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Selecting a suitable physical fractionation method, to investigate soil organic matter dynamics, from the plethora that are available
is a difficult task. Using five different physical fractionation methods, on soils either nontreated or with a history of amendment
with a range of exogenous organic matter inputs (Irish moss peat; composted horse manure; garden compost) and a resulting
range of carbon contents (6.8 to 22.2%), we show that method selection had a significant impact on both the total C recovered and
the distribution of the recovered C between unprotected, physically protected, or chemically protected conceptual pools. )ese
between-method differences most likely resulted from the following: (i) variation in the methodological fractions obtained (i.e.,
distinguishing between aggregate size classes); (ii) their subsequent designation to conceptual pools (e.g., protected versus
unprotected); and (iii) the procedures used in sample pretreatment and subsequent aggregate dispersion and fractionation steps.
)e performance of each method also varied depending on the amendment in question. )e findings emphasise the need for an
understanding of the nature of the soil samples under investigation, and the stabilisation mechanism of interest, both prior to
method selection and when comparing and interpreting findings from literature studies using different fractionation methods.

1. Introduction

Soil organic carbon (SOC) is one of the most important
indicators of soil quality [1]. Soils contain approximately
three times more carbon than the atmosphere or terrestrial
vegetation [2], accounting for 80% of the terrestrial carbon
pool [3]. )erefore, maintenance and enhancement of soil
carbon stocks is of great importance when considering both
the promotion of soil health and the regulation of the global
carbon cycle, a fact recognised during the 21st Conference of
the Parties to the United Nations Framework Convention on
Climate Change (COP21) in Paris, 2015, where the “4 per
mille Soils for Food Security and Climate” action agenda was
developed [4].

)e application of organic soil amendments in horti-
cultural systems, such as manure and composts (i.e., green
waste compost and spent mushroom compost), has been
reported to increase SOC [5–7]. However, in order to
inform future management strategies that aim to enhance

SOC storage, it is vital that research establishes which
mechanisms are dominant in organic C stabilization in
soils [8].

)ere has been a traditional view, regularly reported in the
literature [8–13], that there are three key stabilisation mech-
anisms that can protect SOC contained within soil organic
matter (SOM) from being decomposed and mineralised in
soils: (i) Biochemical stabilisation, relating to the presence and
selective preservation of molecules resistant to decomposition
as a result of their chemical structure.)is recalcitrancemay be
either intrinsic to initial structure, or created as a result of the
formation of chemically complex structures through con-
densation and secondary synthesis reactions. (ii) Physical
stabilisation, relating to the occlusion of SOM within aggre-
gates, causing physical disconnection and therefore in-
accessibility of SOM to decomposer microorganisms. (iii)
Chemical stabilisation, whereby SOM becomes chemically
inaccessible to decomposers as a result of sorption of SOMonto
mineral surfaces and complexation with metal ions.
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Historically, it was thought that SOM persistence was
mostly a function of biochemical stabilisation [11]. However,
more recent synthesis of evidence questions the importance
of selective preservation of structures traditionally thought
to be inherently recalcitrant (e.g., lignin) and also the im-
portance of structures with acquired biochemical re-
calcitrance via secondary synthesis (“humification”) in the
control of SOC persistence [2]. Instead, the consensus now
supports the fact that physical stabilisation through occlu-
sion and chemical stabilisation via sorption and complex-
ation are the dominant mechanisms controlling the long-
term persistence of SOC [2].

Soil physical fractionation methods have been adopted
to quantify the amount of C associated with pools of dif-
ferent theoretical stability, and how these C pools are af-
fected by various management techniques, including the
addition of organic amendments [7, 12]. )ese fractionation
methods typically quantify SOC that is (i) contained within
aggregates and therefore, in theory, physically protected
through occlusion; (ii) complexed within organomineral
associations and therefore chemically protected; or (iii) un-
protected (free) and therefore accessible to microorganisms,
and their enzymes, for decomposition. )ese methods can be
informative about the stability of SOM in the soil system [10]
and the sensitivity of SOM dynamics to change [14]. In
addition, physical fractionation can increase understanding
and prediction of SOC dynamics if procedures can produce
fractions that are translatable to pools in soil carbon models
[15]. However, the plethora of physical fractionation methods
available in the literature makes it difficult to select an ap-
propriate and informative method. Furthermore, it is likely
that the suitability of a particular method, and therefore
appropriate method selection, will depend on soil manage-
ment history. Recent fractionation comparisons [16] have
focussed on arable soils with SOC contents (1-2%) typical of
such systems that are ploughed, NPK fertilized, and receive no
OM amendment other than crop residues (maize) or no
inputs/tillage at all (miscanthus). It is uncertain whether
conclusions from method intercomparisons done in arable
soils are applicable to soils receiving annual exogenous OM
amendments, such as those in horticultural systems, and
likely differing in both total SOC content and the distribution
of SOC between physical fractions.

)e aim of this study was therefore to trial five published
physical fractionationmethods in soil receiving horticultural
OM amendments, with particular interest in comparing the
distribution of C among fractions defined as physically
protected, chemically protected, or unprotected as reported
by each method. An additional objective was to evaluate the
logistical ease of conducting each method in the laboratory.
To the best of our knowledge, this is the most extensive
comparison of physical fractionation methods to be con-
ducted within the same laboratory, by the same operator, for
soils receiving exogenous organic matter inputs.

