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Abstract

Infection efficiency is a key epidemiological parameter that determines 

the proportion of pathogen spores able to infect and cause lesions once 

they have landed on a susceptible plant tissue. In this study, we present a

new method to measure infection efficiency of Zymoseptoria tritici using a

replicated greenhouse experiment. Z. tritici is a fungal pathogen that 

infects wheat leaves and causes Septoria tritici blotch (STB), a major 

disease of wheat worldwide.

We devised an original experimental setup, where we (i) attached living 

wheat leaves to metal plates allowing for time-resolved imaging of 

disease progress in planta. Since lesions were continuously appearing, 

expanding and merging during the period of up to three weeks, daily 

measurements were necessary for accurate counting of lesions. We also 

(ii) used reference membranes to characterize the density and the spatial 

distribution of inoculated spores on leaf surfaces. In this way, we captured

the relationship between the number of lesions and the number of viable 

spores deposited on the leaves and estimated the infection efficiency of 

about 4 % from the slope of this relationship. 

Our study provides a proof of principle for an accurate and reliable 

measurement of infection efficiency of Z. tritici. The method opens 

opportunities for determining the genetic basis of the component of 

quantitative resistance that suppresses infection efficiency. This 

knowledge would improve breeding for quantitative resistance against 

STB, a control measure considered more durable than deployment of 

major resistance genes.
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Introduction

Foliar fungal pathogens of plants produce immense numbers of spores 

(Sache & de Vallavieille-Pope, 1995), but only a small fraction of them 

causes new infections. Most of the spores do not land on plant tissue that 

they can infect and are “lost” in the environment. Even among the spores 

that succeed in finding suitable host tissue, only a moderate proportion 

will infect and cause lesions. This proportion is determined by the 

infection efficiency, defined as the probability of an individual spore that 

lands on a susceptible host tissue to cause a lesion. Infection efficiency is 

one of the key determinants of the pathogen's rate of transmission. From 

the perspective of the host, the host's ability to suppress the infection 

efficiency is a major component of quantitative resistance that reduces 

the rate of epidemic development (Parlevliet, 1979). 

In this study, we present a novel method to measure infection efficiency 

of Zymoseptoria tritici (formerly known as Mycosphaerella graminicola). 

This fungal pathogen causes Septoria tritici blotch (STB), a major disease 

of wheat (Triticum aestivum) in Europe (Jørgensen et al., 2014) and 

worldwide (Orton et al., 2011). Even controlled epidemics of the disease 

can lead to notable yield losses if the environmental conditions favour the 

development of the disease (Fones & Gurr, 2015). STB is controlled mainly

by foliar fungicide applications and deployment of disease resistant wheat

varieties. However, acquired fungicide resistances are spreading in the 

genetically diverse population of Z. tritici and diminishing the efficacy of 

fungicide treatments (Fraaije et al., 2005; Zhan et al., 2006). Similarly, the

pathogen has the capacity to adapt to both major gene resistance 

(Cowger et al., 2000) and quantitative resistance (Cowger & Mundt, 

2002). Quantitative resistance is generally thought to be more durable 

than major gene resistance (St.Clair, 2010). Accurate phenotypic 
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characterization of infection efficiency has the potential to improve 

breeding for quantitative resistance against STB.

The infection cycle of Z. tritici starts with the deposition of inoculum 

composed of wind-dispersed ascospores and rain-splash dispersed 

pycnidiospores on the leaves (Suffert et al., 2011). On the leaf surface, 

germinating spores penetrate the plant tissue through stomata, enter the 

apoplast and start to colonise the leaf in an asymptomatic manner. During

a latent period of roughly two weeks (Kema et al., 1996), the fungus 

evades recognition by the plant defence mechanisms. Once the fungus 

has colonised the plant tissue, it starts to produce necrotic lesions within 

which it produces pycnidia and eventually releases new pycnidiospores 

that disperse further and generate secondary infections (Orton et al., 

2011).

Infection efficiency can be quantified as the ratio between the number of 

lesions visible on a leaf and the number of viable spores deposited on a 

leaf surface through artificial inoculation. Therefore, to measure infection 

efficiency one needs to measure accurately the number of viable spores 

deposited on the leaf and the resulting number of lesions formed on the 

leaf. Measurements of infection efficiency were conducted in many 

airborne fungal pathogens including several rust species. Sache & de 

Vallavieille-Pope (1995) discuss data on 22 species. Methods used to 

estimate the number of deposited spores include counting spores directly 

on the leaf surface (Mehta & Zadoks, 1970; Melching et al., 1988), 

weighing the inoculum (Sache, 1997), and using a known volume of liquid 

inoculum in which the concentration of spores was measured (Levy, 1989;

Shine & Jarriel, 1990).

