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 27 

Abstract: Global solar radiation is a crucial variable for scientific researches and solar energy 28 

application, while it is measured at very few sites mainly due to the technical and fiscal obstacles. 29 

Developing robust and accurate models for estimating global solar radiation had been being a focus 30 

for many studies. This study was conducted to develop integrated models combining Moderate 31 

Resolution Imaging Spectroradiometer atmospheric products and meteorological variables. 43 32 

empirical models based on the meteorological variables were collected. A total of 645 integrated 33 

models incorporating atmospheric constituents into the empirical models were developed. The 34 

researched models were evaluated and compared at Chongqing in Three Gorges Reservoir Area, 35 

China. The results showed that the integrated models outperformed the empirical models. The best 36 

integrated model had the root mean square error of 0.817 MJ m-2 and relative root mean square error 37 

of 8.11%. On average, the integrated models had the root mean square error of 1.071 MJ m-2, 15.6% 38 

smaller than the empirical models. The results suggest that coupling Moderate Resolution Imaging 39 

Spectroradiometer atmospheric products with meteorological variables can enhance the 40 

performance of the conventional empirical models, which may provide a promising alternative to 41 

generate global solar radiation data with better accuracy. 42 

Keywords: Global solar radiation, Moderate Resolution Imaging Spectroradiometer, empirical 43 

models, meteorological variables44 
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1 Introduction 45 

Solar radiation arriving at the earth’s surface plays an important role in maintaining physical [1], 46 

biological [2] and chemical processes on the earth [3]. It is an essential variable for scientific researches 47 

in climate [4], ecology [5] and agriculture [6], as well as a crucial parameter for engineering applications 48 

in designing solar furnaces [7], sizing photovoltaic cells [8] and developing efficient solar energy system 49 

[9]. However, solar radiation data are not easily available mainly due to the equipment [10], measuring 50 

manipulation [11] and financial limitations [12]. As the result, great efforts have been made to estimate 51 

global solar radiation from other commonly measured meteorological variables such as air temperature 52 

[13] and sunshine duration [14]. Due to the simplicity and operability yet reasonable accuracy, empirical 53 

model is the most widely employed approach [15]. 54 

Many empirical models have been developed in literatures among which the earliest ones were 55 

proposed by Angstrom [16] and Prescott [17]. They correlated clearness index (ratio of global solar 56 

radiation to extraterrestrial radiation) with sunshine fraction (the ratio of sunshine duration to potential 57 

sunshine duration) and developed the Angstrom-Prescott (A-P) model. This model was revised by many 58 

researchers. For example, Almorox and Hontoria [18] developed an exponential model for Spain; 59 

Ampratwum and Dorvlo [19] proposed a logarithmic equation for arid region in Oman; Ogelman et al. 60 

[20] suggested a quadratic function for Turkey. Bahel et al. [21] proposed a cubic model based on the 61 

data of 48 stations around the world. Newland [22] modified the A-P model and proposed a linear 62 

logarithmic model. However, many comparative studies suggested that those revisions did not improve 63 

the estimation. For example, Chen et al. [23] evaluated the accuracy of 28 sunshine-based models and 64 

reported that revision of the A-P model by changing the structure from linear to nonlinear were generally 65 

ineffective. Yorukoglu and Celik [24] investigated the performances of linear, quadratic, cubic, 66 

logarithmic and exponential models, and the results showed that those models returned similar error 67 
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indicators at Ankara in Turkey. Zhou et al. [25] assessed the precision of several sunshine-based models 68 

and found that the A-P model performed similarly to its revisions in China. Consequently, air 69 

temperature [26], relatively humidity [27], precipitation [28], atmospheric pressure and vapor pressure 70 

