
Enhancement of indirect functional 
connections with shortest path length in 
the adult autistic brain 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Guo, X., Simas, T., Lai, M. C., Lombardo, M. V., Chakrabarti, ‐
B. ORCID: https://orcid.org/0000-0002-6649-7895, Ruigrok, A.
N. V., Bullmore, E. T., Baron Cohen, S., Chen, H. and ‐
Suckling, J. (2019) Enhancement of indirect functional 
connections with shortest path length in the adult autistic 
brain. Human Brain Mapping, 40 (18). pp. 5354-5369. ISSN 
1065-9471 doi: https://doi.org/10.1002/hbm.24777 Available at
https://centaur.reading.ac.uk/86054/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1002/hbm.24777 

Publisher: Wiley 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



R E S E A R CH A R T I C L E

Enhancement of indirect functional connections with
shortest path length in the adult autistic brain

Xiaonan Guo1 | Tiago Simas2 | Meng-Chuan Lai3,4,5 | Michael V. Lombardo4,6 |

Bhismadev Chakrabarti4,7 | Amber N. V. Ruigrok4 | Edward T. Bullmore2,8 |

Simon Baron-Cohen4,8 | Huafu Chen1 | John Suckling2,8 MRC AIMS Consortium

1The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in

BioMedicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China

2Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK

3Centre for Addiction and Mental Health and the Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, Canada

4Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK

5Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan

6Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Italian Institute of Technology, Rovereto, Italy

7Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK

8Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK

Correspondence

Xiaonan Guo, The Clinical Hospital of Chengdu

Brain Science Institute, MOE Key Lab for

Neuroinformation; School of Life Science and

Technology, Center for Information in

BioMedicine, University of Electronic Science

and Technology of China, Chengdu 610054,

People's Republic of China.

Email: guoxiaonan1026@gmail.com

Funding information

Autism Research Trust; China Scholarship

Council, Grant/Award Number:

201706070063; European Union's Seventh

Framework Programme, Grant/Award

Number: FP7/2007-2013; Fundamental

Research Funds for the Central Universities,

Grant/Award Numbers:

2672018ZYGX2018J079, ZYGX2016J187;

Innovative Medicines Initiative Joint

Undertaking, Grant/Award Number: 115300;

Medical Research Council; National Institute

for Health Research Cambridge Biomedical

Research Centre; National Natural Science

Foundation of China, Grant/Award Numbers:

61533006, 61673089, 81771919, 81871432;

O'Brien Scholars Program in the Child and

Youth Mental Health Collaborative; Sichuan

Science and Technology Program, Grant/

Award Number: 2018TJPT0016; Specialized

Research Fund for the Doctoral Program of

Higher Education of China, Grant/Award

Abstract

Autism is a neurodevelopmental condition characterized by atypical brain functional

organization. Here we investigated the intrinsic indirect (semi-metric) connectivity of the

functional connectome associated with autism. Resting-state functional magnetic reso-

nance imaging scans were acquired from 65 neurotypical adults (33 males/32 females)

and 61 autistic adults (30 males/31 females). From functional connectivity networks,

semi-metric percentages (SMPs) were calculated to assess the proportion of indirect

shortest functional pathways at global, hemisphere, network, and node levels. Group

comparisons were then conducted to ascertain differences between autism and neuro-

typical control groups. Finally, the strength and length of edges were examined to

explore the patterns of semi-metric connections associated with autism. Compared with

neurotypical controls, autistic adults displayed significantly higher SMP at all spatial

scales, similar to prior observations in adolescents. Differences were primarily in

weaker, longer-distance edges in the majority between networks. However, no signifi-

cant diagnosis-by-sex interaction effects were observed on global SMP. These findings

suggest increased indirect functional connectivity in the autistic brain is persistent from

adolescence to adulthood and is indicative of reduced functional network integration.
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1 | INTRODUCTION

Autism is a collective term for neurodevelopmental conditions with

behavioral difficulties in social reciprocity and social communication,

and restricted interests or repetitive behaviors (American Psychiatric

Association, 2013). Approximately 1 in 59 children receive an autism

diagnosis (Baio et al., 2018), with a reported male-to-female ratio

around 3:1 (Baio, 2014; Halladay et al., 2015; Lai, Lombardo, Auyeung,

Chakrabarti, & Baron-Cohen, 2015; Loomes, Hull, & Mandy, 2017).

Despite extensive genetic and neuroimaging studies, there is currently

little consensus on the etiology of autism. A likely reason for the lack

of consensus is that the autistic population is heterogeneous at

multiple levels of analysis (Lombardo et al., 2018; Lombardo, Lai, &

Baron-Cohen, 2019). Promising ways forward likely need to involve

strategies for discovering mechanisms that identify subsets of individ-

uals rather than searching for markers or explanations that apply to

the entire autism population.

The advent of functional connectivity derived from BOLD-

sensitive magnetic resonance imaging (MRI) during awake rest has

facilitated our understanding of typical functional brain organization

as well as differences that are apparent in psychiatric and neurological

disorders (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006;

Guo et al., 2016; Li et al., 2016; Woodward & Cascio, 2015). Early the-

ories and functional connectivity studies suggested that local over-

connectivity develops in concert with long-range under-connectivity

in autism (Belmonte et al., 2004; Just, Cherkassky, Keller, Kana, &

Minshew, 2007; Just, Keller, Malave, Kana, & Varma, 2012). However,

a caveat to the majority of work in the literature is that observed dif-

ferences in autism have been made on samples that are predomi-

nantly male. Autistic females are generally underrepresented in most

research, and thus prior observations are likely to have a male-bias

(Hull, Jacokes, Torgerson, Irimia, & Van Horn, 2017; Lai et al., 2017).

Compared to autistic males, our understanding of the brain functional

organization in autistic females remains largely unclear.