2. Methods

2.1. Site Description and Soil Sampling. Soil samples (0–
15 cm depth) were taken in October 2013 from the Royal

Horticultural Society’s (RHS) Deer Farm in Wisley, UK
(51.323428°N, − 0.474392°W), details of which can be
found in the study by Alexander and Nevison [17]. )e site
consisted of a sandy loam soil that had received annual
applications for 6 years of either: Irish moss peat (Pt);
composted horse manure (H); or garden compost at full
rate (GCf) and half rate (GCh) from collected prunings
and cuttings from RHS Wisley Garden, UK. Prior to
sampling (May 2013), the plots had been sown with
Phacelia tanacetifolia Bentham, with above ground ma-
terial harvested and removed in September 2013. )e
amendments were applied annually in early spring as a
5 cm layer on the surface of the soil (with the exception of
the GCh treatment which received 2.5 cm), and in-
corporated into the top 15 cm of soil with the use of a
rotovator. Soil from an unamended, bare plot control (BP)
was also collected. )ese different organic matter
amendments resulted in a range of total C contents across
the treatments (Table 1).

)e different soil amendment treatments, on a single soil
type, have been selected solely to provide a suite of C
contents to test the different physical fractionation methods
whilst avoiding the ambiguity of the use of multiple soil
types with various textures etc.

Bulk soils of each treatment were sampled by auger from
0 to 15 cm. A sample splitter was used to obtain 15 repre-
sentative subsamples of each soil (3 replicate samples for
each fractionation method). Samples were further prepared
(i.e., dried and sieved) according to the requirements of each
individual method (Table 2).

2.2. Organic Matter Fractionation. Soil subsamples were
subjected to the five fractionation procedures according to
the following published methods: (i) Plaza et al. [18] using a
microaggregate isolator, sonication, and density flotation
(PL); (ii) Six et al. [9] using size separation, a micro-
aggregate isolator, and density floatation (SD); (iii) Six et al.
[9] using size separation, a microaggregate isolator, and
sodium hexametaphosphate (NaHMP) for dispersion
(SMI); (iv) Sohi et al. [19] using sonication and density
floatation (SO); and (v) Zimmermann et al. [15] using size
separation and density flotation (ZM). Each of the methods
will be referred to by the stated abbreviations from this
point forward. A brief overview of key features of each
method can be found in Table 2. All organic matter
fractionation methods were conducted in the same labo-
ratory, by the same operator.

)e methods differ in the number and description of the
physical fractions that they obtain. An overview of these
methods with fractions categorised by conceptual pool as: (i)
physically protected (in aggregates, particularly micro-
aggregates); (ii) chemically protected (through mineral as-
sociation); or (iii) unprotected by chemical or physical
mechanisms (free particulate organic matter), is given in
Table 3.

)e categorisation in Table 3 is somewhat subjective
since some methods (SO and ZM) designate SOM occluded
in microaggregates and macroaggregates as physically
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protected but others (SD and SMI) only consider OM oc-
cluded in microaggregates as physically protected. )ese
differing descriptions between methods have been accom-
modated in Table 3 as follows: methods that define
microaggregates as a fraction have had the OM in this
fraction categorised as physically protected and macroag-
gregate OM as unprotected. Methods that do not distinguish
between microaggregates and macroaggregates, and pool
them as one aggregate fraction, have had the whole aggregate
fraction classified as physically protected.

In addition, some of the methods use different size
classes during sieving, which may result in overlaps over
different conceptual pools. )e ZM method, for example,
classes OM that is <63 μm as chemically protected, whereas
SD and SMI uses <53 μm sieves. )erefore, the 53–63 μm
fraction of OM obtained may contain unprotected OM,
chemically protected OM, and physically protected OM
depending on the method used. )us, it is uncertain which
method is most efficient at separating physically protected
OM from chemical protection.

It should also be noted that that the nomenclature
assigned to each of the fractions in Table 3 are the names
used in the original publications. )erefore, due to between-
publication differences in nomenclature, fractions that are
identical, or very similar, may have different names. For
example, free particulate OM (that is not protected by
physical or chemical mechanisms) is defined as particulate
OM, or POM, in the ZM method, free OM (fOM) in the PL
method, or the free light fraction (FLF) in the SO method.

Of the methods tested, only two, PL and ZM, define
dissolved organic matter (DOM) as a fraction. However, the
ZM method required such a large volume of water to wash
out DOM that, in this case, the concentrations were too low
to detect on a Shimadzu TOC analyser. )e low concen-
tration of DOM in these samples (mean 3.6mg C g·soil− 1)
recovered in the PL method meant that its contribution was
negligible to total C recovery in this trial. )erefore, in the
interest of simplifying comparisons betweenmethods, DOM
was excluded from analysis.

2.3. Chemical Analyses. All fractions obtained were dried at
the temperature stated in the corresponding published
method. Samples were ground to 0.2mm using a TEMA disc
mill and analysed for total C content on a )ermo Scientific
Flash 2000 CHNS/O analyser.

Resulting data were expressed as the amount of physi-
cally protected, chemically protected, and unprotected C
as mg C g·soil− 1. In addition, in order to account for different
total C recoveries, the amount of aggregate C and free POM
C obtained using each method was also expressed as a
percentage of the total C recovered in each method.

Finally, in order to assess the quality of the fractions
obtained (and therefore their suitability for further analysis),
the C concentration of the fractions expressed as mg C
g·fraction− 1 was also calculated. )is allows us to review the
effects of mineral components, in particular sand, in the
different fractions of each method.

