
Asian and trans-Pacific dust: a multi-
model and multi-remote sensing 
observation analysis 
Article 

Accepted Version 

Kim, D., Chin, M., Yu, H., Pan, X., Bian, H., Tan, Q., Kahn, R. 
A., Tsigaridis, K., Bauer, S. E., Takemura, T., Pozzoli, L., 
Bellouin, N. ORCID: https://orcid.org/0000-0003-2109-9559 
and Schulz, M. (2019) Asian and trans-Pacific dust: a multi-
model and multi-remote sensing observation analysis. Journal 
of Geophysical Research: Atmospheres, 124 (23). pp. 13534-
13559. ISSN 2169-8996 doi: 
https://doi.org/10.1029/2019JD030822 Available at 
https://centaur.reading.ac.uk/87376/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1029/2019JD030822 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


 

 1 

Asian and trans-Pacific Dust: A multi-model and multi-remote 1 

sensing observation analysis 2 

 3 

Dongchul Kim1,2, Mian Chin2, Hongbin Yu2, Xiaohua Pan2,3, Huisheng Bian2,4, Qian 4 
Tan5,6, Ralph A. Kahn2, Kostas Tsigaridis7,8, Susanne E. Bauer7,8, Toshihiko Takemura9, 5 

Luca Pozzoli10, Nicolas Bellouin11, and Michael Schulz12 6 
 7 

1Universities Space Research Association, Columbia, Maryland, USA 8 
2Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, 9 

USA 10 
3Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, 11 

Maryland, USA 12 
4JCET/UMBC, Baltimore County, Baltimore, Maryland, USA 13 

5Bay Area Environmental Research Institute, Moffett Field, California, USA 14 
6NASA Ames Research Center, Moffett Field, California, USA 15 

7NASA Goddard Institute for Space Studies, New York, New York, USA 16 
8Center for Climate Systems Research, Columbia University, New York, New York, 17 

USA 18 
9Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan 19 

10European Commission - Joint Research Center, Ispra, Italy 20 
11Department of Meteorology, University of Reading, Reading, UK 21 

12Norwegian Meteorological Institute, Oslo, Norway 22 
 23 
 24 
Corresponding author: Dongchul Kim (dongchul.kim@nasa.gov) 25 
 26 
 27 
Key points: 28 

• Dust and total aerosol over Asia and the North Pacific Ocean are evaluated using 29 
observations and models. 30 

 31 

• Satellites estimate that a 35-70 % decrease of DOD from the west Pacific to the 32 
east Pacific. 33 

 34 

• Diversity of DOD is mostly driven by the diversity of the dust source followed by 35 
residence time and mass extinction efficiency.  36 

 37 

 38 
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Abstract  40 

Dust is one of the dominant aerosol types over Asia and the North Pacific Ocean, but 41 

quantitative estimation of dust distribution and its contribution to the total regional 42 

aerosol load from observations is challenging due to the presence of significant 43 

anthropogenic and natural aerosols and the frequent influence of clouds over the region. 44 

This study presents the dust aerosol distributions over Asia and the North Pacific using 45 

simulations from five global models that participated in the AeroCom phase II model 46 

experiments, and from multiple satellite remote-sensing and ground-based measurements 47 

of total aerosol optical depth (AOD) and dust optical depth (DOD). We examine various 48 

aspects of aerosol and dust presence in our study domain: (1) the horizontal distribution, 49 

(2) the longitudinal gradient during trans-Pacific transport, (3) seasonal variations, (4) 50 

vertical profiles, and (5) model-simulated dust life cycles. This study reveals that the 51 

diversity of DOD is mostly driven by the diversity of the dust source followed by 52 

residence time and mass extinction efficiency. 53 

 54 

1. Introduction   55 

Dust aerosol can impact the Earth’s weather, climate, and eco-systems by 56 

interacting with solar and terrestrial radiation, altering cloud amount and radiative 57 

properties, fertilizing land and ocean, and modulating carbon uptake (Haywood et al., 58 

2003; Jickells et al., 2005; Forster et al., 2007; Evan et al., 2008; Kim et al., 2010; Maher 59 

et al., 2010; Creamean et al., 2013; Yu et al., 2015a; Song et al., 2018). The majority of 60 

global dust sources are from arid surfaces such as North Africa, the Middle East, and 61 
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parts of Asia, and to a lesser extent Australia and Patagonia (e.g., Tegan et al., 2002; 62 

Prospero et al., 2002; Huneeus et al., 2011; Ginoux et al., 2012).  63 

Although dust emission from Asia is estimated as only 25~35% of that from 64 

North Africa (Chin et al., 2007; Su and Toon, 2011; Ginoux et al., 2012), it is a dominant 65 

source of dust not only over the land areas of Asia. Asian dust is also significant over the 66 

North Pacific Ocean, western North America, and the Arctic (e.g., Chin et al., 2007) via 67 

long-range transport, playing a key role in the climate and eco-system in these regions 68 

(Uno et al., 2009; Shao et al., 2011; Yu et al., 2012). Observation-based estimates of dust 69 

amount based on multiple years of satellite AOD data from the Moderate Resolution 70 

Imaging Spectro-radiometer (MODIS) suggest that about 140 Tg (1 Tg = 106 tons) of 71 

dust are exported from East Asia; among which 56 Tg (40%) reach the west coast of 72 

North America, and the remaining 84 Tg are deposited in the North Pacific and/or are 73 

transported to the Arctic (Yu et al., 2012). Dust is more efficiently transported across the 74 

North Pacific Ocean (40%) than other continental aerosols (25%) (Yu et al., 2008) due to 75 

the higher elevation of dust layers (Yu et al., 2010, 2012). The satellite-based estimate of 76 

trans-Pacific dust transport and deposition differs significantly from those estimated from 77 

in-situ measurements and simulated by models, as summarized in Yu et al. (2013). 78 

On the other hand, previous modeling studies of dust outflow from Asia and 79 

deposition to the North Pacific have shown different results. A study with the Northern 80 

Aerosol Regional Climate Model estimated that out of 120 Tg of dust (< 41 μm in 81 

diameter) emitted from Asia in Springtime, 31 Tg (26%) is exported from Asia to the 82 

Pacific Ocean and only 4 Tg (13%) of the exported dust reaches North America (Zhao et 83 

al., 2006). An inter-model comparison study with eight regional dust emission/transport 84 
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models demonstrated that participating dust models differ by a wide range over Asia, 85 

from emission to surface concentration, horizontal distribution, and vertical profiles 86 

during long-range transport (Uno et al., 2006). They suggested that measurements of dust 87 

fluxes and accurate, up-to-date land-use information are crucial to achieve more realistic 88 

simulations over these regions. Dust simulated from global models have also been 89 

extensively compared in the past AeroCom studies (Kinne et al., 2006; Huneeus et al., 90 

2011; Koffi et al., 2012, 2016; Kim et al., 2014), but none of them specifically devoted to 91 

assessing model performance in the Asian-Pacific region, partially due to the lack of 92 

reliable data over this region. For example, Huneeus et al. (2011) pointed out that a 93 

specific Asian dust data set is needed to evaluate the global dust models, and suggested 94 

that one way to assess the performance of global dust models over Asia would be to 95 

compare measurements of coarse-mode AOD against modeled ones. However, extracting 96 

dust data from satellite observations in the Asian-Pacific region is challenging because of 97 

the frequent cloud occurrence in the North Pacific and the large amount of pollution 98 

aerosol over the Asian continent. Wu et al. (2019) showed that different dust retrieval 99 

algorithms based on the CALIOP observations yield significant differences in the dust 100 

vertical distribution, which complicates the evaluation of model simulations. 101 

With the recent development of methods to derive satellite-based dust vertical 102 

profiles and transport flux estimates based on the CALIOP and MODIS data (Ginoux et 103 

al., 2012; Yu et al., 2015a, b; Yu et al., 2019a, 2019b), we present in this paper an 104 

evaluation of multiple, global model dust simulations in the Asian-Pacific region from 105 

the AeroCom Phase II (AeroCom II) Hindcast model experiment with multiple satellite 106 

observations. We also examine several key physical and optical model parameters in 107 
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order to explain discrepancies between observations and models, and among the models. 108 

We use an approach similar to our previous study (Kim et al., 2014), that evaluated 109 

AeroCom II model-simulated dust with updated satellite observations in the African-110 

North Atlantic region, and addressed the key processes causing model diversity and 111 

deficiency.  112 

In section 2, we briefly describe the AeroCom II Hindcast model simulations and 113 

the satellite- and ground-based remote-sensing data. In section 3, we compare the 114 

observed and modeled total aerosol and dust aerosol optical depths, including their 115 

longitudinal gradients and vertical distributions. In section 4, we investigate details of the 116 

dust life cycle in the models, and we compare results from the present study with those of 117 

North Africa. Discussion is presented in section 5, followed by a summary in section 6. 118 

 119 

2. Models and data 120 

2.1 AeroCom models 121 

AeroCom is an internationally coordinated effort to advance the understanding of 122 

atmospheric aerosols and to document and diagnose differences between models and 123 

between models and observations (http://aerocom.met.no). The AeroCom II Hindcast 124 

experiments produced multi-year simulations from 1980 to 2007, but models cover 125 

different simulation lengths. Following Kim et al. (2014), we use the five AeroCom 126 

models that provided dust simulations and diagnostics over the time period 2000-2005.  127 

The model setup and configurations are highly model-dependent, for example, with 128 

horizontal resolution from 1.1° in SPRINTARS to 2.8° in ECHAM5 (Table 1). Vertical 129 

coordinates range from 30 layers in GOCARTv4 (hereafter GOCART) to 56 in 130 
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SPRINTARS. The meteorology fields that drive dust emissions and transport are taken 131 

from three reanalysis products, namely NCEP (used by SPRINTARS and GISS-E2-132 

OMA, formerly known as GISS-modelE and hereafter as GISS), ECMWF (used by 133 

HadGEM2 and ECHAM5-HAMMOZ, hereafter ECHAM5), and GEOS4 (used by 134 

GOCART). Some models use 10-m wind for dust mobilization parameterization 135 

(GOCART, GISS, and SPRINTARS), whereas others use friction velocity (u*) 136 

(ECHAM5 and HadGEM2). Dust density values are similar among the models, ranging 137 

from 2.5 to 2.65 g cm-3. The range of dust size and the number of size groups are 138 

different among models (Table 1). GOCART and SPRINTARS has the same size range 139 

(0.1-10 μm in radius) but different size bins (5 and 6, respectively), GISS includes more 140 

extended particle sizes (0.1-16 μm) with 5 size bins, and HadGEM2 covers a wider range 141 

of dust particle sizes (0.03-31.6 μm) in 6 size bins. By contrast, ECHAM5 includes only 142 

sub-micron particles, in 2 modes ranging from 0.05 to 0.5 μm. The differences in size 143 

distribution affect total dust mass amount included in emission, transport, deposition 144 

fluxes, mass loading, and overall lifetime, as well as the average mass extinction 145 

efficiency that converts mass to light-extinction in different models. 146 

Participating models commonly have two dry removal processes of 1) 147 

gravitational settling as a function of aerosol particle size and air viscosity (Fuchs, 1964) 148 

and 2) surface deposition as a function of surface type and meteorological conditions 149 

(Wesely 1989). Wet scavenging removal in each model is empirically parameterized with 150 

the precipitation rate and the scavenging coefficient; thus, a wide range of scavenging 151 

coefficients are found among the models. Both GOCART and GISS have similar wet 152 

scavenging parameterizations based on the previous work (Giorgi and Chameides 1986; 153 
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Balkanski et al., 1993), where Balkanski et al. (1993) adopted a 50% aerosol scavenging 154 

efficiency in shallow convection and a 100% scavenging efficiency in deep convection. 155 

SPRINTARS uses a size dependent collision efficiency with raindrops (Equation A6 in 156 

Takemura et al., 2000); HadGEM2 uses a particle-size-dependent scavenging coefficient 157 

