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Abstract 30 

Cardiovascular diseases (CVD) remain the greatest cause of death globally, and with the 31 

escalating prevalence of metabolic diseases, including type-2 diabetes, CVD mortality is 32 

predicted to rise. While the replacement of saturated fatty acids (SFA) has been the 33 

cornerstone of effective dietary recommendations to decrease CVD risk since the 1980s, the 34 

validity of these recommendations have been recently challenged. A review of the evidence 35 

for the impact of SFA reduction, revealed no effect on CVD mortality, but a significant 36 

reduction in risk of CVD events (7-17%).  The greatest effect was found when SFA was 37 

substituted with polyunsaturated fatty acids (PUFA), resulting in 27% risk reduction in CVD 38 

events, with no effect of substitution with carbohydrate or protein. There was insufficient 39 

evidence from randomly controlled trials to conclude upon the impact of SFA replacement 40 

with MUFA on CVD and metabolic outcomes. However, there was high quality evidence that 41 

reducing SFA lowered serum total, and specifically low-density lipoprotein cholesterol, a key 42 

risk factor for CVD, with greatest benefits achieved by replacing SFA with unsaturated fats. 43 

The exchange of SFA with either PUFA or monounsaturated fatty acids, also produced 44 

favourable effects on markers of glycaemia, reducing HbA1c, a long-term marker of 45 

glycaemic control. In conclusion, the totality of evidence supports lowering SFA intake and 46 

replacement with unsaturated fats to reduce the risk of CVD events, and to a lesser extent, 47 

cardio-metabolic risk factors, which is consistent with current dietary guidelines.  48 

 49 

 50 

 51 



Introduction 52 

Cardiovascular diseases (CVD), which include coronary heart disease (CHD), cerebral 53 

vascular disease and peripheral vascular diseases, are the greatest cause of mortality in the 54 

world, with an estimated 158,000 deaths annually in the UK alone (1). In parallel, the 55 

epidemic of metabolic diseases, principally type 2 diabetes, and obesity contribute to an 56 

increase in risk from CVD. In England, 58% of women and 65% of men are overweight or 57 

obese, with the prevalence of obesity increasing from 15% to 26% between 1993 and 2016 58 

(2). This rise in obesity directly contributes to the prevalence of type 2 diabetes.  Of the 59 

estimated 6% of the UK population diagnosed with diabetes, 90% have type 2 diabetes, with 60 

a rapid increase in prevalence from 2.9% to 7.6%, and 1.9% to 6.2% among men and women 61 

respectively between 1994 and 2016 (3). 62 

These chronic degenerative diseases are multifactorial, with a number of modifiable lifestyle 63 

risk factors. The Global Burden of Disease, Injuries, and Risk Factor study 2013 (4), includes 64 

data from 188 countries, and quantified modifiable risk factors to identify emerging threats 65 

to population health and opportunities for prevention. In the latest update, the quantified 66 

risks accounted for 88.7% disability-adjusted-life years (DALYs) lost from CVD and circulatory 67 

diseases and 76.4% from diabetes, the highest of all outcomes. Moreover, it was estimated 68 

that dietary risks were the greatest contributor to CVD and diabetes, accounting for 10.4 69 

million deaths and 241.4 million DALYs (4). These, and other data, demonstrate the 70 

relevance of diet to CVD and metabolic risk and highlights the importance of dietary 71 

modulation to reduce this risk. This review will address the impact of dietary fats, 72 

particularly saturated fatty acids (SFA), on risk from these diseases. 73 

 74 

 75 

Cardiovascular and cardio-metabolic risk factors 76 

There is unequivocal evidence that reduction of total cholesterol (TC), and more specifically 77 

low density lipoprotein-cholesterol (LDL- C) significantly reduces the incidence of myocardial 78 

infarction and death from cardiovascular causes, without adversely affecting the risk of 79 

death from all causes in primary and secondary prevention studies (5). The European 80 

Atherosclerosis Society Consensus Panel reviewed the evidence for the effects of high LDL-C 81 



on the development of CVD, including CHD and stroke and showed a clear linear causal 82 

relationship as illustrated in Figure 1 (5). A consensus was reached that serum LDL-C 83 

increased the progression of atherosclerosis in a dose-dependent manner, with greater 84 

detriment arising from longer exposure of the vascular endothelium to LDL-C (5). Evidence 85 

also clearly demonstrates that small dense LDL particles, which are more likely to move into 86 

the vascular intima, undergo oxidation and contribute to the atherosclerotic plaque are 87 

more atherogenic and confer a greater risk for CVD (6). In contrast, a low concentration of 88 

serum high density lipoprotein-cholesterol (HLD-C) is related to an increased risk of CHD (7), 89 

is a key feature of the metabolic syndrome and is highly prevalent in type 2 diabetes and 90 

obesity (8). HDL particles are involved in a process of ‘reverse cholesterol transport’, in 91 

which cholesterol is removed from tissues and organs and returned to the liver for 92 

metabolism (7). However, recent evidence has shown that increasing serum HDL-C, by use 93 

of drugs, may not result in the anticipated reduction in CVD risk, which is more closely 94 

related to the functionality, rather than the cholesterol content of HDL particles (9). 95 

