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Key Points: 

 Earth System Models (ESMs) may significantly underestimate global photosynthesis 

because they do not take vegetation structure into account. 

 Introducing vegetation clumping into ESMs with multi-layered canopy schemes 

alleviates light limitation of photosynthesis at lower canopy levels. 

 In our study, the addition of vegetation clumping into the land surface scheme of the 

UKESM resulted in an additional uptake of carbon by photosynthesis of 5.53 PgC yr-1 

globally and 4.18 PgC yr-1 between 20°S-20°N latitude. 
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Abstract 1 

The impact of vegetation structure on the absorption of shortwave radiation in Earth System 2 

Models (ESMs) is potentially important for accurate modelling of the carbon cycle and hence 3 

climate projections. A proportion of incident shortwave radiation is used by plants to 4 

photosynthesize and canopy structure has a direct impact on the fraction of this radiation which 5 

is absorbed. This paper evaluates how modelled carbon assimilation of the terrestrial biosphere is 6 

impacted when clumping derived from satellite data is incorporated. We evaluated impacts of 7 

clumping on photosynthesis using the Joint UK Land Environment Simulator, the land surface 8 

scheme of the UK Earth System Model. At the global level, Gross Primary Productivity (GPP) 9 

increased by 5.53 ± 1.02 PgC yr−1 with the strongest absolute increase in the tropics. This is 10 

contrary to previous studies that have shown a decrease in photosynthesis when similar clumping 11 

data sets have been used to modify light interception in models. In our study additional 12 

transmission of light through upper canopy layers leads to enhanced absorption in lower layers in 13 

which photosynthesis tends to be light limited. We show that this result is related to the 14 

complexity of canopy scheme being used. 15 

Plain Language Summary 16 

Plants need sunlight to photosynthesize; however, the way in which light absorption is typically 17 

described by climate models is not very realistic because it does not take into account structural 18 

differences in forest canopies. Identifying more realistic ways to represent these processes in 19 

forests would allow us to better predict photosynthesis and to have a greater understanding of the 20 

impact of future climate change. In our paper we discuss a method to include information about 21 

vegetation structure derived from satellites in climate models. Our results indicate that such 22 

models underestimate the amount of light reaching plants in the lower layers of dense forests.  23 

Consequently, global photosynthesis is likely underestimated in climate models due to a lack of 24 

consideration of plant structural variability.  25 

1 Introduction 26 

Understanding the global carbon cycle is critically important for understanding current 27 

and future climate change. The terrestrial biosphere sequesters around 25% of anthropogenic 28 

carbon emissions (Le Quéré et al., 2018) but there remains uncertainty around exactly what 29 

processes drive this (Ciais et al., 2019) and whether or not this sink will be maintained in the 30 

future. A reduction in sink strength due to climatic factors could be a significant positive 31 

feedback to climate change. To be able to model the future evolution of this uptake of carbon 32 

requires the ability to correctly model the underlying processes. This paper focuses specifically 33 

on photosynthesis in the terrestrial biosphere and the how we model the light interception in 34 

plants which drives this. 35 

The uptake of carbon by terrestrial photosynthesis is the largest component flux in the 36 

global carbon cycle. Despite this its overall magnitude and global spatial distribution remains 37 

poorly understood. Estimates of Gross Primary Productivity (GPP) in the literature range from 38 

120 PgC yr-1 to 175 PgC yr-1. The estimate of global GPP presented in the first IPCC report was 39 

set in the interval 90-120 PgC yr-1 (Watson et al., 1990) followed by all the other IPCC reports 40 

giving a fixed global GPP value equals to 120 PgC yr-1 (Melillo et al., 1995; Prentice et al., 2001; 41 

Denman et al., 2007). More recently, the last IPCC report (Ciais et al., 2013) updated the value 42 

of global GPP to 123 ± 8 PgC yr-1 based on model tree ensemble (MTE) and Eddy Covariance 43 
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(EC) flux (Beer et al., 2010); however, the value of GPP strongly depends on the method used 44 

and they often disagree in long-term trends and spatial patterns (Jung et al., 2011; Anav et al., 45 

