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Abstract 

Upright faces are thought to engage holistic processing whereby local regions are integrated 

into a unified whole for the purposes of rapid, efficient analysis. In contrast, inverted faces 

are thought to recruit a slower, less-accurate serial analysis of local features. Aperture 

paradigms, whereby a target face is revealed by a dynamic viewing window that shifts over 

the stimulus image, offer a compelling test of this view. If upright faces are processed 

holistically, perceptual judgements ought to be substantially disrupted when stimuli are 

viewed through apertures. In contrast, aperture viewing should produce little or no 

decrement in perceptual decisions when judging inverted faces, as they are thought to be 

subjected to serial feature-based analysis. Here we present four experiments that elucidate 

the effects of aperture viewing on the perception of upright and inverted faces. In our first 

two experiments, we find evidence of disproportionate aperture effects for upright faces 

relative to inverted faces. However, these findings are qualified by the fact that observers 

found it harder to discriminate inverted faces presented in the ‘baseline’ whole-face 

condition. When observers’ ability to discriminate faces in the whole-face condition was 

matched for difficulty (Experiments 3 and 4), we show that upright and inverted faces 

produce very similar aperture effects. These findings indicate that both upright and inverted 

faces benefit from whole-face processing and accord with other lines of evidence that faces 

engage qualitatively similar types of processing in both orientations. 

 

Key words: Aperture viewing; face perception; face inversion effect; holistic face 

processing. 
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Introduction 

Although orientation inversion impairs perceptual judgements about many classes of visual 

stimulus, the magnitude of the decrement seen with faces is particularly large (Rossion, 

2008; Yin, 1969). In their strongest form1, theories of “holistic” or “whole-face” processing 

argue that this face inversion effect reflects the fact that upright and inverted faces are 

processed in qualitatively different ways: Upright faces are thought to engage holistic 

processing, whereby distal features are processed in parallel, and integrated into a unified 

perceptual whole. When judging inverted faces, however, observers are unable to process 

stimuli holistically and are therefore forced to base perceptual decisions on a slower, less-

accurate serial analysis of local features (Farah, Wilson, Drain, & Tanaka, 1998; McKone, 

Kanwisher, & Duchaine, 2007; Robbins & McKone, 2003; Rossion, 2008; Tsao & 

Livingstone, 2008; Yovel, 2016; Yovel & Kanwisher, 2008).  

 

Theories of holistic processing have been strongly influenced by findings from the 

composite face illusion (Hole, 1994; Young, Hellawell, & Hay, 1987). When face halves 

taken from different individuals are aligned, they appear to fuse together perceptually. The 

illusion appears to reveal the integration of information from distal facial regions (Murphy, 

Gray, & Cook, 2017; Rossion, 2013), and manifests more strongly when composite 

arrangements are presented upright than when inverted (McKone et al., 2013; Susilo, 

Rezlescu, & Duchaine, 2013). Evidence of putative feature integration processes that 

operate when faces are shown upright, but not when inverted, accord well with theories of 

holistic face processing (Farah et al., 1998; McKone et al., 2007; Richler, Wong, & 

Gauthier, 2011; Robbins & McKone, 2003; Rossion, 2008; Tsao & Livingstone, 2008; 

Yovel, 2016; Yovel & Kanwisher, 2008). 

 

There is, however, increasing uncertainty about the functional significance of the composite 

face illusion. In particular, several authors have found no association between illusion 

susceptibility and face recognition ability in the typical population (Konar, Bennett, & 

Sekuler, 2010; Rezlescu, Susilo, Wilmer, & Caramazza, 2017) and have found that 

individuals with severe lifelong face-recognition difficulties – developmental 

prosopagnosics – exhibit normal susceptibility to the illusion (Biotti et al., 2017; Le Grand 

et al., 2006; Susilo et al., 2010; Ulrich et al., 2017). There has also been considerable 

debate about the perceptual, attentional, and decisional components of the effect (Fitousi, 

2015, 2016; Richler & Gauthier, 2014; Rossion, 2013), and it has been noted that the 
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illusion can be seen with abstract cartoon faces (Murphy et al., 2017). Given the uncertainty 

surrounding the composite face illusion, it is important that we develop new 

complementary ways to test theories of holistic face processing.  

 

Aperture paradigms – whereby observers judge stimuli inspected through a dynamic 

viewing window – represent a promising new approach. In the context of face perception 

research, authors have employed aperture techniques to address two questions. First, 

aperture methods, including ‘Bubbles’ (Gosselin & Schyns, 2001) and reverse correlation 

methods (e.g., Sekuler, Gaspar, Gold, & Bennett, 2004), have been used to reveal which 

facial regions are informative when making particular judgments. Studies in this tradition 

have repeatedly highlighted the value of the information contained within the eye-region  

(Gosselin & Schyns, 2001; Haig, 1985; Sekuler et al., 2004). Second, aperture techniques 

have been used to investigate holistic face processing (Evers, Van Belle, Steyaert, Noens, & 

Wagemans, 2018; Murphy & Cook, 2017; Van Belle, De Graef, Verfaillie, Busigny, & 

Rossion, 2010; Van Belle, De Graef, Verfaillie, Rossion, & Lefèvre, 2010). It is this 

application of the aperture paradigm that we are concerned with in the present article.  

 

By forcing observers to inspect faces through a viewing window, aperture paradigms block 

or reduce holistic face processing. While participants still have the opportunity to inspect 

each local feature, they are unable to process distal regions in parallel. Instead, observers 

must process faces in a serial region-by-region way similar to the piecemeal analysis 

thought to be engaged when viewing inverted faces. The results from aperture paradigms 

are important because they allow vision scientists to directly assess the causal contribution 

of holistic processing to perceptual judgements about faces – researchers can block holistic 

processing and examine the consequences (Tanaka & Farah, 1993; Van Belle, De Graef, 

Verfaillie, Rossion, et al., 2010).  