Complex network analysis has emerged as a powerful way to

quantitatively characterize the communication dynamics between

functional brain networks (Avena-Koenigsberger, Misic, & Sporns,

2018; Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). Briefly, the

functional connectome can be constructed as graphs that consist of

nodes (brain regions) linked by edges representing temporal synchro-

nicity (frequently correlation) between neurophysiological signals.

These edges are generally constrained to be sparse by imposing a

threshold on the strength of associated synchronicity. The discarding

of weaker edges has been undertaken on the assumption that neural

communication processes emerge preferentially through strong con-

nections and along shortest paths. However, the shortest path can be

calculated only if an overall map of the structure of brain network is

known, and it seems improbable that the brain might carry such a map

for continuous and instantaneous reference. Information is more likely

to be conveyed through the entire, fully connected connectome

involving most, if not all edges (Simas & Suckling, 2016; Suckling et al.,

2015), especially given temporal variations of brain organization (Allen

et al., 2014; Hutchison et al., 2013). The significance of weak links has

been widely acknowledged in the information transfer across friend-

ship networks (Granovetter, 1973, 1983); Weaker inter-personal rela-

tionships being the bridges between groups of strongly tied

individuals, thus facilitating the sharing of information over long dis-

tances. Recognition of the role of weak links in brain networks has

recently emerged from upwardly revised estimates of the inter-areal

connection density in mouse and macaque brains, to greater than

60% (Gamanut et al., 2018; Markov et al., 2013; Ypma & Bullmore,

2016). Within these dense networks, weak links are of greater geo-

metric length and evenly spatially distributed across the connectome

(Markov et al., 2013; Ypma & Bullmore, 2016).

A semi-metric edge occurs when the shortest topological path

between two regions is a circuitous path involving additional regions

rather than the direct path between them. This transitivity violation

behavior supports a high degree of redundancy and between-network

interactions in the brain (Simas et al., 2015; Simas & Suckling, 2016).

Many real-world weighted networks have been confirmed to have

various degrees of semi-metric behavior (Rocha, 2002; Tiago & Rocha,

2015). Semi-metric analyses of brain networks indicate that the func-

tional connectome exhibits high levels of semi-metricity, and psychiat-

ric disorders are characterized by idiosyncratic semi-metric patterns

(Peeters et al., 2015; Simas et al., 2015; Suckling et al., 2015).

While the core organizational topology of the connectome might

be under debate (Bertolero, Yeo, & D'Esposito, 2017; Griffa & Van

den Heuvel, 2018), the consensus is that the brain is modular, with

strong local connections defining subnetworks that subserve cognitive

functions. During early-life development, a time when atypical devel-

opment is often first diagnosed, rapid changes occur in connectome

that is subject to the competing forces of module segregation for

functional specialization, and inter-module integration to facilitate

behaviors combining specializations (Homae et al., 2010). A reduction
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in this integration appears to be a key characteristic of autism (Abbott

et al., 2016; Duan et al., 2017; Keown et al., 2013, 2017), and in par-

ticular the switching between local and global processing (Hong et al.,

2019). By virtue of their long-range influence and ubiquity in the

connectome, weak links are suggested as a potential substrate for

integrative communication, and thus metrics sensitive to their distri-

bution could be informative of neurodevelopmental disorders such as

autism. Global network measures of weighted networks, such as effi-

ciency and the size of connected components, are not affected by the

removal of weak links (Ypma & Bullmore, 2016). Semi-metric percent-

age (SMP) is well positioned to describe the contribution of weak links

to the overall network topology, and to be sensitive to their alter-

ations. Indeed, a prior study of semi-metricity in autism demonstrated

overabundant indirect shortest paths in the functional connectome in

autistic adolescents (Simas et al., 2015), with the suggestion that net-

work integration via indirect routing increases the dispersion of infor-

mation flow and possibly also the risk for atypical information

processing. Autistic individuals exhibit developmental changes in brain

activity and functional connectivity (Guo et al., 2017; Nomi & Uddin,

2015; Uddin, Supekar, & Menon, 2013). Accordingly, a key question is

whether semi-metric differences occur at other developmental stages

of autism, such as adulthood.

The current study sought to address several questions: (a) Is there

any difference between autistic adults and typical developing

(TD) participants in terms of semi-metric edges of the functional

connectome? (b) Does biological sex affect these differences? (c)What is

the pattern of differences in semi-metric edges? (d) Are these altered

semi-metric connections weak or strong, long or short edges? To this

end,we explored the semi-metric behavior of the functional connectome

in a sample of sex-balanced autistic adults (n = 61) and TD (n = 65) at dif-

ferent spatial scales. We first assessed semi-metric behavior at the

whole-brain level, then sequentially decomposed the semi-metric

connectome into hemispheres, networks, and nodes to ascertain the pat-

tern of differences in brain regions. In light of the developmental hypoth-

esis of functional connectivity in autism that suggests that autistic

adolescents and adults display similar deviation patterns of intrinsic func-

tional connectivity (Uddin et al., 2013), we hypothesized that increased

indirect connectivity would be observed in autistic adults.

2 | MATERIALS AND METHODS

2.1 | Participants

This analysis included 33 TD males, 32 TD females, 30 autistic males,

and 31 autistic females who participated in the UK Medical Research

Council Autism Imaging Multicenter Study (MRC AIMS) after provid-

ing written informed consent (Table 1). All participants were recruited

from the Autism Research Centre, University of Cambridge. The study

was approved by the Suffolk Research Ethics Committee, UK. All par-

ticipants were required to have age ≥ 18 years, be right-handed and

have full-scale IQ (FIQ) ≥ 70. The inclusion and exclusion criteria for

autistic individuals were identical to those of our earlier studies with

this dataset (Lai et al., 2010, 2013). Autistic adults received a clinical

diagnosis of autistic disorder or Asperger's syndrome according to the

criteria in International Classification of Diseases-10 (World Health

Organization, 1992) or Diagnostic and Statistical Manual of Mental

Disorders-IV text revision (American Psychiatric Association, 2000),

confirmed by Autism Diagnostic Interview-Revised (Lord, Rutter, & Le

TABLE 1 Demographic characteristics of the participants

Mean (SD)
Male TD Autistic males Female TD Autistic females

Statisticsa
Autism-TD

(n = 33) (n = 30) (n = 32) (n = 31) p-value

Sex (m/f) 33/0 30/0 0/32 0/31 - .86b

Age (years) 28.4 (6.1) 26.9 (7.4) 27.5 (6.3) 28.2 (8.3) NS .77

Full-scale IQ 116.3 (11.6) 112.6 (15.9) 120.7 (8.3) 112.9 (16.5) MA < FC (p = .017)