2015; Jiang & Ryu, 2016; Knauer et al., 2017; He, Chen, Liu, et al., 2017; He, Chen, Croft, et al., 46 

2017; MacBean et al., 2018). 47 

For the global carbon budget 2007–2016, an imbalance of 0.6 PgC yr−1 was estimated, 48 

indicating possible underestimated values in carbon sinks, such as global photosynthesis (Le 49 

Quéré et a., 2018). Welp et al. (2011) estimated global GPP to be somewhere in between 150-50 

175 PgC yr-1 based on 18O/16O, and in a study based on 13C it was found that more GPP should 51 

be attributed to the Amazon region (Chen et al., 2017). Koffi et al. (2012) presented a study 52 

based on data assimilation with atmospheric CO2 and ecosystem models with an estimated global 53 

GPP of 146 ± 19 PgC yr-1. More recent studies using Solar Induced Florescence (SIF) predicted 54 

global GPP to be 144 PgC yr-1; closer to most Earth System Models (ESMs) estimates than the 55 

MTE or MODIS data sets (Anav et al., 2015). 56 

A key process required for modelling photosynthesis is the interception of light, which is 57 

typically achieved using a vegetation radiative transfer (RT) model. A commonly used 58 

vegetation RT model in many ESMs is the two-stream scheme of Sellers (1985) and a key 59 

assumption in the Sellers scheme is that leaves are randomly arranged in a plane parallel 60 

medium. This assumption is in common with many other vegetation RT schemes and is almost 61 

ubiquitous amongst those used in Climate and Earth System models. In reality, however, 62 

vegetation does not arrange itself in such a perfectly random fashion. An important question, 63 

therefore, is to ask what extent this assumption affects predictions of the photosynthetic flux of 64 

carbon into the land surface.  65 

A simplification that results from the plane-parallel turbid medium approximation is a 66 

lack of representation of gaps in the canopies. The term ‘gaps’ is used here in the sense of 67 

‘openness’, i.e., canopy openings, which light goes through without being intercepted. For most 68 

natural forest stands, savannah, and shrubland, various sizes of gaps exist between and within 69 

tree crowns. Neglecting these gaps has been shown to result in errors when estimating shortwave 70 

radiation interception. 71 

Previous studies have shown that two-stream schemes can exhibit significant biases in 72 

comparison to more accurate 3D radiative transfer models and observations (Pinty et al.,2006; 73 

Ni-Meister et al., 2010; Kobayashi et al., 2012; Loew et al., 2014; Hogan et al., 2018). Despite 74 

this two-stream schemes remain attractive due to their computational efficiency. Highly detailed 75 

3D radiative transfer models exist but they cannot be directly used in ESMs due to their 76 

computational expense (Yang et al., 2001) and the large number of parameters required (Loew et 77 

al., 2014). One approach to account for 3D canopy structure in two-stream schemes is to include 78 

simple parameterizations of 3D effects on shortwave radiation partitioning (Pinty et al., 2006). In 79 

the present study, we modify JULES, the land surface scheme of the UK Earth System Model 80 

(UKESM), to ingest a global dataset of canopy clumping derived from satellite data, in order to 81 

determine the impact of vegetation canopy structure on modelled global photosynthesis. 82 

Although this modification results less light absorption by vegetation in the model it also drives 83 

an additional uptake of carbon by photosynthesis of 5.53 PgC yr-1 globally and 4.18 PgC yr-1 84 

between 20°S-20°N latitude. The primary mechanism we attribute this to is the increased amount 85 

of light reaching lower layers of the canopy in which photosynthesis tends to be limited by 86 

available light. Conversely photosynthesis in the upper canopy layers, which absorb less light 87 

once clumping is included, are not typically light limited and so the reduction in absorbed 88 

radiation has less impact. 89 
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2 Models and Methods 90 