(2×10-5 for <0.3 µm ~ 4×10-4 for >3.16 µm) (Table 1 in Woodward, 2001); ECHAM5 has 158 

a scavenging parameter in the range of 0.1~0.9, depending on cloud type (stratiform or 159 

convective cloud), or cloud status (liquid, mixed, or ice cloud), and mixing status (Table 160 

3 in Stier et al., 2005).  161 

Overall, dry and wet deposition efficiencies are highly empirical, and depend on 162 

the vegetation type, surface conditions, atmospheric stability, particle sizes, and 163 

meteorological fields. The model diversity in deposition processes is found from the 164 

differences in the spatial distributions of LF and fWET (Figure 10) between models. The 165 

differences in size range also affect model diversity in many dust-associated fields, 166 

including net emission amount, dry deposition, and DOD. 167 

We compare several monthly mean fields from the model output with remote 168 

sensing data or observation-derived quantities, namely the total aerosol optical depth 169 

(AOD), dust aerosol optical depth (DOD), and the vertical extinction profiles of total and 170 

dust aerosols (σaer and σdu, respectively, in km-1). Since the dust vertical extinction 171 

profiles from the models were not available in the AeroCom archive, they are constructed 172 

from the model-calculated dust mass concentrations and the mass extinction coefficient, 173 

assuming dust does not take up water vapor, such that DOD does not depend on the 174 

ambient relative humidity. The dust mass extinction coefficient is obtained by dividing 175 

model calculated DOD with dust mass loading. In addition, model-calculated dust mass 176 
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loading (LOAD), emission (EMI), dry deposition (DRY), wet deposition (WET), and 177 

total precipitation are used to assess possible causes of the inter-model diversity. 178 

When comparing with satellite retrievals and AERONET observations that are 179 

available only under clear-sky conditions, it is desirable to use the modeled AOD for 180 

clear-sky as well. However, only the GISS model provides such output (other models just 181 

provide all-sky results). A previous study showed that clear-sky AOD from the GISS 182 

model is 30% lower than all-sky AOD over the North Africa-Northern Atlantic region 183 

(Kim et al., 2014). In another estimate based on the GEOS-Chem model, clear-sky AOD 184 

is 20% lower than all-sky AOD on global average (Yu et al., 2012). DOD is not sensitive 185 

to differences between clear-sky and all-sky conditions due to the hydrophobic nature of 186 

dust (Kim et al., 2014), although the different averaging times between all-sky and clear-187 

sky conditions are also expected to produce different AOD values. DOD in ECHAM5 is 188 

approximated from the dust volume-weighted AOD of two internally mixed modes where 189 

dust is present (Stier et al., 2005). The internal mixing of dust has the potential to cause 190 

additional differences between ECHAM5 and other models in the inter-model 191 

comparison. Although some models do not consider the chemistry on dust surfaces, 192 

previous studies have estimated that the enhanced hygroscopicity of dust by 193 

heterogeneous mixing can reduce the global dust burden on 17%~28% in GISS (Bauer 194 

and Koch, 2005) and 5% in ECHAM5 (Pozzoli et al., 2008). 195 

 196 

2.2 Remote sensing data 197 

2.2.1. Vertical profiles 198 



 

 9 

To evaluate the vertical distribution of dust, we use the aerosol and dust extinction 199 

profiles from CALIOP at 532 nm, following the method developed by Yu et al. (2015b). 200 

As CALIOP data are only available after June 2006, we use the monthly CALIOP data 201 

averaged from 2007 to 2011. The difference of time periods between CALIOP and model 202 

simulations may cause some vertical profile differences; however, its effect is not 203 

expected to be significant, as the climatological data is averaged over a large domain for 204 

a long time. Mean extinction profiles of total and dust aerosol are derived from version 205 

4.10 CALIOP Level 2 aerosol profile data with a nominal along-track resolution of 5 km 206 

and vertical resolution of 30 m.  207 

The first step is to collect quality-assured aerosol extinction profile data. Here, we 208 

use cloud-free nighttime CALIOP data to minimize interference from clouds and sun, and 209 

select extinction profiles with good retrieval quality, i.e., QC flag of 0, 1, 16, or 18, 210 

following recommendations by Winker et al. (2013). We then separate aerosol from 211 

clouds according to the cloud-aerosol-discrimination (CAD) scores, for which the aerosol 212 

scores are typically in the range of -100 to -20 (Winker et al., 2013; Tackett et al., 2018). 213 

However, in this study we choose a more stringent CAD-score range of -100 to -70 when 214 

selecting aerosol data (Yu et al., 2019a), which provides greater confidence in excluding 215 

possible cloud contamination. Compared to the relatively relaxed criteria of CAD 216 

between -100 and -20, the total aerosol sampling is reduced by up to 15% with our 217 

stricter criteria (Figure S1).  218 

The dust fraction for backscatter in each profile is calculated using the CALIOP 219 

observed particulate depolarization ratio (dp), as coarse, non-spherical dust particles 220 

produce a depolarization signal. The maximum threshold value (dp > 0.2) and the dp of 221 
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non-dust particles is assumed to be 0.02 (Hayasaka et al., 2007, Tesche et al., 2009, and 222 

Yu et al., 2012,  2015b, 2019a). A constant lidar ratio value of 44 sr-1 (Omar et al., 2010; 223 

Young et al., 2018) is used to convert dust backscatter to dust extinction at 532 nm. We 224 

calculate the average vertical extinction profile using all the individual profiles during a 225 

month within the 2° in latitude × 5° in longitude grid. All averaged total and dust aerosol 226 

profiles are at 60-m vertical resolution.  227 

Aerosol extinction is retrieved only where aerosol is detected by the CALIOP 228 

feature finder. However, in reality aerosol is present virtually everywhere throughout the 229 

troposphere, although aerosol concentration can be very low in pristine oceanic regions. 230 

When the aerosol signal is weak, below CALIOP detection limit, no feature is detected in 231 

the level 2 atmospheric sounding, and the sample is classified as “clear-air.” Aerosol 232 

extinction is set to zero (km-1) in the level 3 algorithm, whereas several studies have 233 

sought to characterize the optical depth of aerosol layers undetected by CALIOP (Tackett 234 

et al. (2018) and references therein). For data identified as “clear-air” in the present 235 

comparison, we adopt the approach used in generating the standard level-3 product 236 

(Tackett et al., 2018). However, this could cause a low bias in the averaged data because 237 

aerosols at low concentrations are missing, especially over the Pacific Ocean. This may 238 

also introduce a difference in the shape of aerosol profile because CALIOP tends to 239 

detect “clear-air” more often in free troposphere than in the atmospheric boundary layer. 240 

In addition to the level 3 algorithm method, we further average the vertical profiles, but 241 

excluding “clear-air” data from the averages, which we could expect to represent an 242 

upper bound on the profile data. The results are discussed in section 5.  243 

 244 
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2.2.2. AOD and DOD 245 

The observational datasets used to evaluate the model simulations are listed in 246 

Table 2. Seasonal and spatial distributions of AOD are taken from the Moderate 247 

Resolution Imaging Spectroradiometer (MODIS) at 550 nm and the Multiangle Imaging 248 

SpectroRadiometer (MISR, version V22) at 555 nm on board the EOS-Terra satellite. 249 

The merged MODIS dataset used here is the Collection 6 version with combined retrieval 250 

results from the Dark Target and Deep Blue algorithms (Levy et al., 2013). Whereas the 251 

Dark Target algorithm provides observations over ocean, the Deep Blue algorithm 252 

provides observations over bright land and desert scenes using the deep-blue wavelengths 253 

(i.e., 0.41 and 0.47 µm). 254 

MODIS AOD over ocean and fine-mode fraction (f) measurements have been 255 

used to empirically separate dust (du) AOD from that of combustion aerosol (co) and 256 

marine aerosol (ma) in a self-consistent way (Kaufman et al., 2005; Yu et al., 2009, 257 

2019b).  Given that τ =τma+ τdu+ τco and f=[fmaτma+ fduτdu+ fcoτco]/τ, dust optical depth (τdu 258 

or DOD) is derived from the MODIS Collection 6 data using representative values for 259 

fma, fdu, fco, and τma (Yu et al., 2019b). Although large spatial and temporal variability of 260 

fma is accounted for following a method in Yu et al. (2009), we assume constant values 261 

for fdu and fco because of lack of observational constraints. In this study, marine AOD is 262 

parameterized as a function of surface wind speed derived from previous studies (Yu et 263 

al., 2019b). A detailed description of the method, including uncertainty estimates and 264 

assumptions, can be found in the literature (Yu et al., 2009 and 2019b). DOD over land is 265 

also derived from MODIS Collection 6 data but with an approach different than ocean, 266 

because MODIS fine-mode fraction retrieval over land is less reliable. Over land, DOD is 267 
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extracted from the MODIS Deep Blue (MDB) datasets, based on 1) the co-function of the 268 

continuous angstrom exponent values derived by Anderson et al. (2005), 2) single 269 

scattering albedo ω at 412 nm less than 1, and 3) a positive difference of ω between 412 270 

and 670 nm (ω670 - ω412 > 0) (Ginoux et al., 2012; Pu and Ginoux, 2016). 271 

Similar to our previous study of transatlantic dust (Kim et al., 2014; Guo et al., 272 

2013), we use MISR AOD over land and ocean, and the non-spherical AOD over ocean, 273 

as a proxy for DOD (Kalashnikova and Kahn, 2006; Kahn et al., 2010). Non-spherical 274 

AOD is generally of higher quality over ocean for MISR, due to uncertainties in 275 

accounting for the brighter and more varying land surface (Kahn and Gaitley, 2015). 276 

However, the frequent interference by clouds, especially thin cirrus, contributes to the 277 

AOD and the non-spherical AOD uncertainties over the study region (Pierce et al., 2010). 278 

Note also that for both MODIS and MISR, sensitivity to the particle-property proxies 279 

used to identify the dust component diminishes when the total mid-visible AOD falls 280 

below about 0.15 or 0.2. The resulting uncertainty probably contributes significantly to 281 

the differences in MODIS and MISR DOD presented in the section 3 below, especially in 282 

the low-AOD areas over ocean.  283 

CALIOP monthly AOD and DOD is calculated by vertically integrating the total 284 

and dust aerosol extinction coefficient profile at 532 nm, respectively, as described in the 285 

previous section. 286 

We also use total AOD and coarse-mode AOD at 550 nm (Version 2, Level 1.5 287 

and 2) from ground-based AErosol RObotic NETwork (AERONET) (Holben et al., 288 

1998) sites located within the study domain to evaluate both satellite measurements and 289 

model simulations, although not all coarse-mode aerosols are dust, and some dust is in 290 
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the fine-mode. Twenty-nine AERONET sites were chosen, to allow enough geographical 291 

coverage across the study region (see Table S1 for the latitude and longitude coordinates 292 

of these sites). However, AERONET data are rather limited over the ocean in our study 293 

domain and time period, as only two remote AERONET sites, in Midway and Hawaii, 294 

are available in the northern Pacific, and the AERONET-coordinated Maritime Aerosol 295 

Network (MAN, http://aeronet.gsfc.nasa.gov/new_web/man_data.html) data are not 296 

available in the Pacific during the study period. 297 

All the model-data comparisons are performed on a monthly, seasonal, or multi-298 

year average basis. This approach may introduce some differences between satellite data 299 

and model results because of location and time mis-matches; however, given the large 300 

amount of data in our expansive domain over a six-year time span, it should not affect 301 

our statistics and conclusions, as shown in several previous evaluation studies (e.g., Chin 302 

et al., 2007, 2014; Colarco et al., 2010; Randles et al., 2017). Also, additional caution is 303 

needed when comparing remote-sensing-derived and modeled DOD and dust extinction 304 

profiles, as the dust data from remote sensing are either dust proxies, or are obtained with 305 

several assumptions, and are thus subject to large uncertainties. 306 

 307 

3. Evaluation and comparisons of model simulations with observations 308 

In this section, we evaluate the model results with satellite and ground-based 309 

remote sensing data by comparing (i) the mean AOD and DOD in the study domain; (ii) 310 

the longitudinal gradient of AOD and DOD from the dust source region in East Asia to 311 

the downwind areas in the Pacific; (iii) the seasonal variations of AOD and DOD; and 312 