FC > FA (p = .023)

Autism < TD (p = .021)

Mean FD 0.18 (0.06) 0.27 (0.18) 0.18 (0.08) 0.20 (0.09) MC < MA (p = .015)

MA > FC (p = .016)

Autism > TD (p = .008)

Mean DVARS 1.3 (0.1) 1.3 (0.2) 1.2 (0.2) 1.2 (0.2) MC > FA (p = .011)

MA > FC (p = .008)

MA > FA (p = .001)

.65

ADOSc

SC - 15.7 (9.4) - 9.2 (8.6) MA > FA (p = .002) -

RRB - 1.0 (1.0) - 0.1 (0.3) MA > FA (p < .001) -

Abbreviations: ADOS, autism diagnostic observation schedule; FA, autistic females; FC, neurotypical females; FD, framewise displacement; MA, autistic

males; MC, neurotypical males; NS, nonsignificant (p > .05); RRB, repetitive, restrictive and stereotyped behavior score; SC, social-communication total

score.
aIndependent two-sample t-tests between any two groups, except nonparametric Mann–Whitney tests for ADOS scores (distribution significantly deviant

from normal).
bχ2 test.
cn = 30 for autistic males, n = 30 for autistic females.
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Couteur, 1994). Current symptoms were assessed using the Autism

Diagnostic Observation Schedule (ADOS) module 4 (Lord et al., 2000).

TD adults were screened and excluded if they have autism either

themselves or in their family history. Exclusion criteria for all partici-

pants included current or historical psychotic disorders, substance-use

disorders, severe head injury, genetic disorders associated with autism

(e.g., fragile X syndrome, tuberous sclerosis), intellectual disability,

hyperkinetic disorder, Tourette's disorder, or any other medical condi-

tion affecting brain function (e.g., epilepsy). All participants received

the assessment of Wechsler Abbreviated Scale of Intelligence measur-

ing intellectual ability (Wechsler, 1999).

2.2 | Data acquisition

All MRI data were acquired using a 3 T GE Signa scanner (General Electric

Medical Systems,Milwaukee,Wisconsin) at the CambridgeMagnetic Reso-

nance Imaging and Spectroscopy Unit. For the resting-state functional MRI

scan, participants completed a 13 min 39 s scan (625 volumes) with an

echo-planar imaging sequence using the following parameters: repetition

time=1,302 ms; echo time=30 ms; flip angle = 70�; matrix = 64 × 64; field

of view = 240 mm; 22 axial slices; slice thickness = 4 mm; slice gap = 1 mm.

The first five volumes of each resting-state acquisition were discarded to

allow for equilibrium of themagnetization leaving 620 volumes for analysis.

During acquisition, participants were instructed to rest with eyes closed,

but not fall asleep.We also obtained the high-resolution T1MRI images uti-

lizing the Driven Equilibrium Single Pulse Observation of T1 (DESPOT1)

mapping technique as described in previous studies (Deoni et al., 2008;

Ecker et al., 2013; Lai et al., 2013), with the following parameters: 176 con-

tiguous slices; voxel size = 1 × 1 × 1 mm; field of view = 256 mm; repeti-

tion time = 1,800 ms; inversion time = 850 ms; flip angle = 20�. These

imageswere used for registration to a standard anatomical atlas.

2.3 | Data preprocessing

Resting-state functional MRI data were preprocessed using Analysis of

Functional NeuroImages (AFNI, http://afni.nimh.nih.gov/; Cox, 1996)

and the Oxford Centre for Functional MRI of the Brain Software Library

(FSL, http://fsl.fmrib.ox.ac.uk/fsl/; Smith et al., 2004), according to pipe-

lines thatminimizemotion artifacts (Patel et al., 2014). Based on previous

semi-metric studies (Peeters et al., 2015; Simas et al., 2015; Suckling

et al., 2015), the following preprocessing stepswere applied to functional

images: slice-time correction; rigid-body head motion correction; obliq-

uity transformation to the structural image; affine co-registration to the

skull-stripped structural image; spatial transformation to the MNI

152 template in Talairach space; spatial smoothing (6 mm full width at

half maximum); and awithin-run intensity normalization to a whole-brain

median of 1,000. Processing steps for denoising head motion were then

performed including: wavelet despiking using the BrainWavelet Toolbox

(http://www.brainwavelet.org/); nuisance signal regression of the six

motion parameters and their first order temporal derivatives and ventric-

ular cerebrospinal fluid signal; and high-pass frequency filtering with a

cutoff frequency of 0.02 Hz. The mean framewise displacement

(FD) estimated during head motion correction and mean DVARS, the

frame-by-framewhole-brain signal change of the denoised preprocessed

data, were calculated for each participant (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012). We used a data-driven wavelet despiking

approach to remove head motion confounds (Patel et al., 2014). This

method is designed to denoise in the wavelet domain both linear and

nonlinear, nonstationary head motion artifacts spanning multiple fre-

quency scales while retaining information from unaffected scales. This

approach ensures the temporal continuity of time series without the

need for removal of frames, and has been demonstrated to outperform

scrubbing and time despiking algorithms (Patel et al., 2014).