2.1 Model description 91 

The most commonly used method to account for structure in a vegetation RT model is to 92 

introduce a clumping index (Ω) (Nilson, 1971) to scale leaf area index (LAI). This can be easily 93 

implemented into the two-stream scheme; wherever LAI appears in the equations it is scaled by 94 

Ω. Hence the two stream equations become: 95 

𝜇
(𝑑𝐼↑)

𝑑𝐿𝐴𝐼
+ [1 − (1 − 𝛽)𝜔]𝐼↑ − 𝜔𝛽𝐼↓ = 𝜔𝜇𝛽0 exp(−𝐾𝐿 ∙ 𝛺),                                                                                                     96 

𝜇
(𝑑𝐼↓)

𝑑𝐿𝐴𝐼
+ [1 − (1 − 𝛽)𝜔]𝐼↓ − 𝜔𝛽𝐼↑ = 𝜔𝜇(1 − 𝛽0) exp(−𝐾𝐿 ∙ 𝛺)                                              (1) 97 

where I↑ and I↓ are the upward and downward diffuse radiative fluxes normalised by the incident 98 

flux at  the top of the canopy, μ is the cosine of the Sun zenith angle, or the incident beam, K is 99 

the optical depth of direct beam per unit leaf area and is equal to G(μ)/μ, where G(μ) is the 100 

projected area of leaf elements in the direction cos−1μ (Ross, 1981), �̅� is the average inverse 101 

diffuse optical depth per unit leaf area, ω is the scattering coefficient and is given by ρleaf + τleaf , 102 

the leaf reflectance and transmittance respectively, and L is the cumulative LAI from the top of 103 

the canopy. β and β0 are upscattering parameters for the diffuse and direct beams, respectively. 104 

In this context Ω corresponds to the structure factor described in Pinty et al. (2006) except that it 105 

is assumed not to vary with zenith angle. 106 

The Joint UK Land Environment Simulator (JULES; Best et al., 2011; Clark et al., 2011), 107 

is the land surface scheme of the new UK Earth System Model (UKESM). It uses the Sellers RT 108 

model to calculate light interception and absorption in vegetation. The option to include a 109 

clumping index was added in version 4.6 with a default value of 1.0 (i.e., no clumping), allowing 110 

user to prescribe other values where data is available. The variable was originally implemented 111 

in JULES with a single value per plant functional type (PFT), and it was tested and evaluated 112 

over crops by Williams et al. (2017) who showed that it was necessary to include clumping (i.e. 113 

Ω<1.0) to correctly model the productivity of maize for a field site in Nebraska, USA. For this 114 

paper we modified JULES to read in a spatially varying map of clumping for each PFT 115 

(described in Section 2.2).  116 

We used JULES version 4.6 with the Global Land (GL) 4.0 configuration (Walters et al., 117 

2014) with the WATCH-Forcing-Data-ERA-Interim data set (Weedon et al., 2014) at 0.5° spatial 118 

resolution and temporal resolution of 3 hours. The Harmonized World Soil Database version 1.0 119 

data set (Nachtergaele et al., 2008) and the model of runoff production (TOPMODEL) were 120 

applied following Clark and Gedney (2008). Leaf area index was determined prognostically by 121 

the JULES phenology module (Cox, 2001) updated every 10 days. Prior to performing the global 122 

scale model simulations, the soil moisture and temperature were brought to equilibrium using a 123 

5-year global spin-up by cycling 1 year of meteorological data. JULES GL4.0 uses 5 PFTs: 124 

broadleaf trees, needle-leaf tress, C3 grasses, C4 grasses, and shrubs. 125 

By default, JULES computes light interception and photosynthesis in 10 vertical canopy 126 

layers.  Leaf-level photosynthesis in each layer is estimated as the minimum rate of three 127 

assimilation regimes as proposed by Farquhar et al. (1980) and modified by Collatz et al. (1991, 128 