To achieve a precise measurement of infection efficiency, not only the 

amount of inoculum but also its spatial distribution across the leaf surface 

needs to be characterized. When fungal spores arrive to the surface of the
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leaf in groups, for example as droplets containing several spores, an 

infection event cannot be with certainty attributed to a single spore. The 

same argument holds in the case of high densities of spores on the leaf 

surface when many spores are likely to be present within the area 

covered by a typical lesion. In these cases, the infection efficiency cannot 

be determined by simply dividing the number of lesions by the number of 

deposited viable spores. Moreover, possible interaction between spores 

when producing lesions may bias the estimate of infection efficiency. 

Thus, a spatially uniform, precisely measured and sufficiently low density 

of spores is needed for a reliable measurement. Different approaches to 

achieve suitable distribution of inoculum include spore settling towers 

(Brown & Kochman, 1973), atomizers (Statler & McVey, 1987) and 

paintbrushes (Melching et al., 1988). 

One of the challenges in estimating the infection efficiency of Z. tritici is 

that spores of this pathogen are not well visible on wheat leaves and 

cannot be counted directly on the leaf surface. The only measurement of 

infection efficiency of Z. tritici available to date was reported by Fones et 

al. (2015). They applied spore suspensions to leaves and spread the 

inoculum across the leaf manually with a finger covered by a rubber 

glove. The estimate of the infection efficiency was then given by the ratio 

between the number of individual lesions observed on the leaves and the 

total number of spores contained in the inoculated suspension. However, 

Fones et al. (2015) characterized neither the spatial distribution of the 

deposited spores across the leaf surface nor the viability of spores. In 

addition, the number of lesions was only measured at a single time point, 

which may have led to an underestimation of lesion numbers, if not all 

lesions appeared or if some lesions already merged by this time.

In this study, we developed a method to measure the infection efficiency 

of Z. tritici accurately, with a relatively low effort and low cost. One of the 

key aspects of the method was the use of reference membranes that 
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provided information on the density and the spatial distribution of viable 

spores deposited on leaves. In our setup, the leaves were attached to 

metal plates, so that the inoculated area of the leaves was easy to 

observe and image during the infection. This allowed us to record the 

appearance of individual lesions with temporal resolution from the time 

when first lesions started to appear, which improved crucially the 

accuracy in counting lesions.

Materials and Methods 

Plant and fungal material

We planted winter wheat (Triticum aestivum) cultivar Drifter seeds in 

6x6x11 cm pots containing soil substrate (Jiffy soil substrate GO PP7, 

Netherlands) and watered them regularly. Cultivar Drifter was classified as

susceptible to STB according to multi-year field trials in Germany (Risser, 

2010) and also was found to be one of the most susceptible among 335 

elite European wheat cultivars exposed to the diverse natural Z. tritici 

population in a recent field experiment in Switzerland (Karisto et al., 

2018). The plants were fertilized ten days after sowing with 1 l of fertilizer 

solution (Wuxal Universal-Dünger, Maag-Garden, Switzerland; 1 ml/l 

diluted in tap water) per 20-24 pots. The plants were grown in the 

greenhouse with the light/dark cycle of 16/8 hours, the relative humidity 

of 70 % and the temperature of 18/15 °C. After inoculation, the plants 

were trimmed twice a week by cutting the newly emerged leaves above 

the inoculated second leaf.

To prepare fungal spores for the inoculation of the plants, Z. tritici strain 

ST_CH3_99_3D7 (short identifier 3D7; Zhan et al., 2002; Septoria tritici 

blotch network, 2017) blastospores were grown in 50 ml yeast-sucrose-

broth (10 g/l sucrose, 10 g/l yeast extract, 50 mg/l kanamycin) for 5 days 

at 18 °C in the dark. We chose this strain because it is known to be highly 
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virulent on cultivar Drifter under greenhouse conditions (for example 

Palma-Guerrero et al., 2016) and is well characterized both genetically 

and phenotypically. The liquid culture was then filtered, pelleted and 

suspended in sterile water and the concentration of spores was 

determined using a KOVA Glasstic Slide counting chamber. The inoculum 

was diluted to achieve the required concentrations and 1 ml/l of Tween20 

(Biochemica, Applichem Gmbh, Germany) was added. The spore 

suspension was kept on ice until the inoculation of the plants was 

conducted on the same day.