[29] were incorporated. Comparisons and evaluations showed that these modifications enhanced the 71 

accuracy of the A-P models. Chen and Li [30] calibrated 9 sunshine-based models and the comparisons 72 

showed that the modification to A-P model by introducing air temperature decreased the estimation error 73 

of the A-P model. Falayi et al. [31] observed that the combination of sunshine duration, temperature and 74 

relative humidity yielded better precision than other models in Nigeria. Ouali and Alkama [32] evaluated 75 

the performances of 4 models and reported that inclusion of precipitation and wind velocity increased 76 

the accuracy of the models employing sunshine fraction in Nigeria. 77 

The sunshine-based models were widely used because of their promising performances. However, 78 

they are limited to the sites with available sunshine data [33]. Therefore, Hargreaves and Samani [34] 79 

proposed a simple function (H-S model) of air temperature. Bristow and Campbell [35] also developed 80 

an exponential model (B-C model) using temperature range. Both models were widely modified and 81 

validated, and the evaluations showed that the performances of H-S and B-C models and their 82 

modifications varied from regions to regions, and the accuracies were affected by the geographic 83 

location and local climate [36]. For example, Hunt et al. [37] introduced precipitation in an additive 84 

form that significantly outperformed the H-S model at 8 sites in Canada. Thornton and Running [38] 85 

modified the B-C model and presented a new formulation using temperature, relative humidity and 86 

atmospheric pressure. Evaluation showed that the new model outperformed that B-C model at 40 87 

stations in the USA, while this new model gave similar estimation to the H-S model in North America 88 

[39]. 89 

Although great efforts have been conducted and a large number of empirical models had been 90 
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developed since the pioneering works of Angstrom [16] and Prescott [17]. It is still difficult to develop 91 

more robust and accuracy models due to the complex process of radiation [40]. Evaluations and 92 

comparative studies indicated that empirical models employing the meteorological variables have 93 

overreached their predictive limits [41]. Besides, the empirical models based on meteorological 94 

measurements at point scale are insufficient for the application at regional scale [42], particularly for the 95 

large, remote areas where measurements of climatological variables are difficult [43]. 96 

Solar radiation is attenuated mainly by cloud, aerosol, and water vapor on its way through the 97 

atmosphere [42]. The impact of cloud on solar radiation is more pronounced than those by other 98 

atmospheric constituents [44]. Because a large part of radiation is reflected back to space by cloud, beam 99 

radiation can decrease to a level at 0 MJ m-2 [45]. Aerosol mainly scatters shortwave radiation in 100 

forward direction [46]. Water vapor contributes little in absorbing near-infrared radiation but 101 

significantly in budgeting the heat in the lower atmosphere [47]. These atmospheric constituents can be 102 

detected at large spatial and temporal scales with satellite observation, which overcomes the limitations 103 

of site measurements and provides an opportunity to enhance the performances of the empirical models 104 

by incorporating satellite observation with ground measurements of climatological variables. 105 

MODIS (Moderate Resolution Imaging Spectroradiometer) is a key sensor operated on both the Terra 106 

and Aqua satellites. Its detectors can measure 36 spectral bands between 0.41 and 14.39µm [42]. Many 107 

products derived from MODIS observations deliver featured information that can be used for studies of 108 

global dynamics and processes involving in land, oceans, and the lower atmosphere. Among these 109 

products, MODIS aerosol products (MOD04) monitor the properties of the aerosol over land and ocean 110 

surfaces [48]; MODIS precipitable water product (MOD05) consists of column water-vapor amounts 111 

[49]; MODIS cloud product (MOD06) combines infrared emission and solar reflectance techniques for 112 

determining both physical and radiative cloud properties [50]. These datasets played an important role in 113 
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understanding of atmosphere dynamics and the land-atmosphere interactions. Moreover, MODIS 114 

products are widely available for free. 115 

Thus, estimations of solar radiation employing the MODIS data have recently been investigated. 116 

Performances of four machine learning algorithms integrated with MODIS datasets were evaluated in 117 

Australia [51], showing that those algorithms integrated with MODIS data can be applied as a qualified 118 

tool in data-sparse regions. After investigating the precision of artificial neural network using MODIS 119 

data in Queensland, Ravinesh and Mehmet [52] confirmed that this algorithm coupled with MODIS data 120 

was a powerful stratagem. The random forest approach using MODIS data was applied in the USA [53], 121 

indicating that the model simulations matched well with the observations. A comparative study of four 122 

models was conducted in China [54], and results showed that those models with MODIS data can be 123 

used to reveal the spatial-temporal variations of solar radiation at large scale. Considering atmosphere as 124 

homogeneous and plane-parallel layers without three-dimensional effects, Chen et al. [55] developed a 125 

computing scheme using MODIS atmospheric products based on radiative transfer processes. Although 126 

evaluations showed good agreement between the estimations and observations, the rigorous radiative 127 

transfer algorithms are too complicated, data-intensive and time-consuming to be handled by users in 128 

other areas. Therefore, a simple model with reasonable accuracy using MODIS atmospheric products 129 

across China was proposed by Chen et al. [42]. 130 

Due to the optimum trade-off between simplicity and accuracy, empirical model employing the 131 

meteorological variables is the most common approach for estimating solar radiation at point scale. 132 