(iv) the vertical profiles of aerosol and dust over land and ocean. The results are 313 
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summarized in Tables 3 and 4. A study domain (60°E~120°W; 10°N~70°N) was chosen 314 

to cover dust source regions in Asia and the trans-Pacific transport route. We divide the 315 

study area into land (60°E-140°E; 20°N-60°N) and ocean (140°E-140°W; 20°N-60°N) 316 

regions and define six sub-domains for vertical profile analysis. Detailed domain 317 

information is provided in Figure 1. 318 

 319 

3.1 Mean AOD and DOD 320 

Figure 2 shows a comparison between satellite observations and model 321 

simulations of the 6-year mean total AOD averaged from 2000 to 2005, with AERONET 322 

AODs at 29 sites superimposed using the same color scale. MODIS and MISR agree 323 

within 15 % over the study domain (average AOD = 0.226 and 0.194, respectively), with 324 

larger difference over land (0.274 and 0.209) than over ocean (0.177 and 0.179) (Table 325 

3). These results reflect the known behavior of the MISR and MODIS products (e.g., 326 

Kahn et al., 2009). On the other hand, the CALIOP AOD is significantly lower than 327 

MODIS (47 % lower over ocean and 21 % lower over land compared to MODIS), which 328 

is also shown in previous studies (Redemann et al., 2012; Kim et al., 2013). There are a 329 

few known factors that contribute to the uncertainty of CALIOP AOD over the study 330 

domain, including the underestimation of aerosol extinction in the upper troposphere due 331 

to the detection limit (Winker et al., 2013), and the narrow lidar swath that may miss 332 

some episodic aerosol plumes (Yu et al., 2013).  333 

The satellites and AERONET show high annual mean AOD (>0.4) over East 334 

China and the Indo-Gangetic Plain, which are known to be highly polluted regions. 335 

Models capture the geographical pattern of the AOD distribution from the satellites, i.e., 336 
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the higher AOD over polluted regions, the decreasing gradient over ocean from west to 337 

east, and northward shifting of the AOD plume center toward the eastern Pacific. Satellite 338 

AOD better agrees with AERONET and gives better statistics, showing higher correlation 339 

and lower bias than the models (Figure S2). The multi-year domain-averaged AOD from 340 

the models differs within 50%, ranging from 0.16 (SPRINTARS) to 0.20 (GOCART) 341 

(20%) over the entire domain, 0.18 (ECHAM5) to 0.25 (GOCART) (24%) over land, and 342 

0.11 (SPRINTARS) to 0.19 (GISS) (42%) over ocean.  343 

For dust, satellite-derived DOD is available from MODIS and CALIOP over both 344 

land and ocean and MISR only over ocean (Figure 3). Both MODIS and CALIOP 345 

products show substantial dust presence (DOD>0.2) over the land source regions of 346 

Taklimakan desert, Thar desert, Gobi desert, and Loess Plateau, and the areas 347 

immediately downwind. The MODIS and CALIOP DOD values (0.11 and 0.09, 348 

respectively) over land are supported by the coarse-mode AOD (proxy for DOD) from 349 

AERONET. Over ocean, all satellite data show transported DOD plumes over the 350 

northwestern Pacific (i.e., east of 150°W; 30°N-50°N), but the magnitude from CALIOP 351 

is much lower than MODIS and MISR. On average, DOD over ocean from CALIOP 352 

(0.027) is 54% and 50% lower than that from MODIS (0.059) and MISR (0.054), 353 

respectively. The average dust fractions of mid-visible AOD from MODIS and CALIOP 354 

are about 36 and 42 % over land and 30 and 29 % over ocean, respectively. 355 

Compared to the relatively small difference (~20%) of average AOD among 356 

models (AOD = 0.16-0.20), the difference in average DOD is much larger – a factor of 357 

10 in the domain-average (0.008-0.08). Over land, DOD from ECHAM5 (0.01) and 358 

HadGEM2 (0.02) are significantly lower than satellites (0.09-0.11) and other models 359 
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(0.05-0.11). The underestimation of DOD in ECHAM5 and HadGEM2 is attributed to 360 

lower emissions and more efficient loss frequency of dust, respectively, which is 361 

discussed in detail in the later sections. Over the ocean domain, the magnitude of 362 

GOCART DOD (0.05) is in between the MODIS-derived DOD (0.06) and CALIOP-363 

derived DOD (0.03), whereas the other models obtain much smaller values (0.001-0.009). 364 

Compared with the coarse-mode AOD (proxy of DOD) from AERONET, most models 365 

(except GOCART) seem to significantly underestimate the dust transport from source 366 

regions across the North Pacific. 367 

Satellites indicate that fDOD values vary depending on sensor type and region 368 

ranging 0.27-0.36. The satellite mean fDOD over land (0.39) is 0.11 greater than over 369 

ocean (0.28). Models show large range of fDOD both over land (0.11-0.42) and ocean 370 

(0.007-0.29). The ensemble means of model AOD, DOD and fDOD are 0.21, 0.05, 0.25 371 

over land and 0.16, 0.02, and 0.1 over ocean, respectively (Table 4). The comparison 372 

between satellite and model ensemble means again shows within 10 % differences in 373 

AOD over land and ocean, but a factor of two low bias in model is shown for DOD and 374 

fDOD over ocean. 375 

 376 

3.2 Longitudinal gradient  377 

We examine the longitudinal gradient with the mean AOD and DOD from 378 

satellites and models between 20°N and 60°N in 5° longitude intervals between 60°E-379 

120°W (Figure 4a). MODIS shows the highest AOD (0.47) at 115°E-120°E, whereas 380 

MISR and CALIOP have the peaks in the same location but with lower values (0.29 and 381 

0.35, respectively). All satellite data show a gradually decreasing pattern eastward across 382 
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the Pacific Ocean (i.e., east of 140°E). The range of west-to-east AOD gradient between 383 

140°E-120°W in MODIS (from 0.23 to 0.11, a factor of 2.1) is larger than that in MISR 384 

(from 0.21 to 0.13, a factor of 1.6). The pattern of the CALIOP AOD gradient over ocean 385 

(from 0.11 to 0.06, a factor of 1.8) is similar to that of MODIS and MISR, but the 386 

magnitude of AOD is about half of other satellites. Differences in sampling and cloud-387 

masking account for much of the diversity in the satellite-derived AOD gradients. All 388 

models capture the location of the maximum AOD over Eastern China, but some of them 389 

miss the peak over the Indo-Gangetic Plain and Taklimakan. Although the magnitudes of 390 

the decreasing longitudinal AOD gradients vary by model, all models show a decreasing 391 

longitudinal gradient of AOD. 392 

Over land, MODIS and CALIOP DOD over the Taklimakan and Thar deserts 393 

(i.e., west of 85°E) are larger (0.19 and 0.14, respectively) than over the Gobi Desert and 394 

Loess Plateau (0.14 and 0.1, respectively). All the models except GOCART show lower 395 

DOD than CALIOP, especially ECHAM5 and HadGEM2, as the average DOD from 396 

these two models is only 0.01-0.05 over land. Over ocean, MODIS and MISR show 397 

similar decreasing DOD gradient from the west (0.10 and 0.07) to the eastern Pacific 398 

(0.03 and 0.04), respectively. The decreasing gradient of CALIOP DOD from west (0.05) 399 

to east Pacific (0.01) is only half the MODIS and MISR values. Overall, the satellites 400 

show a 40-60 % decrease of AOD and 35-70% decrease of DOD during the long-range 401 

transport from the Asian coast to the eastern North Pacific Ocean (i.e., 130°E-125°W). 402 

Although most models except GOCART have lower DOD than MODIS by a factor of 3-403 

10 in the coastal region (i.e., 130°E), all models also show the decreasing DOD gradient, 404 
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which is clear when the data are normalized to their respective values at the Asian coast 405 

(130˚E). 406 

The CALIOP DOD fraction over land (fDOD, bottom panel in Figure 4a) is highest 407 

(0.55) near 60°E; then it gradually decreases across the Pacific towards the east to 0.32 at 408 

125°W. MODIS also show similar fDOD gradient between west and east (i.e., 0.65 to 409 

0.30). The satellite fDOD values over ocean are close to each other, in the range of 410 

0.24~0.34, across the Pacific. The maximum fDOD values from the models near 60°E are 411 

spread by a factor of two (0.28~0.57), and most models seem to show much faster fDOD 412 

decrease from west to east over land (a factor of 3-4 decrease) than the satellites and the 413 

GOCART model. Over ocean, the mean fDOD values from the models show a large (factor 414 

of 30) difference, from 0.01 (ECHAM5) to 0.29 (GOCART), and the latter is the closest 415 

to the satellite data. 416 

When normalized to the value at 130°E, satellites estimate a 38-59 % AOD 417 

decrease, and a decrease of 34-69 % for DOD, during trans-Pacific transport (Figure 4b). 418 

The increasing gradient of MISR fDOD is due to the steeper gradient in DOD than AOD, 419 

although its physical explanation needs more investigation. In contrast, models show a 420 

wider range of decreasing longitudinal gradients: 42-69 % for AOD and 44-88 % for 421 

DOD. The normalized AOD gradient from the models is generally similar to that from 422 

satellites, although GISS and ECHAM5 show an increase of AOD in the middle of the 423 

Pacific Ocean (160°E-150°W). By contrast, the longitudinal gradients of normalized 424 

DOD and fDOD are much more spread out in the satellite data and models, revealing large 425 

discrepancies (a fact or of 4) not only between the satellites over the North Pacific, where 426 
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AOD and DOD are relatively low, but also among models in dust transport and removal 427 

processes. 428 

Overall, all satellites show a gradual decrease of AOD and DOD eastward during 429 

trans-Pacific transport. They show that 40-60% of AOD and 30-65% of DOD reach the 430 

eastern Pacific from the Asian coast. Models capture the decreasing gradient of the 431 

satellite AOD and DOD; however, most models except GOCART largely underestimate 432 

DOD and fDOD over ocean. 433 

 434 

3.3 Seasonal cycle and inter-annual variability 435 

The seasonal variation of multiyear mean AOD and DOD for land and ocean are 436 

shown in Figures 5 and 6, respectively. The seasonal variability of the three satellite 437 

AODs agree with each other over land (Figure 5), showing high AOD during April-July 438 

and low AOD between October and January. MODIS AOD (0.17-0.37) is higher than 439 

MISR and CALIOP by 0.06 to 0.07. The seasonal variation of MODIS and CALIOP 440 

DOD is similar to that of AOD with the peak in April (0.21 and 0.14, respectively). The 441 

fDOD is highest in March-April (0.46-0.50) for MODIS and CALIOP, and lowest in 442 

December-January (0.27-0.28) in MODIS and July-August (0.33) in CALIOP. 443 

Models also show strong seasonal variability over land; however, only GOCART 444 

shows the AOD and DOD maxima in April, reproducing the seasonal cycles in the 445 

satellite data. The other models shift the seasonal maximum to the boreal summer 446 

months. The differences between the modeled AODs range from 0.06~0.07 in winter to 447 

0.18 in April. GOCART resembles closely the magnitude of MODIS, whereas the other 448 

models simulate AOD values similar to MISR and CALIOP. The maximum DOD in 449 
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GOCART, GISS and SPRINTARS ranges from 0.12-0.22, which is comparable to 450 

satellites (0.14-0.21). Interestingly, despite the large differences in seasonal variation 451 

among the models, they all consistently show a maximum fDOD in April, even though the 452 

values differ by a factor of 2, from 0.3 in ECHAM5 to 0.6 in GOCART, which can be 453 

compared to the CALIOP fDOD maximum of 0.5 in spring. Overall, the models capture 454 

the magnitude of the satellite AOD over land, but the seasonality differs; apparently, 455 

reproducing the magnitude of the observed DOD is more difficult. 456 

Over ocean, there are clear discrepancies among the satellite data. Although the 457 

seasonal variability and magnitude of AOD from MODIS and MISR agree with each 458 

other (Figure 6) as both showing the highest AOD (0.28 and 0.26, respectively) in April-459 

