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ABSTRACT 15 

Optimal estimation (OE) is a core method in quantitative Earth observation. The optimality 16 

of OE depends on the errors in the prior, measurements and forward model being zero 17 

mean and having well-known error covariance. Often these assumptions are not met. We 18 

show how to use matches of satellite observations to in situ reference measurements to 19 

estimate parameters for use in OE that bring the retrieval framework closer to the 20 

theoretical optimality. This is done by retrieving bias correction and error covariance 21 

parameters. Bias correction parameters for some components of the retrieved state and for 22 

the satellite radiances are anchored by the in situ reference measurements, and are 23 
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obtained by a modification of Kalman filtering. Error covariance matrices for the prior state 24 

and for the observation-simulation difference are iteratively obtained by applying equations 25 

for diagnosing internal retrieval consistency. The theory is applied to the case of OE of sea 26 

surface temperature from a sensor on a geostationary platform. Relative to an initial OE 27 

implementation, all measures of retrieval performance are improved when the optimised 28 

OE is tested on independent data: mean difference from validation data is reduced from 29 

−0.08 K to −0.01	K, and the standard deviation from 0.47 to 0.45 K; retrieval sensitivity to 30 

sea surface temperature increases from 71% to 76%; and a 20% underestimation of retrieval 31 

uncertainty is corrected. Perhaps more significant than the quantitative improvements are 32 

the coherent new insights into the forward model simulations and prior assumptions that 33 

are also obtained. These include estimates of prior bias in the absence of in situ 34 

information, an important consideration when in situ information is not globally distributed. 35 

Biases and lack of information about error covariances arise in remote sensing very often. 36 

While illustrated here for a particular case, the principles and methods we present for 37 

constraining that lack of knowledge systematically using ground truth will be widely 38 

applicable in remote sensing.  39 

 40 

HIGHLIGHTS 41 

• Method to determine bias and covariance parameters for optimal estimation 42 

• Ensures assumptions underlying optimal estimation are more closely met 43 

• Observation and prior state biases are constrained using matched ground truth 44 

• Objective evaluation of prior and observation-simulation error covariances  45 

• Example application to sea surface temperature, but method is widely applicable 46 
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1 Introduction 50 

Optimal estimation (OE) is an application of Bayes’ theorem to the inverse problem of 51 

retrieving useful geophysical parameters from Earth observations (Rodgers, 2000). OE has 52 

been applied to the remote sensing of many geophysical parameters, including atmospheric 53 

trace gases (Carboni et al., 2019; Buchwitz et al., 2017; Munro et al., 1998), atmospheric 54 

aerosol (Thomas et al., 2009), cloud properties (McGarragh et al., 2018; Heidinger, 2003; 55 

Poulsen et al., 2012) and sea surface temperature (SST) (Merchant et al., 2008; Merchant et 56 

al., 2013). Strengths of OE include (McGarragh et al., 2018): flexible use of information from 57 

all available wavebands, mutual consistency of multiple retrieved variables, multivariate 58 

characterisation of uncertainty (error covariance) and a framework for investigating 59 

information content of measurements. 60 

 61 

Optimal estimation is not a trivial approach to implement, requiring availability of a forward 62 

model that can usefully simulate the observed satellite radiances and their local derivatives 63 

with respect to the variables describing the observed state. Moreover, for the retrieval 64 

result to be truly optimal a number of further conditions must be met (Rodgers, 2000), as 65 

follows. 66 

 67 

Firstly, the forward model must have zero mean error relative to the satellite measurement. 68 

Herein, “error” is used strictly to mean the difference between the measured value and a 69 

true value of the measurand, and never as a synonym for “uncertainty” (JCGM, 2008). The 70 

combined error in the simulated minus the measured value of radiance is often called the 71 

“observation error”, a term that will be used hereafter bearing in mind that it includes both 72 
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measurement and forward model error. In practice, the accuracy of the calibration of 73 

satellite sensors and the accuracy of radiative transfer simulation are not generally sufficient 74 

to guarantee that observation errors have zero mean.  75 

 76 

Secondly, the prior estimate of the state must be unbiased (meaning there are no 77 

systematic dependencies of the errors of the prior, and the errors have zero mean). This 78 

also is not generally the case.   79 

 80 

Thirdly, the observation and the prior uncertainties (or, in the multivariate case, their error 81 

covariances) need to be well quantified in order to obtain the optimal solution and a 82 

realistic uncertainty evaluation for that solution. (The optimal solution is usually defined as 83 

the solution that minimises the retrieval uncertainty given the prior and the 84 

measurements.) In practice, it can be difficult to obtain representative observation or prior 85 

error covariance matrices, particularly as these error covariances are likely to vary with the 86 

retrieval context. The error covariance matrices are typically inferred from information such 87 

as sensor specifications, the degree of discrepancy between radiative transfer models and 88 

differences between data used as prior and other measurements of similar quantities. 89 

Expert judgement and a degree of arbitrariness has typically been involved. Specific criticism 90 

of the application of OE to SST (Koner et al., 2015) has centred on this problem of 91 

determining appropriate error covariance matrices.  92 

 93 

It is clearly desirable to put estimation of OE retrieval parameters on an objective footing 94 

which enables the conditions underlying the OE solution to be closely met. That is our aim in 95 

this paper: to describe and demonstrate a systematic framework to determine consistent 96 
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estimates for the relative biases of forward model and instrument, prior biases, and 97 

parameters quantifying both the observation and prior error covariance matrices. The key is 98 

availability of independent data that act as a reference that is taken to be unbiased. The 99 

framework is demonstrated here in the context of joint OE of SST and total column water 100 

vapour (TCWV) from observations of an infrared radiometer, but is more widely applicable.  101 

 102 

The essence of the method to obtain bias corrections is to retrieve bias-correction 103 

parameters progressively from many satellite-reference matches, thereby extending OE to 104 

be “bias-aware”. The method is analogous to bias correction practices in data assimilation 105 

(Dee, 2005; Auligne et al., 2007), and can be considered as a form of Kalman filtering for 106 

parameter estimation (Kalman, 1960), although not here applied sequentially in time or 107 

space.  108 

 109 

The essence of the method to obtain error covariance parameters is to interrogate the pre- 110 

and post-retrieval residuals between the forward model and observations, using diagnostic 111 

formulations derived for application in data assimilation (Desroziers et al., 2005). The 112 

“Desroziers” diagnostics have been used in the context of numerical weather prediction to 113 

estimate uncertainties for a variety of atmospheric observations including those from the 114 

Infrared Atmospheric Sounding Interferometer and the Spinning Enhanced Visible and 115 

InfraRed Imager (SEVIRI) (Stewart et al., 2014; Stewart et al., 1997; Waller et al., 2016a; 116 

Waller et al., 2016b; Cordoba et al., 2017). The use of improved observation error statistics 117 

in operational assimilation has resulted in improved analyses and forecast skill (Weston et 118 

al., 2014; Bormann et al., 2016; Campbell et al., 2017). 119 

 120 
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The remainder of this paper is structured as follows. The mathematics used to derive the 121 

bias and covariance parameter estimates is presented in section 2. Implementation will be 122 

illustrated with reference to retrieval of SST and TCWV using SEVIRI. The data used and the 123 

specifics of the implemented example are explained section 3. Section 4 presents the results 124 

for the example implementation, which is followed by a wider discussion and conclusions 125 