However, the TC:HDL-C ratio is considered a more sensitive and specific CHD risk predictor 96 

than individual cholesterol measures; at all ages in women and the only lipid predictor 97 

independently related to CHD in men 65 to 80 years old (7, 10). 98 

 99 

Hypertension is the greatest contributor to death globally and a key CVD and metabolic risk 100 

factor that is modifiable by diet (11). While the importance of lowering salt intake to reduce 101 

blood pressure is well founded (12), evidence for the impact of dietary fats on blood 102 

pressure and vascular function is lacking (13). The health of the vasculature and endothelial 103 

function is important for CVD risk reduction and inextricably linked to blood pressure.  104 

Endothelial dysfunction occurs when the balance between endothelial injury and repair is 105 

disrupted. Circulating bone marrow-derived endothelial progenitor cells play an important 106 

role in preserving the structural and functional integrity of the endothelium by inducing 107 

neovascularisation at the site of vascular injury (14). Reduced endothelial progenitor cell 108 

number and function have been associated with CVD risk factors, including hypertension 109 

and hypercholesterolemia, and their potential role as prognostic and/or diagnostic markers 110 

of CVD is of considerable value (14). Microparticles are small vesicles released from the 111 

surface of many cell types, including endothelial cells and platelets, during activation or 112 

apoptosis, which often occurs during endothelial injury. Microparticle numbers are elevated 113 



in individuals with CVD and associated risk factors (15), and the addition of endothelial 114 

microparticle numbers to the Framingham risk score has been shown to improve its 115 

predictive power of future CVD events (16).  116 

 117 

Central obesity and insulin resistance are defining characteristics of the metabolic 118 

syndrome, the other two of which can include raised plasma TAG, reduced HDL-C 119 

concentrations and hypertension (Table 1) (8). Those with the metabolic syndrome are 120 

estimated to have an increased risk of CVD and particularly type 2 diabetes with many 121 

shared metabolic risk factors, often presenting with relatively normal TC and LDL-C 122 

concentrations (8). There is evidence to suggest that diet and lifestyle interventions may 123 

be more effective in preventing the development of the metabolic syndrome than 124 

pharmacological agents, and dietary fats may play a key role in this respect  (17). The 125 

evidence for the impact of dietary fat on cardiovascular and cardio-metabolic risk, with 126 

particular reference to SFA, will be reviewed and presented in an attempt to resolve the 127 

perceived inconsistencies and confusion. 128 

 129 

SFA as a strategy to reduce CVD and cardio-metabolic risk factors 130 

SFA reduction has been the mainstay of dietary fat recommendations for coronary heart 131 

disease (CHD) risk reduction for many decades. UK public health advise on SFA was officially 132 

introduced in 1983 in the National Advisory Committee for Nutrition Education (NACNE) 133 

report (18), which recommended reducing SFA to no more than 10% total energy. The 134 

Committee of Medical Aspects (COMA) re-evaluated the evidence in 1991 and 1994 and in 135 

these reports the advice to reduce SFA intake to no more than about 10% total energy was 136 

based on evidence that “increasing or decreasing the contribution of SFA to dietary energy 137 

is followed by a rise or fall in low density lipoprotein (LDL) cholesterol and in the 138 

commensurate risk of coronary heart disease” (19, 20). Since the 1990’s the evidence for 139 

the effects of SFA on a range of health outcomes has increased considerably. This has been 140 

reviewed by numerous international organisations with most proposing similar 141 

recommendations to limit SFA. Currently, the Australian Government Department of Health 142 

and New Zealand Ministry of Health (21) recommend SFA should contribute between 8-10% 143 

energy; the Food and Agriculture Organization/World Health Organization (FAO/WHO) (22), 144 



Nordic Council of Ministers (23) and US Dietary Guidelines Advisory Committee (DGAC) (24) 145 

recommend no more than 10% energy as SFA and the European Food Safety Authority 146 

(EFSA) (25) recommend consuming as little as possible. All advise replacement of SFA with 147 

polyunsaturated fats (PUFA). In contrast, the French Food Safety Agency (AFSSA) (26) 148 

recommended a total SFA intake of no more than 12% energy, but specify a maximum 149 

intake of 8% energy from specific SFAs due to their atherogenic potential, namely lauric, 150 

myristic and palmitic acids.  In 2015, a novel strategy for dietary advise was proposed by the 151 

Health Council of the Netherlands (HCN) (27) in which recommendations were designed 152 

around foods and dietary patterns rather than specific nutrients. In these 153 

recommendations, advice that related to SFA included: i) replace butter, hard margarines, 154 

and cooking fats by soft margarines, liquid cooking fats, and vegetable oils; ii) limit the 155 

consumption of red meat, particularly processed meat and iii) a few portions of dairy 156 

produce daily, including milk or yogurt. The evidence for SFA and health outcomes is 157 

currently under review by the Saturated Fats Working Group of the UK Scientific Advisory 158 