May, the CALIOP AOD is quite different not only in seasonal variation (maximum AOD 460 

from January through April and a minimum in August), but also in magnitude (about a 461 

factor of 2 lower). Discrepancies of similar magnitudes are found for satellite-derived 462 

DOD and fDOD as well, with the largest difference appearing in the summer. Both MISR 463 

and CALIOP display DOD and fDOD minima in July, a feature that is lacking in the 464 

MODIS data. As noted in Section 2, sensitivity to the proxies used to identify the DOD 465 

component in the satellite retrievals diminishes when the AOD is low. 466 

Model simulations over the ocean also show large discrepancies. Although the 467 

AOD seasonal variation from GOCART (0.27) closely follows that from MODIS and 468 

MISR with a maximum AOD (0.26-0.28) in April-May, GISS and ECHAM5 indicate a 469 

maximum AOD in winter (0.21-0.25) and a minimum AOD (0.12) in summer, which is 470 

also out of phase with the seasonal cycle simulated by SPRINTARS and HadGEM2. The 471 

largest DOD and fDOD differences over ocean among the models appear between 472 
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GOCART and ECHAM5: GOCART-simulated DOD (fDOD) over the North Pacific varies 473 

from 0.02 (0.2) in winter to 0.14 (0.48) in April, similar to the corresponding values from 474 

MODIS, whereas these fields from ECHAM5 are below 0.03 (Figure 6, right-bottom 475 

panel). Overall, the DOD and fDOD diversity among the models is huge, with differences 476 

up to a factor of twenty. The same result is obtained when the analysis is conducted over 477 

the smaller domains (Figures S3-S5). 478 

Overall, most models, except for GOCART, strongly underestimate the 479 

magnitude of DOD over ocean, relative to the satellite results. The absence of dust over 480 

ocean in these models produces large differences in ocean-AOD seasonality, with peaks 481 

in summer or winter that disagree with the MODIS and MISR AOD. In addition, the 482 

AOD and DOD differences between MODIS, MISR, and CALIOP over ocean highlight 483 

the challenge of DOD observation in the Northern Pacific region. We will discuss the 484 

differences presented by the CALIOP DOD further in later sections. 485 

 486 

3.4 Vertical distribution of aerosol and dust  487 

The vertical profiles of modeled aerosol and dust are compared with CALIOP 488 

profiles averaged over 2007-2011. Considering the spatial variability within the large 489 

domain, we chose six sub-domains (Figure 1); three domains include major dust source 490 

regions over the Thar desert (THAR, 70°E-75°E; 25°N-30°N), the Taklimakan desert 491 

(TAKL, 75°E-90°E; 35°N-45°N), and the Gobi desert (GOBI, 95°E-115°E; 40°N-45°N), 492 

and three sub-domains across the Pacific capture the trans-Pacific transport of aerosol and 493 

dust [NWP (135°E-140°E; 25°N-50°N), NCP (175°E-180°E; 30°N-55°N), and NEP 494 

(130°W-125°W; 35°N-60°N)].  495 
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The comparison includes the area-averaged vertical profiles of extinction 496 

coefficients for total aerosol (σaer in km-1) and dust (σdu in km-1), and the ratio of dust 497 

extinction to total aerosol extinction from the surface up to 12 km (Figure 7-8). We also 498 

compare the height representing the center of aerosol extinction (Zα) in each vertical 499 

column, following Koffi et al. (2012), such that �� =
∑ ����	,�∙��
�
���
∑ ���	,�
�
���

, where k is the total 500 

number of layers in each column and bext,i is extinction coefficient for layer i within the 501 

column.  502 

The sub-domain-averaged CALIOP vertical profiles calculated with both 503 

“including clear-air” (solid black line) and “excluding clear-air” (dashed black line) are 504 

plotted in Figures 7-8 together with the corresponding profiles from the models. The 505 

column-integrated AOD and DOD, and the extinction-weighted height, are listed on each 506 

panel. In the present section, we focus on the “including clear-air” case of the CALIOP 507 

averaged data (described in section 2.2.1); the results for the “excluding clear-air” case 508 

are covered subsequently, in the discussion section. We present the result for the spring 509 

season between March and May, as CALIOP and the models have stronger aerosol and 510 

dust signals during spring in five out of six sub-regions over the sources and the ocean, 511 

except for THAR, which has its peak during summer.  512 

Over the dust source regions of THAR, TAKL, and GOBI, the CALIOP 513 

observations show a layer of total aerosol and dust extending from the surface to the 514 

middle troposphere (~6 km) during the spring season (Figure 7). The CALIOP profiles 515 

show different maximum extinction values among these regions, ranging 0.09-0.11 km-1 516 

for total aerosol and 0.04-0.06 km-1 for dust. The peak aerosol extinction appears near the 517 

surface in THAR, but is more elevated in TAKL and GOBI (i.e., 1.0-2.0 km). The 518 
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extinction-weighted average height of total aerosol (Zα,aer) from CALIOP (2.06-2.59 km) 519 

is about 0.1-0.4 km lower than that of dust aerosol (Zα,du) (2.17-2.97 km), suggesting that 520 

even near these source regions, dust tends to reside higher in the atmosphere than other 521 

aerosols. The column-integrated AOD and DOD vary with location, between 0.27-0.30 522 

and 0.13-0.18, respectively. In contrast, a clear and significant contribution of dust to 523 

total aerosol extinction (fDOD>0.5) appears at most altitudes over all sub-regions. The 524 

strong negative bias near the surface is due to a signal artifact that occurs when the level 525 

1B attenuated backscatter becomes strongly negative, preceding a strongly scattering 526 

target such as the surface (Winker et al. 2009, 2013; Tackett et al., 2018). 527 

There is a large spread in model-simulated aerosol and dust extinction vertical 528 

distributions over the dust source regions in spring (Figures 7). Most models show a 529 

maximum value of total aerosol and dust extinction at or near the surface. The average 530 

aerosol height (0.86<Zα,aer<2.01) and the average dust height (0.75<Zα,du<2.07) from the 531 

models are about 1-2 km lower than CALIOP. Differences in AOD and DOD in the three 532 

dust source regions also appear among the models. GOCART has the highest AOD over 533 

TAKL (0.36), whereas other models have the highest AOD over THAR (0.21-0.35), and 534 

CALIOP reports highest AOD over GOBI (0.30). For DOD, the highest values appear 535 

over TAKL in GOCART (0.30), THAR in GISS (0.17), and GOBI in SPRINTARS 536 

(0.30) and HadGEM2 (0.07); CALIOP finds essentially equal springtime DOD peak 537 

values over TAKL and THAR (0.18). Figure 7 shows that HadGEM2 severely 538 

underestimates the dust amount in THAR and TAKL. The shape of fDOD between 539 

CALIOP and models are very different, as CALIOP is consistent throughout the 540 
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atmosphere whereas the models show fDOD decreasing with elevation. The magnitudes of 541 

the modeled fDOD values are spread widely, showing large differences with CALIOP. 542 

Over ocean (Figures 8), CALIOP displays a shallower aerosol and dust layer and 543 

lower extinction magnitudes compared to the features in the source regions. According to 544 

CALIOP, aerosol and dust are confined below 1 km in all ocean domains. Although the 545 

average aerosol height decreases by 0.5 km during long-range transport from NWP (Zα,aer 546 

=2.27 km) to NEP (Zα,aer =1.77 km), that of dust maintains at about the same level (Zα,du = 547 

2.49 km in NWP and 2.57 km in NEP). The CALIOP total-column AOD and DOD show 548 

strongly decreasing gradients from west to east (from 0.18 over NWP to 0.08 over NEP 549 

for AOD, from 0.07 over NWP to 0.03 over NEP for DOD). The fDOD values (~0.5) over 550 

ocean are lower than over the land regions. 551 

Large model diversity in aerosol and dust vertical profiles also appears over ocean 552 

(Figure 8). In general, total aerosol extinction peaks are located near the surface and 553 

decrease with altitude, except for GISS, which places a second aerosol layer around 2 554 

km. However, the models show that dust extinction reaches maximum values in layers 555 

aloft, centered around 3 km, and then decreases with altitude. Consequently the averaged 556 

dust height Zα,du (2.56-4.22 km) is significantly higher than the average aerosol height 557 

Zα,aer (0.69-2.58 km). It is worth noting that Zα,du of all models increases (from 2.56-3.38 558 

km to 3.57-4.22 km) between NWP and NEP, in contrast with the nearly constant height 559 

reported by CALIOP, and the modeled Zα,du values are up to 1.5 km higher than CALIOP 560 

in the ocean domains.  561 

The comparison of vertical profiles showed that (1) CALIOP derives thick dust 562 

layers reaching up to 6 km over that dust source regions, and a shallower, weaker aerosol 563 
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and dust layer over ocean, whereas the models show a large spread in the vertical 564 

distribution of dust over both land and ocean; (2) the average height of dust in the models 565 

underestimates CALIOP over land, but they overestimate CALIOP over ocean; (3) Zα,du 566 

of all models increases during long-range transport over ocean, whereas Zα,du barely 567 

changes according to CALIOP; and (4) CALIOP shows large dust fraction throughout the 568 

domains, whereas there are wide differences (factors of a few or more) in dust fraction 569 

among models. 570 

 571 

4. Diversity of dust emission, removal, and optical parameters among models  572 

4.1 Model emissions and physical/optical parameters 573 

In this section, we examine the model simulations of the dust budget and several 574 

internal parameters in the study domain to help diagnose the large diversity among 575 

models, including emission, dry and wet depositions, dust mass loading, loss frequency 576 

(LF, which is the removal rate divided by the dust mass loading), optical depth, and the 577 

mass extinction efficiency (MEE, which converts dust mass to extinction at 550 nm). The 578 

results are summarized in Table 4 and some are shown in Figures 9 and 10. For dust 579 

emissions, Figure 9 indicates that all models produce similar “hot spots”, such as the 580 

Taklimakan desert, Gobi desert, Inner Mongolia, Thar desert, and the deserts in Central 581 

Asia. However, there are clear differences in locations and amounts of emission fluxes. 582 

GOCART and SPRINTARS show similar areas and emission rates in confined source 583 

locations in China, but they differ considerably for locations in India and central Asia. 584 

Dust emissions in other models are more spatially spread out but the emission rates are 585 

much lower than GOCART and SPRINTARS. Note that differences in dust emission 586 
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between models are determined not only by the emission parameterization scheme and 587 

meteorology, but also by the particle size distribution and the size range. However, the 588 

AeroCom database only contains total dust emissions without size-segregated 589 

information. The lowest mass emission is in ECHAM5 (77.4 Tg yr-1), which considers 590 

smaller size particles in its modal approach (0.05-0.5 µm in radius). SPRINTARS and 591 

GOCART have the same maximum size of 10 µm (radius), but SPRINTARS emission 592 

(825.9 Tg yr-1) is 21% larger than GOCART (680.5 Tg yr-1). GISS (200.4 Tg yr-1) and 593 

HadGEM2 (488.8 Tg yr-1) have maximum size larger than 10 µm (radius), but their 594 

emissions are lower than GOCART and SPRINTARS (see Table 4). Overall, the domain 595 

dust emission among models differs by more than a factor of 10, from 77.4 Tg yr-1 in 596 

ECHAM5 to 825.9 Tg yr-1 in SPRINTARS. The comparison here suggests that the 597 

differences in dust size-range alone cannot explain the diversity in dust emissions 598 

between the models. Rather, the dust uplifting mechanisms and/or meteorological 599 

conditions (e.g., winds, soil wetness) might also play a role in the dust emission 600 

differences among the models.  601 

We compare three physical and optical parameters from the models in our study 602 

domain: loss frequency (LF in day-1), which is the total dust deposition rate (sum of wet 603 

and dry deposition rates) divided by the dust mass loading; fwet, which is the dust wet 604 

deposition fraction of total deposition, and the dust mass extinction efficiency (MEE in 605 

m2g-1), which is the ratio of DOD to dust mass loading (Figure 10). The mean values of 606 

these parameters for each region per model are summarized in Table 4.  607 

During long-range transport, aerosol loading and consequently LF are affected by 608 

advection and deposition as well as by particle size distribution. The range of the annual 609 
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mean LF values over the land and ocean domains among the models range between 0.20-610 