(section 5).   126 

2 Expressions for Estimating the Retrieval Parameters 127 

2.1 Preliminaries 128 

Expressions for estimating the retrieval parameters are developed here specifically in the 129 

context of a maximum a posteriori (MAP) retrieval in the nearly linear case. In this case, the 130 

optimal estimate is formulated (Rodgers, 2000) as in Eq. 1. 131 

 132 

𝒛( = 𝒛* + (𝑲.𝑺012𝑲 + 𝑺*12)12𝑲.𝑺012(𝒚 − 𝑭) Eq. 1   

 133 

Here: 𝒛 is a vector containing variables adequate to describe the state of the observed 134 

system, 𝒛* being the prior estimate of the state (from climatological or other background 135 

information) and 𝒛( being the OE retrieval of the state; 𝒚 is a vector of observations which 136 

depend on the state, and 𝑭 = 𝑭(𝒛*) is the corresponding simulation of the expected 137 

observations given the prior; the difference 𝒚 − 𝑭 is transformed from “observation space” 138 

to “state space” by multiplication by a “gain” equal to (𝑲.𝑺012𝑲 + 𝑺*12)12𝑲.𝑺012 thus 139 

providing an update of the prior estimate of the state; the term 𝑲 = 6𝑭
6𝒛
|𝒛8   contains the 140 

partial derivative of each observation with respect to each state variable, and is provided by 141 

the forward model; and the error covariance matrices for the prior, 𝑺*, and the simulation-142 
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minus-observation, 𝑺0, are square positive definite matrices that have to be specified and 143 

“given” to the OE. 144 

 145 

Eq. 1 can be understood as follows. The starting point (prior) is 𝒛* and the retrieval results, 146 

𝒛(, is improved relative to the prior by use of observations. In a case where  𝒛*  is a close 147 

approximation of the state, we would expect the observations to be close to 𝑭 and then the 148 

retrieval is close to the prior. Non-zero differences 𝒚 − 𝑭 that are significant compared to 149 

the uncertainties, in contrast, will significantly update the prior. The gain determines how 150 

strongly the observation-simulation difference updates the prior. The form of the gain gives 151 

the weight to 𝒚 − 𝑭 using the inverse error covariance matrices, analogously to weighting 152 

the average of measured values of a quantity by their inverse squared uncertainty to give a 153 

best estimate for the quantity.      154 

 155 

Error covariance matrices describe the uncertainty associated with a set of variables, and 156 

the correlations between the errors in different variables. Since we will be interested in 157 

interpreting the uncertainty and error correlations implied by the covariance matrices we 158 

estimate, it is convenient to note that any error covariance matrix can be simply 159 

decomposed into matrices that separate out these properties: 160 

 161 

𝑺 = 𝑼𝑹𝑼 Eq. 2   

 162 

where 𝑼 is a diagonal matrix whose diagonal terms correspond to the uncertainty values of 163 

each variable, and 𝑹 has off-diagonal terms equal to the coefficient of correlation of errors 164 
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each pair of different variables (with 1s on its diagonal). If 𝑹  is diagonal (equal to 𝑰, the 165 

identity matrix), the errors are independent between variables. 166 

 167 

2.2 Parameters for Correction of Bias  168 

The differences 𝒚 − 𝑭 are in general subject to errors that do not have zero mean over a 169 

large ensemble of retrievals: i.e., there are observation biases. These may arise in the 170 

measured values from the sensor and/or in the forward model, and have the equivalent 171 

effect of biasing the retrieved values irrespective of their origin. We therefore wish to 172 

estimate parameters for observation bias correction, 𝜷, defined such that adding 𝜷 to the 173 

forward model corrects for bias (relative to the observations). This definition is a convenient 174 

choice, and is not intended to imply that the forward model is the source of all the biases.  175 

 176 

The prior estimate of the state may also be biased (i.e., may have a spatio-temporally 177 

persistent non-zero mean error across many instances). A vector 𝜸 is defined such that 𝒛* +178 

𝜸 is unbiased, and 𝜸 also needs to be estimated. If any elements of 𝒛* are known or are 179 

defined to be unbiased, then the corresponding elements of 𝜸 contain zero. 180 

 181 

The method for estimating the 𝜸 and 𝜷 is essentially to retrieve them as part of an extended 182 

state vector, 𝒛>. This is achieved progressively, refining the estimates of the parameters over 183 

many retrievals. Consider the 𝑖@A retrieval, where we have estimates from the previous 184 

retrieval for the bias correction parameters, written as 𝜸B12 and 𝜷B12. The extended optimal 185 

estimate in the 𝑖th retrieval is formulated in Eq. 3. 186 

 187 
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𝒛>B = 𝒛>* + C𝑲D.𝑺012𝑲D + 𝑺E12F
12𝑲D.𝑺012C𝒚 − (𝑭(𝒛* + 𝜸B12) + 𝜷B12)F 

 

𝒛>* = G
𝒛* + 𝜸B12
𝜸B12
𝜷B12

H 

 

𝑲D = I𝜕𝑭
𝜕𝒛
|𝒛8

𝜕𝑭
𝜕𝒛
|𝒛8 𝑰K 

 

𝑺E = L
𝑺* + 𝑺MNOP 𝟎 𝟎

𝟎 𝑺MNOP 𝟎
𝟎 𝟎 𝑺RNOP

S 

Eq. 3    

 188 

 189 

In Eq. 3 the state is retrieved jointly with bias correction parameters for the prior estimate 190 

of the state and for the observations. The bias correction for the prior modifies the prior 191 

estimate of the state, which is why 𝜸B12 appears in the extended state vector both in the 192 

term 𝒛* + 𝜸B12 and in its own right as a retrieved vector. The forward model is also 193 

calculated for the bias corrected prior state 𝒛* + 𝜸B12. The partial derivatives of the forward 194 

model are identical with respect to the corresponding elements of 𝒛* and 𝜸B12, as reflected 195 

in the formulation of 𝑲D . The use of 6𝑭
6𝒛
|𝒛8  is an approximation convenient for small 196 

corrections, and 6𝑭
6𝒛
|𝒛8T𝜸N		must be evaluated otherwise. The final columns of 𝑲D  are the 197 

partial derivatives of the bias corrected forward model with respect to 𝜷B12. Since the bias 198 

correction has been formulated here as purely additive and independent between channels, 199 

these partial derivatives all equal 1 and the final columns are an identity matrix. More 200 

complex formulations of 𝜷 would involve calculating appropriate partial derivatives here.  201 
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 202 

The extended prior error covariance matrix, 𝑺E ,  is block diagonal. The blocks relating to the 203 

bias correction parameters having been carried forward from the error covariance matrix of 204 

the solution of the previous iteration. Considering the result of the 𝑖th retrieval, the error 205 

covariance matrix of the solution is: 206 

 207 

𝑺U>N = C𝑲D.𝑺012𝑲D + 𝑺E12F
12 = L

𝑺UN 𝑨 𝑩
𝑨. 𝑺MN 𝑪
𝑩. 𝑪Y 𝑺RN

S 
Eq. 4    

 208 

The matrices 𝑺MN  and 𝑺RN  are taken from the evaluation of Eq. 4 and passed to the 𝑺E  of the 209 

subsequent retrieval. The blocks 𝑨,𝑩  and 𝑪 are not passed forward to the subsequent 𝑺E  210 

which imposes independence between the errors in the state and bias correction vectors. 211 

This is in contrast to Kalman filtering, where the iterations are sequential in space and/or 212 

time, and the assumption is made that 𝑺U>N  in its entirety is a good estimate for 𝑺E  in iteration 213 