Committee on Nutrition (SACN). A draft report from SACN was released for public 159 

consultation in July 2018 with recommendations that the dietary reference value for SFA 160 

remain unchanged at population average of no more than 10% energy from SFA, with 161 

recommendations for SFA substitution with unsaturated fats (28).  162 

 163 

 164 

Population intake data 165 

Despite long standing dietary recommendations to limit SFA intake, very few populations 166 

comply with this advice. A study which included fatty acid intake data from 40 countries 167 

throughout the world reported that only 11 met the SFA (<10% energy) and 20 met the 168 

PUFA (6-11% E) recommendations. Furthermore, in 18 of 27 countries examined, more than 169 

50% of the population had SFA intakes >10% E, whereas in 13 of 27 countries, the majority 170 

of the population had PUFA intakes <6% (29). The current SFA intake from the latest data 171 

from the UK NDNS (years 7-8) supports these data, with the mean consumption of SFA 172 

above recommendations in all age groups with SFA intakes of 11.9%, 12.5% and 14.3% of 173 

total dietary energy in adults aged 19-64, 65-74 and 75+ years, respectively. The mean 174 

population intakes of different fatty acid classes and the UK Reference Nutrients Intakes 175 

(RNI) are shown in Table 2 and Table 3 respectively. The main contributor to SFA intake in 176 



adults of all ages were meat and meat products, milk and milk products, and cereals and 177 

cereal products (half from pizza, biscuits, buns, cakes, pastries, fruit pies and puddings) with 178 

each food group contributing between 20-27% of total SFA intake. Fat spreads contributed 179 

9%, 13% and 16% total dietary energy in those of 19-64, 65-74 and 75+ years, respectively. 180 

Interestingly intakes of total SFA increased with household available income, although 181 

generally these differences were small.  182 

 183 

Assessment of risk and quality of evidence 184 

The quality of evidence is important to consider when assessing risk. A hierarchy of evidence 185 

as represented by a pyramid, is generally accepted, as shown in Figure 2. Data from 186 

ecological studies, although helpful for hypothesis generation, is of limited quality and 187 

represents associations which are often linked with considerable potential confounding. 188 

Data from cohort studies, particularly longitudinal prospective cohort studies, can offer 189 

valuable insight into associations between dietary factors and key outcome measures, such 190 

as CVD mortality, but do not prove cause or effect. Furthermore, these studies are often 191 

associated with confounding including: dietary change over the follow-up period; 192 

reformulation of foods throughout the follow-up period (such as removal of trans fatty acids 193 

from the food chain which has occurred over the past decade); lifestyle factors including 194 

weight change, smoking status, amount of activity which are not fully accounted for; 195 

influence of other datary components; no consideration of the replacing macronutrient or 196 

of the quality of macronutrient (i.e wholegrain vs refined carbohydrates or n-3 197 

polyunsaturated fatty acids (PUFA) vs n-6 PUFA) and reverse causality.  198 

 199 

In contrast, evidence from randomly controlled trials (RCT) are considered to be of higher 200 

quality, with data demonstrating the effect of controlled dietary intervention, such as 201 

substitution of SFA with PUFA, on hard clinical outcomes (e.g. CVD morality) or validated risk 202 

markers (e.g. LDL-C). However, all studies investigating dietary fats can be limited by the 203 

sample size; duration of follow-up/intervention; study design; confounding by the presence 204 

of dietary trans fatty acids in some intervention foods (known to have a significant 205 

detrimental effect on CVD) in studies published before 1990s; and residual confounding. 206 

Systematic reviews and meta-analyses of particularly RCT, can offer high quality data, which 207 

represents the totality of the evidence available. However, there are potential limitations in 208 



meta-analyses, such as the quality of the individual studies, criteria for study inclusion, 209 

differences in study design, participant inclusion, type and methods of intervention, which 210 

can result in inability or inappropriate study comparison and inconsistent findings between 211 

meta-analyses addressing the same question. It is therefore apparent that the type of 212 

evidence is of paramount importance and wherever possible, rigorous, current and 213 

comprehensive systematic reviews and meta-analyse will be used in this review, although 214 

individual studies will also be included where appropriate.  215 

 216 

Challenges to the SFA recommendations 217 

As discussed above, there are consistent global dietary recommendations to limit SFA intake 218 

for disease risk reduction, which are based on rigorous assessment of the totality of 219 

evidence from RCTs and prospective cohort studies, yet within the last 5 years the validity of 220 

SFA reduction has been questioned. This recent challenge to the SFA recommendations has 221 

been in response to a number of systematic reviews and meta-analyses which indicate that 222 

there is limited evidence for the significant effects of SFA reduction on CVD mortality (30-223 

34). These data will be discussed in the context of the quality and relevance of the evidence. 224 

 225 

SFA and CVD risk 226 

There is consistent evidence from systematic reviews and meta-analyses of RCTs (35, 36) 227 

and prospective cohort studies (30, 32, 33, 37, 38) for the lack of a significant relationship 228 

between SFA intake and CVD, CHD and stroke mortality, which has fuelled the recent 229 

challenges to SFA recommendations. However, a significant 17% reduction in CVD events in 230 

those who reduced their SFA intake compared with usual diet (using a random-effects 231 

statistical model) was reported in the most comprehensive, up-to-date and rigorous 232 

systematic review and meta-analysis of RCTs (35). This analyse included 11 studies with 233 