0.53 and 0.09-0.21 day-1, respectively (Table 4 and Figure 10a). SPRINTARS and 611 

HadGEM2 show higher LF (> 0.9 day-1) in and around their respective source locations, 612 

indicating that dust aerosols are quickly removed before transport far from the source 613 

region occurs, due to the effective settling of large particles. GOCART and GISS show 614 

relatively lower LF (< 0.7 day-1) over source regions. ECHAM5, which allows dust to 615 

mix with other aerosols internally, shows low LF (< 0.5 day-1) in and near source regions, 616 

but it has high LF (> 0.9 day-1) outside the deserts over land. The highest LF (>0.9 day-1) 617 

in the Tibetan Plateau in ECHAM5 is explained by stronger wet-removal than other 618 

models. ECHAM5 has the highest LF, which explains why the steepest decreasing DOD 619 

gradient shown in Figure 4b corresponds to that model. All models show lower LF (<0.4 620 

day-1) in 20°N-60°N over ocean than near-source (over land).  621 

Dust from the Taklimakan and Gobi Deserts is frequently to be transported 622 

toward the North Pacific. The highest emission from these regions is in GOCART (462.3 623 

Tg year-1), followed by SPRINTARS (374.6 Tg year-1), HadGEM2 (134.7 Tg year-1), 624 

GISS (81.6 Tg year-1), and ECHAM5 (26.1 Tg year-1) (Table S2). The contribution from 625 

these regions to the total domain emission is higher in GOCART (68 %) than other 626 

models (28 % in HadGEM2 ~ 45 % in SPRINTARS). Dust emission from the 627 

Taklimakan is factor of a few higher in GOCART (252.9 Tg year-1) and SPRINTARS 628 

(208.6 Tg year-1) than other models (0.1~31.2 Tg year-1). Similarly, GOCART and 629 

SPRINTARS DOD better agrees with MDB DOD over the Taklimakan Desert, whereas 630 

other models are understated (Figure S6). The result indicates that the higher DOD (0.08) 631 

in GOCART over the Northern Pacific is attributed by the combined effects of lower loss 632 
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frequency (0.15 day-1) and higher emission. In contrast, dust emission in SPRINTARS is 633 

higher than GOCART but its mean DOD (0.05) is 33.5 % lower than GOCART, mainly 634 

due to the high loss frequency (0.26 day-1) in SPRINTARS. Other models have much 635 

lower emissions than GOCART and SPRINTARS. 636 

The models in the present study include two major deposition processes to 637 

remove dust aerosols from the atmosphere: dry (including gravitational settling and 638 

aerodynamic deposition) and wet (including convective scavenging and large-scale 639 

rainout/washout), and their efficiencies are highly model-dependent. The distributions of 640 

wet deposition fraction over total deposition, fwet between models are compared in Figure 641 

10b. For major dust source regions over land, all models give consistently low fwet values 642 

of less than 0.1, since total dust removal is dominated by gravitational settling of larger 643 

particles near the source. The fwet increases away from the source over land (>0.9 in 644 

GISS, ECHAM5, and HadGEM2, and 0.5~0.6 in the other models). Over the Pacific 645 

Ocean, the models show substantially higher fwet, with the highest fwet (0.92) in 646 

HadGEM2 and the lowest in GOCART (0.62), resulting in a 48 % relative difference 647 

between the two. The annual mean precipitation over the North Pacific Ocean ranges 648 

from 2.86 (mm day-1) in SPRINTARS to 3.49 (mm day-1) in GISS, and the precipitation 649 

field has a peak in summer in all models (Figure S7). The order of fwet between models is 650 

not consistent with the order of precipitation, due to differences in the modeled wet and 651 

dry removal processes. Overall, GOCART LF along the dust transport route over ocean is 652 

also the lowest, resulting in the highest DOD among models, and it actually agrees best 653 

with the satellite data.  654 
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Although MEE is the extinction efficiency per unit mass, it is also affected by 655 

both particle size distribution and the optical properties adopted by the models (e.g., mass 656 

extinction coefficient is higher for fine-mode particles than coarse-mode particles). All 657 

models show that dust MEE is lower over source regions (0.3-0.8) than downwind 658 

towards the eastern Pacific Ocean, consistent with the notion that dust particle size is 659 

larger near the source, and that large particles are more efficiently removed than the fine 660 

particles. The mean MEE (m2g-1) among models ranges from 0.57 (GOCART) to 1.01 661 

(SPRINTARS) over land, and from 0.61 (GOCART) to 1.12 (SPRINTARS) over ocean 662 

(Table 4). Overall, the spatial distribution of dust MEE is particle-size dependent, ranging 663 

from 0.3-0.7 in GOCART to 0.7-1.3 in SPRINTARS, with SRINTARS’ dust MEE 664 

overall about 80% larger than GOCART. 665 

We estimate the model diversity (Table 4), which is defined as the ratio of the 666 

standard deviation of the model results to the multi-model mean (Textor et al., 2006). 667 

Over the full domain, diversity for the mass-related parameters (i.e., emission, mass 668 

loading, dry deposition, and wet deposition) is in the range of 39-100 %. Diversity for the 669 

optical parameters of AOD and DOD is 10 and 84 %, respectively, indicating models 670 

experience more uncertainty in representing dust mass and DOD than AOD. 671 

Inter-model comparison in this section allows us to explain the large diversity of 672 

DOD (i.e., 84%); dust mass loading and mass extinction efficiency are the determining 673 

factors for DOD estimation. The diversity of LOAD (100%) is among the largest in the 674 

analyzed parameters, mainly due to the combined effects of EMI (69%), DRY (72%), and 675 

WET (39%). In comparison, the diversity of MEE is much smaller (23%), suggesting that 676 

the diversity of DOD is determined mainly by the diversity of LOAD. For EMI, each 677 
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model uses its own parameterization scheme, input surface condition, and surface wind 678 

speed, generating large differences among models. Each model uses a different 679 

parameterization scheme for DRY and WET processes, resulting in 31% diversity in LF. 680 

Differences in meteorological fields between models such as wind, precipitation, and 681 

circulation also contribute to the diversity of dust lifetime. Further, different optical tables 682 

and size distributions among models is an important factor for dust removal process and 683 

optical property calculation. 684 

A critical question in this study is which factor among emission, removal, and 685 

optical property is more responsible for contributing to the diversity of the AeroCom 686 

model simulated DOD? To answer the question, we have calculated a partial sensitivity 687 

of DOD to the above model parameters, based on the method in Schulz et al. (2006). 688 

Since DOD is determined by the dust load (LOAD) and mass extinction efficiency 689 

(MEE), and the LOAD is determined by the source (SRC) and the deposition removal 690 

rate (expressed as residence time RES, which is reciprocal of LF), the domain averaged 691 

DOD can be expressed as: DOD = SRC (g m-2 s-1) × RES (s) × MEE (m2 g-1). 692 

Because of the study domain is not global such that the dust emission is not necessarily 693 

balanced by the deposition term averaged over the study time period (several years) and 694 

domain, the net SRC is thus expressed as SRC = EMI + (EMI-DEP). For each model n, 695 

the DOD sensitivity with respect to factor x is defined as: DODx,n = xn/<x> × <DOD>, 696 

where <x> is the multi-model mean of x and <DOD> is the multi-model mean DOD. 697 

Figure 11 shows the partial sensitivity of DOD to the net SRC, RES, and MEE for the 698 

five AeroCom models, with the last two points showing the DOD from each model and 699 

satellite. For reference, the partial sensitivity of DOD to EMI within the domain is shown 700 



 

 31

as “x” symbol for each model; the difference between the SRC and EMI is the net dust 701 

imported to the domain if SRC>EMI or export from the domain if SRC<EMI. 702 

Comparing GOCART and SPRINTARS, the shorter residence time (i.e. the 703 

higher loss frequency) in SPRINTARS is likely to be responsible for the lower simulated 704 

DOD in SPRINTARS, despite higher dust source and higher MEE in SPRINTARS. The 705 

low DOD in GISS and ECHEM is most likely driven by the low dust source (low 706 

emission rates and net export). It is interesting that HadGEM2 shows much higher dust 707 

source (EMI + net import) than GISS but comparable residence time (or loss frequency) 708 

and MEE with GISS, but its simulated DOD is significantly lower than GISS, which is 709 

difficult to explain without more detailed information, such as size-segregated emission 710 

and optical properties. Overall, the result in Figure 11 shows that the diversity of DOD is 711 

mostly driven by the diversity of the dust source followed by that of the residence time, 712 

and to a less extent by the differences in MEE. 713 

Among the five models, GOCART agrees with the satellite data the best in terms 714 

of DOD over land and ocean, transpacific DOD gradient, and seasonal cycle. However, 715 

there is still a lack of observational data to validate or constrain the emission, dry and wet 716 

removal (the slowest among models), and MEE (the lowest among models) in GOCART. 717 

We can only say that the combination of these factors allows GOCART to simulate the 718 

DOD magnitude, horizontal distributions, and seasonal variations that are the closest to 719 

the satellite observations. 720 

 721 

4.2 Comparison with North African dust  722 
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To address how model-simulated dust over the Asia-Pacific Ocean compares with 723 

North Africa-Atlantic Ocean, we compare AOD and five dust physical and optical 724 

parameters (DOD, fDOD, fwet, LF, and MEE) from the current study with our previous 725 

study over North Africa and the Atlantic Ocean (i.e., Kim et al., 2014) (Figure 12 and 726 

Table 5). In the comparison, each parameter from the models is averaged over land and 727 

ocean to simplify the discussion. 728 

Due to the differences in dust size and meteorology in the source regions, dust 729 

emission and DOD over North Africa (1048 Tg yr-1 and 0.18, respectively) is 2~3 times 730 

larger than over Asia (454 Tg yr-1 and 0.05). The models show a factor of two difference 731 

in fDOD between North Africa (0.52) and Asia (0.25), indicating that other pollutants play 732 

a more important role over Asia. Dust LF is comparable between the two continents 733 

(about 10%), with that over North Africa (0.39 day-1) slightly larger than over Asia (0.36 734 

day-1). Considering the spectral dependency of dust particle size, the lower dust MEE 735 

between North Africa (0.65 m2g-1) and Asia (0.73 m2g-1) suggests larger dust particle size 736 

over North Africa than Asia. The higher fwet over Asia (0.55) than over North Africa 737 

(0.32) reflects more frequent and abundant precipitation over Asia than North Africa. The 738 

comparison between the Atlantic and Pacific Oceans shows a similar pattern as in North 739 

Africa and Asia (Figure 12b). Furthermore, the longitudinal gradient of the trans-Pacific 740 

dust is about one-half of the trans-Atlantic dust, due to higher dust elevation and 741 

differences in precipitation.  742 

AeroCom models use the same anthropogenic emissions, but dust emission is 743 

calculated by each model. As a result, the diversity of model AOD over the more polluted 744 

Asia region (13%) is much smaller than that for North Africa (50%). However, the 745 
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diversity of DOD (66-75%) is larger for Asia and North Africa than diversity of AOD. 746 

Over ocean, the AOD diversity for the Pacific Ocean (21%) is smaller than for the 747 