 

Strong versions of holistic face processing theory (Farah et al., 1998; McKone et al., 2007; 

Robbins & McKone, 2003; Rossion, 2008; Tsao & Livingstone, 2008; Yovel, 2016; Yovel 

& Kanwisher, 2008) predict disproportionate aperture effects when viewing upright faces, 

relative to inverted faces. Because they are thought to engage holistic processing, 

perceptual judgements about upright faces briefly viewed in their entirety ought to be more 

accurate than when the same stimulus is viewed through a dynamic aperture. Conversely, if 

inverted faces are subject to serial feature-based analysis, aperture viewing should produce 
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little or no decrement in perceptual decisions, relative to whole-face presentation. To date, 

however, studies using aperture paradigms have produced mixed support for these 

predictions.  

 

Van Belle, De Graef, Verfaillie, Rossion, et al. (2010) described results from an aperture 

viewing experiment (N = 16) that appear to support the predictions made by holistic face 

processing theories. Having first seen a target face in full-view (1 second), participants 

were required to judge which of two simultaneously presented faces matched the target 

(unlimited). The two test faces were either viewed in full, or inspected through a gaze-

contingent aperture window that revealed local facial regions as they were fixated by the 

observer. When the target and test faces were viewed in their entirety, Van Belle, De Graef, 

Verfaillie, Rossion, et al. (2010) found that matching accuracy (% correct) was reduced 

substantially by orientation inversion. When the test faces were inspected through the 

aperture, however, face matching accuracy was largely unaffected by the orientation 

manipulation – the face inversion effect did not reach significance.    

 

Murphy and Cook (2017) published contradictory results that appear to challenge some of 

the prevailing assumptions made about holistic face processing. In a series of twelve 

experiments (all N = 16), Murphy and Cook (2017) compared perceptual judgements made 

about faces either viewed in their entirety, or inspected through a fixed-trajectory dynamic 

aperture that gradually moved across a single target image. Participants were required to 

make simple binary decisions about morphed facial images, including classifications of 

identity, facial sex, and expression. The degree of decision noise seen in the different 

viewing conditions was inferred from the slope of participants’ psychometric functions. 

Murphy and Cook (2017) failed to find evidence for disproportionate aperture effects when 

viewing upright faces in any of the twelve experiments. Instead, they found that the 

aperture-induced decrements seen when judging inverted faces were similar – or sometimes 

greater – than those seen for upright faces.   

 

Here we present four experiments that sought to elucidate the effects of aperture viewing on 

the perception of upright and inverted faces. In our first two experiments, we found 

evidence of disproportionate aperture effects for upright faces relative to inverted faces, 

replicating the findings of Van Belle, De Graef, Verfaillie, Rossion, et al. (2010). However, 

these findings were qualified by the fact that observers found it harder to discriminate 
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inverted faces presented in the whole-face condition; i.e., they were closer to floor in the 

‘baseline’ condition. When observers’ ability to discriminate faces in the whole-face 

condition was matched (Experiments 3 and 4), we show that upright and inverted faces 

produce comparable aperture effects, consistent with the findings of Murphy and Cook 

(2017). 

 

Experiment 1 

In the study reported by Murphy and Cook (2017) participants made binary classification 

judgements about stimuli drawn from morph continua. Levels of decision noise were 

inferred from the slope of the resulting psychometric functions; a measure that describes the 

change in response likelihood as a function of the strength of the signal present in the 

stimulus. In the present study we switched to a complementary facial sex categorisation 

paradigm. Observers judged the sex of faces briefly viewed in their entirety, or inspected 

through a fixed-trajectory dynamic aperture that moved across the image. The rationale for 

this change was two-fold: First, the new approach allowed us to derive a reliable measure 

of perceptual sensitivity (d´) from fewer trials and was therefore expected to be easier for 

naïve observers. Second, we were keen to establish whether the findings of Murphy and 

Cook (2017) could be replicated using a different psychophysical paradigm.  

 

Methods 

Twenty typical adults completed Experiment 1 (Mage = 27.2 years; SDage = 7.0; 6 males). 

Three participants were replacements for observers who performed at chance levels.  

In all four experiments, sample size was determined a-priori through reference to previous 

aperture studies (Murphy & Cook, 2017; Van Belle, De Graef, Verfaillie, Rossion, et al., 

2010). Ethical clearance was granted by the local ethics committee and the experiment was 

conducted in line with the ethical guidelines laid down in the 6th (2008) Declaration of 

Helsinki. All participants gave informed consent and were fully debriefed upon task 

completion.  

 

Video stimuli presented a single static facial image (Figure 1a) either upright or inverted. 

Each image was a morph containing 20% of a particular facial identity (16 females, 16 

males), and 80% of an androgynous average face created by combining all 32 faces (Figure 

1b). The strong weighting of the androgynous average was intended to dilute sexually 

dimorphic signals present in each facial identity, and thereby make the sex categorisation 
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task challenging. All faces were taken from the Chicago Face Database (Ma, Correll, & 

Wittenbrink, 2015). Morphing was completed using the procedure developed by Adams, 

Gray, Garner, and Graf (2010). All faces were presented in greyscale. The external features 

(e.g., hairline) were occluded by an oval mask. 

 

Figure-1 

 

Each video sequence was constructed from a series of bitmap images. These sequences 

were compiled in Matlab (The MathWorks, Natick, MA) and saved as uncompressed .avi 

files. Whole-face sequences presented a single static face in its entirety for 480ms (Figure 

1c). Faces were presented briefly in this condition to prevent observers employing a 

protracted serial analysis of the local features; for example observers who are thought be 

reliant on trivial local cues (e.g., developmental prosopagnosics) find this kind of 

presentation duration particularly challenging (Biotti & Cook, 2016; Biotti, Gray, & Cook, 

2019; Cenac, Biotti, Gray, & Cook, 2019). Aperture sequences depicted a viewing window 

moving over the facial image with a vertical directionality (Figure 1d), either starting at the 

top and moving downwards, or starting at the bottom and moving upwards. The aperture 

was 12% the height of the face (~4.8° of visual arc when viewed at 58cm) and took 7.2 secs 

to move across the face. The timing of the sequence ensured that the aperture motion was 

smooth and gave participants ample time to inspect local features.  