53,300 participants and 4377 CVD events and used the gold-standard Cochrane protocol for 234 

systematic review. Furthermore, a significant 7% or 8% reduction was also observed after 235 

using two fixed-effect statistical models (Mantel-Haenszel and Peto, respectively), 236 

suggesting that reducing SFA intake to approximately 10% energy significantly reduces CVD 237 

events by between 7-17% (35). 238 

 239 



Moreover, Hooper found a significant 7-8% reduction in CHD events when reduced intakes 240 

of SFA were compared with usual intakes after fixed effects analysis and a non-significant 241 

trend for a 13% reduction after random effects analysis (P=0.07) using 12 RCTs, that 242 

included 53,199 participants and 3307 cases. In contrast (30), Chowdhury and colleagues, in 243 

their high profile systematic review and meta-analysis of 20 prospective cohort studies 244 

(including 283,963 participants and 10,518 CHD cases), concluded there was no association 245 

between SFA intake and CHD outcomes, when the top verses the bottom tertiles of SFA 246 

intakes were compared using a random effects model. However, the authors also 247 

performed a fixed-effect statistical model and found a significant 4% increased risk of CHD 248 

outcomes when higher verses lower saturated fat intakes were compared, although this 249 

finding was not commented upon in their paper. The reporting of both random and fixed 250 

effects models is becoming increasingly popular as recommended in the Cochrane 251 

Handbook for Systematic Reviews of Interventions (http://training.cochrane.org/handbook). 252 

However, within the scientific community there are inconsistencies in the application and 253 

relevance of these models to different datasets, with differences in the underlying 254 

assumptions and statistical considerations. Fixed-effect models give weight in direct 255 

proportion to the size of the primary studies, whereas random-effects models generally give 256 

similar weight to all studies, irrespective of size. Although random effects models are used 257 

more commonly, fixed-effect models may offer a number of advantages over random-258 

effects models, such as proportionate study weighting, and it would seem prudent to 259 

consider both models when reviewing the evidence. The increase in CHD outcomes from 260 

higher SFA intake from prospective cohort studies (30) supports the analysis of RCTs using 261 

fixed effects analysis (35), and suggests reduction of dietary SFA would be of benefit.  262 

Reducing SFA was found to have no effect on the mortality from stroke in a meta-analysis of 263 

RCTs (35) and also on ischaemic strokes from the most comprehensive systematic review 264 

with meta-analysis of 12 prospective cohort studies with 15 comparisons including 265 

n=339,090 participants and 6226 ischaemic stroke deaths (37). In contrast, a systematic 266 

review and meta-analysis of 15 prospective cohort studies (n=476,569 including 11,074 267 

strokes) reported a significant 11% reduced overall stroke risk and 25% fatal stroke risk with 268 

higher SFA intake (39). Interestingly, after subgroup analysis there was no association in 269 

non-East Asian populations, but a significant association in East Asian populations (21% 270 

http://training.cochrane.org/handbook)


lower risk) (39). In another meta-analysis of prospective cohort studies, a significant 271 

association was identified between lower SFA intake and higher intracerebral haemorrhagic 272 

strokes in Japanese populations only (40). These associations between higher SFA and 273 

reduced stroke seem to be isolated to East Asian populations living in East-Asia, who 274 

typically consume very low dietary SFA, have distinct differences in dietary patterns, other 275 

lifestyle factors and genetic background, in comparison to Western populations in Europe 276 

and America.  277 

These studies provide vital evidence for the benefits of reducing intake of SFA on CVD and 278 

CHD risk, and to address the recent challenges to these recommendations. However, these 279 

studies are limited by the lack of consideration of which macronutrient replaced SFA in the 280 

diet, and could not distinguish between, or determine whether, there were any differential 281 

effects on CVD risk that were dependent on the substitute macronutrient. This is of 282 

paramount importance for the development of valid public health advice and guidance on 283 

practical strategies of SFA reduction and replacement.  284 

 285 

Impact of the macronutrient replacement of SFA on CVD risk 286 

Unlike pharmaceutical or supplemental studies, while a drug or supplement can be simply 287 

added to a participants’ regimen and compared to a placebo, dietary interventions involving 288 

macronutrients require careful consideration in terms of the replacement macronutrient, 289 

particularly in an iso-energetic study design. This adds complexity to the implementation of 290 

the study, data analysis and interpretation of the results of a study. In reality, the 291 

intervention outcomes could be the result of reduction of one macronutrient, increase in 292 

the replacing macronutrient, or a combination of both.  293 

 294 

SFA replacement with PUFA 295 

The strongest evidence for the impact of SFA replacement with PUFA is from the 296 

comprehensive Cochrane systematic review with meta-analysis of RCTs performed by 297 

Hooper (35). This analysis revealed no effect of SFA reduction on CVD or CHD mortality, but 298 

a significant 27% lower risk of CVD events and 24% reduction in CHD events when SFA was 299 

replaced with PUFA, though no consideration was given to the type of replacement PUFA 300 