2.4 | Functional connectome construction

The cerebral cortex and cerebellum was segmented into 268 regions of

interest (ROIs) using a functional atlas (Shen, Tokoglu, Papademetris, &Con-

stable, 2013). This parcellation scheme optimized time-course similarity

within each brain region yielding amore coherent set of functional subunits,

in comparison to an anatomical atlas. Using the same atlas, we also assigned

brain regions to eight networks: medial frontal, frontoparietal, default mode,

subcortical/cerebellum, motor, Visual I, Visual II, and visual association, fol-

lowing the approachof a previous study (Finn et al., 2015). Under this defini-

tion, temporal regions were grouped into different functional networks,

such as motor, medial frontal, and frontoparietal networks, according to the

functional homogeneity of these brain regions.

We discarded ROIs with incomplete coverage in at least one partici-

pant during the MRI scanning (Figure S4), and thus the Visual II network

was omitted due to only two regions in this network having full coverage

in all participants. As a result, 172 nodes pertaining to seven networks

were used (Figure S1). For each participant, the time series over all voxels

in each regionwere averaged to represent the regional time series.Wave-

let correlation analysis was applied to construct the connectivity graphs

from the regional time series utilizing the maximal overlap discrete wave-

let transform (MODWT) to decompose the extracted time series into four

frequency bands: Scale 1 (0.192–0.384 Hz), Scale 2 (0.096–0.192 Hz),

Scale 3 (0.048–0.096 Hz), and scale 4 (0.024–0.048 Hz; Achard et al.,

2006). Scale-specific inter-regional functional connectivity was estimated

by computing the Pearson's correlation coefficient between wavelet

coefficients at each scale. For each individual, a 172-node, weighted and

undirected functional connectivity matrix was derived from the non-

negative correlations at each of the four scales. Negative correlations

were excluded from the following analyses by setting them to zero.

2.5 | SMP analysis

To characterize the semi-metric behavior of the functional connec-

tome, we first converted the functional connectivity matrix to a dis-

tance matrix via the isomorphism:

dij =
1
wij

−1
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where wij is the functional connectivity and dij is the distance between

nodes i and j. The shortest path between any pair of nodes in the dis-

tance graph was calculated by Johnson's algorithm (Johnson, 1954).

When the shortest path between nodes is the direct edge that

joins them, it is defined as a metric edge. Conversely, when the

shortest path is an indirect edge via additional nodes, it is defined as a

semi-metric edge. The SMP, the ratio of the number of semi-metric

edges to the total number of edges from any given set of nodes, was

calculated for the whole-brain connectome as a measure of dispersed

communication between regions. This analysis was then performed at

the hemisphere, network and node levels by a decomposition of the

whole-brain connectome into subgraphs. The SMP of each node was

calculated to assess the semi-metric behavior associated with that

node, as the number of semi-metric edges in proportion to the total

number of edges emanating from that node.

2.6 | Semi-metric backbones

A semi-metric backbone was generated for each group to examine

the consistency of semi-metric edges across participants. The dis-

played edge on a backbone depicts the percentage of participants

within each group that have a semi-metric edge at that location.

Edges where less than 95% of the participants contributed a semi-

metric edge were excluded from the backbone to enhance

visualization.

2.7 | Statistical analyses

We constructed a general linear model to test for SMP differences

between autism and TD groups:

SMP= β0 + β1*Diagnosis + β2*Sex + β3* Diagnosis× Sexð Þ+ β4*Age+ β5*FIQ

where Diagnosis is autism or TD, Sex is male or female, Diagnosis ×

Sex is the interaction between diagnosis and sex, Age is the age fac-

tor, and FIQ is the covariate for FIQ. In view of the dependency of

these statistical tests at different spatial levels, analyses were carried

out under a hierarchical scheme. Statistical testing proceeded to the

next level of spatial refinement only if the test in the preceding level

was significant (p < .05). Nonparametric permutation testing (5,000

permutations) was applied to assess the significance of the model

coefficients.

We also examined the age effects on global SMP by using a three-

way interaction model:

SMP= β0 + β1*Diagnosis + β2*Sex + β3*Age+ β4* Diagnosis× Sexð Þ+ β5* Diagnosis×Ageð Þ
+ β6* Sex×Ageð Þ+ β7* Diagnosis× Sex×Ageð Þ+ β8*FIQ

Since no significant age-related interaction effect was observed,

we used the two-way interaction model in the following analysis for

simplification, and age was included as a covariate in the general linear

model.

2.8 | Strength and length of the semi-metric edges

To identify the strength of links contributing to semi-metric topology,

we derived a set of functional connectomes thresholding the connec-

tivity (i.e., wavelet coefficient correlations) across the range 0–1 with

an increment of 0.01. If the connectivity between regions i and

j exceeded a given threshold then this edge was kept in the functional

connectome, if not it was set to 0 denoting the absence of direct

functional connectivity between the two nodes. We then calculated

the SMP for these functional connectomes and an identical general

linear model was then applied to explore the main effects of diagnosis

on global SMP. A complementary analysis thresholding strong edges

was also performed to provide additional support for the relationship

between functional connectivity strength and SMP. As previously,

nonparametric permutation testing (5,000 permutations) was applied

to assess the significance of statistical model.

In view of the dependency between distances and functional con-

nectivity abnormalities observed in previous neuroimaging studies of

autism (Belmonte et al., 2004; Just et al., 2007), we examined the aver-

age lengths of semi-metric edges. The anatomical distance between

any two regions was defined as the Euclidean distance between their

centroids. At a given threshold, R0, the average semi-metric edge

length was calculated for all the semi-metric edges whose strength r

satisfies 0 < r < R0. The general linear model was then applied on semi-

metric edge length to explore the main effect of diagnosis. Nonpara-

metric permutation testing (5,000 permutations) was applied to assess

the significance of statistical model with the statistical significance set

at p < .05. To assess the effect of the number of edges, we plotted the

distribution of correlation coefficients for each participant, and com-

pared the edge number between autism and TD groups.