 

Each trial started with a cue indicating whether a whole-face or an aperture stimulus would 

be presented. On aperture trials, the cue also indicated the directionality of the aperture 

transition2. Next, participants were presented with a single video stimulus and were 

required to make a binary categorization judgement about the facial image presented 

(“Female or Male?”). Following stimulus offset, a response screen was visible until a 

keypress response was registered. Facial Orientation (upright, inverted) and Viewing 

Condition (whole-face, aperture) were manipulated in a factorial design. Each of the 32 

target faces were presented 4 times in the whole-face condition (twice upright, twice 

inverted), 4 times through an aperture that moved upwards (twice upright, twice inverted), 

and 4 times through an aperture that moved downwards (twice upright, twice inverted), 

yielding 384 experimental trials in total. Trial type was randomly interleaved within four 

mini-blocks of 96 trials. All experiments were programmed in Matlab using the 
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Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Stimuli were presented on a LCD 

display at 60 Hz refresh rate. 

 

Signal Detection Theory (Macmillan & Creelman, 1991) was employed to estimate 

observers’ perceptual sensitivity (d´) in each viewing condition. A ‘female’ response in the 

presence of a female stimulus was deemed to be a hit. A ‘female’ response in the presence 

of a male stimulus was deemed to be a false alarm. Where participants achieved the 

maximum number of hits possible in a given condition, the raw frequency was adjusted 

downwards by 0.5; similarly, where participants made no false alarms, the raw frequency 

was adjusted upwards by 0.5, in order to estimate d´. We also collected response time (RT) 

data for all experiments, analyses of which are provided as supplementary online material.   

 

Results  

Sensitivity estimates (Figure 2a) were analyzed using ANOVA with Viewing Condition 

(whole-face, aperture) and Facial Orientation (upright, inverted) as within-subjects factors. 

We observed main effects of Viewing Condition [F(1,19) = 104.163, p < .001, η2 = .846] 

and Facial Orientation [F(1,19) = 49.036, p < .001, η2 = .721], whereby whole-face 

presentation and upright orientation, were associated with superior discrimination 

sensitivity, respectively. The analysis also revealed a Viewing Condition × Orientation 

interaction [F(1,19) = 12.756, p = .002, η2 = .402], whereby whole-face presentation was 

associated with greater benefit when viewing upright faces, than inverted faces. 

Nevertheless, we observed significant aperture effects for both upright [t(19) = 8.120, p < 

.001, Cohen’s d = 1.816] and inverted faces [t(19) = 3.846, p = .001, Cohen’s d = .860]. 

Significant effects of orientation inversion were seen in both the whole-face [t(19) = 6.649, 

p < .001, Cohen’s d = 1.487] and aperture [t(19) = 4.437, p = .003, Cohen’s d = .768] 

viewing conditions.  

 

When judging upright faces, both the downwards [t(19) = 7.283, p <.001, Cohen’s d = 

1.626] and upwards [t(19) = 7.100, p < .001, Cohen’s d = 1.590] aperture conditions 

produced significant performance decrements relative to the whole face condition. The 

aperture effects produced by downwards (M = .730, SD = .449) and upwards transitions (M 

= .879, SD = .553) did not differ significantly [t(19) = 1.376, p = .185, Cohen’s d = .308]. 

Similarly, when judging inverted faces, both the downwards [t(19) = 3.436, p = .003, 

Cohen’s d = .767] and upwards [t(19) = 2.770, p = .012, Cohen’s d = .618] aperture 
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conditions produced significant performance decrements relative to the whole face 

condition. Once again, the aperture effects produced by downwards (M = .353, SD = .460) 

and upwards transitions (M = .249, SD = .403) did not differ significantly [t(19) = 1.021, p 

= .320, Cohen’s d = .228].  

 

Figure-2 

 

Experiment 2 

Our first experiment employed an aperture with a short-wide aspect-ratio that made a 

vertical transition, from top-to-bottom, or vice-versa. Our second experiment was identical 

to the first, except that an aperture with a tall-thin aspect-ratio made a horizontal transition, 

from left to right, or vice versa. Different aperture shapes might conceivably induce 

different patterns of aperture decrement (Murphy & Cook, 2017). For example, short-wide 

viewing windows such as that employed in the first experiment may allow observers to 

view the eye-region – known to be particularly informative when judging faces (Gosselin & 

Schyns, 2001; Sekuler et al., 2004) – in its entirety. Alternatively, tall-thin viewing 

windows may help observers extract the horizontal information structure (the facial ‘bar-

code’) thought to be important for the recognition of faces (Dakin & Watt, 2009; Goffaux 

& Rossion, 2007). We therefore sought to replicate the results of Experiment 1 using an 

aperture window with a different aspect-ratio.   

 

Twenty typical adults completed Experiment 2 (Mage = 28.2 years; SDage = 7.7; 1 male). 

One participant was a replacement for an observer who performed at chance levels.  

Experiment 2 was identical to the first, except that in the aperture condition, a tall-thin 

viewing window made a horizontal transition across the image. The viewing window could 

start at the left and move rightwards, or start at the right and move leftwards. The aperture 

was 12% the width of the face (~4.5° of visual arc when viewed at 58cm) and took 7.2 secs 

to move across the face. Once again, whole-face sequences presented a single static face in 

its entirety for 480ms.  

 

Results 

Sensitivity estimates (Figure 2b) were analyzed using ANOVA with Viewing Condition 

(whole-face, aperture) and Facial Orientation (upright, inverted) as within-subjects factors. 

