigel, H., Eds.; Marcel Dekker: NY, 1994; pp 425−440.
(c) Lanphear, B. P.; Burgoon, D. A.; Rust, S. W.; Eberly, S.; Galke, W.
Environmental Exposures to Lead and Urban Children’s Blood Lead
Levels. Environ. Res. 1998, 76, 120−130. (d) Spiro, T. G.; Stigliani, W.
M. Chemistry of the Environment; Prentice Hall: Upper Saddle River,
NJ, 1996. (e) Cuenot, F.; Meyer, M.; Bucaille, A.; Guilard, R. A
molecular approach to remove lead from drinking water. J. Mol. Liq.
2005, 118, 89−99. (f) Goyer, R. A. In Handbook on Toxicity of
Inorganic Compounds; Seiler, H. G., Sigel, A., Sigel, H., Eds.; Marcel
Dekker: NY, 1988. (g) Chisholm, J. J. Lead poisoning. Sci. Am. 1971,
224, 15−23.
(13) (a) Ghorai, P.; Dey, A.; Brandaõ, P.; Ortega-Castro, J.; Bauza,
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