Experimental procedures

The whole experiment was repeated twice as described below. Each 

repetition can be considered as an independent biological replicate. For 

clarity, we refer to the two biological replicates as the “first experiment” 

and the “second experiment”.

We inoculated second leaves of sixteen days old wheat seedlings. For this 

purpose, the pots were placed into a tray with an aluminium plate in the 

middle as shown in Fig. 1. The leaves to be inoculated were arranged in 

four sets containing 5-8 leaves each on an aluminium plate and attached 

with eight elastic threads. Reference membranes (Whatman™ 3MM Chr 

Chromatography paper, Fisher scientific) were attached to plates next to 

each leaf set. Spore suspension was applied while moving the paint gun 

sprayer (RevolutionAir, Fini Nuair, Italy) twice along the plate. The sprayer

was operated with 20 psi pressure (adjusted with the pressure reducer 

Filterdruckminderer R 1/4”, Einhell, Germany) and the minimal flow rate to

maximize the atomization of the spore suspension and the uniformity of 

coverage.

The plants were infected with spore suspensions that contained 5x102, 

103, 5x103, 104, 5x104, and 105 spores/ml. Different concentrations of 

spores in the suspension corresponded to different treatments. A control 
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treatment contained no spores. Each treatment was applied to a single 

tray of plants that contained four leaf sets with reference membranes 

placed on both sides of each leaf set. The number of leaves per treatment 

ranged from 22 to 30. After the inoculation, the plants were enclosed in 

plastic bags for three days to keep them at a high humidity. Plants were 

maintained in the greenhouse until the time when observation of new 

lesions was no longer possible due to coalescence of lesions or the onset 

of natural senescence.

After the inoculation, reference membranes were transferred from 

infection plates to yeast-malt-agar (12 g/l bacteriological agar, 4 g/l yeast 

extract, 4 g/l malt extract, 4 g/l sucrose, 50 mg/l kanamycin) and 

incubated for 5-6 days in darkness at 18° C. After the incubation, we 

measured the density of Z. tritici colonies by counting them within two or 

three squares of 1 cm2 on digital images of each reference membrane 

(Appendix S1, Fig. S1 shows examples of colony images). In the second 

experiment, in treatment with 105 spores/ml we used 0.25 cm2 squares. 

To determine the nature of units that formed fungal colonies, we 

inspected them under the microscope. When we sprayed the same spore 

suspension on a microscopy slide during the inoculation, we observed only

individual spores without any clumps (we observed 82 spores in total, 

Appendix S1, Fig. S2). This indicated that each colony grew from an 

individual spore and therefore individual spores acted as colony forming 

units (CFUs). At the same time, colony densities did not differ significantly 

between reference membranes that belonged to the same treatment 

indicating that the density of spores was the same on reference 

membranes and on the leaves in their vicinity. We used the colony density

measured in this way as an estimate of the density of viable spores in the 

inoculated areas of leaves assuming that each viable spore was able to 

form a colony on rich medium under favourable conditions. We provide 

more details on the inoculation method in Appendix S1.
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Observation of leaves and lesions

To estimate the number of CFUs that landed on each leaf, the areas of 

leaves were measured. Photographs of leaf sets were taken on the day of 

inoculation and leaf areas were then measured using Adobe Photoshop 

CS6. Numbers of CFUs on each leaf were calculated by multiplying the 

mean densities of colonies on reference membranes on each side of the 

leaf set by the areas of individual leaves.

To observe the development of lesions, we inspected the infected leaves 

every day. After the onset of lesion appearance, digital images of leaf sets

were captured every day until majority of the leaves became covered by 

lesions or naturally senescent. Lesions were counted manually on digital 

images. Newly appeared lesions were marked in the images on the day of 

their first appearance and the markers were transferred to images 

captured on the following days in order to avoid double counting of 

lesions. The total number of lesions on each leaf was calculated from the 

data on daily appearance of lesions. The lesion density (number of lesions 

per cm2 of leaf area) in each treatment was calculated for each leaf 

separately based on the total number of lesions that appeared until the 

last day of observation [34 days post inoculation (DPI) for the first 

experiment and 36 DPI for the second experiment]. Several leaves were 

damaged during the experiment and removed.