(35). An earlier meta-analysis also found a significant 21% reduction in risk of CVD mortality 301 



when SFA were replaced with PUFA (n-6 and n-3 PUFA combined) and n-3 PUFA alone, but 302 

no effect on CVD mortality was observed when SFA was substituted with n-6 PUFA alone 303 

(34). Although a more recent systematic review with meta-analysis of 13 prospective cohort 304 

studies confirmed a significant 13% and 9% lower risk of CHD mortality and events, 305 

respectively, when 5% energy from SFA was replaced by the n-6 PUFA linoleic acid using 306 

fixed, but not random, effects models (41). Beneficial effects of SFA replacement with PUFA 307 

were also reported after a pooled analysis of 11 prospective cohort studies which showed 308 

that a 5% lower SFA and 5% higher PUFA was associated with a significant 26% lower CHD 309 

deaths and 13% lower CHD events (42). This was supported by another pooled analysis of 7 310 

RCTs and one cross-over trial, in which the average weighted PUFA consumption was 14.9% 311 

energy and 5.0% energy in the intervention and control groups respectively. The overall 312 

pooled risk reduction was 19%, which was estimated to correspond to a significant 10% 313 

reduced risk of CHD events for every 5% of energy from SFA that was replaced with PUFA 314 

(43). After meta-regression analysis greater benefit was also shown from longer study 315 

duration (43). 316 

Collectively these data provide consistent evidence that SFA replacement with PUFA 317 

reduces CVD and CHD events, and more limited evidence from prospective cohort studies 318 

only for a beneficial effect on CHD mortality. However, here was inadequate evidence on 319 

SFA replacement with PUFA on stroke. 320 

SFA replacement with MUFA 321 

Evidence for the impact of replacement of SFA for MUFA is extremely limited, with no 322 

systematic review or meta-analysis of RCTs. In the most relevant analysis of prospective 323 

cohort studies, a 5% lower energy intake from SFA and concomitant higher energy intake 324 

from MUFA was associated with a non-significant trend for higher CHD events, but not CHD 325 

deaths (42). The authors commented that there might have been significant confounding by 326 

trans fats from spreads, meat and dairy intake. Furthermore, no ‘P’ value was given and the 327 

confidence interval of 1.00 was stated, which suggests this did not reach statistical 328 

significance. These data are in stark contrast to the beneficial association reported from 329 

modelling of the dietary data from the Nurses Health Study and Health Professional Follow-330 

up Study of 127,536 men and women with 24 to 30 years of follow-up and 7,667 incident 331 



cases of CHD (44). This study showed that replacing 5% of energy from SFA with equivalent 332 

energy from PUFA or MUFA was associated with a significant 25% and 15% lower risk of 333 

CHD, respectively (44).  Furthermore, a systematic review and meta-analysis of 32 cohort 334 

studies including 841,211 participants revealed a significant overall risk reduction of 12% for 335 

CVD mortality, 9% for CVD events and 17% for stroke when comparing the top versus 336 

bottom quartiles of MUFA, olive oil, oleic acid, and MUFA:SFA ratio combined. Interestingly, 337 

MUFA from mixed origin, animal and vegetable sources, was not associated with significant 338 

effects on outcome measures (45). These data support a beneficial impact of MUFA, but 339 

also highlight the limited RCT data and potential differential effects of MUFA from different 340 

foods, and the overall importance of investigating food sources in relation to CVD risk 341 

reduction.  342 

 343 

SFA replacement with carbohydrate or protein 344 

There is some evidence from the comprehensive Cochrane systematic review and meta-345 

analysis of RCT, that replacement of SFA with total carbohydrate had no effect on CVD and 346 

CHD mortality and events, and limited evidence of no effect on strokes (35). A pooled 347 

modelling analysis of 11 prospective cohort studies (n=344,696) reported no association on 348 

CHD death, but significant 7% higher CHD events when comparing a 5% energy reduction in 349 

SFA and equivalent increase in carbohydrate (42). However, none of these analyses 350 

considered carbohydrate quality. In the modelling analysis of the Nurses Health Study and 351 

Health Professional Follow-up Study (n= 127,536) replacement of 5% energy from SFA with 352 

carbohydrates from whole grains was associated with a significant 9% lower risk of CHD, 353 

whereas replacing SFA with carbohydrates from refined starches/added sugars was not 354 

significantly associated with CHD risk(44). Further support of the importance of the quality 355 

of the carbohydrate and CHD risk was illustrated by analysis of n=53,644 participants of 356 

prospective cohort studies with a median of 12 year follow-up and 1943 incident MI cases 357 

(46). A non-significant inverse association between substitution of SFA with low GI 358 

carbohydrates was reported, yet a significant 33% higher MI risk from substitution with high 359 

GI carbohydrates was shown. This again highlights that macronutrient type and quality is of 360 



key importance, and that SFA substitution with wholegrain intake are associated with 361 

beneficial effects on CHD risk. 362 

There was limited evidence for a lack of effect of SFA substitution with protein on CVD and 363 