𝑖 + 1. 214 

 215 

The bias correction for the prior affects the calculated value of 𝑭 and we are also attempting 216 

to derive a bias correction for 𝒚 − 𝑭 simultaneously. Thus, there may be ambiguity between 217 

these bias corrections which could affect convergence. Here, we will anchor one or more of 218 

the elements of 𝜸 and or 𝜷 to zero using in situ reference data, which we find to be 219 

sufficient for convergence. A full analysis of convergence conditions is beyond the scope of 220 

this paper, although criteria for monitoring progress to convergence are provided below. 221 
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Note that if any element of 𝜸 or 𝜷 is externally constrained to a fixed value, the 222 

corresponding rows and columns are deleted from the vectors and matrices of Eq. 3. 223 

 224 

2.3 Observation Error Covariances 225 

The observation error covariance matrix, 𝑺0, is estimated given specified bias corrections, 226 

since the observation bias correction is effectively part of the forward model: 𝑭[ = 𝑭 + 𝜷. 227 

To estimate 𝑺0, we make use of an equation derived for diagnosing the consistency of a 228 

data assimilation system (Desroziers et al., 2005).  Re-written in the retrieval nomenclature 229 

we have: 230 

 231 

𝐸[(𝒚 − 𝑭′(𝒛())(𝒚 − 𝑭′(𝒛*)).] = 𝑺0  Eq. 5   

 232 

where 𝐸[. ] signifies expectation. The expression says that expectation of the outer product 233 

of two terms equals the observation error covariance for a well-formulated optimal 234 

estimate. The two terms in the outer product are the difference between the observations 235 

and the simulation for the retrieved state, and the difference between the observations and 236 

the simulation for the prior state. Here, we reverse the application of the diagnostic 237 

equation, and use an approximation to the left-hand side as a new estimate for 𝑺0.  238 

 239 

To apply Eq. 5 in this way, three adaptations are made. First, we must estimate the 240 

expectation as the average across many instances. Second, since Eq. 5 assumes the bias-free 241 

case, and biases may not on any given evaluation have been fully removed, the differences 242 

are shifted to give zero mean. Third, we must force the result to be strictly symmetric. Using 243 

〈. 〉 to indicate the arithmetic average over an ensemble of instances, we obtain: 244 
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 245 

𝑺b0 =
1
2
〈𝒅ef𝒅*f

. + 𝒅*f𝒅ef
.〉 

𝒅ef = 𝒚 − 𝑭[(𝒛() − 〈𝒚 − 𝑭[(𝒛()〉 

𝒅*f = 𝒚 − 𝑭[(𝒛*) − 〈𝒚 − 𝑭[(𝒛*)〉 

 

Eq. 6   

2.4 Prior Error Covariances 246 

Another data assimilation diagnostic (Desroziers et al., 2005) corresponds to: 247 

 248 

𝐸[(𝑭′(𝒛() − 𝑭[(𝒛*))(𝒚 − 𝑭′(𝒛*)).] = 𝑲𝑺*𝑲. Eq. 7   

 249 

We adapt this to provide an estimate of 𝑺* as follows. First, note that 𝑲 is variable between 250 

instances, but we have an estimate of 𝑲 from the forward model in each case. While, in 251 

data assimilation,	𝑲𝑺*𝑲. is often assessed “in observation space”, here we isolate 𝑺* by 252 

pre-multiplication of both sides by (𝑲.𝑲)12𝑲. and post-multiplication of both sides by 253 

𝑲(𝑲.𝑲)12. Again, we adapt the diagnostic equation by averaging over an ensemble of 254 

instances and imposing a re-zeroed, symmetric form, obtaining:  255 

 256 

𝑺b* =
1
2
〈(𝑲.𝑲)12𝑲.	C𝒅*e𝒅*f

. + 𝒅*f𝒅*e
.F𝑲(𝑲.𝑲)12〉 

𝒅*e = 𝑭[(𝒛() − 𝑭[(𝒛*) − 〈𝑭′(𝒛() − 𝑭[(𝒛*)〉 

Eq. 8   

 257 

2.5 A Convergence Metric 258 

 259 
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A final diagnostic relationship using both 𝑺b0  and 𝑺b* can be re-cast as a metric of self-260 

consistency. In a consistent system (Desroziers et al., 2005): 261 

 262 

𝐸[(𝒚 − 𝑭′(𝒛*))(𝒚 − 𝑭′(𝒛*)).] = 𝑺0 + 𝑲𝑺*𝑲. Eq. 9   

 263 

and therefore, if the newly estimated error covariance matrices are well quantified, we 264 

should find that:  265 

 266 

〈𝑺b0 + 𝑲𝑺b*𝑲.〉12〈𝒅*f𝒅*f
.〉 − 𝑰 ≈ 𝟎 Eq. 10   

 267 

The element-wise sum of squares of the expression on the left-hand side is a measure of the 268 

inconsistency of the error covariance assumptions: as the value decreases, inconsistency 269 

decreases and the assumptions are more consistent with the data. Note that the metric 270 

involves both covariance matrices and, via 𝒅*f , the prior and observation bias corrections, 271 

and therefore tests the consistency of all the estimates. This metric enables us to verify that 272 

internal consistency is improved when we revise an estimate of any error covariance 273 

parameters, and that there is convergence in the system of parameters being obtained. 274 

3 Example Implementation 275 

3.1 Formulation of Optimal Estimator 276 

We apply these expressions for estimating retrieval parameters to the case of OE of SST (𝑥) 277 

and TCWV (𝑤) from SEVIRI. The retrieval formulation has been developed primarily to 278 

retrieve SST for operational meteorology and oceanography (Merchant et al., 2008), and is 279 

used for SST climate data records (Merchant et al., 2014). The optimal estimator has the 280 
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same form as Eq. 1, except that a reduced state vector, 𝒛 = j𝑥𝑤k, is retrieved. 𝒛* is derived 281 

from a full prior state vector, 𝒙*, consisting of the complete profiles of temperature and 282 

humidity from operational numerical weather prediction (NWP) fields from forecasts of the 283 

European Centre for Medium-range Weather Forecasting (Vitart, 2014). The full prior is 284 

used for the forward model simulation: thus 𝑭 = 𝑭(𝒙*) and 𝑲 = 6𝑭(𝒙8)
6𝒛

|𝒛8. To relate 285 

changes in 𝑤 to changes in the humidity variables in 𝒙 the assumption is made that the 286 

absolute humidity changes by the same fraction throughout the atmospheric column. 287 

 288 

The reduced state vector is used for retrieval because there is limited amount of 289 

information about TCWV available in the infrared window channels used for SST 290 

determination, although there is sensitivity to the column water vapour (Merchant et al., 291 

2006b). The reduced state vector formulation neglects less dominant terms (the vertical 292 

distribution of water vapour, the atmospheric temperature profile, aerosols, etc). This 293 

approximation may be a further source of bias in the optimal estimator, if any prior 294 

information for these terms is biased.   295 

 296 

The observation vector is 𝒚 = G
𝑦n.o
𝑦2p.n
𝑦2q.p

H, where 𝑦r refers to the brightness temperature (BT) of 297 

the SEVIRI channel centred on a wavelength of 𝜆 µm. Thus, we use the three thermal 298 

window channels of SEVIRI that are useable for SST retrieval both night and day. BTs are 299 

used rather than radiances because this renders the retrieval nearly linear and amenable to 300 

solution in one step. The forward model is RTTOV v11.2 (Saunders et al., 2018). 301 

 302 
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3.2 Data 303 

We use a dataset of observations from SEVIRI matched to drifting buoy measurements. The 304 