Recent studies suggested that MODIS data can be used to obtain solar radiation data, particularly for the 133 

data sparse and remote areas. Moreover, it can be used to retrieve the spatial distribution of radiation at 134 

large scale. It is therefore open to question whether and to what extent the performance of the empirical 135 

model can be enhanced by combining the meteorological variables with MODIS atmospheric products. 136 
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With respect to the advantages of MODIS data and the empirical approach, estimation of global solar 137 

radiation coupling MODIS data with meteorological variables was investigated in this study. The main 138 

objectives of this study are to (1) collect the widely used empirical models employing different 139 

combinations of meteorological variables, (2) develop integrated empirical models by coupling 140 

meteorological variables with MODIS atmospheric products, and (3) evaluate and compare the presently 141 

developed models against the empirical models in the Three Gorges Reservoir Area (TGRA), China. 142 

2 Materials and methods 143 

This section provides the details about the collected empirical models, the process of the integrated 144 

models developments, the evaluation and validation indicators, the research site, data collection and 145 

processing of MODIS atmospheric products and meteorological datasets.  146 

2.1 Empirical models 147 

In order to verify the performances of the newly developed models, a total of 43 widely used 148 

empirical models employing different combinations of meteorological variables were collected and 149 

evaluated. Among them, 25 models (models 1-25) were reported for the sunshine-based models, and 18 150 

models (models 26-43) for the temperature-based models. 151 

Model 1: Angstrom [16] developed a simple correlation between the ratio of global radiation to the 152 

radiation on a clear day and sunshine fraction. Replacing the radiation on a clear day with the 153 

extraterrestrial radiation, Prescott [17] revised the Angstrom model and proposed the following model: 154 

Model 1: bSoaSRaRs += //                             
(1) 

155 

where a and b are empirical coefficients; S is sunshine duration; So is potential sunshine duration; Rs is 156 

global solar radiation; Ra is extraterrestrial radiation. Rs and Ra are calculated using the equations 157 

detailed by Allen et al [64].
 

158 
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where d is the relative distance between the sun and the earth;  is sunset hour angle (rad);   is 164 

latitude (rad);  is solar declination angle (rad); n is the number of the day of year starting from the first 165 

of January. 166 

Model 2: Bakirci [57] revised the A-P model by adding an exponential term and suggested a linear 167 

exponential model. 168 

Model 2: Rs/Ra = a + b1S/S0 + b2exp(S/S0)                      (7) 169 

Model 3: Newland [22] added a logarithmic term to the A-P model and presented a linear logarithmic 170 

model. 171 

Model 3: Rs/Ra = a + b1S/S0 + b2log(S/S0)                      (8) 172 

Model 4: Ögelman et al. [20] proposed a quadratic model using sunshine fraction in the following 173 

form: 174 

Model 4: Rs/Ra = a + b1S/S0 + b2(S/S0) 2                                   (9) 175 

Model 5: Bahel et al. [21] developed a cubic function of sunshine fraction. 176 

Model 5: Rs/Ra = a + b1S/S0 + b2S/S0
2 + b3S/S0

3                          (10) 177 

Models 6-7: Falayi et al. [31] introduced temperature to modify the A-P model and reported the 178 

following models: 179 

Model 6: Rs/Ra = a + b1S/S0 + c1T                      (11) 180 

Model 7: Rs/Ra = a +b1S/S0 + c1Tmin                      (12) 181 

where T, Tmin is average temperature and minimum air temperature, respectively; c1 is empirical 182 
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coefficient. 183 