CHD mortality and events and stokes in the Cochrane systematic review and meta-analysis 364 

of RCTs in which most of the studies were not directly investigating SFA replacement with 365 

protein (35).  366 

 367 

SFA and Cardio-metabolic risk 368 

Type-2 diabetes 369 

Evidence from systematic reviews and meta-analyses of prospective cohort studies indicate 370 

consistent evidence of no association between SFA reduction and risk of type-2 diabetes 371 

with the most comprehensive analysis including data from 8 studies (n= 237,454 372 

participants and 8739 cases) when the highest vs lowest SFA intakes were compared (37). 373 

Only two prospective cohort studies addressed the association between SFA replacement 374 

with PUFA on type-2 diabetes, showing inconsistent results (38). One study reported a 375 

significant association of 16% reduction in type-2 diabetes risk, whereas the other found no 376 

association, unless the model was unadjusted for BMI, when a significant 12% reduction was 377 

observed, indicating the significant impact of adiposity on type-2 diabetes risk (38). No 378 

evidence was available for SFA replacement with MUFA and protein.  379 

 380 

SFA and BMI  381 

Reducing the intake of SFA was found to significantly reduce body weight and BMI in a 382 

systematic review with meta-analysis in adults (35). However, the majority of the data 383 

included in the analysis came from trials in which there were reductions in the intakes of 384 

both saturated and total fats, limiting specific attribution to SFA reduction. Furthermore, 385 

these anthropometric measures were not primary outcomes throwing considerable 386 

uncertainty of the results.  387 

 388 

Fats, cardiovascular and cardio-metabolic risk markers 389 

 390 



Dietary lipids 391 

Dietary fats are key modulators of circulating lipids, with the reduction of serum LDL-C 392 

through SFA reduction and higher PUFA, particularly n-6 PUFA (linoleic acid) and shorter 393 

chain n-3 PUFA (alpha linoleic acid), and the serum triacylglycerol (TAG) – lowering effects of 394 

long chain n-3 PUFA from fish, fish oil or supplements, being central aspects of these dietary 395 

fat recommendations (Table 3).  396 

 397 

The most comprehensive analysis investigating the impact of dietary fats, predominantly 398 

SFA and replacement macronutrient on serum lipoprotein concentrations was conducted by 399 

Mensink for the World Health Organisation (WHO) and published in 2016 (47). Mensink 400 

initially performed a systematic review, which identified 84 relevant studies, 211 diet data 401 

points and 2353 participants (65% men and 34% women) who had a mean age of 38 years 402 

(21 and 72 years), BMI 24.2 kg/m2 (20.0 to 28.6 kg/m2), TC 5.1 mmol/L (3.7 to 6.7 mmol/L); 403 

LDL-C of 3.3 mmol/L) (2.3 to 4.8 mmol/L); HDL-C of 1.2 mmol/L (0.9 to 1.8 mmol/L) and TAG 404 

of 1.2 mmol/L (0.7 to 2.2 mmol/L). After performing a number of multiple regression 405 

analyses it was shown that reducing SFA and replacing with a mixture of cis-PUFA 406 

(predominantly linoleic acid and α-linolenic acid) or cis-MUFA (predominantly oleic acid) 407 

was more effective than replacing SFA with a mixture of carbohydrates on the lipoprotein 408 

profile (Table 4). More specifically it was estimated that serum TAG increased by a mean 409 

0.0011 mmol/L for every 1% energy SFA replacement with mixed carbohydrates, compared 410 

to a significant decrease in serum TAG of 0.004 mmol/L and 0.010 mmol/L for 1% energy 411 

replacement by cis-MUFA and cis-PUFA respectively. Furthermore, replacement of 1% 412 

energy from SFA with carbohydrate had no effect on serum TC:HDL-C ratio compared to a 413 

significant reduction of 0.027 and 0.034 after substitution with cis-MUFA and cis-PUFA 414 

respectively (Table 4). The results were consistent across a wide range of SFA intakes 415 

including less than 10% of total energy, consistent for both men and women and not 416 

effected by baseline lipid concentrations or type of intervention.  Further analysis showed 417 

that there were differential lipid responses according to the type of SFA. In comparison to a 418 

mixture of carbohydrates, an increased intake of lauric, myristic or palmitic acid raised 419 

serum TC, LDL-C and HDL-C and lowered TAG concentrations, while an increased intake of 420 

stearic acid had no significant effect on these or other serum lipid values. Lauric acid alone 421 

reduced the TC:HDL-C and LDL-C:HDL-C ratios compared with a mixture of carbohydrates 422 



(47). These data are supported by metabolic ward studies, which provide high quality data 423 

from carefully controlled study which involve provision of total dietary intake, with specific 424 

exchange of SFA for other macronutrients (48).   425 

 426 

Vascular function and blood pressure 427 

Hooper and colleagues offers the most comprehensive analysis on SFA and its replacement 428 

with other macronutrients on blood pressure and reported no significant effects (35). 429 

However, the evidence from this and a further systematic review without meta-analysis 430 

(49), is deemed limited, since blood pressure was a secondary outcome and not included in 431 

the search terms of the systematic reviews. More recently a RCT addressed the impact of 432 