2.4. Statistical Analysis. All statistical analyses were con-
ducted using Minitab (18.0). Once tested for normality
(Anderson–Darling test) and equal variance (Levene’s test),
two-way analysis of variance (ANOVA), with interactions,
was conducted using fractionation method (PL, SD, SMI,
SO, or ZM) and soil treatment (BP, GCf, GCh, H, or Pt) as
factors. Tukey’s honest significant difference test was used
for post hoc comparison of means. In the case where data are
represented as a percentage (e.g., % recovery), all the data
were arcsine transformed before normality and homoge-
neity of variance testing, and subsequent two-way ANOVA.

As this is a methods comparison, discussing the effects of
amendment application on C dynamics is not within the
scope of this research. )erefore, the results presented and
discussed here will focus on the effect of fractionation
method and interactions, rather than the effect of amend-
ment treatment alone on different conceptual C pools.

3. Results

3.1. Total C Recovery. )e physical fractionation method
used in this trial had a significant impact on how much C of
total soil C could be recovered during the fractionation
process (p< 0.05; Table 4). )e SMI and SO methods re-
covered more C in total than the other three methods (PL,
SD, and ZM). )e bare plot control treatment, which as the
unamended soil has the lowest total C content (Table 1), had
a higher recovery than the peat soil, which had the highest C
content due to amendment. )ere were no other significant
differences between treatment; however, there were signif-
icant interactions between method and treatment (p< 0.05).
For example, total C recovery for horse manure-treated soil
was the lowest for four out of the five methods (PL, SD, SO,
and ZM) but was the highest when using the SMI method
(Table 4).

3.2. Unprotected C Recovery. Figure 1(a) shows that the PL
and SMI recovered more unprotected C (p< 0.05) than the
other three methods (SD, SO, and ZM) but the effect of
method on recovery depended on OM treatment (p< 0.05).
For example, recovery of unprotected C in horse manure-
amended soil was particularly high when using the SMI
method and, when using the PL method, unprotected C
recovery in peat-amended soil was high.

Table 1: C content of whole (not sieved) soils used for the frac-
tionation trials.

Treatment Abbreviation Whole soil C
(mg C·g− 1)

Nonamended bare plot control BP 68.22± 2.23e
Garden compost (full rate) GCf 112.28± 5.66c
Garden compost (half rate) GCh 81.67± 7.98d
Composted horse manure H 145.86± 3.81b
Peat Pt 222.40± 1.64a

Data are mean± standard deviation (n� 3). Mean values not sharing a
superscript letter are significantly different (p< 0.05; Tukey’s significant
difference).

Applied and Environmental Soil Science 3



)ree of the five methods (PL, SO, and ZM) involve
initial separation of free POM, not associated with aggre-
gates or mineral components, using density flotation. )e
SD and SMImethods do not have an initial separation of free
POM before aggregate dispersion; so, it is difficult to dis-
tinguish between intra-aggregate OM and free particulate
OM of the same aggregate size class (discussed later) and
decipher how they compare to the other methods with
regard to the isolation of free POM. Examining those
methods that did distinguish a free POM fraction revealed a
significant effect of method (p< 0.05) on C recovery in free
POM (Table 5) with the PL method recovering the most free
POM C, followed by ZM and SO. However, free POM C
recovery for a given method depended on OM treatment, as
evidenced by a significant method∗ treatment interaction
(p< 0.05). For example, PL and ZMmethods recovered more

POM C in the full-rate garden compost treatment than the
half-rate treatment but the SO method recovered similar
amount of POM C for both (Table 5). In addition, POM
recovery in the horsemanure treatment was among the lowest
in the SO method, but one of the highest for the PL and ZM
methods (Table 5).

3.3. Physically Protected C Recovery. Fractionation method
had an overall significant effect on recovery of physically
protected C (p< 0.05; Figure 1(b)). )e SMI, SO, and ZM
isolated significantly more physically protected C than the
SD and PL method, with the PL method isolating the least
physically protected C. Again, there were significant
method× treatment interactions (p< 0.05) according to
two-way ANOVA. For example, the SO method isolated the

Table 2: Overview of physical fractionation methods.

Physical fractionation method

Plaza et al. [18]
(PL)

Six et al. [9] density
(SD)

Six et al. [9]
microaggregate isolator

(SMI)

Sohi et al. [19]
(SO)

Zimmermann et al. [15]
(ZM)

Sample prep Soil air-dried and sieved
(<2mm)

Air-dried soil
not sieved

Air-dried soil not
sieved

Field fresh
soils not
sieved

Soil air-dried and sieved
(<2mm)

Initial size
fractionation

Wet sieved into four size
classes:

Wet sieved into four size
classes:

Lightly sonicated at
22 J·ml− 1 then wet sieved
into two size classes:

Large macroaggregates
(>2000 μm)

Large macroaggregates
(>2000 μm)

Intra-aggregate, free
POM, and sand

associated (>63 μm)
Small macroaggregates

(250–2000 μm)
Small macroaggregates

(250–2000 μm) Dissolved, clay and silt
associated (<63 μm)Microaggregates

(53–250 μm)
Microaggregates
(53–250 μm)

Silt and clay (<53 μm) Silt and clay (<53 μm)
Density fluid
used SPT 1.85 g·cm− 3 SPT 1.85 g·cm− 3 None NaI 1.80

g·cm− 3 SPT 1.80 g·cm− 3

Aggregate
classes

Distinguishes between
macroaggregates

(250–2000 μm) and
microaggregates

(<250 μm)