Since the removal of edges may remove the connectedness of

the connected graph, we calculated the threshold of functional con-

nectivity that separated the connectome into unconnected sub-

graphs, for each individual. The general linear model and

nonparametric permutation testing (5,000 permutations) were again

performed to test for group differences. The statistical significance

was set at p < .05.

2.9 | Graph theory analysis

To illustrate the sensitivity of SMP in detecting autism-related differ-

ences, we additionally performed conventional network analysis on the

whole-brain, fully connected, weighted functional connectome using

the GRETNA package (Wang et al., 2015). Small-world properties

including clustering coefficient, normalized clustering coefficient γ, nor-

malized shortest path length λ, and small-worldness σ, and network effi-

ciency, including global efficiency and local efficiency were calculated

for all non-negative weighted connections (Latora & Marchiori, 2001;

Watts & Strogatz, 1998). The general linear model was then con-

structed to explore the differences between autism and TD groups on

these network measures as previously. Nonparametric permutation

testing (5,000 permutations) was applied to assess the significance of

statistical model with statistical significance set at p < .05.
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2.10 | Correlations between SMP and autism
symptoms

The relationships between SMP at the whole-brain, hemisphere, and

network levels and measures of symptom severity in autistic individ-

uals were explored using Spearman correlation coefficients, assum-

ing a monotonic relationship although not necessarily linear. Sex,

age, and FIQ were taken as covariates. Autism symptom severity

was assessed by social-communication and repetitive, restrictive and

stereotyped behavior scores in ADOS. Bonferroni correction was

performed for multiple comparisons with statistical significance set

at p < .05.

3 | RESULTS

3.1 | Demographic and head motion characteristics

There were no significant differences in sex, age, and mean DVARS

between autism and TD groups. However, autistic individuals showed

lower FIQ and higher mean FD than the TD group. Female TD partici-

pants had slightly higher FIQ on average than the autistic males and

females. Autistic males had significantly higher ADOS scores than

autistic females. Autistic males exhibited greater mean FD than neuro-

typical males and females. Autistic males showed greater mean

DVARS than autistic females and neurotypical females, and autistic

F IGURE 1 Semi-metric percentages at different frequency scales. (a) Effect sizes of the main effect of diagnosis, sex, and interaction effect
between diagnosis and sex at the whole-brain level. F-value maps of main effect of diagnosis at network level at scales: (b) 1, (c) 2, and (d) 3
[Color figure can be viewed at wileyonlinelibrary.com]
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females showed smaller mean DVARS than neurotypical males

(Table 1).

3.2 | Semi-metricity at different frequency scales

Whole-brain SMP at scale 4 showed the smallest main effect size of diag-

nosis, sex and interaction effect between diagnosis and sex (Figure 1).

Scale 4 is the lowest frequency band and was close to the cutoff fre-

quency of the filter, and was therefore excluded from our analysis. SMP

at scales 1–3 had the same direction of effect and similar effect sizes for

the main effect of diagnosis at whole-brain level, and similar patterns of

F-value maps of between-group difference within and between atlas

networks (Figure 1). Since the blood oxygenation level dependent signals

in the frequency interval 0.06–0.125 Hz have been demonstrated to

detect changes in the brain's functional organization (Bassett, Nelson,

Mueller, Camchong, & Lim, 2012; Hermundstad et al., 2013; Suckling

et al., 2015), the primary analyses focused on connectivities calculated at

scale 3. A factorial analysis of variance results at other scales are pro-

vided at Table S1.

3.3 | Semi-metric backbones

Within-group semi-metric backbones are shown in Figure 2a,b. Autistic

individuals displayed large variations in the percentage of semi-metric

edges compared with the TD group. The number of semi-metric edges in

the backbones for autism and TDgroups is 208 and 249, respectively.

3.4 | SMP differences between autism and TD
groups

At the whole-brain level, we observed significant main effects of diagno-

sis (F = 4.35, p = .034), sex (F = 7.13, p = .0076), and age (F = 19.55,

F IGURE 2 Group differences in semi-metricity. Axial projections of semi-metric backbones for (a) TD and (b) autism groups. Edges with the
percentage of participants <95% are not shown for clarity. (c) Group comparisons in SMP in the whole-brain, left, right and inter-hemisphere
edges. The "*" symbol denotes significant group differences at that level (p < .05). (d) Main effect of diagnosis at the network level. The + denotes
significantly higher SMP in autism compared with TD participants (p < .05) [Color figure can be viewed at wileyonlinelibrary.com]
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p < .001; Table 2) on SMP. No interaction effect between diagnosis and

sex (F = 1.67, p = .19), or effect of FIQ (F = 0.033, p = .86) was found.

Post-hoc analyses showed that autistic individuals had significantly

increased SMP compared with the TD group (Figure 2c). Analysis at the

hemisphere level confirmed that overall, between-group differences had

contributions of higher SMP in the right hemisphere and inter-

hemispheric connections in the autism group than TD group. At the

network level, compared with TD group, consistently higher SMP was

identified in the autism group in the motor network and between four

networks: frontoparietal––subcortical/cerebellum, default mode––sub-

cortical/cerebellum, subcortical/cerebellum––Visual I, motor––Visual I

(Figure 2d). Node-level analysis showed that autistic individuals had

higher SMP in multiple brain regions excepting the left anterior cingulate

cortex and right insula (Figure 3).

3.5 | SMP differences between males and females

Post-hoc analysis for the main effect of sex showed that females

exhibited higher global SMP than males (Figure 4a). Sex differences

on SMP were observed in both hemispheres as well as the inter-

hemispheric edges. Compared with females, males displayed lower

SMP in all networks with significant sex differences (Figure 4b).