Data analysis

Analysis of the data was conducted in R (R Core Team, 2017). We 

evaluated differences within treatments and between treatments in terms 

of lesion density and spore density (density of viable spores on the leaf 

surface). For this purpose, we used two separate analyses of variance 

(ANOVA). To estimate the infection efficiency of spores that were applied 

to the leaves, we performed linear regression for the dependency 

between the spore density and the lesion density on the leaf surface. At 
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high concentrations, we expected to observe a saturation of this 

dependency because there is a limit to the number of lesions that can 

form on a single leaf due to finite space and/or resources. For this reason, 

we used the Akaike information criterion (AIC) to compare a linear model 

that does not include saturation to a nonlinear model that accounts for 

possible saturation. AIC balances the goodness of fit with the number of 

parameters (or complexity) of the model. In this way, we determined 

whether saturation occurred at high spore densities and identified the 

range of spore densities that is not affected by saturation. As the 

nonlinear model, we used the classical Michaelis-Menten model, 

y=ax/(1+bx), where y is the lesion density, x is the spore density, and a 

and b are the model parameters. As the linear model, we used the 

function y=ax. We fitted the two models to the data of each experiment 

with the nonlinear least squares minimization method (routine nls in R). 

The data points at high densities that were in the range of saturation 

according to the AIC score were excluded and the infection efficiency was 

estimated as the slope of the best-fitting linear function. 

To compare the infection efficiency between the two experiments, we 

tested whether the two slopes were significantly different. First, we used 

the analysis of covariance (ANCOVA) to test whether there was a 

significant interaction between the slope and the experiment. Second, we 

tested whether the two slopes were different using the t-test for the slope 

difference (Zar, 2010).

Results

Experimental design

The spore suspension appeared to be uniformly distributed across the 

surfaces of leaves and reference membranes when spraying with the 
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paint gun sprayer. The uniformity of the inoculum was quantified by 

measuring the spatial distribution of fungal colonies on references 

membranes. The colony densities on reference membranes that belonged 

to the same treatment exhibited a slight variation but did not differ 

significantly (ANOVA, p-values between 0.087 and 0.92). As expected, the 

colony density (averaged over the reference membranes belonging to the 

same treatment) mostly increased monotonically with increasing the 

concentration of spores in the suspension (inoculum concentration), as 

can be seen from Table 1. Only the second lowest spore concentration in 

the second experiment exhibited a non-monotonic pattern. The spraying 

resulted on average in 1-2 colonies/cm2 on the reference membranes per 

1000 spores/ml in the spore suspension (Appendix S1, Fig. S3).

The elastic threads kept the leaves sufficiently flat and stable during the 

progress of the disease, which enabled accurate observation of the 

inoculated area of leaves over time. 

Appearance of lesions

According to our observations, lesions were continuously appearing on 

leaves during the time span of about three weeks (Fig. 2). Figures 2a and 

2b show the rate of appearance of new lesions over time, while Figures 2c

and 2d show the change over time in the total number of lesions. In every 

treatment, the dynamics was qualitatively similar. First, lesions started to 

appear at a slow rate, then the rate of their appearance increased, 

reached its maximum and eventually dropped to zero (Fig. 2a, 2b). After 

this time, no new lesions appeared, hence the total number of lesions 

remained constant (Fig. 2c, 2d).

At higher spore densities, lesions started to appear earlier compared to 

lower spore densities [compare for example purple curves (squares) to 

cyan curves (stars) in Fig. 2; the difference was not tested statistically]. 

Lesions that appeared earlier started to grow and merge with lesions that 
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appeared in their vicinity a few days later (Fig. 1). Without daily 

observations, we would not be able to distinguish them. Leaves inoculated

with higher concentrations of spores carried larger final numbers of 

lesions. For this reason, in treatments with highest spore densities, lesions

covered the entire leaf surface soon after their appearance and we could 

not observe any further appearance of lesions (Fig. 2). On the contrary, in 

treatments with lower spore densities, numbers of lesions were smaller 

and we could observe individual lesions over a longer time.

Measurement of infection efficiency

To determine the infection efficiency, we characterized the numbers of 

viable spores applied to the leaves and measured the numbers of lesions 

that subsequently appeared on the leaves (Table 1). In different 

treatments, the mean spore density (the number of spores per unit leaf 

area) ranged from 1.3 to 117 spores/cm2 in the first experiment and from 

3.4 to 223 spores/cm2 in the second experiment. The mean lesion density 

(the number of lesions per unit leaf area) measured on the final day of 

observation also varied between treatments. This quantity ranged from 

0.092 to 2.8 lesions/cm2 in the first experiment (measured at 34 DPI) and 

from 0.066 to 5.2 lesions/cm2 in the second experiment (measured at 36 

DPI).