Distinguishes between
large macroaggregates
(>2000 μm), small
macroaggregates

(250–2000 μm), and
microaggregates
(53–250 μm)

Distinguishes between
large macroaggregates
(>2000 μm), small
macroaggregates
(250–2000 μm),
microaggregates
(53–250 μm), and
microaggregates
contained within
macroaggregates

All aggregates
in one
fraction

All aggregates in one
fraction

Aggregate
dispersion
method

Macroaggregates use a
microaggregate isolator

(breaks up
macroaggregates whilst
keeping microaggregates
contained within intact)

Placed under a vacuum
(138 kPa)

Macroaggregates use a
microaggregate isolator

(breaks up
macroaggregates whilst

keeping the
microaggregates

contained within intact)

Sonication at
1500 J·g− 1 None

Microaggregates:
sonication at 1500 J·g− 1

Microaggregates: 0.5%
NaHMP to disperse

Mineral
fraction Sand, silt, and clay Sand, silt, and clay

Silt and clay (sand
makes up part of the
aggregate fractions)

Sand, silt, and
clay

Silt and clay (sand
makes up part of the
aggregate fractions)

4 Applied and Environmental Soil Science



most physically protected C in the peat and garden compost
(both full and half rate) amended soil but did not for the bare
plot control or the horse manure amended soil.

3.3.1. Aggregate C. As mentioned previously, some
methods (PL, SD, and SMI) distinguish between micro-
aggregate and macroaggregate C, and designate them as
physically protected and unprotected, respectively. )e SO
and ZM methods, however, group all aggregate OM to-
gether. Examining howmuch total aggregate C was isolated
by each method, regardless of size class (Table 6), revealed
that fractionation method had an overall significant effect
(p< 0.05). Post hoc analysis showed that the SD and SMI
methods recovered significantly more aggregate C than the

other three methods and the SO method recovered sig-
nificantly more aggregate C than the PL method with re-
covery for the ZM in between the two (Table 6). However,
there were significant method× treatment interactions
(p< 0.05). For example, out of the OM treatments, ag-
gregate C recovery was amongst the highest for horse
manure for the SD method but the lowest for the SO
method.

3.4. Chemically Protected C Recovery. Fractionation method
had an overall significant effect on chemically protected C
recovery (p< 0.05; Figure 1(c)). )e SO method recovered
significantly more chemically protected C than all other
methods, and the PL recovered the least. Once again, however,

Table 3: Fractions obtained in each method as categorised by stabilisation mechanism: physically protected, chemically protected, or
unprotected OM. Nomeclature provided by the original publications.

Physical fractionation method

Stabilisation
mechanism Plaza et al. [18] (PL) Six et al. [9] density (SD)

Six et al. [9]
microaggregate isolator

(SMI)

Sohi et al. [19]
(SO)

Zimmermann
et al. [15] (ZM)

Unprotected

(i) Free OM (fOM)
(i) Free POM within large
and small macroaggregates
(lM fPOM and sM fPOM)

(i) Large POM/Litter
>2000 μm (>2000POM)

(i) Free light OM
(FLF)

(i) Particulate
organic matter

(POM)
(ii) Intramacroaggregate

OM (i-MaOM)
(ii) Coarse POM in large

and small
macroaggregates (lM
cPOM and sM cPOM)

(ii) Dissolved
organic C (DOC)(iii) Dissolved OM

(DOM)

Physical (i) Intramicroaggregate
OM (i-miOM)

(i) Free POM within
microaggregates (m fPOM)

(i) Intramicroaggregate
POM (imPOM)

(i) Intraaggregate
light OM (iAFLF)

(i) Sand and stable
aggregates (S+A)

(ii) Free POM in
microaggregates within large
and small macroaggregates
(mlM fPOM and msM

fPOM)

(ii) Intramicroaggregate
POM within large and
small macroaggregates
(imlM POM and imsM

POM)

Chemical (i) Mineral-associated
(MinOM)

(i) Mineral-associated SOC
within large and small

macroaggregates (lM mSOC
and sM mSOC)

(i) Silt and clay (s+ c)

(i) Mineral-
associated OM

(MA)

(i) Silt and clay
(s+ c)

(ii) Mineral-associated SOC
within microaggregates (m

mSOC)

(ii) Silt and clay within
large and small

macroaggregates (lM s+ c
and sM s+ c)

(ii) Resistant soil
organic C (rSOC)

(iii) Silt and clay (s+ c) (iii) Silt and clay within
microaggregates (m s+ c)

Table 4: Total C recovery of fractionation method for amended soil.

Treatment
Method

PL SD SMI SO ZM Mean of treatment (n� 15)
BP 60.3± 2.2 67.4± 5.6 101.8± 8.3 75.8± 3.7 53.0± 1.1 71.7 ± 4.9A
GCf 69.2± 0.7 65.1± 0.6 70.1± 3.3 85.5± 1.9 66.3± 0.9 71.2 ± 2.1AB
GCh 74.6± 1.5 63.9± 1.6 64.5± 1.5 74.3± 10.3 72.2± 5.9 69.9 ± 2.4AB
H 54.3± 1.3 44.3± 5.3 127.3± 17.2 63.7± 1.2 47.8± 1.9 67.5 ± 8.7AB
Pt 70.8± 1.2 51.3± 0.5 51.4± 1.8 77.8± 8.1 61.9± 6.4 62.6 ± 3.3B
Mean of method (n= 15) 65.8 ± 2.1b 58.41 ± 2.8b 83.01 ± 8.1a 75.4 ± 3.0a 60.24 ± 2.8b
Values are expressed as a percentage of whole, unsieved, soil C (shown in Table 1). Mean± standard error (n� 3). Lowercase letters in the bold values signify
methods that are not significantly different, and uppercase letters signify treatments that are not significantly different according to two-way ANOVA with
Tukey’s post hoc testing (p> 0.05). Method∗ treatment interactions (p< 0.01).
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there were significant method × treatment interactions. For
example, the SOmethod recovered high amounts of chemically
protected C in the horse manure and bare plot control
treatments, compared to other methods (Figure 1(c)).