We observed main effects of Viewing Condition [F(1,19) = 17.506, p < .001, η2 = .480] 
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and Facial Orientation [F(1,19) = 92.693, p < .001, η2 = .830], whereby whole-face 

presentation and upright orientation, were associated with superior discrimination 

sensitivity, respectively. The analysis also revealed a Viewing Condition × Orientation 

interaction [F(1,19) = 8.218, p = .010, η2 = .302], whereby whole-face presentation was 

associated with greater benefit when viewing upright faces, than inverted faces. We 

observed significant aperture effects for upright faces [t(19) = 5.153, p < .001, Cohen’s d = 

1.152], but not for inverted faces [t(19) = 1.525, p = .144, Cohen’s d = .341]. Significant 

effects of orientation inversion were seen in both the whole face [t(19) = 7.466, p < .001, 

Cohen’s d = 1.669] and aperture [t(19) = 6.640, p < .001, Cohen’s d = 1.485] viewing 

conditions.  

 

When judging upright faces, both the rightwards [t(19) = 4.056, p = .001, Cohen’s d = .907] 

and leftwards [t(19) = 4.812, p < .001, Cohen’s d = 1.076] aperture conditions produced 

significant performance decrements relative to the whole face condition. The aperture 

effects produced by rightwards (M = .640, SD = .706) and leftwards transitions (M = .635, 

SD = .590) did not differ significantly [t(19) = .047, p = .963, Cohen’s d = .011]. When 

judging inverted faces, however, neither the rightwards [t(19) = 1.710, p = .104, Cohen’s d 

= .382], nor the leftwards [t(19) = .772, p = .450, Cohen’s d = .173] aperture conditions 

produced significant performance decrements relative to the whole face condition. The 

aperture effects produced by rightwards (M = .196, SD = .513) and leftwards transitions (M 

= .128, SD = .740) did not differ significantly [t(19) = .690, p = .498, Cohen’s d = .154].  

 

Experiment 3  

Despite using different aperture windows with different shapes and transition-

directionalities, the results of our first two experiments were very similar. Observers in both 

experiments exhibited less perceptual sensitivity when they inspected faces through 

apertures, than when they were permitted to briefly view target faces in their entirety. 

Importantly, perceptual decrements induced by aperture viewing were greater when faces 

were viewed upright, than when presented upside-down, replicating the findings of Van 

Belle, De Graef, Verfaillie, Rossion, et al. (2010).  

 

At first glance, these results accord with strong theories of holistic face processing (Farah et 

al., 1998; McKone et al., 2007; Robbins & McKone, 2003; Rossion, 2008; Tsao & 

Livingstone, 2008; Yovel, 2016; Yovel & Kanwisher, 2008). These accounts predict larger 
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aperture effects when viewing upright faces because the dynamic viewing window blocks 

holistic processing. In contrast, the piecemeal or parts-based processing thought to be 

recruited by inverted faces ought to be disrupted less by aperture viewing. It is possible, 

however, that inverted faces produce smaller aperture decrements simply because this 

condition is harder. When categorising the sex of items presented in the whole-face 

condition, participants were able to achieve far better levels of performance in the upright 

conditions (mean d´s of ~ 1.8) than in the inverted conditions (mean d´s of ~ 0.8). As a 

result, there may have been less scope to detect decrements in performance arising from 

aperture viewing in the inverted conditions. We sought to distinguish these possibilities in 

Experiments 3 and 4.  

 

In the first two experiments the facial stimuli presented in the upright and inverted 

conditions were identical; i.e., the signal present in the 32 to-be-judged faces was always 

20%. In Experiments 3 and 4, we sought a fairer comparison of the aperture effects 

observed for upright and inverted faces by matching the difficulty of the baseline whole-

face conditions. To this end, we increased the signal strength in the to-be-judged faces in 

the inverted condition. In Experiment 3, the aperture made a vertical transition from top to 

bottom, or vice-versa. In Experiment 4, the aperture made a horizontal transition, from left 

to right, or vice versa.  

 

Method  

Twenty typical adults completed Experiment 3 (Mage = 27.3 years; SDage = 6.7; 1 male). 

Two participants were replacements for observers who performed at chance levels. The 

stimuli used in the upright condition were identical to those employed in Experiment 1 (the 

male and female identities were presented at 20% strength). However, in order to make the 

sex discriminations in the inverted condition a little easier, the male and female identities 

were presented at 40% strength. Informal piloting suggested this would equate baseline 

levels of discrimination ability in the upright and inverted whole-face conditions. In all 

other respects, Experiment 3 was identical to Experiment 1.  

 

Results 

Sensitivity estimates (Figure 2c) were analyzed using ANOVA with Viewing Condition 

(whole-face, aperture) and Facial Orientation (upright, inverted) as within-subjects factors. 

We observed main effects of Viewing Condition [F(1,19) = 35.771, p < .001, η2 = .653] 
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and Facial Orientation [F(1,19) = 5.790, p = .026, η2 = .234] whereby whole-face 

presentation and inverted orientation, were associated with superior discrimination 

sensitivity, respectively. The Viewing Condition × Facial Orientation interaction failed to 

reach significance [F(1,19) = 3.832, p = .065, η2 = .168]. We observed significant aperture 

effects for both upright [t(19) = 5.252, p < .001, Cohen’s d = 1.174] and inverted faces 

[t(19) = 4.946, p < .001, Cohen’s d = 1.106]. A significant effect of orientation (inverted > 

upright) was seen in the aperture condition [t(19) = 3.437, p = .003, Cohen’s d = .736], but 

not in the whole-face condition [t(19) = .861, p = .400, Cohen’s d = .193].  