Model 8: Olayinka [58] suggested the following model using sunshine fraction and maximum 184 

temperature: 185 

Model 8: Rs/Ra = a + b1S/S0 + c1Tmax                       (13) 186 

 where Tmax is maximum air temperature. 187 

Models 9-13: Chen and Li [30] developed the following multivariate linear models combing sunshine 188 

fraction, minimum temperature, maximum temperature, precipitation, atmospheric pressure and relative 189 

humidity. 190 

Model 9: Rs/Ra = a + b1S/S0+ c1Tmin + c2Tmax                    (14) 191 

Model 10: Rs/Ra = a + b1S/S0 + e1P                         (15) 192 

Model 11: Rs/Ra = a + b1S/S0 + f1Ap                        (16) 193 

Model 12: Rs/Ra = a + b1S/S0 + c1Tmin + c2Tmax+ d1Rh             (17) 194 

Model 13: Rs/Ra = a + b1S/S0 + c1Tmin + c2Tmax + e1P             (18) 195 

where P, Ap and Rh are precipitation, atmospheric pressure and relative humidity, respectively; d1, e1 196 

and f1 are empirical coefficients. 197 

Models 14-16: Abdallah [59] presented the following models employing sunshine fraction, 198 

temperature range, average temperature and relative humidity. 199 

Model 14: Rs/Ra = a + b1S/S0 + c1△T                         (19) 200 

Model 15: Rs/Ra= a +b1S/S0 + c1T + d1Rh                   (20) 201 

Model 16: Rs/Ra = a + b1S/S0 + c1△T+ d1Rh                 (21) 202 

where△T is air temperature range. 203 

Model 17: Swartman and Ogunlade [60] modified the A-P model using relative humidity and 204 

proposed the following model: 205 



 

 10 

Model 17: Rs = a + b1S/S0 + d1Rh                       (22) 206 

Model 18: Bakirci [28] developed a new model employing sunshine fraction and relative humidity. 207 

Model 18: Rs/Ra = a + b1S/S0 + b2(S/S0)2+ d1Rh                 (23) 208 

Model 19: Al-Salihi et al. [61] suggested a multivariate linear model coupling sunshine fraction, with 209 

maximum temperature and relative humidity. 210 

Model 19: Rs/Ra= a + b1S/S0 + c1Tmax+ d1Rh                 (24) 211 

Model 20: Chen et al. [62] modified the A-P model using average temperature and precipitation and 212 

proposed the following model: 213 

Model 20: Rs/Ra = a + b1S/S0 + c1T + e1P                (25) 214 

Model 21: Okonkwo and Nwokoye [63] presented the following model combing sunshine fraction, 215 

minimum temperature and precipitation. 216 

Model 21: Rs/Ra = a + b1S/S0 + c1Tmin + e1P                     (26) 217 

Model 22: Kirmani et al. [64] reported a multivariate linear model employing sunshine fraction, 218 

average temperature, relative humidity and precipitation in the following form: 219 

Model 22: Rs/Ra= a + b1S/S0 + c1T + d1Rh + e1P                (27) 220 

Model 23: Chen and Li [65] coupled the sunshine fraction with air temperature range, relative 221 

humidity and atmospheric pressure and developed a new model as follow. 222 

Model 23: Rs/Ra = a + b1S/S0 + c1△T0.5 + d1Rh + f2Ap              (28) 223 

Model 24: Adeala et al. [66] suggested the following function of sunshine fraction, temperature range, 224 

relative humidity and wind velocity. 225 

Model 24: Rs/Ra = a + b1S/S0 + c1T + d1Rh + h1Wv              (29) 226 

where Wv is wind velocity, and h1 is empirical coefficient. 227 

Model 25: Ouali and Alkama [67] presented a multivariate linear model incorporating sunshine 228 
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fraction, average temperature, relative humidity, precipitation and wind velocity. 229 

Model 25: Rs/Ra = a + b1S/S0 + c1T + d1Rh + e1P + h1Wv          (30) 230 

Model 26: Hargreaves and Samani [34] suggested a simple model using the temperature range. 231 