Atlantic Ocean (34%), but the diversity of DOD for the Pacific Ocean (121%) is three 748 

times as large as for the Atlantic Ocean (45%), due to the differences in meteorological 749 

fields and removal processes. Diversities of other physical and optical parameters 750 

between North Africa and Asia are low and comparable, with differences generally less 751 

than 10%. 752 

 753 

5. Discussion  754 

The present inter-model dust comparison has shown that there are large 755 

differences among models, among the satellite observations, and between models and 756 

satellite observations. Among the five participating AeroCom models, most of them 757 

except GOCART significantly underestimate DOD relative to the satellite-derived values 758 

over Asia and the Pacific Ocean, whereas GOCART emits more dust (i.e., 2nd most dust 759 

emission after SPRINTARS) and shows longer dust lifetime during transit. The 760 

participating models have different size range and thus they have different size 761 

distributions as reflected in Table 1. Recent studies have shown that the wide spread in 762 

size-distribution between models, and in addition models generally simulate too much 763 

fine dust compared to observations (Kok et al., 2017). The differences in emission, size 764 

distribution and dry deposition efficiency (i.e., the ratio of DRY to EMI in Table 4) 765 

between models contribute to the large diversity in DRY between models. The aerosol 766 

size distribution is a subject of future inter-model comparison studies. 767 
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In summary, the analysis of model diversity for various physical/optical 768 

parameters raises the following points: (1) Among the mass-related parameters (emission, 769 

load, dry and wet deposition), the greatest diversity appears in the dust mass loading, 770 

especially over ocean. (2) The diversity of dry deposition is about twice larger than that 771 

of wet deposition. (3) There is a sharp contrast between the diversity of AOD and that of 772 

DOD, i.e., the diversity of AOD is only 12-17% of the diversity of DOD. (4) The 773 

diversity of almost all parameters over ocean is larger than the corresponding quantities 774 

over land. (5) The diversity of DOD is mostly driven by the diversity of the dust source 775 

followed by that of the residence time, and to a less extent by the differences in MEE. 776 

 As presented in section 3, we assigned CALIOP aerosol extinction in “clear-air” 777 

a value of 0 km-1 following the method described in section 2.2.1. CALIOP data using 778 

this method agrees with MODIS and MISR for AOD, and MODIS for DOD over land. 779 

However, this causes a low bias in averaged aerosol vertical profiles and thus 780 

underestimates AOD and DOD relative to MODIS and MISR, especially over ocean. As 781 

constraining aerosol extinction below the detection limit is highly uncertain, we also 782 

provide an upper bound on the extinction profiles by excluding the “clear-air” data in the 783 

average. If we exclude the clear-air data in the average, it removes much of the sampling, 784 

approximately 70 % over dust source regions and 90 % over remote ocean (Figure S1f). 785 

The “excluding clear-air” case does not alter the AOD and DOD horizontal patterns and 786 

their longitudinal gradients much. However, the AOD and DOD magnitudes are 70-80 % 787 

larger than the “including clear-air” case over land and ocean (Figure 13, left panel and 788 

Table 6). Actually, in the “excluding clear-air” case, the CALIOP longitudinal gradients 789 

agree better with the other satellites over ocean, but the resulting CALIOP AOD and 790 
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DOD over land is larger than the other satellites (Figure 13, right panel). Overall, the 791 

effects of how “clear-air” is represented produces large differences in AOD and DOD 792 

over land and ocean, yet the change to fDOD is less than 10%.  793 

The impact of how “clear-air” is represented on the shape and magnitude of the 794 

CALIOP vertical profiles is large (solid and dashed lines in black in Figures 7-8). Over 795 

the land domains, the aerosol and dust extinctions of the “excluding clear-air” case are 796 

about twice as large as the “including clear-air” case at all altitudes. Also, the average 797 

heights (Zα) increase by 0.4-0.9 km for total aerosol and 0.6-1.0 km for dust. Over the 798 

ocean domains, aerosol extinctions for the “excluding clear-air” case are about 3-5 times 799 

larger and Zα,aer is about 1.2-1.8 km higher than the “including clear-air” case. Dust 800 

extinction for the “excluding clear-air” case is 2-5 times larger, and Zα,du is about 1.4-1.8 801 

km higher, than the “including clear-air” case. These results suggest that the low 802 

detection limit of CALIOP may miss large amount of background aerosol and dust signal, 803 

which is consistent with a previous study (Watson-Parris et al., 2018). Given the 804 

limitations and uncertainties in the CALIOP vertical profiles over ocean, where the 805 

aerosol amount is low, it is difficult to use the CALIOP data to meaningfully evaluate the 806 

model-simulated vertical profiles. 807 

Finally, our study shows that satellite remote sensing is crucial to better 808 

understand the large-scale distribution and variation of dust. Although the three satellite 809 

data sets considered show general agreement of AOD and DOD patterns, they also leave 810 

large uncertainties in estimating aerosol and dust over Asia and especially over Pacific 811 

Ocean due to 1) the presence of sea-spay aerosol and clouds, 2) mixing of dust with other 812 

continental aerosol, and 3) data sampling biases and instrument sensitivity limitations. 813 
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Our study emphasizes that better aerosol and dust detection over the Pacific Ocean is 814 

essential to reduce the uncertainty inherent in the present study. 815 

 816 

6. Summary  817 

We evaluated dust and total aerosol over Asia and the North Pacific Ocean for 818 

five AeroCom II global models by comparing the model-simulated spatial and temporal 819 

distributions with a suite of satellite remote-sensing data and with AERONET sun 820 

photometer measurements. Our evaluation targeted four areas: (1) spatial distributions of 821 

AOD and DOD over Asia and the North Pacific Ocean, (2) longitudinal gradient of AOD 822 

and DOD during trans-Pacific transport, (3) seasonal variations of AOD and DOD, and 823 

(4) vertical extinction profiles of total aerosol and dust. To understand the inter-model 824 

differences in the dust simulations, we also compared several key model parameters, 825 

including dust emission, dry and wet deposition, loss frequency, and dust mass extinction 826 

efficiency. 827 

The satellites agree that high AOD exists over major pollution regions, and 828 

gradually decreases downwind from the source regions. They show a peak in spring and a 829 

minimum in winter. Over land, satellite observations of DOD are derived from MODIS 830 

(0.11) and CALIOP (0.09), which shows a large dust contribution over land, accounting 831 

for 36% and 42% of the total AOD, respectively. Over ocean, satellite observations show 832 

that the average AOD is more than half (62%) the value over land, and DOD derived 833 

from MODIS, MISR, and CALIOP accounts for 27-30% of AOD. It is worth noting that 834 

AOD and DOD of MODIS and MISR are close each other, but CALIOP is much lower 835 
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than the other satellites over the ocean domain. Overall, satellites show a 35-70 % 836 

decrease of DOD from the west Pacific to the east Pacific. 837 

Large differences among models and between models and observations were 838 

found in all categories (column AOD/DOD, longitudinal gradient, seasonal variations, 839 

and vertical profiles) in this analysis. The mean AODs from models are within 20 % of 840 

the satellites; however, the inter-model differences over both land and ocean are 841 

comparable to the inter-satellite instrument differences. On the other hand, most models 842 

except GOCART underestimate DOD (0.00-0.05) compared to the satellite-derived 843 

products (0.03-0.06). The models show a wide range of decreasing longitudinal gradients 844 

for AOD (42-69 %) and DOD (45-88 %) across the Pacific Ocean, although the range is 845 

comparable to the differences between satellite products (35-70%). The models show 846 

large seasonal variations of AOD over land and ocean with a peak in spring or summer 847 

(0.2-0.35) and a minimum in winter (0.1-0.2) over land and ocean. The DOD and fDOD 848 

differences among the models are very large, as high as a factor of 20. The models also 849 

show peak DOD in spring and summer (0.05-0.24) and winter minima (<0.07).  850 

The vertical profiles of CALIOP show thick dust layers up to 6 km over dust 851 

source regions, and a shallower and weaker aerosol and dust layer over ocean. The 852 

models display a large spread in dust vertical distributions over land and ocean; they 853 

underestimate average height of CALIOP over land, but they overestimate over ocean. 854 

Zα,du according to CALIOP barely changes during long-range transport; in contrast, the 855 

modeled Zα,du increases during transport. Large dust fraction is detected from CALIOP 856 

throughout the domain, whereas dust fraction between models vary widely, showing 857 

factors of a few differences.  858 
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The differences in dust emissions among models are larger than a factor of 10 859 

(77.4-825.9 Tg yr-1) due to differences in source area size, dust size range, and 860 

meteorology, with a diversity value of 69%. The inter-model comparison also shows 861 

large diversity for mass-related parameters (i.e., LOAD, DRY, and WET; 39-100 %), 862 

which explains the large diversity of DOD (84%). The diversity for dry deposition is 863 

about twice larger than that for wet deposition. The comparisons show that the AOD 864 

diversity is only 12-17% of the DOD diversity. Overall, for most parameters, the 865 

diversity over ocean is larger than over land. 866 

While GOCART agrees with the satellite data the best in terms of DOD, there is 867 

still a lack of observational data to validate the emission, dry and wet removal rates (the 868 

slowest among models), and MEE (the lowest among models) in GOCART. For the same 869 

reason, it is difficult to point out specific causes for other models’ underestimate the 870 

DOD in our study domain. Observation-based estimates on these quantities are needed 871 

for future progress in modeling dust aerosols in the atmosphere.  872 
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Table 1. Description of the participating models and their physical characteristics of dust. 1164 
Adopted from Kim et al. (2014). 1165 

 GOCART 
(GO) 

GISS-E2-
OMA  
(GI) 

SPRINTARS 
(SP) 

ECHAM5-

HAMMOZ* 

(EC) 

HadGEM2 
(HG) 

Resolution 2.5°×2° 2.5°×2° 1.125°×1.125° 2.8°×2.8° 1.875°×1.25° 

Vertical 
Layers 

30 40 56 31 38 

Meteorology GEOS-4 
DAS 

Horizontal 
winds 
nudged to 
NCEP 
Reanalysis 

NCEP  
Reanalysis 

ECMWF 
Reanalysis 

ECMWF 
Reanalysis 

Winds for 
emissions 

U10m
3 U10m

3 U10m
3 U*

3 U*
3 

Size 
distribution 
(µm)   

5 bins 
0.1-1.0-1.8-
3.0-6.0-10.0 

5 bins 
0.1-1-2-4-
8-16 

6 bins 
0.1-0.22-0.46-
1.0-2.15-4.64-
10.0 

2 modes 
(acc. 
And coarse) 
0.05<rm<0.5 
0.5<rm 

6 bins 
0.0316-0.1-
0.316-1.0-
3.16-10-31.6  

Density  
(g cm-3) 

2.5 2.5 for clay 
2.65 for silt 

2.6 2.5-2.6 2.65 

Dust-related 
key 
references 

Chin et al. 
(2002,2009) 
Ginoux et 
al. (2001) 

Miller et 
al., (2006); 
Bauer and 
Koch 
(2005) 

Takemura et al. 
(2000, 2005) 

Pozzoli et al. 
(2008, 2011) 

Bellouin et al. 
(2011) 
(Appendix A) 

* Dust particles are emitted in the insoluble accumulation and coarse modes with mass 1166 
median radii of 0.37 µm and 1.75 µm, respectively. Once emitted dust particles can be 1167 
mixed with other aerosols, and dust is distributed in two additional modes, internally 1168 
mixed soluble accumulation and coarse modes. 1169 
  1170 
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 1171 
Table 2: Remote sensing data used in this study. Adopted from Kim et al. (2014). 1172 
Sensor/platform Data products Major references 

MODIS AOD (combined dark target 
and deep blue) 
DOD derived from AOD and 
aerosol fine-mode fraction 
over ocean 
DOD derived from deep blue 
retrievals over land 

Levy et al. (2013); Hsu et al. 
(2004) 
Kaufman et al. (2005); Yu et al. 
(2009, 2019b) 
 
Ginoux et al. (2012); Pu and 
Ginoux (2016) 

CALIOP Aerosol and dust extinction 
profiles 

Winker et al. (2009); Young et al. 
(2018); Yu et al. (2012, 2015b, 
2019a) 

MISR AOD, non-spherical AOD  Kalashnikova and Kahn (2006); 
Kahn et al. (2010) 

AERONET AOD, coarse-mode AOD Holben et al. (1998); Dubovik et 
al. (2000) 

1173 



 

 49

Table 3. Mean of optical properties of satellite over land and ocean domains. fDOD is the 1174 
ratio of DOD to AOD. Data is not available over land for some sensors. 1Mean of 1175 
satellites. 1176 
 1177 
 Name Unit MODIS MISR CALIOP Mean1 