SEVIRI sensor in question is operational on the platform Meteosat-09, which was launched 305 

in December 2005. The buoy measurements are within the field of view of the SEVIRI pixel 306 

and within 30 minutes of the pixel acquisition time. The SEVIRI cloud screening, quality 307 

flagging, initial radiance bias correction and matching are done within the systems of the 308 

Ocean and Sea-Ice Satellite Applications Facility (OSI-SAF). 309 

 310 

Two years of data are exploited: data from the year 2011 are used as a training set from 311 

which retrieval parameters are derived, and the quoted results are for the application of 312 

those parameters to data from the year 2012. There is no particular significance of these 313 

years, other than match-up data (MD) being accessible with an augmented set of contextual 314 

information. 315 

 316 

There are 167,808 satellite-buoy matches in the 2011 (training) MD, and 153,394 in the 317 

2012 (application) MD. The distribution of matches in 2011 is illustrated in Figure 1. In 2012 318 

they are similarly distributed. The information in the dataset includes: the satellite 319 

(brightness temperature, BT) and drifting buoy (SST) measurements; a quality level (QL), 320 

derived in the operational system from a number of considerations such as proximity to 321 

flagged clouds; a numerical weather prediction (NWP) forecast of the atmospheric 322 

temperature and humidity profiles, needed as input for radiative transfer simulation of 323 

SEVIRI BTs; an operational estimate of the simulation bias relative to the satellite 324 

observations, estimated on timescales of 3 days on spatial scales of order 5 degrees from 325 

averages of simulation minus observation differences in night-time data; spatio-temporal 326 
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geolocation information, such as satellite zenith angle; and the value of SST from the 327 

operational SST analysis, OSTIA, for the location and day. All the above fields are available 328 

within the OSI-SAF operational processing system and can be exploited in near-real time.  329 

 330 

Since the recommended OSI-SAF SSTs comprise those from pixels with QL 4 and 5, only 331 

those pixels are included in the MD. Quality control flags for identifying bad quality drifting-332 

buoy temperatures have been applied. 2.8% of matches have been rejected where the 333 

drifting buoy temperature differs from the SST of OSTIA by more than 1.6 K, which is around 334 

eight times the expected uncertainty in drifting buoy SST (Lean and Saunders, 2013). A 335 

similar proportion of matches is excluded where an index of desert dust (Merchant et al., 336 

2006a) indicates elevated tropospheric aerosol. 337 

 338 

 339 
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 340 

Figure 1. Distribution of satellite-buoy matches used in this study. The locations shown 341 

are for 2011, and the distribution in 2012 is similar. Matched locations are coloured with the 342 

measured buoy sea surface temperature. 343 

 344 

The radiative transfer model, RTTOV v11.2, was run for each match on the NWP profiles for 345 

the SEVIRI observation geometry, assuming cloud-free no-aerosol conditions. The SST used 346 

in the simulation for the training year was the drifting buoy SST minus a static adjustment 347 

for the ocean thermal skin effect of 0.17 K (Donlon et al., 2002). The ocean skin effect is 348 

variable (e.g., Saunders, 1967; Wong and Minnett, 2018), and for the present purpose, this 349 
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adjustment is intended to correct for the mean skin effect to within an uncertainty of order 350 

0.1 K. A climatological SST was used for the simulation for the test year, acting as both a 351 

prior and linearization point for the test retrievals. The climatology used was the average for 352 

the day of year over the complete years 1982 to 2010 from a satellite-based analysis of SST 353 

at 20 cm (Merchant et al., 2019). 354 

 355 

3.3 Implementation 356 

3.3.1 Overview 357 

Section 2 provides equations for three steps of parameter estimation to improve OE results 358 

for SST (bias correction, observation error covariance estimation, and prior error covariance 359 

estimation). The parameters estimated in each step are contained in two vectors of bias 360 

correction parameters, 𝜷 and 𝜸, and two covariance matrices, 𝑺0  and 𝑺*. We implement 361 

the equations sequentially, but the estimates of the retrieval parameters are not 362 

independent, in that the current evaluation of each parameter set influences the evaluation 363 

of the others. The optimisation of the retrieval parameters is therefore done by iterating the 364 

estimation sequence, as shown in Figure 2 and explained in the following subsections. 365 

 366 
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 367 

Figure 2. The sequence of estimation of three sets of parameters for optimal 368 

estimation. For symbols, see the main text. 369 

 370 

3.3.2 Initialisation 371 

The first step is to initialise all retrieval parameters. The OSI-SAF ran an OE retrieval 372 

experimentally (Merchant et al., 2009b) and the initial estimates of the retrieval parameters 373 

are the values of the parameters trialled in that experimental chain. These were specified 374 

based on case studies, expert judgement, understanding of SEVIRI sensor characteristics, 375 

etc. The observation biases (after the operational radiance bias adjustments are applied) are 376 

initialised as zero in each channel. Zero mean bias is also assumed for TCWV. The initial 377 

model for the observation error covariance is given by Eq. 11. 378 
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𝑺0 = t
𝑢n.of

q 0 0
0 𝑢2p.nf q 0
0 0 𝑢2q.pf q

v + t
𝑢n.ow

q𝑠q 0 0
0 𝑢2p.nw q𝑠q 0
0 0 𝑢2q.pw q𝑠q

v 

 

Eq. 11   

Here, 𝑠 = 	sec(𝜃) , where 𝜃 is the satellite zenith angle, and 𝑠 is therefore the length of the 380 

path of the ray from the surface to the satellite through the atmosphere relative to a nadir 381 

ray (hereafter referred to as the ‘path’); 𝑢rf is the measurement uncertainty for the channel 382 

centred on 𝜆 µm; and 𝑢rw is the corresponding simulation uncertainty. The numerical values 383 

are given in Table 1. Eq. 11 embodies some understanding about the observation error-384 

covariance structure and has some limitations. The diagonal form of the measurement error 385 

covariance expresses the understanding measurement errors are dominated by radiometric 386 

noise which is independent between the BTs of different channels. The values of the noise 387 

levels were estimated in (Merchant et al., 2013). The simulation uncertainties are modelled 388 

as being proportional to the path, expressing the understanding that the parameterisation 389 

of the RTTOV model is more accurate for a nadir path than at high zenith angles. Since the 390 

parameterisation of the RTTOV model has the same form for all three channels, it is 391 

reasonable to expect that the simulation errors have some degree of cross-channel 392 

correlation, but in the absence of quantitative information, the initial assumption is to set 393 

the correlations to zero. 394 

 395 

Table 1. Initial assumptions about observation-simulation uncertainties. 396 

 Measurement Uncertainty / K Nadir simulation Uncertainty / K 

Channel 8.7 10.8 12.0 8.7 10.8 12.0 

Estimate 0.11 0.11 0.15 0.15 0.15 0.15 
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 397 

The initial model for the prior error covariance is also diagonal: 398 

 399 

𝑺* = I𝑢}
q 0
0 𝑢~q

K ; 𝑢~ = 𝑎𝑤* + 𝑏𝑤*q 

 

Eq. 12   

with the values 𝑎 = �
2p

 and 𝑏 = − 2
�p

, for the prior total column water vapour, 𝑤* in g cm-2. 400 

The initial assumption about the uncertainty of drifting buoy SST is 0.2 K. This is a little 401 

greater than inferred by (Lean and Saunders, 2013), which gives some leeway for skin and 402 

point-to-pixel variability. It is reasonable to expect that the SST and TCWV errors are 403 

uncorrelated, although off-diagonal parameters will be estimated. 404 

 405 

3.3.3 Bias-correction Parameters 406 

Having set initial values of all retrieval parameters, the cycle of parameter estimation begins 407 

with bias estimation, using the training data subset. Four bias parameters are to be 408 

estimated: a brightness temperature correction for each SEVIRI channel (i.e., 𝜷 =409 