1992): (i) the Rubisco-limited rate or carbon limiting regime; (ii) the light-limited rate, and; (iii) 129 

the carbon compound export limitation for C3 plants or PEP-carboxylase export limitation for 130 

C4 plants, referred to as the electron transport or export limiting regime. The multilayer approach 131 
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simulates the transition between the Farquhar limiting regimes at each canopy layer, resulting in 132 

increased carbon limitation towards the top of the canopy and increased light limitation towards 133 

the bottom of the canopy (Clark et al., 2011). The light-limited rate of photosynthesis in each 134 

layer is proportional to the fraction of absorbed photosynthetically active radiation (fAPAR) in 135 

that layer. Consequently, including clumping in the radiative transfer scheme directly affects the 136 

light limited rate of photosynthesis but not the Rubisco or export limited rates.  137 

We performed two runs of JULES for the year 2008 with and without a prescribed value 138 

of clumping index. The year was chosen as it is close to the date of production of the clumping 139 

map (i.e., 2006) and an ENSO neutral year, unlike 2006-2007, which was a weak El Niño. 140 

2.2 Global clumping index map  141 

The global clumping map of He et al. (2012) was used to provide clumping index data for 142 

JULES. It has a spatial resolution of 500 m and was produced for the year of 2006. We assume 143 

that the global clumping index map in 2006 is still reliable for modelling GPP in 2008 since the 144 

inter-annual variation of clumping index is general small (He et al., 2016). The data were derived 145 

from the NASA-MODIS BRDF/albedo product (MCD43) by considering the difference in 146 

forward and backward scattering from the surface, which is primarily controlled by the structure 147 

of the vegetation.  This follows the methodology of Chen et al. (2005) but with an additional 148 

correction to the magnitude of the MODIS hotspot. The method uses a 4-Scale BRDF model 149 

(Chen et al. 1997) that considers different scales of canopy clumping: tree groups, tree crowns, 150 

branches and shoots. This is equivalent to the assumptions implicit in clumping as implemented 151 

in JULES. Pinty et al. (2006) provide a detailed discussion of this type of clumping index as 152 

applied to two-stream models. 153 

We scaled up the He et al. (2012) data to the resolution of the model run (0.5°) on a per-154 

PFT basis by using the GLC2000 land cover data (Bartholome & Belward, 2005). The GLC2000 155 

is also used in the production of the clumping dataset and to prescribe the distribution of the 5 156 

PFTs used by JULES. The total clumping index map is shown in Figure 1. Values less than one 157 

indicate clumping, with smaller values indicating greater clumping.  The most clumped areas are 158 

the boreal forests and areas with sparse vegetation, while the least clumped areas are in the 159 

presence of grasses, e.g., over savannahs in Africa and crops in the USA and Asia. Tropical 160 

forests show intermediate levels of clumping, which does not fit with many below canopy 161 

observations of clumping. He et al. (2012) argue that ground based measurements generally 162 

underestimate clumping in dense forests (i.e., overestimate the clumping index value) because 163 

they are overly affected by lower-level branches. Pisek et al. (2013) further confirmed that in 164 

moderate to dense forests with developed bottom layers, in situ measurements of clumping near 165 

the surface tend to considerably underestimate the overall canopy-level clumping. Olivas et al. 166 

(2013) found that the mean LAI above 1 m using litter-fall collection was 5.54 ± 0.3 at an old-167 

growth tropical rainforest, while the effective LAI from hemispherical photographs was only 168 

3.45 ± 0.1, implying a clumping index of 0.62.  169 

2.3 Benchmarking data  170 

We used the MTE global GPP dataset (Jung et al., 2011) as a reference.  It is a monthly 171 

global data product at 0.5° resolution which uses a statistical method based on machine learning 172 

techniques referred to as model tree ensembles (MTE). The MTE global GPP was trained against 173 

flux tower GPP estimates at site level using fAPAR from satellite observations and 174 

meteorological data as explanatory variables. Site level GPP estimates from 178 FLUXNET sites 175 
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were incorporated in the production of the data following quality filtering and partitioning of net 176 

ecosystem exchange into GPP and ecosystem respiration based on Lasslop et al. (2010). The 177 