Domain 

(60°E-140°W, 

20°N-60°N) 

AOD Unitless 0.226 0.194 0.152 0.191 

DOD Unitless 0.085 - 0.061 0.073 

fDOD Fraction 0.329 - 0.352 0.341 

Land 

(60°E-140°E, 

20°N-60°N)  

AOD Unitless 0.274 0.209 0.217 0.233 

DOD Unitless 0.111 - 0.094 0.103 

fDOD Fraction 0.362 - 0.416 0.389 

Ocean 

 (140°E-140°W, 

20°N-60°N) 

AOD Unitless 0.177 0.179 0.084 0.147 

DOD Unitless 0.059 0.054 0.027 0.047 

fDOD Fraction 0.296 0.268 0.285 0.283 

 1178 
  1179 
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Table 4. Budget analysis and optical properties of dust over different domains. Listed 1180 
parameters are emission (EMI), dry deposition (DRY), wet deposition (WET), column 1181 
mass loading (LOAD), aerosol optical depth (AOD), dust optical depth (DOD), DOD 1182 
fraction to AOD (fDOD), WET fraction to total deposition (fWET), loss frequency (LF), 1183 
mass extinction efficiency (MEE). Diversity of model parameters (%) is defined as the 1184 
ratio of standard deviation to the mean of a parameter following Textor et al. (2006). 1185 
Clear-sky AOD is listed for GISS. 1186 
 1187 

 Name Unit GOCART GISS SPRINTARS ECHAM5 HadGEM2 Model 
mean 

Diversity 
(%) 

Domain 

(60°E-

140°W, 

20°N-

60°N) 

EMI Tg yr-1 680.5 200.4 825.9 77.4 488.8 454.6 69.3 

DRY Tg yr-1 518.8 123.4 468.0 35.1 323.5 293.8 71.8 

WET Tg yr-1 164.4 105.8 150.8 70.0 73.2 112.8 38.5 

LOAD Tg 9.12 2.35 3.06 0.75 1.45 3.34 100.0 

AOD Unitless 0.202 0.191 0.157 0.182 0.166 0.180 10.2 

DOD Unitless 0.080 0.028 0.045 0.008 0.013 0.035 83.6 

fDOD Fraction 0.352 0.138 0.234 0.058 0.101 0.177 66.6 

fWET Fraction 0.50 0.76 0.62 0.66 0.79 0.66 17.4 

LF day-1 0.15 0.23 0.26 0.37 0.25 0.25 31.0 

MEE m2g-1 0.59 0.79 1.06 0.67 0.77 0.78 23.0 

Land 

(60°E-

140°E, 

20°N-

60°N) 
 

DRY Tg yr-1 495.1 121.5 464.6 33.8 323.0 287.60 71.2 

WET Tg yr-1 123.2 89.1 134.9 64.3 66.0 95.50 33.9 

LOAD Tg 6.60 2.05 2.67 0.69 1.22 2.64 88.4 

AOD Unitless 0.249 0.193 0.202 0.182 0.197 0.205 12.7 

DOD Unitless 0.111 0.048 0.075 0.014 0.020 0.054 75.1 

fDOD Fraction 0.416 0.226 0.345 0.110 0.153 0.250 51.4 

fWET Fraction 0.38 0.62 0.51 0.57 0.67 0.55 20.0 

LF day-1 0.20 0.28 0.39 0.53 0.41 0.36 35.3 

MEE m2g-1 0.57 0.71 1.01 0.66 0.68 0.73 23.0 

Ocean 

(140°E-

140°W, 

20°N-

60°N) 

DRY Tg yr-1 25.0 1.9 3.4 1.3 0.5 6.4 162.6 

WET Tg yr-1 43.3 16.7 15.9 5.7 7.2 17.8 85.1 

LOAD Tg 2.62 0.30 0.39 0.06 0.23 0.72 148.4 

AOD Unitless 0.155 0.189 0.111 0.182 0.136 0.155 20.9 

DOD Unitless 0.049 0.009 0.014 0.001 0.006 0.016 121.2 

fDOD Fraction 0.286 0.049 0.122 0.007 0.048 0.102 108.1 

fWET Fraction 0.62 0.89 0.73 0.74 0.92 0.78 15.8 

LF day-1 0.10 0.18 0.13 0.21 0.09 0.14 34.5 

MEE m2g-1 0.61 0.86 1.12 0.68 0.86 0.83 23.8 

 1188 
 1189 
 1190 
 1191 
  1192 



 

 51

Table 5. Multi-model mean and diversity over land and ocean domains for North Africa 1193 
and Asia. The values of North Africa are adopted from Kim et al. (2014). Numbers in 1194 
parenthesis are the diversity of model parameters (%), which is defined as the ratio of 1195 
standard deviation to the mean of a parameter following Textor et al. (2006).  1196 
 1197 

Name Unit Land Ocean 

  

North Africa 

(17°W-30°E, 

0°N-35°N) 

Asia 

(60°E-140°E, 

20°N-60°N) 

North Africa 

(90°W-17°W, 

0°N-35°N) 

Asia 

(140°E-140°W, 

20°N-60°N) 

EMI Tg yr-1 1047.8 (57.1) 454.6 (69.3) - - 

LOAD Tg yr-1 5.78 (74.8) 2.64 (88.4) 2.46 (56.5) 0.72 (148.4) 

AOD Unitless 0.29 (50.3) 0.21 (12.7) 0.17 (33.6) 0.16 (20.9) 

DOD Unitless 0.18 (65.8) 0.05 (75.1) 0.06 (44.8) 0.02 (121.2) 

fDOD Fraction 0.52 (31.1) 0.25 (51.4) 0.23 (50.2) 0.10 (108.1) 

fWET Fraction 0.32 (15.3) 0.55 (20.0) 0.62 (23.4) 0.78 (15.8) 

LF day-1 0.39 (44.0) 0.36 (35.3) 0.29 (37.1) 0.14 (34.5) 

MEE m2g-1 0.65 (26.9) 0.73 (23.0) 0.76 (29.3) 0.83 (23.8) 

 1198 
  1199 
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Table 6. Mean of AOD, DOD and fDOD of CALIOP satellite over land and ocean domains 1200 
with different integration options of CAD score and clear-sky.  1201 
 1202 

Cases Land Ocean 
 AOD DOD fDOD AOD DOD fDOD 

-100<CAD<-20, 
exclude clear-air 

0.416 0.197 0.429 0.205 0.079 0.305 

-100<CAD<-20, 
include clear-air 

0.223 0.109 0.425 0.117 0.040 0.291 

-100<CAD<-70, 
exclude clear-air 

0.388 0.169 0.410 0.178 0.058 0.286 

-100<CAD<-70, 
include clear-air 

0.211 0.095 0.409 0.104 0.032 0.274 

 1203 
 1204 
 1205 
  1206 
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Figure Captions 1207 
 1208 
Figure 1. Name and location of the sub-domains for (1) climatology (black dash-boxes) 1209 
and (2) CALIOP (red boxes) analysis. Color map is the annual mean of CALIOP DOD. 1210 
Color circles superimposed on the map are the AERONET retrieved coarse mode AOD. 1211 

The domains for climatological analysis are LAND [60°E-140°E; 20°N-60°N] and 1212 

OCEAN [140°E-140°W; 20°N-60°N]. The domain for CALIOP analysis are THAR 1213 

[70°E-75°E; 25°N-30°N], TAKL [75°E-90°E; 35°N-45°N], GOBI [95°E-115°E; 40°N-1214 

45°N], NWP [135°E-140°E; 25°N-50°N], NCP [175°E-180°E; 30°N-55°N], and NEP 1215 

[130°W-125°W; 35°N-60°N]. 1216 
 1217 
Figure 2. Spatial distribution of mean AOD from satellites (MODIS, MISR, and 1218 
CALIOP) and models (GOCART, GISS, SPRINTARS, ECHAM5, and HadGEM2) 1219 
averaged over 2000-2005. CALIOP including clear-air samples is averaged for 2007-1220 
2011. Color circles superimposed on the map represent AERONET observed AOD.  1221 
 1222 
Figure 3. Spatial distribution of mean dust optical depth (DOD) from satellites (MODIS, 1223 
MISR, and CALIOP) and models (GOCART, GISS, SPRINTARS, ECHAM5, and 1224 
HadGEM2) averaged over 2000-2005. CALIOP including clear-air samples and is 1225 
averaged for 2007-2011. Color circles superimposed on the map are the AERONET 1226 
retrieved coarse mode AOD. 1227 
 1228 

Figure 4. (a) Meridional mean of AOD, DOD, and fDOD averaged from 20°N to 60°N. 1229 
Thick lines are satellite retrievals from MODIS (MD), MISR (MI), and CALIOP (CA), 1230 
and thin lines are model simulations. No DOD is available over land in MISR products. 1231 
Asia and North America is shaded in gray. (b) Same as (a), except for normalized to 1232 

values of each variable at the Asian coast of 130°E.  1233 
 1234 

Figure 5. Monthly mean of (top) AOD, (middle) DOD, (bottom) fDOD for land [60°E-1235 

140°E; 20°N-60°N]. Left- and right-columns are from satellites and model, respectively. 1236 
All model plots are averaged from 2000 to 2005. Vertical bars are the standard deviation 1237 
of monthly mean values.  1238 
 1239 

Figure 6. Monthly mean of (top) AOD, (middle) DOD, (bottom) fDOD for ocean [140°E-1240 

140°W; 20°N-60°N]. Left- and right-columns are from satellites and model, respectively. 1241 
All model plots are averaged from 2000 to 2005. Vertical bars are the standard deviation 1242 
of monthly mean values. 1243 
 1244 
Figure 7. Mean spring season vertical profile of extinction coefficient of total aerosol 1245 
(σaer in km-1), extinction coefficient of dust (σdu in km-1), and fσdu, the ratio of σdu to σaer 1246 
for THAR (Thar desert), TAKL (Taklimakan desert), and GOBI (Gobi desert) domains. 1247 
Model simulations are for 2006. CALIOP data is averaged from 2007 to 2011. Black 1248 
solid and dashed-lines are the means of CALIOP data including clear-air samples and 1249 
excluding clear-air samples, respectively, representing the lower and upper limits for the 1250 
CALIOP data (range shaded in grey). Numbers in parenthesis are CALIOP data 1251 
excluding clear-air samples. 1252 
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 1253 
Figure 8. Same as Figure 7 except for (left) north-west Pacific domain, (middle) north-1254 
center Pacific, (right) north-east Pacific domains. 1255 
 1256 
Figure 9. Mean dust emissions from models averaged from 2000 to 2005. Color contour 1257 
unit is in g km-2s-1. 1258 
 1259 
Figure 10. Map of loss frequency, fWET, and MEE for dust from models averaged from 1260 
2000 to 2005. (a) Loss frequency is the ratio of total removal rate to LOAD (day-1), (b) 1261 
fWET is the fraction of wet removal to the total removal, and (c) MEE is dust mass 1262 
extinction efficiency at 550 nm (m2g-1).  1263 
 1264 
Figure 11. The partial sensitivity of DOD to various determining factors of Source (SRC 1265 
= EMI + mass imbalance), residence time (RES), and mass extinction efficiency (MEE). 1266 
Model values (GOCART, SPRINTARS, ECHAM5, HadGEM2, and GISS) are averaged 1267 

for 2000-2005 over the domain (60°E-140°W, 20°N-60°N). “x” symbol of each model is 1268 
the partial sensitivity of DOD to EMI within the domain. MO and CA are the mean DOD 1269 
from MODIS and CALIOP averaged over the same time and domain, respectively. 1270 
 1271 
Figure 12. Multi-model mean of optical and physical parameters over (a) Asia and North 1272 
Africa and (b) Pacific ocean and Atlantic ocean. Models (GOCART, SPRINTARS, 1273 
ECHAM5, HadGEM2, and GISS) are averaged from 2000 to 2005. Error bars are the 1274 
standard deviation of model values. 1275 
 1276 
Figure 13.  (left) Spatial distribution of mean AOD, DOD, and fDOD from CALIOP 1277 
averaged for 2007-2011, where, CALIOP excludes clear-air samples. Color circles 1278 
superimposed on the map represent AERONET data. (right) same as Figure 4a except for 1279 
CALIOP excludes clear-air samples. 1280 
 1281 
 1282 



 

Figure 1. Name and location of the sub-domains for (1) climatology (black dash-boxes) 
and (2) CALIOP (red boxes) analysis. Color map is the annual mean of CALIOP DOD. 
Color circles superimposed on the map are the AERONET retrieved coarse mode AOD. 
The domain for climatological analysis are LAND [60°E-140°E; 20°N-60°N] and 
OCEAN [140°E-140°W; 20°N-60°N]. The domain for CALIOP analysis are THAR 
[70°E-75°E; 25°N-30°N], TAKL [75°E-90°E; 35°N-45°N], GOBI [95°E-115°E; 40°N-
45°N], NWP [135°E-140°E; 25°N-50°N], NCP [175°E-180°E; 30°N-55°N], and NEP 
[130°W-125°W; 35°N-60°N]. 