3.6 | Age effect on SMP

Post-hoc analysis for the main effect of age showed that whole-brain

SMP exhibited an age-dependent reduction. The relationship between

age and whole-brain SMP was plotted for each group controlling for

sex and FIQ (Figure 4c). All the hemispheric divisions showed negative

correlations between age and SMP (Figure S2). Examination of age

effects revealed age-related decreases in SMP in a large proportion of

networks (Figure 4d). A model with a three-way interaction did not

find any significant interplay between diagnosis and age (F = 0.0037,

p = .95), between sex and age (F = 0.13, p = .71), or among diagnosis,

sex and age (F = 2.40, p = .13) on global SMP.

3.7 | Strength and length of semi-metric edges

Compared with the TD group, autistic individuals showed significantly

higher SMP when removing low strength edges from the connectome

in the threshold range 0–0.1 (Figure 5a). In both groups, SMP declined

as the threshold increased. The complementary analysis removing

high strength edges showed significantly higher SMP in autism than

TD groups in the threshold range 0.8–1 (Figure 5b). Group compari-

sons on semi-metric edge lengths showed that autistic individuals had

on average longer semi-metric edges than the TD group (Figure 5c).

Edge length distribution for all edges and metric edges are provided in

Figure S3. No significant main effect of diagnosis (F = 0.67, p = .42),

main effect of sex (F = 0.65, p = .42), or interaction effect between

diagnosis and sex (F = 0.31, p = .59) was observed on the threshold of

functional connectivity graph that first separated the connectome into

unconnected subgraphs.

3.8 | Graph theory analysis

Conventional graph theory analysis of whole-brain unthresholded func-

tional connectomes showed no significant differences between autism

and TD groups in clustering coefficient (F = 3.79, p = .058), normalized

clustering coefficient γ (F = 1.44, p = .24), normalized shortest path length

λ (F = 2.54, p = .12), small-worldness σ (F = 3.69, p = .058), global effi-

ciency (F = 3.58, p = .06), and local efficiency (F = 3.44, p = .07). No signifi-

cant interaction effect between diagnosis and sex was observed in

clustering coefficient (F = 2.04, p = .15), normalized clustering coefficient

γ (F = 1.33, p = .26), normalized shortest path length λ (F = 2.10, p = .15),

small-worldness σ (F = 2.83, p = .09), global efficiency (F = 1.65, p = .20),

and local efficiency (F = 1.54, p = .21).

3.9 | Correlations with autism symptoms

No significant correlations were found between whole-brain SMP and

ADOS scores in autistic individuals.

4 | DISCUSSION

This study examined indirect functional connectivity during the resting-

state in autistic adults and typically developing participants. Compared

with the TD group, prominent increases in SMPwere revealed in autistic

adults at the whole-brain, hemisphere, network, and node levels

(Figures 2 and 3). Notably, strength and length analyses on semi-metric

TABLE 2 Factorial analysis of variance
on SMP (F/p values)Global

Left
hemisphere

Right
hemisphere

Inter-
hemisphere

Main effect of

diagnosis

4.35/0.034* 3.73/0.053 4.27/0.035* 3.98/0.042*

Main effect of sex 7.13/0.0076* 5.88/0.017* 10.52/0.001* 5.22/0.022*

Diagnosis * sex 1.67/0.19 1.84/0.174 1.67/0.21 1.30/0.27

Age 19.55/

<0.001*
10.13/0.0024* 19.13/<0.001* 22.59/<0.001*

FIQ 0.033/0.86 0.26/0.61 0.17/0.67 0.067/0.80

F-value, the F statistic of the F-test on the general linear model.

p-value, the p statistic of the nonparametric permutation testing.

*Significant effect of factors (p < .05).
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functional connectivity indicated that weaker edges contributed prefer-

entially to semi-metric topology (Figure 5), with semi-metric functional

connectivity associated with longer edges on average in autistic individ-

uals. However, in this sex-balanced sample we did not find significant

diagnosis-by-sex interaction effects, indicating that the increases in SMP

in autism compared to TD participants are not dependent on sex, or not

detectable with the current sample size. Nevertheless, conventional

graph theory analyses on the whole-brain functional connectome failed

to reveal autism-related alterations in network properties, while semi-

metric analyses detected topological changes specific to autism, con-

firming the sensitivity of semi-metricity when weak links are included in

the connectome.

Autism is a neurodevelopmental condition that has been charac-

terized by abnormalities in intrinsic functional connectivity (Belmonte

et al., 2004). In autism, the primary contribution to positive deviations

in whole-brain semi-metricity came from higher SMP in the intra/-

internetworks including the frontoparietal, default mode, sub-

cortical/cerebellum, motor and Visual I networks. These topological

findings using semi-metricity extend previous autism-related

observations showing changes in functional connectivity involving the

default mode network (Guo et al., 2019; Lynch et al., 2013),

subcortical-cortical networks (Cerliani et al., 2015), cerebro-cerebellar

networks (Khan et al., 2015) and visual-motor networks (Nebel et al.,

2016). The increases in semi-metricity in autism were consistently

observed across different frequency scales (Scales 1–3), and even in

high-frequency bands (Figure 1). Emerging evidence has demon-

strated the persistence of resting-state spontaneous fluctuations

above 0.1 Hz (Chen & Glover, 2015; Peeters et al., 2015; Yuan, Wang,

Zang, & Liu, 2014), and these findings collectively highlight the impor-

tance of characterizing high-frequency brain activities in this and

future studies of developmental disorders. Although semi-metric

edges were largely increased in number, semi-metric backbones of

autism showed more variation (i.e., a reduced number of edges repre-

sented) in their spatial distribution than that of the TD group. This

inconsistency in location of the shortest indirect functional connec-

tions is in agreement with the evidence of a general increase in het-

erogeneity of imaging measures in autism (Chen et al., 2018; Jeste &

Geschwind, 2014).