[𝛽n.o 𝛽2p.n 𝛽2q.p].) and a bias correction for the prior TCWV only (i.e., 𝜸 = [0, 𝛾~].). No 410 

bias correction for SST is estimated because the skin-adjusted drifting buoy SSTs collectively 411 

provide an SST reference and are the anchor for the other bias corrections.   412 

 413 

The number of bias-correction parameter values to be estimated is larger than four (𝛽n.o, 414 

𝛽2p.n, 𝛽2q.p	and 𝛾~) since the values depend on retrieval context. Parameterising the bias 415 

parameter dependencies requires scientific insight and judgement. Here, we assume, first, 416 

that the observation biases depend on the quality level attributed to the observation in the 417 
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operational system. Since we are addressing QL = 4 and 5 data, there are two bias-418 

correction parameter values estimated for each channel. Next, we assume that the TCWV 419 

bias may be a function of TCWV itself. This is achieved by estimating a parameter value from 420 

matches stratified within each quintile (containing ~33562 matches) of the TCWV range, i.e., 421 

5 parameter values for the bias correction of prior TCWV are obtained. The TCWV bias 422 

parameters are also derived per quality level. We do not consider that the prior TCWV bias 423 

truly depends on the quality level, but it turns out that the apparent TCWV bias does differ 424 

between quality level 4 and 5; the interpretation of this outcome will be discussed in the 425 

results section. 426 

 427 

To estimate the bias-correction parameter values, Eq. 3 is applied repeatedly on matches 428 

drawn at random from the training data. Each extended retrieval updates the values of 𝜷 429 

for either QL = 4 or 5 (according to the QL of the match drawn) and of 𝛾~ for the TCWV 430 

stratum in which the match features. The updated values are passed to the next extended 431 

retrieval for a randomly selected match. The retrieved state is not re-used in any later 432 

iteration (which distinguishes this approach for using reference data from Kalman filtering). 433 

The bias-correction parameters for all strata of the data stabilise after ~20,000 iterations, by 434 

which point most matches remain unused in a given cycle. Note that randomly selecting 435 

matches allows matches to be reused, and convergence may be obtainable even where the 436 

number of training matches are fewer than the required number of iterations. The 437 

parameter values obtained are then fixed during the next step in the cycle of parameter 438 

estimation. 439 

 440 
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3.3.4 Observation Error Covariances 441 

To obtain a revised estimate for the observation error covariance matrix, OE retrieval is 442 

undertaken using the bias corrections just obtained, using Eq. 13. 443 

 444 

𝒛( = 𝒛* + 𝜸 + (𝑲.𝑺012𝑲 + 𝑺*12)12𝑲.𝑺012 �𝒚 − �𝑭 + 𝛾~
𝜕𝑭
𝜕𝑤

|~8 + 𝜷�� 
Eq. 13    

 445 

Note that in this step the optimal estimator is not extended as it was when using Eq. 3: bias 446 

corrections are applied but are not re-estimated. The formulation of Eq. 13 assumes that 447 

the prior TCWV correction is sufficiently small that a first-order term adequately represents 448 

the effect of the adjustment of the prior on the forward model BTs. This is convenient in 449 

that it avoids recalculation of the simulations, but if the changes are beyond the linear range 450 

𝑭 + 𝛾~
6𝑭
6~
|𝒘𝒂  should be replaced with 𝑭(𝒛* + 𝜸) in Eq. 13.  451 

 452 

Eq. 13 is applied to all matches in the training data, and the retrieval results are used to 453 

evaluate the observation error covariances using Eq. 6.  As seen in Eq. 11, we expect 454 

observation error covariances to depend on the path, 𝑠, because the forward model 455 

uncertainty is likely to increase with satellite zenith angle (other factors being equal).  𝑺b0  is 456 

therefore found subsets of the data stratified by 𝑠. The strata boundaries are defined by the 457 

quintiles of the 𝑠 distribution in the training data, so effectively five estimates of 𝑺b0  are 458 

formed for different ranges of satellite zenith angle. 459 

 460 
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3.3.5 Prior Error Covariances 461 

To obtain a revised estimate for the prior error covariance matrix, OE retrieval is undertaken 462 

using the bias corrections and the observation error covariances just obtained, using Eq. 14. 463 

 464 

𝒛( = 𝒛* + 𝜸 + C𝑲.𝑺b012𝑲 + 𝑺*12F
12𝑲.𝑺b012 �𝒚 − �𝑭 + 𝛾~

𝜕𝑭
𝜕𝑤

|~𝒂 + 𝜷�� 
Eq. 14    

 465 

This differs from Eq. 13 only in using the new estimate for observation error covariance. 𝑺b0  466 

is determined for a given match by piecewise linear interpolation of the five stratified 467 

estimates with respect to 𝑠.  468 

 469 

Eq. 8 is evaluated using the retrieval result of Eq. 14. Again, this is done for strata of the 470 

training data, since we expect 𝑢~ to vary with 𝑤* (as also seen in the initial formulation, Eq. 471 

12. The strata are defined by the quintiles of the 𝑤* distribution of the training data.  472 

 473 

3.3.6 Consistency and Convergence 474 

Eq. 10 is evaluated to verify that the result of the three parameter estimation steps has led 475 

to a set of retrieval parameters that are more consistent with the data, i.e., that this metric 476 

has decreased towards zero.  477 

 478 

Convergence is assessed pragmatically on the basis of how much change there is in the 479 

retrieved SST since the previous cycle of parameter estimation. If the differences in 480 

retrieved SST (the latest results minus either the initial results or the results of the previous 481 

cycle) are small, then further cycles serve no practical purpose in improving SST retrieval. 482 
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Specifically, we take the estimation process as having converged if the standard deviation of 483 

these differences is less than 0.01 K. 484 

 485 

If this criterion is not met, then 𝜷, 𝛾~, 𝑺b0  and 𝑺b* are carried forward to a further cycle of 486 

parameter estimation, commencing with the refine of the bias correction parameter values 487 

in the light of the improved estimates of the error covariance matrices. 488 

 489 

3.3.7 Revision of Prior Parameters   490 

The evaluations of 𝜷, 𝛾~, 𝑺b0  and 𝑺b* are for use in OE of SST and TCWV in circumstances 491 

where the prior SST is not provided by reference temperatures from drifting buoys.  492 

 493 

In this study, the prior SST in the test set, 𝑥�, is from a climatology based on the period 1982 494 

- 2010. This prior SST is not assumed to be unbiased relative to SST in 2012, so in general 495 

𝛾} ≠ 0, and the prior SST uncertainty, 𝑢}�, when using a climatology is greater than when 496 

using drifting buoy SSTs. 𝛾} and 𝑢}�need to be estimated. An important point to note is that 497 

in this step the revision of the parameters is done independently of any drifting buoy 498 

information: the anchoring of the prior SST bias correction comes from having BT and TCWV 499 

bias correction parameters available. The assumption is that 𝜷, 𝛾~ need not change, which 500 

means in this case that parameter values derived from training data from 2011 are valid for 501 

the NWP data and SEVIRI BT calibration in 2012. 502 

 503 

To estimate the prior SST bias, Eq. 3 is adapted to an expression, Eq. 15, that uses the OE 504 

parameters previously obtained and enables iterative calculation of 𝛾} over many random 505 

cases. 506 
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 507 

 508 

𝒛>B = 𝒛>* + C𝑲D.𝑺b012𝑲D + 𝑺E12F
12𝑲D.𝑺b012C𝒚 − 𝜷 − 𝑭(𝒛>*)F 

 