MTE product is available since 1982 but it is important to interpret it carefully since flux tower 178 

observations started a decade after that with a limited number of sites sparsely distributed and 179 

mainly across Europe and North America. Therefore, there is a large uncertainty of the MTE 180 

GPP over regions with limited flux tower sites including most parts of Africa and South 181 

America, as well as Tropical and Northern Asia (Anav et al., 2015).  182 

3 Results  183 

3.1 The impact of vegetation canopy structure on modelled global fAPAR 184 

The first order impact of adding clumping to the vegetation radiative transfer scheme in 185 

JULES is to reduce fAPAR. Figure 2 shows a global map of fAPAR differences between JULES 186 

with and without clumping included. fAPAR decreases across the entire globe when clumping is 187 

added because it acts to decrease the effective leaf area available to intercept light. However, in 188 

addition to reducing the overall fAPAR, the relative distribution of absorption vertically through 189 

the canopy is also modified. Layers at the bottom canopy have more light directly incident upon 190 

them due to greater transmission through the layers above and therefore can potentially also 191 

absorb more PAR. Because clumping is applied to all layers evenly, each layer absorbs 192 

proportionally less of the PAR directly incident upon it, but the total amount of incident PAR on 193 

layers except for the top one will always be increased relative to the model without clumping. 194 

Hence the total absorption of PAR in a layer can increase even though its fAPAR decreases as 195 

long as there is sufficient additional radiation reaching it. 196 

The average value of fAPAR for the globe in 2008 according to JULES without clumping 197 

is 0.607 ± 0.022 (95% confidence interval). Applying the clumping index shifts the average 198 

value to 0.576 ± 0.021, or the equivalent of a total average decrease of 0.032 ± 0.002 (-5.3%). 199 

Some locations of the Earth have much larger divergences in fAPAR, for instance Southwest 200 

Canada and Northwest USA, Northeast Russia, and high-altitude regions such as the Himalayas 201 

and the Andes; these are areas typically associated with needle-leaved trees. 202 

3.2 The impact of vegetation canopy structure on global GPP 203 

In our model experiment the addition of clumping systematically increases carbon 204 

assimilation throughout the globe, resulting in an additional 5.53 ± 1.02 PgC yr-1 in GPP. Figure 205 

3 shows the difference in GPP between JULES with clumping (JULES-Clump) and the default 206 

version of JULES (i.e., without clumping). The strongest difference between the two model 207 

setups is found in the tropics (20°S - 20°N) with additional GPP of 4.18 PgC yr-1, or 75% of the 208 

total additional carbon, followed by 1.10 PgC yr-1, or approximately 20% of the total extra GPP 209 

in the Northern Hemisphere (20°N - 90°N), and 0.25 PgC yr-1 in the Southern Hemisphere (90°S 210 

- 20°S), which corresponds to approximately 5% of the total extra GPP. 211 

Figure 4a shows the difference in the absolute difference between JULES-Clump and 212 

MTE-GPP, and JULES and MTE-GPP. Regions in blue indicate that including clumping moves 213 

the JULES prediction toward the MTE estimate, and red areas indicate the opposite, i.e., JULES-214 

Clump presents larger discrepancies than JULES in comparison to the MTE-GPP product. 215 

Tropical forests, the temperate forests in North America, and most of the boreal forests generally 216 

move closer the MTE data in JULES-Clump. The red areas on Figure 4a, associated with 217 

increasing differences between the MTE and modelled GPP prediction when clumping is 218 
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included are mainly found in the African and Brazilian savannahs, and sparser areas in the 219 

presence of grasses, especially C4 grasses. C4 grasses have previously been shown to be over-220 

productive in JULES (Harper et al., 2016) and adding clumping makes it more productive in this 221 

study. It is also likely that the MTE data set itself shows an inaccurate representation of GPP for 222 