 

When judging upright faces, both the downwards [t(19) = 4.292, p <.001, Cohen’s d = 

.960] and upwards [t(19) = 5.117, p < .001, Cohen’s d = 1.144] aperture conditions 

produced significant performance decrements relative to the whole face condition. Upwards 

transitions (M = 1.025, SD = .896) produced greater decrements than downwards transitions 

(M = .696, SD = .725) [t(19) = 2.793, p = .012, Cohen’s d = .625], suggestive of a 

perceptual advantage when the aperture window reveals the eyes before the nose and 

mouth3. When judging inverted faces, both the downwards [t(19) = 4.481, p < .001, 

Cohen’s d = 1.002] and upwards [t(19) = 4.451, p < .001, Cohen’s d = .995] aperture 

conditions produced significant performance decrements relative to the whole face 

condition. The aperture effects produced by downwards (M = .628, SD = .626) and upwards 

transitions (M = .513, SD = .515) did not differ significantly [t(19) = .802, p = .432, 

Cohen’s d = .175].  

 

Experiment 4 

Twenty typical adults completed our fourth experiment (Mage = 26.8 years; SDage = 9.5; 2 

male). Three participants were replacements for observers who performed at chance levels.  

Experiment 4 was identical to Experiment 3, except that in the aperture condition, the 

viewing window made a horizontal transition across the image, either from right-to-left, or 

vice-versa. The shape of the aperture window and the duration of the horizontal transitions 

were the same as in Experiment 2. 

 

Results 

Sensitivity estimates (Figure 2d) were analyzed using ANOVA with Viewing Condition 

(whole-face, aperture) and Facial Orientation (upright, inverted) as within-subjects factors. 

We observed a main effect of Viewing Condition [F(1,19) = 64.797, p < .001, η2 = .773] 
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whereby whole-face presentation was associated with superior discrimination sensitivity. 

However, we saw no effect of Facial Orientation [F(1,19) = 0.049, p = .828, η2 = .003], and 

no Viewing Condition × Facial Orientation interaction [F(1,19) = .553, p = .466, η2 = .028]. 

We observed significant aperture effects for both upright [t(19) = 6.686, p < .001, Cohen’s 

d = 1.496] and inverted faces [t(19) = 5.567, p < .001, Cohen’s d = 1.245]. We saw no 

effect of orientation in either the whole-face [t(19) = .498, p = .624, Cohen’s d = .112] or 

the aperture [t(19) = .249, p = .806, Cohen’s d = .056] conditions. 

 

When judging upright faces, both the rightwards [t(19) = 6.997, p < .001, Cohen’s d = 

1.565] and leftwards [t(19) = 5.212, p < .001, Cohen’s d = 1.165] aperture conditions 

produced significant performance decrements relative to the whole face condition. The 

aperture effects produced by rightwards (M = .919, SD = .588) and leftwards transitions (M 

= .798, SD = .685) did not differ significantly [t(19) = 1.000, p = .330, Cohen’s d = .224]. 

Similarly, when judging inverted faces, both the rightwards [t(19) = 5.110, p < .001, 

Cohen’s d = 1.143] and the leftwards [t(19) = 5.087, p < .001, Cohen’s d = 1.137] aperture 

conditions produced significant performance decrements relative to the whole face 

condition. The aperture effects produced by rightwards (M = .720, SD = .630) and leftwards 

transitions (M = .717, SD = .631) did not differ significantly [t(19) = .023, p = .982, 

Cohen’s d = .005].  

 

Discussion 

In their strongest form, theories of holistic processing argue that upright and inverted faces 

recruit qualitatively different perceptual mechanisms: Upright faces are thought to engage 

holistic processing whereby local regions are integrated into a unified whole. In contrast, 

inverted faces are thought to recruit a serial parts-based analysis of local features (Farah et 

al., 1998; McKone et al., 2007; Richler, Wong, et al., 2011; Robbins & McKone, 2003; 

Rossion, 2008; Tsao & Livingstone, 2008; Yovel, 2016; Yovel & Kanwisher, 2008). 

Aperture paradigms offer a compelling test of this view (Evers et al., 2018; Murphy & 

Cook, 2017; Van Belle, De Graef, Verfaillie, Busigny, et al., 2010; Van Belle, De Graef, 

Verfaillie, Rossion, et al., 2010). If upright faces are processed holistically, perceptual 

judgements ought to be substantially disrupted when observers are forced to view stimuli 

through apertures. In contrast, aperture viewing should produce little or no decrement in 

perceptual decisions when judging inverted faces, as they are thought to be subjected to 

serial feature-based analysis.  
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Our findings do not accord with these predictions. When upright and inverted faces were 

matched for discriminability in the baseline whole-face condition, we found that aperture 

viewing produced substantial performance decrements in both orientation conditions, 

consistent with the results described by Murphy and Cook (2017). Together, these findings 

imply that both upright and inverted faces benefit from whole-face processing. We find 

evidence that aperture viewing disproportionately impairs judgements about upright faces – 

replicating the results of Van Belle, De Graef, Verfaillie, Rossion, et al. (2010) – only when 

performance in the baseline whole-face condition was significantly better in the upright 

condition, than in the inverted condition. Where observed (Experiments 1 and 2; Van Belle, 

De Graef, Verfaillie, Rossion, et al., 2010), disproportionate aperture effects for upright 

faces may therefore be caused by the limited scope to detect performance decrements in the 

inverted condition; i.e., evidence of whole-face processing of inverted faces may be 

obscured by restricted range or floor effects.  

 

In the present study we employed a fixed-trajectory aperture manipulation in which a 

viewing window moved across the image in a predetermined direction, at a predetermined 

rate. In contrast, Van Belle, De Graef, Verfaillie, Rossion, et al. (2010) employed a gaze-

contingent aperture paradigm whereby the region of the target face revealed by the viewing 

window was determined by the gaze fixations of the participant (see also: Evers et al., 

2018; Van Belle, De Graef, Verfaillie, Busigny, et al., 2010). Under the gaze-contingent 

aperture paradigm employed by Van Belle, De Graef, Verfaillie, Rossion, et al. (2010), the 

participant determines which parts of the stimulus are visible, how long they are visible, 

and in which order the regions are revealed.  