𝒛>* = L
𝑥� + 𝛾}B12	
𝑤* + 𝛾~			
𝛾}B12

S 

 

𝑲D = I𝜕𝑭
𝜕𝒛
|𝒛8

𝜕𝑭
𝜕𝑥

|}�K 

 

𝑺E = �
𝑺b* + 𝑺MNOP 0

0 𝜎}B12
q� 

Eq. 15    

 509 

 510 

Here, 𝜎}B12 is the uncertainty in the estimate of 𝛾}NOP  from the previous iteration. In this 511 

implementation, 𝛾} has been estimated in the annual average for each of 8 zones of 512 

latitude, each 15° of latitude wide, spanning 60°S to 60°N. (Since the presence of in situ 513 

matches is not necessary for estimating the prior SST bias, an operational implementation 514 

using frequent imagery data could provide an estimate on a time-variable basis with greater 515 

spatial resolution, including longitudinal discrimination.) Once repeated application of Eq. 516 

15 has converged on stable values of 𝛾}, Eq. 8 is evaluated over the whole dataset to obtain 517 

an updated prior error covariance matrix, from which the 𝑢}�  estimate is substituted into 518 

𝑺b*.  519 

 520 
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4 Results 521 

 522 

The cycle of estimation of 𝜷, 𝛾~, 𝑺0  and 𝑺* was applied four times. The consistency metric 523 

(Eq. 10) was calculated at the end of each cycle, and decreased as expected: the initial value 524 

was 2.3, followed by 0.75,  0.26, 0.10 and 0.05 respectively after each iteration.  The 525 

standard deviation of the change in retrieved SST between cycles also decreased 526 

monotonically, being 0.35 K, 0.025 K, 0.014 K and, between the results of the penultimate 527 

and final iteration, 0.009 K. This represents adequate convergence in retrieved SST. 528 

 529 

The estimates of 𝜷 were stable (to 0.01 K) after the second cycle. Their final values are 530 

shown in Table 2. These values are added to the forward model simulation to bring BT 531 

observations and simulations into agreement on average. This means the apparent 532 

calibration of the observations relative to the simulation is marginally cooler (by ~0.04 K in 533 

all three channels) for QL 4 than for QL 5. Neither the instrument nor the simulation “know” 534 

about quality level, so this discrepancy arises from another factor. The sign of the 535 

discrepancy is consistent with more residual cloud contamination affecting the nominally 536 

clear QL 4 BTs than the QL 5 BTs, which is plausible. The smallness of the discrepancy 537 

supports the designation QL 4 and QL 5 pixels as ‘good’ and ‘excellent’ for SST retrieval. 538 

 539 

Table 2. Estimated observation-simulation bias / K 540 

 8.7 µm 10.8 µm 12.0 µm 

Quality level = 4 0.01 0.00 0.02 

Quality level = 5 0.05 0.04 0.06 
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 541 

The bias corrections to be added to the prior TCWV, 𝛾~, and the prior TCWV error variance 542 

(an element of 𝑺*) were estimated as a function of TCWV and QL, with the results shown in 543 

Figure 3. The estimated prior TCWV biases are modest, typically 1% of the prior TCWV. For 544 

QL 5, the correction is always to reduce the prior TCWV, at all latitudes. For QL 4, the 545 

correction is less negative in humid latitudes and is positive for the driest locations. The 546 

expectation is that the prior TCWV should need a modest negative correction, for the 547 

following reason. The NWP humidity fields represent model-cell averages, including the 548 

fraction of the cell that is cloudy and where the air is saturated. SST retrievals are made only 549 

where skies are clear and therefore where humidity is less than the local average including 550 

clouds. This is consistent with the QL 5 result. The error in prior TCWV cannot in reality 551 

depend on the quality level of a satellite observation, so the interpretation of the QL 4 result 552 

is attribution to prior TCWV bias of an unrepresented factor, that differentially affects QL 4 553 

compared to QL 5. Pixels with QL 4 are (by design) more likely to be subject to residual 554 

influences of uncleared clouds. Where the spectral signature of residual cloud across the 555 

three thermal channels is similar to that of additional water vapour, such pixels are both 556 

more difficult to detect and screen (because truly water-vapour influenced pixels must be 557 

retained for the retrieval) and more likely to appear to the retrieval to have high TCWV. 558 

Residual cloud contamination of this sort is most likely to arise close to identifiable clouds, 559 

and proximity to identified clouds is a criterion for flagging a pixel as QL  4 rather than QL 5. 560 

 561 

The uncertainty estimate for the prior TCWV is an order of magnitude greater than the bias, 562 

and increases linearly with TCWV. The new, initial prior TCWV uncertainty parameterisation 563 

corresponds on average to a fractional uncertainty of around 12%. This is around half of that 564 
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assumed in previous work (Merchant et al., 2013), and the new estimate is more credible. 565 

An estimate for the uncertainty in the skin-adjusted drifting buoy SST as an estimate of the 566 

SEVIRI pixel-area skin SST is also obtained from estimating the prior error covariance matrix. 567 

This match uncertainty is on average 0.25 K, which is plausible in the context of a buoy SST 568 

measurement uncertainty of 0.2 K augmented by unaccounted-for variability in the skin 569 

effect and in the difference between SST at the point measurement and over the SEVIRI 570 

pixel footprint. Consistent with this interpretation, the estimated match uncertainty 571 

increases towards the limb view (not shown), where the pixels are larger and point-to-pixel 572 

variability increases. 573 

 574 

(a) (b)  575 

 576 

Figure 3. Biases and uncertainty in prior total column water vapour. (a) Estimated prior 577 

TCWV bias per match. (b) Red line: uncertainty in prior TCWV as previously assumed 578 

(Merchant et al., 2009b) as a function of TCWV. Blue line: new estimate of the uncertainty in 579 

prior TCWV.   580 

 581 
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The parameters of the observation error covariance matrix, 𝑺0, are shown decomposed into 582 

uncertainty and error correlations in Figure 4. Instrument noise contributes to the 583 

uncertainty but is not dependent on the path, whereas the evaluated uncertainty generally 584 

increases with the path. This is consistent with the expectation that the uncertainty in the 585 

RTTOV simulations increases when simulating radiative transfer through a greater optical 586 

depth of atmosphere. (The reason for the slight upturn in uncertainty for the lowest paths in 587 

the 8.7 and 12.0 µm channels at QL 5 may be confounding between the path and the 588 

locations of highest TCWV, which tend to occur disproportionately near the satellite nadir.) 589 

The 8.7 µm channel has relatively high uncertainty near-nadir, which implies the RTTOV 590 

model is not as effective at modelling this channel in humid atmospheres as it is at 591 

modelling the others. The evaluated uncertainty is greater for QL 4 than for QL 5. This likely 592 

reflects the tendency for the lower quality level observations to be more influenced by 593 

residual cloud contamination or atmospheric aerosol. Neither of these factors is simulated 594 

by the forward model, and to the degree they are present, they add some variability to the 595 

difference 𝒚 − 𝑭, which then appears as uncertainty.  In general, the previous assumptions 596 

about noise and simulation uncertainties were pessimistic, and the new estimates indicate 597 

lower uncertainty.  598 

 599 

Cross-channel correlations of simulation-observation errors between RTTOV and SEVIRI 600 

channels at large satellite zenith angle have previously been inferred by an independent 601 

method using residuals from assimilation of SEVIRI data (Waller et al., 2016a), and we 602 

obtain numerically similar results here. Towards the edge of the usable disk, errors in all 603 

pairs of window channels are correlated with coefficients about 0.7. Failing to account for 604 

such correlation (by assuming a diagonal observation error covariance matrix, as done in 605 
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previous implementations of OE for SST) leads to sub-optimal solutions and 606 

underestimation of retrieval uncertainty, so this confirmation is valuable. 607 

(a) (b)  608 

 609 

Figure 4. Properties of observation errors. (a) Uncertainty as a function of path (the 610 

secant of the satellite zenith angle). (b) Inter-channel correlation of errors. 611 