C4 grasses, since this PFT is not well sampled in the eddy covariance data that the MTE dataset 223 

is based upon.   224 

Figure 4c shows the total GPP in PgC yr-1 for each box in Figure 4b for the MTE-GPP 225 

product, JULES and JULES-Clump, respectively. The error bars on the MTE product were 226 

calculated as the weighted sum of the averaged standard deviation of the ensemble mean of the 227 

25 best model trees associated with the MTE-GPP product for the year 2008. JULES-Clump 228 

consistently shows a higher GPP than the default JULES for all the evaluated areas with a larger 229 

absolute impact over the boxes in the tropics, i.e., Central and South America, ΔGPP = 2.03 PgC 230 

yr-1, or 36.7% of the total additional GPP generated by the addition of clumping, followed by 231 

Africa, ΔGPP = 1.10 PgC yr-1, or 19.9% of the total additional GPP, and South and Southeast 232 

Asia, ΔGPP = 1.05 PgC yr-1, or 19.0% of the total additional GPP. Alone, the tropics are 233 

responsible for an extra 4.18 PgC per year (75.6% of the global ΔGPP). 234 

Globally, the 5.53 PgC yr-1 caused by the inclusion of vegetation clumping is equivalent 235 

to an additional 4.8% of GPP for the year of 2008. Although for the majority of regions in Figure 236 

4b JULES GPP are within the error bars of the MTE product, JULES-Clump is closer to the 237 

estimates of the MTE, except for Africa, where JULES is lower than the MTE GPP and JULES-238 

Clump is higher than it. The most significant change is observed over Central and South America 239 

where the prediction of GPP without clumping is low compared to the MTE GPP.  240 

The additional GPP resulting from including clumping is not evenly distributed vertically 241 

though the canopy. The difference in zonal mean GPP in each canopy layer between JULES with 242 

and without clumping is shown in Figure 5. In particular there is a strong enhancement of GPP in 243 

the lower canopy layers for the tropics, whereas the top 3 or 4 layers exhibit reduced 244 

photosynthesis. This is caused by the increase in PAR absorption in the lower layers described in 245 

Section 3.1. Because these layers tend to be light limited this results in a significant boost to the 246 

overall canopy photosynthesis compared to the upper layers which are generally not light limited 247 

(Jogireddy et al., 2006; Mercado et al., 2007; Alton et al., 2007; Huntingford et al., 2008). For 248 

the bottom two layers of the canopy GPP increased more than 50% throughout all latitudes. This 249 

adds further weight to the arguments of He et al. (2018) who highlight the importance of shade 250 

leaves in global photosynthesis. 251 

3.3 Is the impact of vegetation canopy structure on global GPP impacted by diffuse 252 

radiation? 253 

Throughout all simulations performed in this study the percentage of diffuse incident 254 

shortwave radiation was held constant and equal to 40% as a proxy average value for the whole 255 

globe (Harper et al., 2016). However, the consideration of gaps through the addition of clumping 256 

into the radiative transfer scheme in JULES can enhance the amount of shortwave radiation 257 

reaching bottom layers of the vegetation canopy, as previously discussed. This is true for both 258 

natures of incident light, i.e., either direct, collimated beams, or diffuse, isotropic shortwave 259 

radiation. However, is the impact of canopy clumping on GPP affected by the amount of diffuse 260 

radiation?   261 

In order to verify the effect of diffuse light on the impact of clumping on GPP, a test was 262 

performed for 12 FLUXNET sites for the year of 2008 with JULES and JULES-Clump for four 263 
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different ratios of incident diffuse shortwave radiation to global incident shortwave radiation: 264 

20%, 40% (used in all the other runs), 60%, and 80% (Figure 6). Results indicate that across all 265 

the evaluated sites, differences in monthly mean GPP fluxes between JULES and JULES-Clump 266 

are independent of the amount of diffuse shortwave radiation reaching the surface.  267 