 

We prefer the fixed-trajectory approach because control over stimulus presentation resides 

with the experimenter. By using a fixed-trajectory approach we were able to ensure that all 

observers were exposed to the same visual information, irrespective of stimulus orientation 

(Murphy & Cook, 2017). Moreover, this approach lets researchers systematically 

manipulate the order in which regions are revealed. This may well be an interesting avenue 

for future research; for example, the fact that better perceptual decisions were made when 

the eye region of the target face was revealed early in aperture sequences (Experiment 3), 

suggests that information extracted from different local regions is combined in a non-

arbitrary way. It might occur to some readers that the gaze-contingent approach allows 
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participants to sample facial information ‘naturally’. Contrary to this intuition, however, it 

appears that observers do not inspect the target face as they would typically; rather, there is 

a tendency to fixate a region at the top of the nose (Van Belle, De Graef, Verfaillie, 

Rossion, et al., 2010), possibly because participants try to view both eye regions 

simultaneously (even where the size of the aperture window does not permit this).  

 

In the present study we used facial sex judgements and image morphing to derive our facial 

stimuli. In contrast, Van Belle and colleagues used an identity matching procedure and 

unmodified images. We would be surprised if these factors explained the discrepant pattern 

of results seen in Experiments 3 and 4. Judgements about facial sex and facial identity are 

thought to depend on a common structural representation formed early in the face 

processing stream (Bruce & Young, 1986). Both types of judgements also exhibit markers 

of holistic processing including inversion and aperture effects (e.g., Murphy & Cook, 

2017), and the composite face illusion (Baudouin & Humphreys, 2006). Similarly, morphed 

facial images produce substantial inversion effects; for example, typical observers find the 

Cambridge Face Perception Test extremely challenging when to-be-sorted faces are shown 

upside-down (e.g., Biotti et al., 2019). Morphed target faces also produce aperture effects 

(Murphy & Cook, 2017) and the composite face illusion (Gray et al., in press).  

 

Importantly, we were able to replicate the results of Van Belle, De Graef, Verfaillie, 

Rossion, et al. (2010) in Experiments 1 and 2. This suggests that the different pattern of 

results seen in Experiments 3 and 4 is not attributable to our use of a fixed-trajectory 

aperture paradigm, facial sex judgements, or face morphing. We cannot say for certain what 

Van Belle and colleagues would have found if their upright and inverted conditions had 

been matched for difficulty. In light of the present results, however, we speculate that they 

would have found similar aperture effects in both orientation conditions. 

 

Target-face ambiguity and holistic processing 

We sought to match performance in the upright and inverted whole-face conditions in order 

to provide a fair test of the view that aperture viewing disproportionately disrupts the 

processing of upright faces. This was achieved by employing faces in the upright and 

inverted conditions with weaker (20%) and stronger (40%) sexually dimorphic signals, 

respectively. We have argued that the comparable aperture effects seen for upright and 

inverted faces in Experiments 3 and 4 reflect the fact that we had equal scope to detect 



16 
 

performance decrements associated with aperture viewing; i.e., that we eliminated potential 

floor effects in the inverted face conditions.  

 

During peer-review, it was suggested that we have not provided a fair comparison of the 

whole-face processing engaged by upright and inverted faces; that we only find comparable 

aperture effects for upright and inverted faces because we have unfairly constrained the 

holistic processing seen for upright faces. Because the sexually dimorphic signals present 

within the 20% faces were relatively weak, observers may have consciously sought 

diagnostic local features to augment their perceptual decisions. As a result, the 20% faces 

may have engaged weaker holistic processing and produced relatively small aperture 

effects. Consistent with this interpretation, it is clear that i) sex categorisation judgements 

can be based on trivial local features (e.g., eye-lashes, specular highlights on the lips), and 

ii) observers sometimes search for trivial details or distinctive features when confronted 

with challenging face discrimination tasks (Barton, Radcliffe, Cherkasova, Edelman, & 

Intriligator, 2006; de Xivry, Ramon, Lefevre, & Rossion, 2008; Duchaine & Weidenfeld, 

2003; Ramon & Van Belle, 2016).  

 

Taken to its extreme, this account might argue that the 20% faces used in the upright 

conditions engaged so little holistic processing, as to render our key result – comparable 

aperture effects for upright and inverted faces – meaningless. This is demonstrably not the 

case. In our first two experiments the 20% faces produced striking effects of inversion and 

aperture viewing – both thought to be markers of holistic processing (Murphy & Cook, 

2017; Van Belle, De Graef, Verfaillie, Rossion, et al., 2010). As predicted by theories of 

holistic processing, we also observed Orientation × Viewing Condition interactions in 

Experiments 1 and 2, whereby aperture viewing produced greater perceptual decrements 

when observers judged upright faces. In both experiments, these effects were as strong (or 

even stronger) than those reported by Van Belle and colleagues (2010). In short, observers’ 

judgements of the 20% faces behaved precisely as proponents of holistic processing 

theories would expect (Experiments 1 and 2), until the comparison inverted conditions were 

matched for difficulty (Experiments 3 and 4). 

 

There are other aspects of this alternative interpretation that we also find questionable. 

First, several features of the 20% stimuli are likely to increase – not discourage – holistic 

processing. In order to dilute the sexually dimorphic signals present in the target faces, we 
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blended each facial image with an androgynous average face created by combing 32 

individual faces. Because of the heavy weighting of this average, the 20% faces contained 

little high-spatial frequency information and depicted relatively average non-descript 

features. Trivial details present in unmodified natural images (eye-lashes, specular 

highlights) were therefore unlikely to appear in the 20% faces. Moreover, previous findings 

indicate that composite-face arrangements that preserve low-spatial frequency information, 

but eliminate high-spatial frequency information, produce larger illusions than full-

spectrum faces (Goffaux & Rossion, 2006). Using a feature-context congruency paradigm, 

Goffaux (2012) also found that context-induced interference increased – suggestive of 

stronger holistic processing –  as local feature discriminability decreased.  