Comparison between linear and nonlinear models based on AIC favoured 

the nonlinear dependency of the lesion density on the spore density. The 

AIC scores were 223 and 108 in the first experiment, 446 and 300 in the 

second experiment for the linear and the nonlinear models, respectively. 

This means that the dependency exhibits a substantial saturation (dashed

lines in Fig. 3a). To determine the range of spore densities that is not 

affected by the saturation, we excluded the treatment with the highest 

spore densities (117—119 spores/cm2 in the first experiment and 212—

242 spores/cm2 in the second experiment). Now, the comparison favoured

the linear model (AIC score -31.1 and -29.8 in the first experiment; 157 

12

310

315

320

325

330

335



and 159 in the second experiment for linear and nonlinear models, 

respectively). This indicates that saturation only played a role at the 

highest spore densities, while at lower spore densities the lesion density 

depended linearly on the spore density and was not affected by 

saturation. We used this range (all data except for the treatment with 105 

spores/ml that corresponds to highest spore densities) to determine the 

infection efficiency.

We estimated the infection efficiency as the slope of the linear part of the 

relationship between the lesion density and the spore density (solid lines 

in Fig. 3). This yielded the estimates (3.8 ± 0.1) % in the first experiment 

(R2 = 0.95) and (4.3 ± 0.2) % in the second experiment (R2 = 0.95), where

the uncertainties represent 95 % confidence intervals. According to 

ANCOVA, the slopes differed between the two experiments (p = 1.1 x 10-6,

F = 24.7, df = 1) and the t-test (Zar, 2010) showed the same result (p = 

1.8 x 10-4, t = 4.6, df = 327). The full dataset can be accessed from the 

Dryad Digital Repository xxx.

Discussion

We presented an accurate and reliable method for measuring the 

infection efficiency of Z. tritici. Main advantages of the method include the

use of reference membranes to estimate densities of viable spores 

deposited on leaves and the daily imaging of leaves attached to metal 

plates. Counting colonies on reference membranes allowed us to estimate

accurately densities of inoculated viable spores and confirmed the 

uniformity of their spatial distribution on leaf surfaces. Attaching leaves to

metal plates allowed for efficient daily observations that resulted in 

accurate counting of individual lesions. Stability of the leaves ensured that

the inoculum was not moving across the leaf surface and helped to 

observe the appearance of lesions from daily photographs. The method is 
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based on commonly used low-cost equipment, which makes it affordable 

and easy to modify.

Each of the individual components of our method has been used in the 

literature previously. Similar ideas on estimating densities of viable spores

with reference plates were used by Chakraborty et al. (1990) in a different

pathosystem; a range of inoculum concentrations, including low 

concentrations, were used by Fones et al. (2015) in this pathosystem; 

attached leaf assays were previously used in this pathosystem for 

example by Keon et al. (2007) and Lee et al. (2014); time-resolved 

imaging was used before in fungal biology for example in studies of spore 

ejection of basidiomycete fungi (Noblin et al., 2009). In addition, 

numerous studies measured the ability of fungal spores to grow colonies 

under conducive conditions in vitro to estimate the viability of spores: for 

example Valsecchi et al. (2017) in Aspergillus fumigatus and King et al. 

(2017) in Z. tritici. Unlike the previous studies in this pathosystem that 

used cotton swabs to deploy the inoculum suspension on leaves (Lee et 

al., 2014) or pipetted a well-defined volume of spore suspension onto the 

leaf and spread it using a gloved finger (Fones et al., 2015), we used a 

paint gun sprayer [comparable to Statler & McVey (1987) for example] 

that produced an evenly distributed "fog" of tiny droplets. This allowed us 

to characterize the density of viable spores and to verify the uniformity of 

their spatial distribution using reference membranes. Thus, the novelty of 

our work lies not so much in each individual component of the method per

se, but rather in a specific way we combined these methodological 

aspects that allowed us to obtain accurate estimates of the pathogen's 

infection efficiency.

In contrast to some of the earlier measurements of infection efficiency in 

plant pathogens that quantified the total number of spores in the applied 

inoculum, we estimated the number of viable spores in the applied 

inoculum. This is because when estimating the infection efficiency, we 
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need to quantify the proportion of viable spores that have caused lesions. 