One observable pattern in Figure 6 is the diffuse fertilisation effect (Mercado et al., 2009) 268 

clearly noticed in sites with high LAI values, e.g., the tropics (BR-Ma2, BR-Sa1) throughout the 269 

year, temperate forests (JP-Tak, US-MMS, US-Ha1) and boreal/needle-leaved forests (FI-Hyy, 270 

FI-Kaa, DE-Tha) in Summer time, while places with smaller or no noticeable differences 271 

between JULES and JULES-Clump are noticed in sites that are not limited by light, because of 272 

small LAI values, often associated with drier/grassland sites (ES-Es1, ES-LMa, US-FPe). 273 

4 Discussion 274 

The only other study of which we are aware that tackles this question on a global scale is 275 

that of Chen et al. (2012). In that study the authors used a related dataset to prescribe clumping in 276 

the Boreal Productivity Simulator (BEPS; Liu et al., 1997) but found that global GPP was 277 

reduced by 12.1 PgCyr-1. The critical difference between our study and that of Chen et al. (2012) 278 

is in the treatment of canopy radiative transfer: our model uses multiple canopy layers each with 279 

different proportions of sunlit and shaded leaves, whereas Chen et al. (2012) use a single layer 280 

split into sunlit and shaded leaves (a so-called ‘two-leaf’ model). As discussed in the previous 281 

sections our result is caused by the greater penetration of light into lower layers boosting 282 

photosynthesis in layers that are light-limited. The phenomena we illustrate is to some degree 283 

analogous to the so-called “diffuse light fertilisation effect” which has been shown previously to 284 

enhance global GPP after the eruption of Mount Pinatubo in 1991 (Mercado et al., 2009). Diffuse 285 

light is able to penetrate further down into the canopy than direct beam irradiance. 286 

Single layer models cannot redistribute absorbed radiation vertically in the manner we 287 

have shown using a layered canopy model. Consequently, there is no preferential alleviation of 288 

light-limited photosynthesis at lower levels and no boost to overall canopy photosynthesis.  289 

Other examples of models with multi-layered canopy schemes include EALCO (Wang et al., 290 

2001), EDv2.1 (Medvigy et al., 2009), LPJ-GUESS (Smith et al., 2001; Smith et al., 2014), 291 

SDGVM (Woodward et al., 1995), and TECO (Wang et al., 2009), and so, similar results would 292 

be expected from these models assuming the model structure allows for the inclusion of 293 

clumping in the canopy radiation scheme.  294 

There is some empirical evidence from field based studies that supports our finding that 295 

structure increases GPP (Ahl et al., 2004; Duursma & Makela, 2007; Hardiman et al., 2011; 296 

Bohn & Huth, 2017). Hardiman et al. (2011) showed departures from randomness in forest 297 

canopies boosted productivity in a transition zone between boreal forests and Northern mixed 298 

hardwood. The authors suggested that changes in canopy structure can contribute to resilience 299 

of the functioning of ecosystems trees. Atkins et al. (2018) affirms that the inclusion of canopy 300 

structural complexity metrics in canopy light absorption models could increase confidence in 301 

predictions of biogeochemical cycles and energy balance. Their study including sites from the 302 

National Ecological Observation Network and university field stations found that canopy 303 

structure was strongly coupled with fAPAR under high light environments, while under low light 304 

conditions, when diffuse light predominates, light scattering weakened the dependency of 305 

fAPAR on structure. Also, the authors found that a multivariate model including parameters of 306 

canopy structure and leaf area index explained around 89% of the inter-site variance in fAPAR. 307 

Another observational study by Fahey et al. (2016) found an important contribution of bottom 308 
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layers of a North American site to canopy productivity as whole. The authors found a connection 309 

between sub-canopy tree growth and fAPAR, and indicated a relationship between sub-canopy 310 

light availability and canopy structure. Although, they found that sub-canopy growth response 311 

was not mediated by fAPAR alone. 312 

On a global scale it will be necessary to provide observation of canopy structure from 313 

remote sensing instruments. The method of He et al. (2012) can, potentially, be repeated for 314 

every year of the MODIS archive and is applicable to other missions with similar characteristics 315 

such as Sentinel-3. Arguably, however, this problem also needs addressing using observations 316 

that are more directly related to forest structure such as space borne LiDAR from missions such 317 

as NASA GEDI (Hancock et al., 2019), or long wavelength RADAR from JAXA’s ALOS 318 