Model 26: Rs/Ra = a + c1(△T)0.5                                   (31) 232 

Models 27-28:  Falayi et al. [31] developed 2 simple models employing the average temperature and 233 

minimum temperature. 234 

Model 27: Rs/Ra = a + c1T                                    (32) 235 

Model 28: Rs/Ra = a + c1Tmin                       (33) 236 

Model 29:  Awachie and Okeke [68] presented a linear correlation between clearness index and 237 

maximum temperature: 238 

Model 29: Rs/Ra = a + c1Tmax                       (34) 239 

Model 30:  Bristow and Campbell [35] proposed an exponential function of temperature range. 240 

Model 30: Rs/Ra = c1(1 - exp(c2△Tc3))                   (35) 241 

Models 31-32:  Ohunakin et al. [69] reported the following models using temperature range and 242 

average temperature: 243 

Model 31: Rs/Ra = a + c1(△T)0.5+ c2(△T)                 (36) 244 

Model 32: Rs/Ra = a + c1T + c2T2                     (37) 245 

Models 33-34:  Li et al. [70] developed 2 linear models combing maximum temperature, minimum 246 

temperature and precipitation: 247 

Model 33: Rs/Ra = a + c1Tmax+ c2Tmin                   (38) 248 

Model 34: Rs/Ra = a + c1Tmax+ c2Tmin+ e1P                (39) 249 

Models 35-36: Okundamiya and Nzeako [71] suggested 2 quadratic models employing minimum 250 

temperature and maximum temperature. 251 
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Model 35: Rs/Ra = a + c1Tmin + c2Tmin2                           (40) 252 

Model 36: Rs/Ra = a + c1Tmax + c2Tmax2                         (41) 253 

Model 37:  El-Sebaii et al. [72] reported a new model combing average temperature and relative 254 

humidity. 255 

Model 37: Rs/Ra = a + c1T + d1Rh                     (42) 256 

Models 38-42:  Chen and Li [30] developed 5 models coupling air temperature with relative 257 

humidity, precipitation and atmospheric pressure. 258 

Model 38: Rs/Ra = a + c1△T0.5 + d1Rh                  (43) 259 

Model 39: Rs/Ra = a + c1△T0.5+ e1P                  (44) 260 

Model 40: Rs/Ra = a + c1△T0.5+ f1Ap                  (45) 261 

Model 41: Rs/Ra = a + c1△T0.5 + d1Rh + f1Ap              (46) 262 

Model 42: Rs/Ra = a + c1Tmax + c2Tmin + d1Rh + f1Ap           (47) 263 

Model 43: Korachagaon and Bapat [73] suggested the following model using maximum temperature, 264 

temperature range and relative humidity. 265 

Model 43: Rs/Ra = a + c1Tmax + c2△T + d1Rh             (48) 266 

2.2 New model development 267 

After a number of preliminary experimental investigations, a total of 15 models using the possible 268 

combinations of cloud fraction, cloud optical thickness, aerosol optical thickness and precipitable water 269 

vapor amount were developed (Table 1). These parameters were widely employed for satellite-based 270 

retrieval of solar irradiance [74]. Among these models, models RS1-4 used one variable only, models 271 

RS5-10 employed the possible combinations of two variables, models RS11-14 incorporated three 272 

variables of atmospheric constituent, and model RS 15 used all the selected atmospheric constituent 273 

variables. 274 
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Subsequently, the integrated models coupling the presently developed models with the collected 275 

empirical models were further developed. The possible combinations of 43 empirical models and 15 new 276 

models resulted in 645 (4315) coupled models by incorporating the linear combination of atmospheric 277 

constituents into the empirical models in additive form. For example, integrating model RS15 into model 278 

1 resulted in model M1RS15 as the following form:  279 

Rs/Ra = a + b1S/S0 + a1CF+a2COT+a3PWV+a4AOT             (49) 280 

where CF, COT, PWV and AOT are cloud fraction, cloud optical thickness, precipitable water vapor 281 

amount and aerosol optical thickness, respectively. The part of b1S/S0 is from the model 1, and the part 282 

of a1CF+a2COT+a3PWV+a4AOT is from model RS15. Other models were developed as the same way 283 

and presented in Table 2. 284 

2.3 Statistical evaluation and validation 285 

Root mean square error (RMSE) and relative root mean square error (RRMSE) (%) were selected to 286 

assess the researched models. RMSE is a widely used indicator for evaluating the model performances 287 

by allowing a term-by-term comparison of the estimation and measurements. RRMSE is a relative error 288 

indicator allowing comparisons among a range of different models. Lower RMSE and RRMSE mean 289 

better performances. RMSE and RRMSE were calculated using the following equations:  290 

n

yy
RMSE

n

i pimi∑ -
1

2

,, )(
==
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=
=

                       