We estimated the density of viable spores from the density of fungal 

colonies on agar plates (as described in Materials and Methods). 

Depositing spores of fungal pathogens on solid medium, incubating them 

under optimal conditions and counting the number of resulting colonies is 

an established method to evaluate the viability of fungal spores that was 

previously used in Z. tritici (King et al., 2017) and in other pathosystems, 

for example in Aspergillus fumigatus, (Valsecchi et al., 2017). Viability of 

spores is likely to be higher on agar than on the leaf surface because (i) 

agar plates contain more nutrients and (ii) plates are maintained under 

constant environmental conditions that are close to optimal for the fungus

in contrast to the leaf surface in the greenhouse that is exposed to various

stress factors such as variable humidity, temperature and light with a 

wide frequency spectrum including UV. This difference is acceptable 

because our goal was to estimate the maximum number of viable spores 

in the sprayed suspension. Decreased survival of spores on leaves 

compared to agar is included in the estimate of the infection efficiency. At

the same time, there could be factors that promote germination and thus 

the observed viability of the spores on the leaf surface. However, to our 

knowledge, there is no evidence for host-specific cues or other factors 

promoting germination of Z. tritici spores on the leaves. For this reason, 

we assumed that the maximum viability of spores was captured by the 

method described.

We found that the relationship between the density of fungal colonies on 

reference membranes and the concentration of spores in the suspension 

was monotonic: colony density increased at higher concentrations of 

spores. An exception to this tendency was observed only for the second 

lowest spore concentration in the second experiment, which exhibited a 

non-monotonic pattern (see Table 1). This non-monotonic pattern could 

result from a non-homogeneous distribution of spores in the suspension 

during the spray, if the spores had time to settle down inside the sprayer 
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tank. At low concentrations of spores, the dependency may also be 

sensitive to slight variations in the manual movement of the sprayer 

between treatments. Noticeable deviations from a perfect linear fit 

between the spore concentration in the suspension and the density of 

colonies on plates were observed for example in treatment 104 spores/ml, 

which resulted in higher colony density than expected (Appendix S1, Fig. 

S1). All these observations indicate that the measurement of the 

concentration of spores in the inoculum suspension is not sufficient to 

determine reliably the actual density of spores on leaf surfaces. Therefore,

an important aspect of the method is to characterize the density of viable 

spores present on the leaves after every spray of the inoculum 

suspension. We achieved this conveniently by counting colonies on 

reference membranes.

Our measurements show that lesions did not all appear within a narrow 

time span of a few days. On the contrary, they were continuously 

appearing during a period of up to three weeks (see Fig. 2), even though 

we used a single pathogen strain to infect a single host variety. This 

observation is consistent with recent modelling of distributions of 

incubation periods (Ottino-Loffler et al., 2017), but it contradicts the 

established view in the literature on Z. tritici according to which lesions 

appear after an asymptomatic period of approximately two weeks (Kema 

et al., 1996; Steinberg, 2015). Shaw (1990) used pycnidiospores from the 

natural field population of Z. tritici to inoculate wheat plants in the 

greenhouse and found that lesions were appearing continuously during 

the period of up to 25-30 days. However, in the experiments of Shaw 

(1990), the asynchronicity in lesion appearance could result from both the

variation in the latent period between different pathogen strains and the 

"developmental" asynchronicity within a single pathogen genotype that 

we observed here. Recently Fones et al. (2017) have shown that there is a

large variation in the timing of penetration events of spores originating 

from the same inoculation event. They observed spores on leaf surfaces 
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until 10 DPI and found that the fraction of successfully penetrating 

individuals was continuously increasing. This variation in the duration of 

the epiphytic growth offers a possible explanation for large differences in 

the times of appearance of individual lesions that we observed. At higher 

inoculum concentrations, lesions started to appear earlier possibly due to 

a higher total number of infections that led to an increase in the number 

of rare “fast” infections. Consequently, the large variation in the duration 

of the asymptomatic period that we observed at low inoculum 

concentrations is likely hidden in experiments that use high inoculum 

concentrations [e.g., 106 spores/ml is typically used in greenhouse trials, 

for example in (Stewart & McDonald, 2014)]. In this case, leaves become 

fully necrotic only a few days after the appearance of first lesions and the 

appearance of new lesions is no longer visible.