8% energy replacement of SFA with n-6 cis-PUFA or cis-MUFA for an 18-week intervention 433 

period in 195 men and women with 1.5-fold elevated CVD risk compared with the general 434 

population, with vascular function measures as the primary outcomes. It was reported that 435 

a high SFA diet (17% energy) increased night SBP (+3.8 ± 1.5 mmHg), while replacing 8% 436 

energy from SFA with n-6 PUFA and MUFA attenuated the elevated night SBP, which 437 

reached significance for replacement with cis MUFA (-1.1 ± 1.3 mmHg) (50). Furthermore, 438 

relative to the SFA-rich diet, replacing with cis-MUFA and cis-n-6 PUFA significantly 439 

decreased endothelial (-47.3%, -44.9% respectively) and platelet (-36.8%, -39.1% 440 

respectively) micro-particle numbers and increased endothelial progenitor cell numbers 441 

(+28.4%) when SFA was replaced with cis-MUFA (51). These data suggest that replacement 442 

of SFA with MUFA may beneficially affect endothelial repair and maintenance leading to  443 

reduced CVD risk. Moreover, an acute intervention in 32 post-menopausal women showed 444 

that postprandial DBP (incremental area under the curve-iAUC) was significantly lower when 445 

meal SFA was replaced with MUFA, with a similar trend for SBP reduction, and a 446 

corresponding lower plasma nitrite response (iAUC) (52). This evidence suggests a potential 447 

beneficial effect of replacing SFA with unsaturated fats, particularly cis-MUFA, although 448 

further robust RCT with vascular measures as primary outcomes are required to confirm 449 

these findings. 450 

 451 

Glycaemic control 452 



The most comprehensive evidence for SFA and glycaemic measures is by Imamura  and 453 

colleagues in which a number of meta-regression analyses of various glycaemic and insulin 454 

resistant measures are presented (53). Data from 99 RCTs with 4144 participants, including 455 

individuals with and without type-2 diabetes were analysed and a significant lower fasting 456 

glucose (-0.04 mmol/L) was reported when 5% energy as SFA was iso-energetically 457 

substituted with PUFA, though no effect was shown with MUFA or carbohydrate 458 

substitution. A further meta-regression analysis of data from 23 RCTs with 618 participants 459 

reported that substitution of SFA with PUFA and MUFA significantly lowered serum HbA1c 460 

(a longer-term marker of glycaemic control) by a mean difference of -0.15% and -0.12%, 461 

respectively, with no effect of replacement with carbohydrate (53). 462 

Data from 3 RCTs with 249 participants (with and without type 2 diabetes), reported a 463 

significant increase in the rate of clearance of blood glucose in a 2-hour oral glucose 464 

tolerance tests (OGTT) (a recognised measure of glucose tolerance) reporting a mean 465 

difference of -1.69 mmol/L (35). However, this was a secondary analysis and measures of 466 

glycaemic control were not included in the search terms. A more comprehensive systematic 467 

review with meta-regression analysis included data from 11 RCT with 615 participants, and 468 

showed that substitution of SFA with either PUFA, MUFA or carbohydrate had no effect on a 469 

2-hour OGTT, or infusion measures (including hyperglycaemic or euglycaemic clamp and 470 

FSIGTT) (53). This finding is consistent with data from two of the largest RCTs that measured 471 

insulin sensitivity with an intra-venous glucose tolerance test as the primary outcome to 472 

investigate the effects of SFA replacement, with MUFA or carbohydrates of different quality 473 

(54, 55). However, meta-regression analysis of data on HOMA, a fasted marker of insulin 474 

resistance, from 30 RCTs with 1801 participants showed significant lower insulin resistance 475 

when SFA was substituted with PUFA and MUFA (mean difference -4.1% and -3.1% 476 

respectively) but not with carbohydrate (53). 477 

 478 

Conclusions 479 

There is consistent evidence that mortality from total CVD, CHD and stroke are not affected 480 

by SFA intake, and importantly no detriment to mortality from other causes from lower 481 

intakes (with the possible exception of strokes, particularly haemorrhagic strokes, in 482 



population living in East Asia). However, there is good evidence for a reduction in CVD 483 

events with lower SFA intakes from RCTs and some evidence for risk reduction of CHD 484 

events for lower SFA intake from RCT and prospective cohort studies. Replacement with 485 

unsaturated fats, rather than carbohydrates or protein, has greater benefit to both CVD and 486 

metabolic risk, with more evidence for PUFA replacement. CVD and CHD events have a 487 

serious adverse impact on health and quality of life, and while mortality from CVD has 488 

decreased over the past 50 years in many Western populations, the prevalence of CVDs is 489 

increasing. With the escalating aging population, more people are living with cardiovascular 490 

and metabolic diseases, resulting in a major adverse impact on health, quality of life and a 491 

significant increase in financial burden to the NHS. Reduction in events would therefore 492 

have a significant benefit to society and beyond. This evidence supports our current 493 

recommendation to reduce SFA to promote public health. However, refinement of this 494 

guidance will require a greater understanding of how the sustainable replacement of SFA 495 

with different types of carbohydrates and unsaturated fats impacts on hard clinical 496 

endpoints, with address of the influence of sex and age. 497 
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Adiposity Must have central obesity  
Waist > 94 cm males  
           > 80 cm females 
 
Plus 2 of the following: 