 612 

The bias and uncertainty of the climatological SST used as prior for the initial retrievals were 613 

estimated in a single pass of bias estimation and application of Eq. 8. Although not used in 614 

this process or in the initial retrievals, drifting buoy SSTs are available in the dataset to 615 

quantify the prior SST bias and uncertainty to a good approximation. Figure 5 shows the 616 

differences of the prior SST and drifting buoys (accounting for skin effect). Some regional 617 

effects are visible, such as cold bias of the prior in the east tropical Atlantic, associated with 618 

desert dust outbreaks. However, the dominant variation is latitudinal, and the prior SST 619 

correction was estimated in latitudinal bands 15° wide. The validation of the estimate using 620 

the differences to drifting buoys in the same latitudinal bands confirms that the prior SST 621 

correction is usefully estimated, with much of the latitudinal variation captured to within 0.1 622 

K. This demonstrates that, having bias corrected the SEVIRI radiances, prior SST biases can 623 

be estimated independently of the presence of in situ measurements (i.e., valid results can 624 

be obtained also in the areas where drifting buoy data are absent). 625 
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 626 

 627 

 628 

(a) (b)  629 

Figure 5. Characteristics of climatological prior SST. (a) Differences of prior SST from 630 

matched drifting buoy SST (accounting for skin effect). (b) Blue line: estimated correction of 631 

prior SST stratified in bands of 15° of latitude (evaluated without in situ references). Red line: 632 

the mean prior SST minus drifter SST difference in the same latitudinal bands.   633 

 634 

Table 3 shows the performance of the initial optimal estimator compared to other retrievals 635 

and the prior SST using a number of metrics. These include the mean, difference and robust 636 

standard deviation (RSD) of the retrieved SST compared to buoy SST (adjusting for the skin 637 

effect). The RSD is the median absolute deviation, scaled to be equivalent to standard 638 

deviation for a Gaussian distribution. Next is shown the retrieval sensitivity (Merchant et al., 639 

2009a), which indicates the fraction of local SST variability (across fronts or from diurnal 640 

cycling of temperature) captured by the retrieval. Sensitivity should ideally be 100%. Lastly, 641 

the uncertainty estimates that are obtained for the OE retrievals are assessed via the 642 

standard deviation of satellite-buoy differences normalised by the estimated uncertainty in 643 
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the difference (combining the uncertainty estimate for the retrieval and that of the buoy 644 

matched SST). To calculate this metric stably, a trimmed standard deviation is used, 645 

excluding a small fraction (0.2%) of outliers beyond five standard deviations. When the 646 

retrieved SST uncertainty estimates are ideal, this ratio is 1. As well as the uninitial and the 647 

newly initial OE results, the results for the operational algorithm for SEVIRI SST (Le Borgne et 648 

al., 2011) are given for comparison. (No sensitivity or uncertainty evaluation is available for 649 

this algorithm.) 650 

 651 

The operational algorithm gives low (<0.1 K) bias and good metrics of scatter against drifting 652 

buoys. The initial OE has marginally smaller scatter, and a negative bias of -0.08 K that is 653 

larger than the operational algorithm’s results, but is still low. In comparison, the optimised 654 

OE has negligible bias and scatter that is further improved. The optimised OE improves the 655 

validation statistics and simultaneously improves SST sensitivity; this combination is the 656 

mark of a valid improvement in retrieval (Petrenko et al., 2014). The improvement in bias 657 

reflects the use of the bias corrections. The reduction in standard deviation also comes in 658 

part from the bias corrections and from the adjusted balance between prior and 659 

observation error covariances. The increased sensitivity arises from the reduced magnitude 660 

of the observation uncertainties. Estimates of SST uncertainty are significantly more realistic 661 

than before, being 5% pessimistic rather than 20% optimistic. This reflects the smaller, more 662 

realistic, error covariance matrices that have been estimated. 663 

 664 

Table 3. Comparison of retrieval results via several metrics. 665 



 

 35 

Retrieval Mean diff. 

/ K 

SD. diff.  

/ K 

RSD. diff.    

/ K 

𝝏𝒙�/𝝏𝒙𝒕𝒓𝒖𝒆 
𝑺𝑫

⎝

⎛ 𝒙� − 𝒙𝒃

�𝑺𝒙� + 𝒖𝒙𝒃
𝟐
⎠

⎞ 

Clim. (prior) -0.16 0.78 0.73 0% - 

Operational -0.03 0.48 0.42 - - 

Initial OE -0.08 0.47 0.40 71% 0.80 

Optimised OE -0.01 0.45 0.38 76% 1.05 

 666 

The results in Table 3 show that, given the operational bias correction, OE initialised from 667 

climatology is comparable to the operational retrieval. The parameter retrieval process 668 

leads to improved retrievals with less bias, smaller standard deviation when validated on 669 

independent data, and improved retrieval sensitivity. Other than the improvement in the 670 

retrieval uncertainty estimate, the retrieval improvements are fairly modest. This reflects 671 

that in the initial OE formulation, both the observation and prior error covariances were 672 

over-estimated by a similar factor. The SST solutions obtained, which represent an optimal 673 

compromise between the prior and added information, are broadly similar between the 674 

initial and new OE formulations. Nonetheless, the reduction in robust SD corresponds to 675 

removal of an independent uncertainty of 0.12 K. The evaluation of the uncertainty in these 676 

SST solutions, is, in contrast, significantly changed and improved.  677 

 678 

Within the initial OE, the 71641 matches with QL = 4 are biased on average by -0.11 K, and 679 

by -0.06 K for the 81753 matches with QL = 5. Since the channel bias corrections are 680 

stratified by QL, the relative bias between quality levels is negligible for the optimised OE. 681 

The independent uncertainty reduction is similar for QL = 4 and 5. 682 

 683 
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(a) (b)  684 

Figure 6. Statistics of OE minus buoy SST as a function of (a) buoy SST and (b) prior 685 
TCWV. Red lines: initial OE retrieval. Black lines: for optimised OE retrieval. Solid: mean 686 
difference. Dashed: mean plus/minus robust standard deviation of difference. Statistics are 687 
calculated for deciles of the variable along the abscissa.   688 
 689 

Statistics of OE minus buoy SSTs are shown for deciles of SST and TCWV in Figure 6. Against 690 

both these factors, a similar pattern of improvement is seen for the optimised OE compared 691 

to the initial OE, which reflects that SST and TCWV are well correlated. For the cooler and 692 

drier ~50% of matches, the main improvement is reduction of bias of OE relative to buoy 693 