3.5. C Concentration of Fractions. Examining the quantity of
C in the fraction, relative to the mass of the fraction
(Figure 2), reveals that the C concentration of the un-
protected fraction obtained using the SMI size separation
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Figure 1: Recovery of (a) unprotected, (b) physically protected, and (c) chemically protected C using different fractionation methods for
amended soils. Error bars for standard error (n� 3). Methods sharing the same lowercase letter and treatments sharing the same uppercase
letter are not significantly different according to two-way ANOVA and Tukey’s post hoc testing (p< 0.05). Methods: PL: Plaza et al. [18]; SD:
Six et al. [9] using microaggregate isolator and density flotation; SMI: Six et al. [9] using microaggregate isolator and NaHMP for dispersion;
SO: Sohi et al. [19]; ZM: Zimmermann et al. [15]. Samples: BP: bare plot control; GCf: garden compost (full rate); GCh: garden compost (half
rate); H: composted horse manure; Pt: Irish peat moss.

Table 5: C recovered from free particulate organic matter.

Treatment
Method

PL SO ZM Mean of treatment
BP 33.4± 0.1 21.5± 2.6 22.0± 5.3 25.6 ± 2.6D
GCf 73.4± 2.8 41.8± 6.7 65.2± 3.0 60.1 ± 5.2B
GCh 50.9± 5.4 40.2± 8.7 49.7± 2.6 46.9 ± 3.5C
H 72.6± 3.6 31.9± 4.3 66.0± 1.2 56.8 ± 6.5BC
Pt 94.2± 1.8 61.5± 5.3 62.8± 10.2 72.8 ± 6.3A
Mean of method 64.9 ± 5.7a 39.4 ± 4.2c 53.1 ± 4.9b
Values are expressed as a percentage of total C recovered. Mean± standard error (n� 3). Lowercase letters in the bold values signify methods that are not
significantly different, and uppercase letters signify treatments that are not significantly different according to two-way ANOVAwith Tukey’s post hoc testing
(p> 0.05. Method∗ treatment interactions p< 0.01).
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method is reduced compared to the other density separation
methods (Figure 2(a)). )e SMI and ZMmethods also result
in significantly lower C concentrations than the other three
methods for physically protected C (Figure 2(b)) but ele-
vated chemically protected C (Figure 2(c)).

4. Discussion

All the fractionation methods vary in terms of notational
differences (e.g., designation of macroaggregate SOC as
being either unprotected or physically protected) and also

Table 6: Aggregate OM recovery.

Treatment
Method

PL SD SMI SO ZM Mean of treatment
BP 15.7± 2.1 56.1± 6.4 43.6± 1.8 10.3± 5.8 34.8± 3.2 32.1 ± 4.8B
GCf 17.5± 3.2 69.8± 1.3 73.1± 2.2 33.4± 5.5 12.2± 1.3 41.2 ± 7.0A
GCh 28.9± 7.0 61.1± 0.3 79.7± 1.1 43.2± 4.8 15.6± 1.3 45.7 ± 6.3A
H 16.0± 3.3 77.2± 4.2 47.4± 2.5 7.7± 1.3 12.5± 0.7 32.2 ± 7.2B
Pt 4.9± 1.8 89.3± 0.3 62.1± 1.2 33.9± 6.0 18.0± 7.0 41.6 ± 8.3A
Mean of methods 16.6 ± 2.5d 70.7 ± 3.4a 61.2 ± 3.8b 25.7 ± 4.2c 18.6 ± 2.6cd
Values are expressed as a percentage of total C recovered. Mean± standard error (n� 3). Lowercase letters in the bold values signify methods that are not
significantly different, and uppercase letters signify treatments that are not significantly different according to two-way ANOVAwith Tukey’s post hoc testing
(p> 0.05). Method∗ treatment interactions (p< 0.01).
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Figure 2: C concentration of (a) unprotected, (b) physically protected, and (c) chemically protected C fractions using different fractionation
methods for amended soils. Error bars for standard error (n� 3). Methods sharing the same lowercase letter and treatments sharing the same
uppercase letter are not significantly different according to two-way ANOVA and Tukey’s post hoc testing (p< 0.05). Methods: PL: Plaza
et al. [18]; SD: Six et al. [9] using microaggregate isolator and density flotation; SMI: Six et al. [9] using microaggregate isolator and NaHMP
for dispersion; SO: Sohi et al. [19]; ZM: Zimmermann et al. [15]. Samples: BP: bare plot control; GCf: garden compost (full rate); GCh:
garden compost (half rate); H: composted horse manure; Pt: Irish peat moss.
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practical methodological differences between methods (e.g.,
density vs. size seperation). )is has led to significant dif-
ferences between methods for total, unprotected, physically
protected, and chemically protected C.