F IGURE 3 Group differences on node semi-metric percentage (SMP). Figures are arranged in a descending order according to the effect size
of group comparison at the network level, (a) being the largest. The size of the node is proportional to the F-value of the main effect of diagnosis.
Only nodes with p < .05 are presented. The colors of the nodes represent different networks according to the key. Black node names denote
increased SMP in autism, while blue node names denote decreased SMP in autism. ACC, anterior cingulate cortex; DLPFC, dorsal lateral
prefrontal cortex; IFG, inferior frontal gyrus; MCC, middle cingulate cortex; MTG, middle temporal gyrus; rolandic_Oper, rolandic operculum;
PCC, posterior cingulate cortex; PCL, paracentral lobule; PostCG, postcentral gyrus; STG, superior temporal gyrus; STP, superior temporal pole;
vmPFC, ventral medial prefrontal cortex [Color figure can be viewed at wileyonlinelibrary.com]
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The higher SMP across a wide range of spatial scales that was

observed in autistic adults closely coincides with previous findings in

autistic adolescents (Simas et al., 2015). Although not a longitudinally

designed experiment, age-related changes in semi-metricity in autism

were strong, but did not differ in their rate from TD participants

(Figure 4c). The developmental model of functional connectivity in

autism proposes the presence of hyper-connectivity in autistic chil-

dren with hypo-connectivity emerging in adolescence and adulthood

(Uddin et al., 2013). In contrast to these putative changes in connec-

tivity strength, typically among only the strongest connections, differ-

ences in semi-metricity relative to TD individuals, which are

dependent on the weaker connections, appear stable and persistent

between the second to fifth decades of life. How early in life these

changes occur is unknown, but tracking this measure in young chil-

dren could give insights into the neurobiological etiology of autism.

While sex differences are well established for measures of resting-

state functional connectivity in TD individuals (Biswal et al., 2010;

Ritchie et al., 2018), these differences are currently poorly understood

in autism partly due to the limited number of autistic females partici-

pating in neuroimaging studies. The question arises whether the brain

functional organization differs between autistic males and females

after taking typical sex differences into account. To the best of our

knowledge, only three studies have assessed resting-state functional

connectivity in autistic males and females (Alaerts, Swinnen, &

Wenderoth, 2016; Di & Biswal, 2016; Kozhemiako et al., 2019).

Largely sex-independent functional connectivity differences were

F IGURE 4 Sex and age effects on SMP. (a) Post-hoc analyses for main effect of sex on SMP. The "*" symbol denotes significant group
differences at that level (p < .05). (b) Main effect of sex at the network level. The "-" symbol denotes significantly lower SMP in males compared

with females. (c) The relationship between age and global SMP controlling for sex and FIQ for autism and TD groups. (d) Main effect of age at the
network level. The "-" symbol denotes a significantly negative linear relationship between SMP and age [Color figure can be viewed at
wileyonlinelibrary.com]
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observed in autism, with sex-dependent differences only identified

between the precuneus and medial cerebellum/dorsal frontal cortex

(Di & Biswal, 2016). Using seed-based and whole-brain functional

connectivity analyses, Alaerts et al. (2016) found that autistic males

predominantly displayed hypo-connectivity while autistic females pre-

dominantly exhibited hyper-connectivity compared to sex-matched

typical controls. Interhemispheric homotopic functional connectivity

was showed to follow different development trajectories between

autistic males and females (Kozhemiako et al., 2019). In the current

study, failure to detect a diagnosis-by-sex interaction effect on global

SMP (Table 2) suggests sex-independent semi-metric changes in autis-

tic adults, although small sample sizes reduce statistical power.

Alternatively, there may be interactions in localized regions that are

undetectable at the whole-brain level, and our hierarchical approach

to statistical testing traded sensitivity for robustness. There was a

weak, but significant interaction at the highest frequencies (Table S2),

which may be worthy of future attention, but on current evidence

global increases in SMP do not discriminate between autistic males

and females. Future studies with a larger sample size may allow us to

better examine the role of sex in heterogeneity, focusing on consen-

sus regions of sexual differentiation in brain structure or function

while bearing in mind that the characteristic patterns of autism often

differ in spatial distribution in men and women (Alaerts et al., 2016;

Lai et al., 2013).

F IGURE 5 Strength and length of semi-metric edges. Main effect of diagnosis on global semi-metric percentages (SMP) when removing
(a) low strength edges and (b) high strength edges. The "*" symbol denotes significant group differences (p < .05). Detailed information on
significant group differences are plotted in the mini-panel. Shaded regions represent standard errors. (c) Average semi-metric edge length and the
distribution of semi-metric edges. Line plots denote the relationship between correlation coefficients and semi-metric edge lengths, and the
histogram denotes the average number of semi-metric edges within each group. The + denotes significant main effects of diagnosis on semi-
metric edge length (p < .05; red: autism > TD; blue: autism < TD); the "×" symbol denotes significant main effects of diagnosis on the number of
semi-metric edges (p < .05; red: autism > TD; blue: autism < TD) [Color figure can be viewed at wileyonlinelibrary.com]
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Global changes in semi-metricity were not correlated to overall

symptom scores, although there is no particular reason to a priori

hypothesize this relationship and again, our hierarchical approach to

statistical testing might have been compromised. Increases in the

number of circuitous shortest functional pathways in autism result in

the involvement of additional nodes in brain communications, and this

may have a bearing on specific cognitive and behavioral styles associ-

ated with autism. The SMP only implies the origins and destinations

between which pathways of preferential information flow might

occur, in particular between the default mode network, visual and

motor systems, frontal-parietal axis, and sub-cortical/cerebellum

(Figures 2 and 3). Mapping the routes through the brain that form the

set of shortest pathways and considering their variation across indi-

viduals in close detail (Leming, Su, Chattopadhyay, & Suckling, 2019)

may give clues to the networks implicated and allow the generation of

hypotheses connecting semi-metricity and cognitive and behavioral

styles.