In treatments with low densities of only 1-5 spores/cm2, it is highly 

plausible that individual lesions were caused by single spores. This is 

consistent with experimental findings of Shaw, (1990), in which the 

inoculations were conducted with the population of natural field strains of 

Z. tritici. Fones et al., (2015) confirmed this finding using the reference 

strain of Z. tritici IPO323. This may not be the case at higher spore 

densities when the area covered by a typical lesion contains many viable 

spores and the spores may cooperate to cause infection and form a lesion.

Indeed, Z. tritici is able to undergo anastomosis between germinating 

spores when they are deposited on the leaf close to each other (Mehrabi 

et al., 2009). Spores may also interact in more subtle ways, as was 

observed in other foliar plant pathogens (Jeffries, 1995, Jesus Junior et al., 

2014). For example, when two spores penetrate the leaf surface at nearby

locations, the probability of lesion formation may become higher 

(cooperation) or lower (antagonism) than twice the probability to form a 

lesion by an individual spore that is far away from other spores. Also, 

when one spore causes a lesion, the probability of other spores in the 

vicinity to cause a lesion may increase (cooperation) or decrease 
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(antagonism). Such interactions should lead to departures from a linear 

dependency between the density of spores and the density of lesions of 

leaves. According to our measurements, this dependency is linear within a

wide range of spore densities, from low densities of 1-5 spores/cm2 to 

intermediate densities of 10-80 spores/cm2. This indicates that in this 

range of spore densities, lesions are caused by single spores with no 

evidence of interaction between spores within the limits of accuracy of our

measurements. 

Interaction between spores may still occur at higher spore densities, but 

in our experiment, its effect would not be visible because of the saturation

of the leaf surface with lesions.

Some evidence for a possible cooperation between spores belonging to 

the same strain in causing lesions was provided by Haueisen et al. (2017).

After inoculating wheat leaves with a suspension containing a high 

concentration of Z. tritici spores (108 spores/ml), they found cases when 

several hyphae entered a single stoma. Additionally, noticed that the 

spatial distribution of stomatal penetrations appeared to be clustered, 

rather than uniform. Some indication for an antagonistic interaction 

between different Z. tritici strains in pycnidia formation was reported by 

Schuster et al. (2015): each pycnidium was produced by a single strain 

when two strains were inoculated together even though hyphae of the two

strains were found growing next to each other.

Our estimates of infection efficiency were close to 4 % in both biological 

replicates. However, statistical tests revealed that the difference in the 

estimates between the two replicates was significant. Several factors may

be responsible for the difference. The experiment was conducted under 

controlled greenhouse conditions but changes in the external weather 

may still have affected the outcomes. While the first experiment was 

performed in early January, the second experiment was performed in the 
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beginning of March. Hence, both the amount of external light and the 

external temperature differed between the experiments. In addition, 

during the second experiment, we observed several times water droplets 

on infected leaves and aluminium plates. This may have caused 

microclimatic differences between the two replicates and such differences

are known to affect infection success of Z. tritici (Shaw, 1990). The fungal 

inoculum was grown from the same batch and prepared with the same 

protocol in both replicates, but the fungus is capable of rapidly 

accumulating genetic changes through mitotic events (Möller et al., 2018) 

and this may have contributed to the difference in the estimates of 

infection efficiency.

Infection efficiency of Z. tritici blastospores of strain IPO323 was 

estimated to be around 50 % on wheat cultivar Galaxie by Fones et al. 

(2015), which is much higher than the estimate of around 4 % that we 

report here. Many factors may have contributed to this difference. 

Aggressiveness of the two pathogen strains may be different as well as 

the degree of resistance of the two wheat cultivars. Greenhouse 

conditions in the experiment by Fones et al. (2015) differed from our 

experiment in terms of light and temperature. Also, the age of infected 

seedlings was only 10 days compared to 16 days in our experiment. 

Another major factor could be the difference in the inoculation methods. 

They pipetted droplets of the spore suspension on the leaf surface and 

spread them with a gloved finger, while we sprayed the spore suspension 

creating a fog consisting of microscopic water droplets. When spread with 

a finger, spores were likely to be placed close to the leaf surface. In 

contrast, a substantial fraction of water droplets in the fog may have 

remained on trichomes (leaf hairs), which could diminish their penetration

success. Our estimate for infection efficiency of Z. tritici, about 4 %, lies 

within the lower range of what was previously reported in the literature for

other fungal pathogens. Among 22 infection efficiency estimates in 

different species discussed by Sache & de Vallavieille-Pope (1995), eight 
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species had the values within the range of 0–5%, five species ranged 

within 6–15%, five species ranged within 16–25% and four species ranged 

within 26–50%. Notably, Sache & de Vallavieille-Pope (1995) used the 

highest value for each species they found in the literature. More recent 

research on measuring the infection efficiency of fungal plant pathogens 

is scarce, but Li et al. (2010) estimated the infection efficiency of soybean 

rust (Phakopsora pachyrhizi) to be within the range of 0.5–10%.