4.1. Total C Recovery of Methods. )e two methods that
recovered the most C in total were the SMI and SOmethods.
)ese are the only methods that do not involve density
separation with SPT at any stage. )e use of SPT vs. NaI is
discussed later.

Sample preparation before fractionation, in terms of
whether the method uses 2mm sieved soil or not, may also
account for SMI and SO having higher total C recovery. A
large proportion (up to 50%) of total C recovered in the SMI
method, for example, was attributed to the large >2000 μm
POM fraction (data not shown). )is material will be re-
moved during 2mm sieving in sample preparation for PL
and ZM methods before fractionation takes place. Sieving
may also remove larger aggregates containing SOM. )is
may contribute to the lower mean C recovery for the PL and
ZM methods compared to the SMI and SO methods that do
not sieve soil as a pretreatment. )e presence of this coarse
litter can make up a large proportion of organic matter-
amended soil samples especially in the case of soils amended
with coarse compost [20, 21]. )erefore, the decision on
whether or not to sieve samples before physical fractionation
will depend on the soil used (i.e., the size of the large POM
fraction) and also whether the research interest is in in-
vestigating free POM in detail or is focussed on the heavier
fractions. )at said, the SD does not sieve the soil as a
pretreatment but failed to recover more total C than the PL
and ZM methods that do sieve.

)e results presented here suggest that the higher the C
content of the soil, the lower the total C recovery. Possibly, as
a result (i) increased free light fraction POM in these soils,
which is more easily lost; and/or (ii) higher C content soils
possibly containing more DOM, which was not isolated
during this trial for any of the methods. )is has implica-
tions for studies looking into amended soils, particularly
those which have had high volumes of exogenous organic
matter inputs. )is may also account for the reduced total
recoveries in this trial, compared to the study by Poeplau
et al. [16]. )e soils used here had at least double the total C
content than those used by Poeplau et al. [16].

4.2. Unprotected, Physically, and Chemically Protected C
Recovery. Evidence presented here suggests that the amount
of C recovered in each of the conceptual pools by a given
method depends on both notational differences between
methods, and also practical methodological differences
between methods, such as aggregate dispersion and density
vs. size separation.

However, it is important to consider that each of the five
methods have a number of operational differences, which
makes drawing firm conclusions difficult. For example,
when considering density separation, which is applied ini-
tially in three methods (PL, SO, and ZM). )ese three
methods use different density fluids (SPT and NaI) and at

different densities (1.80 or 1.85 g·cm− 3). In addition, the
methods that use SPT (PL and ZM) also apply sieving before
the density separation. )erefore, it is possible that the
higher amounts of unprotected free POMobtained by the PL
and ZM methods may have more than one explanation.

4.2.1. Notational Differences in Methods. As discussed
previously, some methods distinguish between macroag-
gregates and microaggregates (e.g., PL, SD, and SMI), and
some group all aggregate size fractions together (SO and
ZM). In the latter case, all intra-aggregate light or particulate
OM is classed as physically protected. However, in the
former, the OM contained within macroaggregates is classed
as unprotected, and only OM occluded in microaggregates is
classed as physically protected. )e addition of OM from
macroaggregates to the unprotected pool may account for
the significantly (p< 0.05) greater proportion of unprotected
C reported by the PL and SMI methods when compared to
the SO and ZMmethods. )is in turn leads to a reduction in
physically protected C in methods that classify macroag-
gregate C as unprotected rather than physically protected.
)e PL and SDmethods, for example, have among the lowest
soil concentrations of physically protected C and among the
highest concentrations of unprotected C (Figure 1), and the
reverse is true for the SO method and ZM method.

However, despite the SMI and SD methods making the
same distinction between microaggregates and macroag-
gregates as the PL method, the SD method did not isolate
significantly more unprotected C than the SO and ZM
methods, and the SMI method did not isolate significantly
less physically protected C than the SO and ZM methods.
)erefore, there are also practical methodological differ-
ences between methods that need to be considered, such as
aggregate dispersion technique, and whether the method
uses size or density separation (see below).

When all aggregate fractions are grouped together re-
gardless of size class, it can be seen that the SD and SMI
methods isolate more aggregate C than the other three
methods. Neither of these methods involves an initial
density separation to isolate free (unoccluded) POM before
dispersing the aggregates. )erefore, the aggregate OM that
is isolated in these methods consists of both the intra-ag-
gregate OM and the free POM that is of the same size class as
the aggregates.

4.2.2. Aggregate Dispersion. Of the three methods that in-
clude macroaggregate OM in the unprotected C pool (PL,
SD, and SMI), the SD method resulted in significantly less
unprotected C being isolated. An explanation for this might
relate to the technique used to disperse OM contained within
macroaggregates, which differed between SD (use of a
vacuum) and SMI and PL (microaggregate isolation via wet
sieving) (Table 2). )e vacuum method may not be as ag-
gressive in breaking up of macroaggregates compared to the
microaggregate isolator, resulting in less OM being liberated
from the macroaggregate fraction. )is potentially less ag-
gressive break up of aggregates in the SD method may also
account for the SD recovering more chemically protected C
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than the SMI and PL method to compensate for less intra-
aggregate OM being dispersed.