 

Second, the presentation durations of 480ms employed in the whole-face conditions permit 

little, if any, controlled processing of local facial regions. It is certainly the case that 

observers sometimes look for trivial details or distinctive features to perform challenging 

perceptual discrimination tasks. However, the characteristic feature of this processing is 

that it tends to be slow and effortful; for example, it typically takes prosopagnosics several 

seconds to find distinguishing details that let them identify faces. Observers who are reliant 

on this kind of analysis (e.g. cases of developmental or acquired prosopagnosia) therefore 

find brief presentation durations extremely challenging (Biotti & Cook, 2016; Biotti et al., 

2019; Cenac et al., 2019). The fact that typical observers exhibit good discrimination and 

categorisation of briefly presented (upright) faces has been widely attributed to rapid, 

efficient holistic processing (Farah et al., 1998; McKone & Yovel, 2009; Richler, Wong, et 

al., 2011; Rossion, 2008, 2013).  

 

Third, holistic processing appears to be automatic and obligatory, not something that 

observers can consciously inhibit (Jacques & Rossion, 2009, 2010; Kuefner, Jacques, 

Prieto, & Rossion, 2010; Murphy et al., 2017; Rossion, 2013). For example, when 

composite face arrangements are presented aligned and upright, typical observers cannot 

inhibit the manifestation of the resulting illusion, even where it hinders the speed and 

accuracy of their responding (Murphy et al., 2017; Rossion, 2013). Further evidence 

obtained using EEG suggests that holistic processing influences the structural encoding of 

faces within 200 ms of stimulus onset, as one would expect of an obligatory perceptual 

process (Jacques & Rossion, 2009, 2010; Kuefner et al., 2010). 
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Finally, it has been argued by some that the emergence of holistic processing is driven by 

the need to make challenging within-category discriminations between exemplars that share 

common first-order feature relations. In contrast, easier between-category discriminations 

are thought to be insufficient to trigger the emergence of automatic holistic processing (e.g., 

Richler, Wong, et al., 2011). A closely-related view is that typical observers have exquisite 

ability to encode and distinguish faces because they process faces holistically (DeGutis, 

Cohan, & Nakayama, 2014; Michel, Rossion, Han, Chung, & Caldara, 2006; Richler, 

Wong, et al., 2011; Tanaka, Kiefer, & Bukach, 2004). These views are hard to reconcile 

with the claim that easy-to-identify faces are processed holistically, but hard-to-identify 

faces are not.  

 

What causes the face inversion effect? 

Our results argue against the view that marked performance decrements when judging 

upside-down faces are caused by a shift from holistic to parts-based processing. So what is 

responsible for the face-inversion effect? In our first two experiments we saw striking 

inversion effects not only in the whole-face condition, but also in the aperture condition. A 

similar finding was also described by Murphy and Cook (2017). These inversion effects – 

seen in conditions where decisions are based on a serial analysis of local features – suggest 

that inverted faces may be harder to perceive because we are less able to encode the local 

regions. This conclusion accords with previously reported inversion effects for isolated 

facial features (Leder & Bruce, 2000; Leder, Candrian, Huber, & Bruce, 2001; Rakover & 

Teucher, 1997). 

 

The suggestion that inverted faces benefit from whole-face processing appears inconsistent 

with the orientation sensitivity of the composite face illusion (e.g., McKone et al., 2013), 

widely regarded as a key measure of holistic face processing (Murphy et al., 2017; Rossion, 

2013). Although the composite face illusion manifests more strongly when arrangements 

are shown upright, we note that significant illusory effects are still seen for inverted 

arrangements (Richler, Mack, Palmeri, & Gauthier, 2011; Susilo et al., 2013). We speculate 

that inverted composite face arrangements may induce weaker illusions, not because 

integration mechanisms are ‘turned-off’, but rather because inversion impairs the accuracy 

with which the constituent regions are encoded. Noisy local descriptions may induce 

weaker perceptual predictions; for example, a poor representation of the mouth region may 
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afford a weak prediction about the nature and likely content of the eye-region (Gray et al., 

in press).  

 

We have examined the effects of aperture viewing on faces only. We therefore make no 

claims about the domain-specificity of our findings. Future studies, however, could use 

aperture paradigms to test the view that holistic processing also underlies orientation-

specific perceptual expertise for non-face objects. Some authors have argued that other 

classes of object that comprise numerous exemplars, that share consistent first-order feature 

relations, and that have a canonical orientation, may also come to recruit orientation-

specific holistic processing (Diamond & Carey, 1986; Gauthier & Tarr, 1997; Richler, 

Wong, et al., 2011). Consistent with this view, several studies have reported that so-called 

‘objects-of-expertise’ produce substantial inversion effects, including dogs (Diamond & 

Carey, 1986), bodies (Reed, Stone, Bozova, & Tanaka, 2003), and budgerigars (Campbell 

& Tanaka, 2018). It would be interesting to see whether or not these objects-of-expertise 

also produce substantial inversion effects when viewed through apertures. In light of the 

present findings, we speculate that orientation-specific perceptual expertise may owe more 

to the accurate encoding of local features than currently appreciated. 