Previous graph theoretical studies have suggested that brain net-

work organization in autistic adolescents and adults exhibits less clus-

tering, reduced local efficiency and higher global efficiency over a

certain range of thresholds (Itahashi et al., 2014; Rudie, Brown, et al.,

2012). Such findings have been associated with enhanced random-

ness of the functional connectome (Rudie, Brown, et al., 2012). In gen-

eral, while there is a consensus that there are significant differences

in connectivity associated with autism, the extant literature is some-

what conflicted with regards to the distribution of the effects, with a

meta-analysis of functional MRI connectivity indicating local under-

connectivity (Lau, Leung, & Lau, 2019) while that for EEG and

MEG studies indicates mixed local over-connectivity and under-

connectivity dependent of frequency (O'Reilly, Lewis, & Elsabbagh,

2017), and the absence of converging evidence remains (Hull et al.,

2017). However, most if not all prior functional connectivity studies

with MRI imposed thresholds on edge strengths that discarded wea-

ker edges; the inclusion of weak edges does not strongly impact on

graph theoretical metrics sensitive to weighted shortest path lengths,

such as efficiency (Ypma & Bullmore, 2016). This study, and other

emerging evidence, demonstrates the important role that weak links

have, particularly in the long-range integration of the modular organi-

zation of the brain, to which semi-metric analysis appears sensitive in

a consistent manner across age groups.

Analysis of the strength of semi-metric edges confirmed the role

weaker edges play in the increased number of indirect shortest paths

in autism. Furthermore, changes to semi-metric topology in autism are

focused on longer distance weaker edges compared to the TD group

(Figure 5). Functional connectivity studies have previously reported

distance-dependent patterns of differences in autism (Courchesne &

Pierce, 2005; Just et al., 2007; Long, Duan, Mantini, & Chen, 2016).

Belmonte et al. (2004) proposed that autistic individuals may exhibit

widespread, reduced long-distance functional coordination and

increased local functional connectivity among brain regions, although

this has not been universally replicated (Supekar et al., 2013). Our

findings support the effect of anatomical distance on network

changes in autism from the perspective of semi-metric topology, and

thus support the argument that anatomical distance is an important

consideration in future functional connectivity studies of autism (Long

et al., 2016).

Increased semi-metricity is suggestive of greater dispersal of com-

munication across the brain in autistic individuals; that is, autistic indi-

viduals synchronously co-activated an increased number of brain

regions during wakeful rest. In the current study, significant contribu-

tions to the global increases in SMP were primarily localized between

networks, highlighting atypical, large-scale internetwork coordination

in autism between visual and default mode networks as well as sub-

cortical regions known to the involved in social cognition (Abbott

et al., 2016; Duan et al., 2017; Hagen, Stoyanova, Baron-Cohen, &

Calder, 2012). The interaction of these networks is proposed as the

mechanism for the top-down control of behavior (Posner & Petersen,

1990), and the involvement of additional nodes in between-network

communication may be a source of the reduced integration that is a

key feature of connectivity in autism (Hull et al., 2017).

Typical neurodevelopment is accompanied by increased functional

integration and segregation of large-scale brain networks (Fair et al.,

2007; Fair et al., 2008; Stevens, Pearlson, & Calhoun, 2009). However,

a growing number of studies have reported reduced functional inte-

gration and segregation of brain networks in autistic individuals

(Fishman, Datko, Cabrera, Carper, & Muller, 2015; Keown et al., 2017;

Rudie, Shehzad, et al., 2012). Invoking Granovetter's idea of weak

links as the connections between strongly connected peer groups, the

introduction of intermediaries in those connections could dilute or

interfere with message passing and weaken their coordinated func-

tion. This atypical communication may appear over a limited period of

time in early life as a divergence in functional brain organization, pos-

sibly associated with altered neural development (Courchesne et al.,

2007), that then persists across the life span. Our findings with semi-

metricity provide additional support for future studies exploring the

importance of brain network development in understanding the cogni-

tive and behavioral styles of autistic individuals.

5 | LIMITATIONS

Several limitations of the current study should be noted. First, having

obtained similar effects in semi-metricity in both autistic adolescents

and adults (Simas et al., 2015), we have conjectured developmental

origins of changes, but using a cross-sectional design. Future longitu-

dinal studies are needed to delineate the neurodevelopmental trajec-

tory of semi-metric topology in autism, especially during early stages

of life. Second, the Visual II network was excluded from the current

study due to incomplete coverage during MRI scanning, giving rise to

the unintended implication of the absence of an effect in this net-

work. Third, it remains unclear how semi-metric topology interacts

with cognition and physiological processes. Semi-metric behavior of

the functional connectome is assumed to reveal functional relevance

of indirect paths. Such circuitous functional connections suggest a dis-

persion of information flow among and between brain networks

(Simas et al., 2015; Simas & Suckling, 2016). Exploring semi-metricity
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during cognition tasks may facilitate better characterization of net-

work integration in autism, as would focusing on behavior that is sub-

served by the networks. Fourth, larger sample sizes are needed for

future studies, to better examine the role of heterogeneity by sex.

Although the current study has a fair number of females compared to

other work, it still represents a relatively small sample. Statistical

power could increase substantially with more data, and may allow the

discovery of effects that interact with sex.

6 | CONCLUSION

This study extends our understanding of semi-metric topology to

autistic adult individuals who, like adolescent individuals, have

increased circuitous shortest functional pathways at whole-brain,

hemisphere, network, and node levels. Moreover, the older age of the

autistic participants compared to those in our previous study (Simas

et al., 2015), and the absence of any difference in the rate of change

of semi-metricity with age, suggest a biomarker that is persistent from

adolescence to adulthood. Changes to semi-metricity in autism are

attributed to weaker and longer-distance functional connectivity and

reduced integration of functional networks, which aligns and encom-

passes much of the extant literature. Encouraged by these results, fur-

ther replications in larger datasets and detailed mapping of functional

shortest pathways offer a consistent and informative approach to the

complex alterations in functional architecture associated with autism.
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