We infected a single wheat variety with blastospores of a single strain of 

Z. tritici to provide a proof of principle for the reliable measurement of the

infection efficiency. Using blastospores is a standard method to conduct 

greenhouse trials with this pathogen, but the role of blastospores in the 

pathogen's life cycle remains unknown. However, our method could also 

be used to measure the infection efficiency of both pycnidiospores and 

ascospores, which are known to drive the epidemics in the field. Infection 

efficiency may be different in other pathogen strains or when infecting 

other wheat varieties. Haueisen et al. (2017) observed that three strains 

of Z. tritici differed in terms of the time between the inoculation and the 

first stomatal penetration and in terms of the degree of epiphyllous 

proliferation. We also expect to observe specialization of pathogen strains 

to certain wheat varieties, because the pathogen population is extremely 

diverse (Linde et al., 2002) and is known to adapt rapidly to different host 

environments (Poppe et al., 2015). These factors may lead to different 

infection efficiencies in different Z. tritici strains. Therefore, we do not 

expect that our estimate of infection efficiency in this particular pathogen 

strain-host cultivar combination would be representative of the natural 

pathogen population. However, using this method, a number of pathogen 

strains can be tested on a number of wheat varieties. Such a 

comprehensive characterization of infection efficiency would improve the 

predictive power of mathematical models that describe epidemic 

development and pathogen evolution and in this way contribute to 

improving control strategies. If a sufficient degree of heritable variation in 
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terms of infection efficiency is found in the pathogen population, the 

genetic basis of this trait could be revealed, for example by conducting a 

genome-wide association study. Similarly, from the perspective of the 

host, our method opens opportunities for determining the genetic basis of 

the component of quantitative resistance that suppresses infection 

efficiency. This knowledge has the potential to improve and accelerate 

breeding for quantitative resistance against STB.
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Supporting information legends

Appendix S1 Detailed description of the outcomes of the spraying 

method used for inoculation.

Figure S1 Representative reference membranes showing colonies of Z. 

tritici.

Figure S2 Microscopic images of sprayed spores.

Figure S3 Dependency of the colony density on the spore concentration 

in the inoculum suspension.
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Figure legends

Figure 1 (a) Experimental setup. Second leaves were attached to metal 

plates by elastic threads. Wooden sticks were used to stabilize individual 

pots and to support the plastic bags during the high humidity period after 

the inoculation. Reference membranes were placed on both sides of each 

leaf set during the inoculation. (b,c,d) Representative leaf sets at 14, 17 

and 23 days post inoculation from left to right corresponding to the 

concentration of spores of 5x102 spores/ml (b), 104 spores/ml (c), and 

5x104 spores/ml (d). Lesions are marked with coloured dots that indicate 

the day and the position of their first appearance.

Figure 2 Appearance of lesions. The number of lesions that appeared 

since the previous observation as a function of time in the first experiment

(a) and in the second experiment (b). Total number of lesions in the first 

experiment (c) and in the second experiment (d). The values were divided

by the total leaf area separately in each treatment. Note the logarithmic 

scale on the y-axis; values are added by 0.01 to show zeros. Different 

colors/symbols represent treatments with different spore concentrations 

in the inoculum suspension: purple squares (5x102 spores/ml); blue 

diamonds (103 spores/ml); yellow filled triangles (5x103 spores/ml); red 

diamonds (104 spores/ml); green open triangles (5x104 spores/ml); cyan 

stars (105 spores/ml).

Figure 3 Infection efficiency of Z. tritici spores. (a) The lesion density is 

plotted against the spore density; (b) magnified view of the low-density 

part of panel (a). Data and curves are shown in grey for the first 

experiment and in black for the second experiment. Different symbols 

correspond to treatments with different concentrations of spores in the 

inoculum, same as in Fig. 2. Dashed lines show the nonlinear function 
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y=ax/(1+bx) fitted to full data of each experiment. Solid lines show the 

linear function y=ax fitted to data below 100 spores/cm2.
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