 

It is beyond doubt that orientation inversion greatly hinders the processing of faces 

(Rossion, 2008; Valentine, 1988; Yin, 1969). However, evidence that both upright and 

inverted faces benefit from whole-face processing, accords with previous findings that 

suggest that upright and inverted faces engage similar neuro-cognitive mechanisms. For 

example, people tend to use the same facial regions to discriminate upright and inverted 

faces (Sekuler et al., 2004). Individual differences in upright and inverted face matching 

correlate strongly (Biotti et al., 2019; Klargaard, Starrfelt, & Gerlach, 2018) and perceptual 

learning about upright faces appears to generalise – at least in part – to inverted faces 

(Kramer, Jenkins, Young, & Burton, 2017). Neuroimaging studies indicate that upright and 

inverted faces both engage the fusiform face area (e.g., Haxby et al., 1999; Kanwisher, 

Tong, & Nakayama, 1998; Yovel & Kanwisher, 2005), although some authors have found 

that upright faces elicit greater signal change (e.g., Yovel & Kanwisher, 2005). Similarly, 

inverted faces elicit the N170 ERP component – a measure of structural encoding (Eimer, 

2000) – albeit delayed and amplified relative to the ERPs seen for upright faces (Rossion et 

al., 2000). The foregoing findings provide convergent evidence for the view that the 
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processing of upright and inverted faces differs quantitatively, not qualitatively (Sekuler et 

al., 2004). 
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Footnotes 

1Many authors use “holistic processing” as short-hand for “whole-face” processing. We 

follow this convention here. We note, however, that some authors have advanced an 

alternative view, arguing that isolated local regions may recruit some form of orientation-

specific holistic or ‘configural’ processing in the absence of the wider face context (e.g., 

Leder & Bruce, 2000; Leder et al., 2001; Rossion, 2008, 2013).  

 

2We elected to inform observers about the type of stimulus at the start of each trial to ensure 

that observers could orient to the window and anticipate its direction of travel as easily as 

possible. If this were not the case, aperture decrements might have arisen for theoretically 

uninteresting reasons. 

 

3Where observed, feature-order effects (e.g., superior perceptual performance when eye-

regions are revealed early in a sequence) are consistent with the serial accumulation of 

evidence from local regions.  
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Figure 1 

 

Figure 1: (a) Examples of the stimulus images judged by participants shown alongside the 

original facial image used to create each morph. (b) The stimulus images were weighted 

blends of an androgynous average face (80%) and the raw facial image (20%). (c) In the 

whole-face condition, trials presented a single stimulus image in its entirety for 480ms. (d) 

In the aperture conditions, a viewing window revealed the image incrementally over a 

period of 7.2 seconds, moving with a vertical (Experiments 1 & 3) or horizontal 

(Experiments 2 & 4) directionality.   
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Figure 2 

 

Figure 2: Results from Experiments 1-4 (a-d, respectively). Error bars denote ±1 SEM. ** 

denotes p < .01; *** denotes p < .001. 
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Supplementary analyses of response times 

 

Experiment 1 

Having excluded outlying values (> 3 SDs of each participant’s mean RT), response times 

for correct responses (Figure S1a) were analyzed using ANOVA with Viewing Condition 

(whole-face, aperture) and Facial Orientation (upright, inverted) as within-subjects factors. 

We observed a main effect of Facial Orientation [F(1,19) = 5.757, p = .027, η2 = .233], 

whereby responses tended to be slightly slower in the inverted condition. Responses were 

significantly slower in the inverted aperture (M = 513, SD = 204) condition than in the 

upright aperture condition (M = 479, SD = 160) [t(19) = 2.118, p = .048]. Responses in the 

upright whole-face condition (M = 466, SD = 174) and the inverted whole-face condition 

(M = 489, SD = 155) did not differ [t(19) = .754, p = .460]. We observed no main effect of 

Viewing condition [F(1,19) = .578, p = .456, η2 = .030] nor a Viewing-Condition × Facial 

Orientation interaction [F(1,19) = .073, p = .789, η2 = .004].  

 

Figure S1: Mean response times seen in each condition for Experiment 1-4 (panels a-d, 

respectively). Error bars indicate ± 1 SEM.  
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Experiment 2 

Having excluded outlying values (> 3 SDs of each participant’s mean RT), response times 

for correct responses (Figure S1b) were analyzed using ANOVA with Viewing Condition 

(whole-face, aperture) and Facial Orientation (upright, inverted) as within-subjects factors. 

We observed a main effect of Facial Orientation [F(1,19) = 4.558, p = .046, η2 = .193], 

whereby responses tended to be slightly slower in the inverted condition. Responses were 

significantly slower in the inverted aperture (M = 583, SD = 288) condition than in the 

upright aperture condition (M = 512, SD = 243) [t(19) = 5.783, p < .001]. Responses in the 

upright whole-face condition (M = 542, SD = 270) and the inverted whole-face condition 

(M = 554, SD = 261) did not differ [t(19) = .339, p = .738]. We observed no main effect of 

Viewing condition [F(1,19) = .002, p = .964, η2 = .000] nor a Viewing-Condition × Facial 

Orientation interaction [F(1,19) = 2.782, p = .112, η2 = .128].  

 

Experiment 3 

Having excluded outlying values (> 3 SDs of each participant’s mean RT), response times 

for correct responses (Figure S1c) were analyzed using ANOVA with Viewing Condition 

(whole-face, aperture) and Facial Orientation (upright, inverted) as within-subjects factors. 

We observed no main effect of Viewing condition [F(1,19) = .464, p = .504, η2 = .024], no 

main effect of Facial Orientation [F(1,19) = .016, p = .902, η2 = .001], nor a Viewing-

Condition × Facial Orientation interaction [F(1,19) = .463, p = .504, η2 = .024]. 

 

Experiment 4 

Having excluded outlying values (> 3 SDs of each participant’s mean RT), response times 

for correct responses (Figure S1d) were analyzed using ANOVA with Viewing Condition 

(whole-face, aperture) and Facial Orientation (upright, inverted) as within-subjects factors. 

We observed no main effect of Viewing condition [F(1,19) = 3.771, p = .067, η2 = .166] 

and no main effect of Facial Orientation [F(1,19) = 3.298, p = .085, η2 = .148]. However, 

the analysis revealed a significant Viewing-Condition × Orientation interaction [F(1,19) = 

6.067, p = .023, η2 = .242], whereby aperture viewing slowed down responding more in the 

inverted condition, than in the upright condition.  

 

 