  



 

Figure 2. Spatial distribution of mean AOD from satellites (MODIS, MISR, and 
CALIOP) and models (GOCART, GISS, SPRINTARS, ECHAM5, and HadGEM2) 
averaged over 2000-2005. CALIOP including clear-air samples is averaged for 2007-
2011. Color circles superimposed on the map represent AERONET observed AOD.  
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Figure 3. Spatial distribution of mean dust optical depth (DOD) from satellites (MODIS, 
MISR, and CALIOP) and models (GOCART, GISS, SPRINTARS, ECHAM5, and 
HadGEM2) averaged over 2000-2005. CALIOP including clear-air samples and is 
averaged for 2007-2011. Color circles superimposed on the map are the AERONET 
retrieved coarse mode AOD.  
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Figure 4. (a) Meridional mean of AOD, DOD, and fDOD averaged from 20°N to 60°N. Thick lines 
are satellite retrievals from MODIS (MD), MISR (MI), and CALIOP (CA), and thin lines are 
model simulations. No DOD is available over land in MISR products. Asia and North America is 
shaded in gray. (b) Same as (a), except for normalized to values of each variable at the Asian 
coast of 130°E.  
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Figure 5. Monthly mean of (top) AOD, (middle) DOD, (bottom) fDOD for land [60°E-
140°E; 20°N-60°N]. Left- and right-columns are from satellites and model, respectively. 
All model plots are averaged from 2000 to 2005. Vertical bars are the standard deviation 
of monthly mean values.  

 

 



 

Figure 6. Monthly mean of (top) AOD, (middle) DOD, (bottom) fDOD for ocean [140°E-
140°W; 20°N-60°N]. Left- and right-columns are from satellites and model, respectively. 
All model plots are averaged from 2000 to 2005. Vertical bars are the standard deviation 
of monthly mean values. 

  

 



 

Figure 7. Mean spring season vertical profile of extinction coefficient of total aerosol 
(σaer in km-1), extinction coefficient of dust (σdu in km-1), and fσdu, the ratio of σdu to σaer 
for THAR (Thar desert), TAKL (Taklimakan desert), and GOBI (Gobi desert) domains. 
Model simulations are for 2006. CALIOP data is averaged from 2007 to 2011. Black 
solid and dashed-lines are the means of CALIOP data including clear-air samples and 
excluding clear-air samples, respectively, representing the lower and upper limits for the 
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CALIOP data (range shaded in grey). Numbers in parenthesis are CALIOP data 
excluding clear-air samples.  



 

Figure 8. Same as Figure 7 except for (left) north-west Pacific domain, (middle) north-
center Pacific, (right) north-east Pacific domains. 

  

NWP NCP NEP

AOD      Z!!

DOD      Z!!

AOD      Z!!

DOD      Z!!

AOD      Z!!

DOD      Z!!



 

 

Figure 9. Mean dust emissions from models averaged from 2000 to 2005. Color contour 
unit is in g km-2s-1. 
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Figure 10. Map of loss frequency, fWET, and MEE for dust from models averaged from 
2000 to 2005. (a) Loss frequency is the ratio of total removal rate to LOAD (day-1), (b) 
fWET is the fraction of wet removal to the total removal, and (c) MEE is dust mass 
extinction efficiency at 550 nm (m2g-1).  
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Figure 11. The partial sensitivity of DOD to various determining factors of Source (SRC 
= EMI + mass imbalance), residence time (RES), and mass extinction efficiency (MEE). 
Model values (GOCART, SPRINTARS, ECHAM5, HadGEM2, and GISS) are averaged 
for 2000-2005 over the domain (60°E-140°W, 20°N-60°N). “x” symbol of each model is 
the partial sensitivity of DOD to EMI within the domain. MO and CA are the mean DOD 
from MODIS and CALIOP averaged over the same time and domain, respectively. 
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Figure 12. Multi-model mean of optical and physical parameters over (a) Asia and North 
Africa and (b) Pacific ocean and Atlantic ocean. Models (GOCART, SPRINTARS, 
ECHAM5, HadGEM2, and GISS) are averaged from 2000 to 2005. Error bars are the 
standard deviation of model values. 
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Figure 13.  (left) Spatial distribution of mean AOD, DOD, and fDOD from CALIOP 
averaged for 2007-2011, where, CALIOP excludes clear-air samples. Color circles 
superimposed on the map represent AERONET data. (right) same as Figure 4a except for 
CALIOP excludes clear-air samples. 
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Introduction 
 
There are a supplement table and six supplement figures. File names and figure captions 
are presented. 
 
1. Table_S1.docx: AERONET site name, longitude, and latitude. 
 
2. Table_S2.docx: Mean emissions from the Taklimakan desert (75°E-90°E, 35°N-45°N), 
Gobi Desert (95°E-115°E, 40°N-50°N), and Thar desert (60°E-80°E, 20°N-40°N). SRCall 
is the sum of TAKL, GOBI and THAR deserts; SRCTAGO is the sum of TAKL, GOBI; 
Total is the entire domain (60°E-140°W, 20°N-60°N) and the values are taken from 
Figure 4. 
 
3. Suppliment_Figirures.docx 
 
 
Supplement Figure Captions 
 
Figure S1. Number of data samples (ncount) in million for January 2007 - December 
2011: (a) -100<CAD<-20 and include clear-air; (b) -100<CAD<-70 and include clear-air; 
(c) -100<CAD<-20 and exclude clear-air; (d) -100<CAD<-70 and exclude clear-air. (e) 
ncount (-100<CAD<-20, include clear-air) minus ncount (-100<CAD<-70, include clear-
air), (f) ratio of exclude clear-air to include clear-air (-100<CAD<-70), (g) percent ratio 
of CAD<-20 to CAD<-70 (exclude clear-air). 
Figure S2. Comparison of monthly mean AOD between AEROENT and other satellite 
data and model values over the study domain. Number of total data point is 474 between 
2000 and 2005. R, B, and E are the correlation coefficient, mean bias, and root-mean-
square-error, respectively. Mean bias is defined as the sum of the ratio of the modeled or 
satellite AOD to AERONET AOD. 

Figure S3. Monthly mean AOD over Land-West (60°E-100°E), Land-East (100°E-
140°E), Ocean-West (140°E-180°E), Ocean-East (180E°-140°W) domains from top to 
bottom. Latitudinal ranges are 20°N to 60°N. Left- and right-columns are from satellites 
and models, respectively. All model plots are averaged from 2000 to 2005. Vertical bars 
are the standard deviation of monthly mean values.  
Figure S4. Same as Figure S3 except for DOD. 

Figure S5. Same as Figure S3 except for fDOD. 
Figure S6. Monthly mean DOD for 2000-2005 over the Taklimakan desert. 
Figure S7. Map of precipitation (mm day-1) of each season from models averaged from 
2000 to 2005. 
 



Table S1.  AERONET site name, longitude, and latitude. 
	
Site Name Longitude (°E)  Latitude (°N) 
Issyk-Kul 76.98 42.62 
Dushanbe 68.86 38.55 
SACOL 104.14 35.95 
Kanpur 80.23 26.51 
Pimai 102.56 15.18 
Dalanzadgad 104.42 43.58 
Tomsk 85.05 56.48 
Karachi 67.03 24.87 
Lahore 74.33 31.54 
Pune 73.81 18.54 
Chiang_Mai_Met_Sta 98.97 18.77 
Dongsha_Island 116.73 20.70 
Hong_Kong_PolyU 114.18 22.30 
Chen-Kung_Univ 120.22 23.00 
Irkutsk 103.09 51.80 
Yakutsk 129.37 61.66 
Midway_Island -177.38 28.21 
Mauna_Loa -155.58 19.54 
Bonanza_Creek -148.32 64.74 
Trinidad_Head -124.15 41.05 
Saturn_Island -123.13 48.78 
UCSB -119.85 34.42 
Monterey -121.86 36.59 
Taihu 120.22 31.42 
Beijing 116.38 39.98 
Gosan_SNU 126.16 33.29 
Osaka 135.59 34.65 
Noto 137.14 37.33 
Ussuriysk 132.16 43.70 
	
  



Table S2. Mean emissions from the Taklimakan desert (75°E-90°E, 35°N-45°N), Gobi 
Desert (95°E-115°E, 40°N-50°N), and Thar desert (60°E-80°E, 20°N-40°N). SRCall is the 
sum of TAKL, GOBI and THAR deserts; SRCTAGO is the sum of TAKL, GOBI; Total is 
the entire domain (60°E-140°W, 20°N-60°N) and the values are taken from Figure 4. 

Model Emission (Tg yr-1) Ratio 

 
TAKL 
(TA) 

GOBI 
(GO) 

THAR 
(TH) 

SRCall 
Total 

SRCTAGO 
Total 

TAKL 
GOBI 

GO 252.9 209.4 134.4 0.88 0.68 1.21 
GI 30.6 51.0 49.5 0.66 0.41 0.60 
SP 208.6 166.0 273.2 0.78 0.45 1.26 
EC 1.4 24.7 7.1 0.43 0.34 0.06 
HG 31.2 103.5 200.9 0.69 0.28 0.30 

Mean 104.9 110.9 133.0 0.7 0.4 0.68 
STD 116.5 77.2 108.5 0.2 0.2 0.54 
DIV 111.0 69.6 81.6 24.4 35.9 78.30 

 

  



 
Figure S1. Number of data samples (ncount) in million for January 2007 - December 
2011: (a) -100<CAD<-20 and include clear-air; (b) -100<CAD<-70 and include clear-air; 
(c) -100<CAD<-20 and exclude clear-air; (d) -100<CAD<-70 and exclude clear-air. (e) 
ncount (-100<CAD<-20, include clear-air) minus ncount (-100<CAD<-70, include clear-
air), (f) ratio of exclude clear-air to include clear-air (-100<CAD<-70), (g) percent ratio 
of CAD<-20 to CAD<-70 (exclude clear-air). 
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Figure S2. Comparison of monthly mean AOD between AEROENT and other satellite 
data and model values over the study domain. Number of total data point is 474 between 
2000 and 2005. R, B, and E are the correlation coefficient, mean bias, and root-mean-
square-error, respectively. Mean bias is defined as the sum of the ratio of the modeled or 
satellite AOD to AERONET AOD. 
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Figure S3. Monthly mean AOD over Land-West (60°E-100°E), Land-East (100°E-
140°E), Ocean-West (140°E-180°E), Ocean-East (180E°-140°W) domains from top to 
bottom. Latitudinal ranges are 20°N to 60°N. Left- and right-columns are from satellites 
and models, respectively. All model plots are averaged from 2000 to 2005. Vertical bars 
are the standard deviation of monthly mean values.  
 

 
 

 
 



 
Figure S4. Same as Figure S3 except for DOD. 
 
 
 
 

 
 

 
 



 
Figure S5. Same as Figure S3 except for fDOD. 
  

 
 

 
 



 

 
Figure S6. Monthly mean DOD for 2000-2005 over the Taklimakan desert. 
  



 
Figure S7. Map of precipitation (mm day-1) of each season from models averaged from 
2000 to 2005. 
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