PALSAR the upcoming ESA Biomass mission. Terrestrial and airborne observations will also 319 

be critically important (Longo et al., 2016; Ferraz et al., 2018; Rödig et al., 2018) and the 320 

increased interest in terrestrial scanning LiDAR may help to answer some of these questions 321 

(Disney et al., 2010; Mulatu et al., 2019). 322 

Our result that tropical photosynthesis is being underestimated in JULES likely applies to 323 

the terrestrial biosphere components of all ESMs. Multilayered models will respond in the same 324 

way when clumping is introduced, i.e. with greater penetration of light to lower levels. We also 325 

argue that single layer models do not represent the impact of clumping of photosynthesis 326 

correctly. It is clear, however, that much more investigation is required to understand the correct 327 

way to represent structure in these models. The technique used in JULES to include clumping is 328 

relatively simple albeit based on well-established theoretical considerations (e.g., Nilson 1971). 329 

We note that there are more sophisticated approaches available (Kucharik et al., 1999; Pinty et 330 

al., 2006; Ni-Meisters et al., 2010) but these rely on additional parameters which must either be 331 

calculated by the underlying land surface model, or input as ancillary data.  332 

5 Conclusion 333 

Our work suggests that ESMs may significantly underestimate photosynthesis in tropical 334 

forests because they do not take vegetation structure into account. The dominant effect that 335 

introducing clumping has in our study is to alleviate light limitation at lower canopy levels. This 336 

tends to have the greatest impact where leaf area index is high and where photosynthesis is not 337 

limited by light in higher canopy layers. In our study this effect accounted for an additional 338 

uptake of carbon by photosynthesis globally of 5.53 PgCyr-1 and 4.18 PgCyr-1 between 20°S-339 

20°N latitude.  340 
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Figure captions 607 

Figure 1. Global map of the MODIS derived clumping index at 0.5° resolution for the year 2006 608 

scaled up from the 500m He et al. (2012) clumping dataset. 609 

Figure 2. Spatial distribution of total fAPAR difference (JULES with clumping – JULES 610 

without clumping) for the year of 2008. 611 

Figure 3. Difference in GPP between JULES with clumping and JULES without clumping. 612 

Global average values are indicated at the bottom of the figures in PgC yr-1 with the 95% 613 

confidence interval. Grey areas represent regions with no data.  614 

 615 
Figure 4. a. The difference in the absolute GPP between JULES without clumping and the MTE 616 

data, and JULES with clumping and the MTE data. Regions in blue indicate model improvement 617 

by addition of vegetation clumping; b. map showing the regions used in the analysis; c. Total 618 

(area weighted sum over box area) JULES (green), JULES-Clump (green) and observation based 619 

(MTE; black dots and error bars) GPP fluxes for the year of 2008 at regional scales. Error bars 620 

indicate the weighted sum of the averaged standard deviation of the ensemble mean of the 25 621 

best model trees associated with the MTE-GPP product. 622 

 623 
Figure 5. Zonal mean vertical profile of a. absolute and difference in GPP between JULES-624 

Clump and JULES without clumping.; b. Total GPP zonal mean of MTE, JULES-Clump (red), 625 

and JULES (blue). 1 standard deviation (±1σ) of the spatial mean for each product is represented 626 

by the filled areas. 627 

 628 

Figure 6. Monthly mean fluxes of GPP for 12 FLUXNET sites from JULES (continuous line) 629 

and JULES-Clump (dashed line) for four different percentages of incident diffuse shortwave 630 

radiation: 20% (red), 40% (blue), 60% (green), and 80% (yellow). 631 
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