4.2.3. Density Separation. Four of the five methods in this
trial use density separation at some stage in the fractionation
procedure (PL, SD, SO, and ZM). However, as previously
discussed, because the SD method has an initial size sepa-
ration, it is difficult to distinguish between intra-aggregate
OM and free OM of the same size class. )e remaining three
methods (PL, SO, and ZM) involve an initial density sep-
aration of free POM (i.e., POM not associated with aggre-
gates or mineral components). )e majority of density
fractionation methods use either sodium polytungstate
(SPT) or sodium iodide (NaI) as density solutions, because
they are less toxic than halogenated hydrocarbons previously
used in fractionation methods [22]. Sequeira et al. [23]
reported that they found no difference in C recovery in the
free light fraction when comparing SPT and NaI density
fluids, but here, SPT (PL and ZM) recovered significantly
more free POM than the SO method, which uses NaI. )e
methods that use SPT (PL and ZM) also involve sieving as a
pretreatment, unlike the SO method (discussed above).
)erefore, the act of sieving could be releasing free POM
from large aggregates, leading to elevated unprotected C,
and not be related to whether SPTof NaI is used as a density
fluid. In turn, this will result in the reduced aggregate OM
released in the PL and ZM methods compared to the SO
method.

)e PL method, which uses a higher density of SPT
(1.85 g·cm− 3) than the ZM method (1.80 g·cm− 3), also re-
covered significantly more free POM than the ZM method.
)is increase in free POM with increasing density of fluid is
in concordance with the findings of Sequeira et al. [23].

During physical fractionation, the chemically protected
fraction can be isolated using either density separation (PL,
SD, SO, and ZM) or size separation (SMI). )e SMI method
isolates significantly less chemically protected C than the
other four methods, suggesting that a density-based ap-
proach isolates more chemically protected C than a size-
based approach. In the density-based approaches, the re-
covery of chemically protected C was significantly higher in
the SOmethod, which uses NaI, rather than SPT, as a density
fluid. Within the methods that use SPTas a density fluid (PL,
SD, and ZM), the ZM (1.80 g·cm− 3 SPT) recovers signifi-
cantly more than the PL method (1.85 g·cm− 3), reverse of the
free POM (discussed above).

4.3. Fractionation for Amended Soils. Total C recovery was
negatively affected by application of the high C content peat
amendment. )is will have implications for the use of
physical fractionation techniques in assessing the effects of
high C soil amendments on C stabilisation. In addition, for
all analysis (total, unprotected, physically, and chemically
protected C), there were significant method× treatment
interactions (p< 0.05), meaning that different methods were
more effective at isolating certain C conceptual pools than
others, for certain amendments. )is will have implications
for studies investigating amendment application on C

stabilisation, as this work suggests that the performance of
each method varies depending on the amendment in
question. )is highlights the need for an understanding of
the nature of experimental samples and the stabilisation
mechanism of most interest, both prior to method selection
and when comparing results between studies.

4.4. Practical Considerations for Method Selection. )e
physical fractionation method selection had a significant
impact on the total C recovered (Table 4) and the distri-
bution of the recovered C between conceptual pools that are
defined based on current ideas on the importance of ag-
gregate occlusion and mineral association in controlling
organic C persistence in soil (Figure 1). )ese between-
method differences most likely resulted from variation in
both the methodological fractions obtained (e.g., dis-
tinguishing aggregate size classes or not) and their sub-
sequent designation to conceptual pools (protected versus
unprotected) and the procedures used in sample pre-
treatment and subsequent aggregate dispersion and frac-
tionation steps. An appreciation of the sensitivity to
methodological variation of the characterization of soil C to
conceptual pools is vital to the interpretation of data pro-
duced by physical fractionation methods. However, the
scientific value of the fractions will not be the only con-
sideration for researchers when selecting an appropriate
fractionation method. Factors such as the objectives of the
individual study versus logistics, time, and budget will also
play a part. )e number of fractions obtained for each
method varies greatly (Table 3) and retrieval of each of these
fractions takes time, and indeed could potentially lead to
greater losses of C as the methods become more complex
(Table 4). )erefore, when selecting a fractionation method,
the researcher will need to consider their individual research
needs, in terms of the information they require from each
fraction, and weigh this against the time it will take to obtain
these fractions.

Dissolved organic matter (DOM) is often overlooked in
organic matter fractionation methods but literature suggests
that this should not be the case. Despite contributing only a
small proportion of total soil C, DOM is a reactive fraction of
SOM [24] and is an important source of C for soil micro-
organisms [25]. In fact, the availability of DOM for
breakdown by the microbial community is considered vital
for soil C turnover as microbial uptake occurs from the
solution phase [26].

All the methods in this study define a mineral fraction,
reflecting the importance in current thinking [2, 16] of
association of C with mineral surfaces via sorption and
complexation for C stabilisation. How the mineral fraction is
defined, particularly in which fraction sand is present, im-
pacts on the quality of C obtained in all the fractions. )is
will have implications if analysing soils with a high sand
content, or comparing multiple sites with different soil
textures. )e presence or absence of sand in the fraction,
which is thought to only have weak associations with C [22],
could, in essence, dilute the sample by increasing the mass of
the fraction without contributing much C.
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All methods recognise the importance of occlusion in
aggregates as a mechanism for stabilising C in soils. How-
ever, not all methods define microaggregate and macroag-
gregate occluded C independently. It is thought that organic
matter is protected from decomposition to a greater extent
in microaggregates than in macroaggregates, not only as a
result of reduced microbial access to organic C substrates
due to the smaller and less connected soil pores, but also as a
result of slower decomposition in response to greater
prevalence of anoxic conditions due to slower oxygen dif-
fusion through small water-filled pores [27]. Micro-
aggregates are also tightly held together by stronger internal
binding agents, which results in them being more stable in
the soil system, and providing better long-term protection
for SOM [25]. Occlusion within microaggregates, contained
within macroaggregates, has been suggested to be the most
important for C stabilisation inmanaged sites [28, 29] as well
as influencing the composition of the microbial community
[30].