Glycaemia Fasting plasma glucose > 5.6 mmol/L 
 

Dyslipidaemia TAG >1.7 mmol/L 
 
Low HDL-C <1.03 mmol/L males 
                   < 1.29 mmol/L females 
or specific treatment 
 

   Hypertension          Systolic blood pressure > 130 mmHg 
Diastolic blood pressure > 85 mmHg 



or treatment  
 

 
  



Table 2. Mean daily intake of saturated (SFA), monounsaturated (MUFA) and polyunsaturated 
(PUFA) fatty acids (%total energy) intake for UK children and adults by age. (NDNS RP survey years 
7-8 (2014/15-2015/16) Bases unweighted.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
SFA: saturated fatty acid; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; 
%total eng: % total energy 
 
  

Age Group  SFA 
(%total eng) 

MUFA  
(%total eng) 

n-6 PUFA  
(%total eng) 

n-3 PUFA 
(%total eng) 
 

Children 4-10 y 
n=514 
 

10.0  ± 2.7 11.8 ± 2.1  4.3 ± 1.1 0.8 ± 0.3 

Children 11-18 y 
n=542 
 

12.4 ± 2.9 12.4 ± 2.4 4.7 ± 1.4 0.9 ± 0.3 

Adults 19-64 y 
n=1082 
 

11.9 ± 3.4 12.1 ± 3.0 4.7 ± 1.6 0.9 ± 0.4 

Adults 65-74 y 
n=181 
 

12.5 ± 3.6 11.3 ± 2.6 4.3 ± 1.4 1.0 ± 0.4 

Adults 75+ y  
n=174 
 

14.3 ± 3.9 11.6 ± 2.4 4.2 ± 1.6 1.0 ± 0.4 



Table 3. UK Dietary Reference Nutrient Intakes (RNI) for fats for adults as a percentage of total 
energy intake. 
 
 

 Individual Minimum 
 

Population Mean Individual Maximum 

SFA  10% 
 

 

cis-PUFA  
n-3 PUFA         0.2% 
n-6 PUFA         1.0% 
LC n-3 PUFA    0.45g  
 

6% 10% 

cis-MUFA 
 

 12%  

trans fatty acids 
 

 2%  

Total fatty acids 
 

 30%  

Total fat 
 

 33%  

SFA: saturated fatty acid; PUFA: polyunsaturated fatty acids; MUFA: monounsaturated fatty acid; LC 
n-3 PUFA, long chain n-3 polyunsaturated fatty acids. Taken from (19) 

 



Table 4. Estimated multiple regression equations for the mean changes in serum lipids when 1% of 
dietary energy from SFA is isoenergetically replaced by carbohydrates, cis-MUFA or cis-PUFA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SFA: saturated fatty acids; CHO: carbohydrates; cis-MUFA: cis-monounsaturated fatty acids; cis-
PUFA: cis-polyunsaturated fatty acids; CI, confidence interval; HDL-C: high-density lipoprotein-
cholesterol; LDL-C: low-density lipoprotein-cholesterol;  
1Number of diets/number of studies 
2 The 95% confidence intervals (CI) refer to the regression coefficients on the line directly above 
Adapted from (47)  
 
 
 
  

Lipid 
 

SFA for CHO SFA for cis-MUFA SFA for cis-PUFA No1 

 

Change TC2 
(mmol/L) 
CI (95%) 

-0.041 
 

-0.047 to -0.035 
P <0.001 

-0.046 
 

-0.051 to -0.040 
P <0.001 

-0.064 
 

-0.070 to -0.058 
P <0.001 

177/74 

Change LDL-C 
(mmol/L) 
CI (95%) 

-0.033 
 

-0.039 to -0.027 
P <0.010 

-0.042 
 

-0.047 to -0.037 
P <0.001 

-0.055 
 

-0.061 to -0.050 
P <0.001 

165/69 

Change HDL-C 
(mmol/L) 
CI (95%) 

-0.010 
 

-0.012 to -0.008 
P <0.011 

-0.002 
 

-0.004 to -0.000 
P = 0.014 

-0.005 
 

-0.006 to -0.003 
P <0.001 

163/68 

Change in TAG 
(mmol/L) 
CI (95%) 

0.011 
 

0.007 to 0.014 
P <0.001 

-0.004 
 

-0.007 to -0.001 
P = 0.022 

-0.010 
 

-0.014 to -0.007 
P <0.001 

172/72 

Change in 
TC:HDL-C ratio 
CI (95%) 

0.001 
 

-0.006 to 0.007 
P = 0.842 

-0.027 
 

-0.033 to -0.022 
P <0.001 

-0.034 
 

-0.040 to -0.028 
P <0.001 

159/66 



 
Figure 1 Log-linear association per unit change in low-density lipoprotein cholesterol (LDL-C) and 
the risk of cardiovascular disease as reported in meta-analyses of Mendelian randomization studies, 
prospective epidemiologic cohort studies, and randomised trials. The increasingly steeper slope 
of the log-linear association with increasing length of follow-up time implies that LDL-C has both a 
causal and a cumulative effect on the risk of cardiovascular disease. Taken from (5)  
 
 
Figure 2. Pyramid depicting hierarchy of evidence. 
 