SST, while the scatter around the bias is little changed. Larger negative biases are present 694 

for warmer and wetter matches in the initial OE results, and these are approximately halved 695 

using the optimised OE. The scatter around the mean difference for the warmest and 696 

wettest deciles is reduced by 7% to 14%. Overall, the independent uncertainty reduction 697 

arises from a combination of reducing functional dependencies in the retrieval bias and 698 

reducing retrieval scatter. 699 

    700 

5 Discussion and conclusions 701 

 702 

This study demonstrates how independent reference data can be used to refine our 703 

knowledge of the bias and error covariance parameters needed to obtain best results from 704 
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optimal estimation. The reference data, available for at least some elements of the state 705 

vector being retrieved, enable estimates to be made of biases in non-referenced aspects of 706 

the state and of biases in observations relative to the forward model being used for 707 

retrieval. This is achieved using a method similar to Kalman filtering for parameter 708 

estimation, modified to account for the nature of satellite-reference matched data. Having 709 

reduced biases in the system in this way, adapted error-diagnostic relationships are 710 

iteratively applied to converge upon parameters describing error covariances. The 711 

framework for these parameter estimates systematically integrates available data with 712 

knowledge brought to the problem in the form of specifications of the factors likely to be 713 

associated with variations in the values of parameters—for example, the expectation that 714 

simulations are less precise for off-nadir paths through the atmosphere. In addition to 715 

obtaining improvements in retrieval, the estimates of bias and error covariance parameters 716 

in themselves provide useful gains in knowledge of the context of the OE retrieval.  717 

 718 

In our example application to SST retrieval, the bias parameters obtained for prior water 719 

vapour and observed radiances (in different channels and quality levels) have plausible 720 

physical interpretations which have been stated. While physical plausibility builds 721 

confidence in the outcome, we expect the solutions obtained also to be influenced by other 722 

factors. These may include the approximation of using a reduced state space for the 723 

retrieval (such that air temperature and water vapour vertical distribution are not retrieved) 724 

and the impacts of unmodelled influences on brightness temperature (such as tropospheric 725 

aerosol). The choices made about functional dependencies of retrieval parameters also 726 

affect the partitioning of bias between different terms. Ultimately, the method is empirical, 727 
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and it may not always be possible to interpret in terms of likely sources the bias-correction 728 

values that are found.  729 

 730 

Note also that the bias corrections obtained interact with the radiance calibration, the 731 

choice of forward model for simulation, and with cloud detection (as indicated by the 732 

different results with respect to QL in our SST retrieval). When these factors change, at least 733 

some OE parameters need to be re-estimated to continue to minimise the biases in 734 

retrieved quantities. 735 

 736 

The results suggest a number of possible directions for further research.  737 

 738 

First, we note that the prior correction to the ECMWF NWP humidity fields needed when 739 

simulating radiances for only clear-sky areas is not sensor-dependent. Application of the 740 

method of estimating this correction using other satellite sensors and in situ references 741 

should obtain similar estimates, which would build confidence in their validity. 742 

 743 

Second, the ability to estimate parameters for the prior error covariance matrix provides a 744 

route to re-visiting the reduced state space used for the SST retrieval. Retrieving only SST 745 

and TCWV is an extreme reduction of the state space, since window-channel brightness 746 

temperatures are sensitive to a few leading modes of the vertical variability of humidity and 747 

temperature (Merchant et al., 2006b), not only to the total amount of water vapour. As 748 

noted earlier, any biased prior information relating to the neglected modes will contribute 749 

to bias in simulation-observation differences. Since these modes are not retrieved in the 750 

reduced-state-space formulation, any such biases cannot be attributed and directly 751 
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corrected; instead, they are likely folded into the bias parameters obtained. Particularly 752 

where three or more channels are used in the retrieval, better solutions may be found with 753 

a less restricted state vector. Adding terms to the state vector also requires expanding the 754 

prior error covariance matrix, and the approach of this paper may provide a means to 755 

obtain a suitable parameterisation for this. 756 

 757 

Third, we note that the reference data need not be in situ references, as used here, but 758 

could be the retrievals of a different satellite sensor. In the case where a constellation of 759 

sensors is in use, each with differing channels, noise and sampling characteristics, it may be 760 

relevant to improve the uncertainty of some members of the constellation by bringing them 761 

into better consistency with a reference sensor. In the case of SST, dual-view infrared 762 

radiometers have been discussed as satellite reference sensors (Donlon et al., 2007) 763 

because they are less prone to regional and aerosol-related SST biases (Embury and 764 

Merchant, 2012; Embury et al., 2012).  In the contemporary context, for SST, the maturing 765 

of the drifting buoy and fiducial reference measurement networks (Poli et al., 2019) makes 766 

use of in situ references compelling, but in the context of lower global coverage of in situ 767 

SST measurements through to the early 2000s, inter-satellite references remain highly 768 

relevant for climate data record development. Inter-satellite matches may also be rapidly 769 

accumulated at the start of a new mission, enabling rapid inference of OE parameters. Use 770 

of reference data from different sources (e.g., satellite and in situ, drifters and ships) with 771 

differing uncertainty characteristics is possible within the framework, since the differing 772 

uncertainty of the reference measurements can be accounted for (and, indeed, re-773 

estimated).  774 

 775 



 

 40 

Finally, we note that the concepts developed here for bias and error covariance parameter 776 

estimation using reference data are quite general. Applicability to other variables will 777 

depend on factors such as the availability of reference measurements (whether satellite, in 778 

situ, or both). Another factor to consider is whether in a particular case, the bias and error 779 

covariance properties may be estimated as well or better within a data assimilation system. 780 

It is worth noting two differences between parameters estimated within a data assimilation 781 

context and relative to independent reference measurements. Biases estimated within a 782 

data assimilation system are informed by any in situ measurements that are also 783 

assimilated, but additionally reflect any model biases that project through the observation 784 

operator. The “observation errors” obtained when applying Desroziers diagnostics in a data 785 

assimilation system do not have quite the same meaning as those estimated here, since the 786 

uncertainties associated with representativity between the satellite and model grid are 787 

additionally convolved with the instrumental and forward model uncertainties.  788 

 789 

“Optimal estimation” is a powerful methodology for retrieval. In this paper, we have 790 

presented a new approach to using reference data systematically to improve the bias and 791 

uncertainty properties of OE retrievals by developing well founded estimates of retrieval 792 

parameters, bringing OE closer in practice to the optimality assumed by its underlying 793 

theory. 794 
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LIST OF FIGURE CAPTIONS 951 

Figure 1. Distribution of satellite-buoy matches used in this study. The locations shown 952 

are for 2011, and the distribution in 2012 is similar. Matched locations are coloured with the 953 

measured buoy sea surface temperature. 954 

Figure 2. The sequence of estimation of three sets of parameters for optimal 955 

estimation. For symbols, see the main text. 956 

Figure 3. Biases and uncertainty in prior total column water vapour. (a) Estimated prior 957 

TCWV bias per match. (b) Red line: uncertainty in prior TCWV as previously assumed 958 
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(Merchant et al., 2009b) as a function of TCWV. Blue line: new estimate of the uncertainty in 959 

prior TCWV.   960 

Figure 4. Properties of observation errors. (a) Uncertainty as a function of path (the 961 

secant of the satellite zenith angle). (b) Inter-channel correlation of errors. 962 

Figure 5. Characteristics of climatological prior SST. (a) Differences of prior SST from 963 

matched drifting buoy SST (accounting for skin effect). (b) Blue line: estimated correction of 964 

prior SST stratified in bands of 15° of latitude (evaluated without in situ references). Red line: 965 

the mean prior SST minus drifter SST difference in the same latitudinal bands.   966 

Figure 6. Statistics of OE minus buoy SST as a function of (a) buoy SST and (b) prior 967 
TCWV. Red lines: initial OE retrieval. Black lines: for optimised OE retrieval. Solid: mean 968 
difference. Dashed: mean plus/minus robust standard deviation of difference. Statistics are 969 
calculated for deciles of the variable along the abscissa.   970 
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