Aggregate isolation methods, such as SD and SMI
proposed by Six et al. [9], allow for significance of their size,
in the protection of SOM in soil to be determined [31], but
uniquely they also quantify silt and clay contained within the
aggregate. )is could be of particular interest as C associated
with silt and clay, contained within an aggregate, could be
both chemically and physically protected. )is information
would be valuable in testing hypotheses about the cycling of
C within aggregate formation-stabilisation-destruction
processes and develop understanding of an overlooked pool
of organic matter that is governed by multiple protection
mechanisms. However, as previously discussed, retrieval of
multiple fractions does not come without costs, and is not
always possible in the case of soils that have a high pro-
portion of POM. When the mass of POM constitutes a large
proportion of the mass of the total soil sample, as it did for
the amended soil samples under investigation here, there is
often insufficient residual sample for separation into the
remaining fractions. )erefore, in order to ensure that
enough material is left in fractions towards the end of the
process, larger volumes of soil will need to be processed,
increasing analytical time and cost.

A number of factors during size separation processes,
such as wet sieving, can affect the results, including sieve
size, speed, and duration, which will need to be taken into
account [12], particularly when wet sieving by hand as there
will be obvious differences between operators. In addition,
sieving to separate aggregate size classes will also separate
out POM of different size classes along with sand particles
[32], which do not contain occluded OM from the aggregate
and may impact on results. It is thought that wet sieving may
also lead to leaching of DOC to smaller aggregate size classes,
along with high energy slaking procedures breaking up
weaker aggregates and redistributing fine particles into
smaller aggregate size classes [33].

)e majority of density fractionation methods use either
sodium polytungstate (SPT) or sodium iodide (NaI) as
density solutions, because they are less toxic than haloge-
nated hydrocarbons previously used in fractionation
methods [22]. Although the findings of this study are

inconclusive as to which solution is more appropriate,
according to Sequeira et al. [23], the decision of whether to
use SPT or NaI as a density solution is dependent on the
following factors: (i) Cost (NaI is cheaper than SPT); (ii)
health and safety (SPT is less toxic than NaI); and (iii)
density range (SPT can produce a wider range of densities,
whilst maintaining a lower viscosity at higher concentra-
tions) [34].

)ere are also additional considerations if the intention
is to produce fractions that can be further analysed, for
example by nuclear magnetic resonance (NMR) and isotopic
tracers, to further explore the composition and residence
time within each fraction. For example, problems may arise
for cross-polarization spectra in NMR if the C content of the
sample is 100mg C g·fraction− 1 or less [35], as was the case in
the current study for: unprotected C isolated using the SMI
method; physically protected C using the SMI and ZM
methods; and chemically protected C isolated using the PL,
SD, and SO methods (Figure 2). Differences in fraction C
concentrations are determined by the presence or absence of
mineral components (particularly sand in our case), in
different fractions depending on the fractionation method.
For example, using size separation techniques to isolate
unprotected C in the SMI method means that mineral
components within the same size class, such as sand and
gravel, which would sink in a density separation method, are
included in the POM fraction. )e inclusion of sand in the
aggregate fraction in the SMI and ZMmethods (Table 2) also
results in a significantly reduced C concentration in the
physically protected fraction compared to the other
methods, but higher chemically protected C. Poor NMR
spectra often result from low sample C concentrations due to
background signal caused by rotor cap and probe compo-
nents, in addition to broad peaks and low signal-noise ratios
[35]. Samples that are low in organic molecules, therefore,
may require pretreatment with hydrofluoric acid (HF), to
dissolve minerals thereby concentrating organic matter
signals [36]. However, the use of HF has associated health
and safety concerns, and takes time. Treating samples with
HF has also been observed to cause problems as it can lead to
loss of SOC in some soils [37].

It is also important to note that if it is the intention to
combine physical fractionation techniques with microbial
analyses, it may not be suitable to use density fractionation at
all because density solutionsmay be detrimental tomicrobial
activity [38] or isolation and analysis of nucleic acid markers
for microbial community characterization.

5. Conclusions

For the five physical fractionation methods tested here [18];
[15, 19]; and two variants of [9], the choice of method had a
significant impact on the distribution of organic C between
fractions that conceptually are representative of un-
protected, chemically protected, and physically protected
pools. )is between-method variation can be interpreted in
terms of differences in: (i) the methodological fractions
obtained; (ii) the subsequent subjective designation of
fractions to conceptual pools; and, (iii) procedures used in

10 Applied and Environmental Soil Science



sample pretreatment and subsequent aggregate dispersion
and fractionation steps.

Our method comparison highlights the need for an
understanding of the nature of the samples under in-
vestigation, particularly for amended soil. In addition, an
appreciation for the stabilisation mechanism(s) under study
and operational differences betweenmethods when selecting
a method to address a particular research question is needed.
In the case of cross-study comparisons of soil C quality data,
there will be implications if data have been obtained using
differing physical fractionation methods.

Future work could examine the various steps of frac-
tionation methods and whether the fractions from soils with
exogenous organic matter inputs isolated do indeed have
turnover times that are consistent with the conceptual pools
they are intended to represent (as in [16]).
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