291 

(51)
 

292 

where n, yi,m, and yi,p are the number of validating record, the measurements and the estimations, 293 

respectively. 294 

2.4 Research site 295 

The researched models were evaluated and compared at the Chongqing meteorological station in the 296 

upper section of TGRA in China (29o 35ʹ N, 106o 28ʹ E), with the elevation of 259.1m above the sea 297 
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level. Chongqing is in the subtropical monsoon climate zone with a hot and humid summer and a cool 298 

winter [75]. Figure 1 shows the temporal variation of meteorological variables at the research site. 299 

Monthly sunshine duration ranged from the maximum in July to the minimum in December, with the 300 

average of 2.73h (Fig.1a). Monthly precipitation ranged from the maximum in June and the minimum in 301 

December, with the annul amount of 1099 mm (Fig.1a). Maximum, average and minimum temperatures 302 

presented the similar temporal variations with the highest peak in July and lowest in January (Fig.1b). 303 

Atmospheric pressure showed opposite pattern to temperatures and precipitation (Fig.1c). The average 304 

relative humidity and wind velocity were 77.01% and 1.24m/s (Fig.1d), respectively, without clear 305 

temporal patterns. 306 

2.5 Data collection 307 

The MODIS atmospheric products covering the period from March 2000 to December 2016 were 308 

obtained from the Earth Observing System Data and Information System (EOSDIS) of National 309 

Aeronautics and Space Administration (NASA) (https://earthdata.nasa.gov/). Cloud fraction and cloud 310 

optical thickness were extracted from MOD06. Cloud fraction was produced by infrared-only retrieval 311 

methods, and cloud optical thickness was retrieved from visible and near-infrared channels [76]. Aerosol 312 

optical thickness was extracted from MOD04 and was derived using MODIS channels 1 through 7, 313 

cloud mask product and meteorological data [42]. Precipitable water vapor amount was extracted from 314 

MOD05 and was generated by using a near-infrared algorithm [77].  315 

Meteorological data covering the same period with MODIS data were obtained from the National 316 

Meteorological Information Center (NMIC), China Meteorological Administration (CMA). Global solar 317 

radiation (MJ m-2) was measured using Pyranometer (5%) [78]. The type of Pyranometer used by the 318 

CMA was changed in 1993 [79]. However, the homogeneity of the radiation data was probably little 319 

affected because these instruments have been calibrated to the same standard following the guidelines of 320 
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the World Meteorological Organization (WMO) [40]. The assumed homogeneity was also implied by a 321 

similar trend of the Chinese radiation data series [79] to those from other places [80]. Sunshine duration 322 

(h), air temperatures (°C), atmospheric pressure (Kpa), and relative humidity (%) were measured using 323 

Jordan sunshine recorder, Mercury alcohol thermometers, Mercury barometer, and Aspirated 324 

psychomotor at 2m height, respectively [40]. Wind velocity (m/s) was measured using EL wind electric 325 

anemometer at 10m height, which was transformed to speed at 2m height by the method proposed by 326 

FAO56 [56]. All the equipment and sensors were checked and calibrated periodically, and all the 327 

measurements were made following the procedures recommended by the WMO [79]. 328 

2.6 Data check and processing 329 

Although the quality of meteorological data has been checked by the NMIC. Meteorological records 330 

probably still contain errors associated with the manipulations, sensors errors and occasional voltage 331 

instability [81]. Therefore, the quality control scheme suggested by Feng et al. [82] and Tang et al. [83] 332 

was adopted to further check the data. Firstly, the records with missing data labeled by the feature values 333 

were removed. Secondly, the data with evident systematic errors were removed. Finally, a multivariate 334 

regression relationship between global radiation and meteorological variables was built to exclude noisy 335 

data and suspected data. More details can be referred to Feng et al. [82] and Tang et al. [83]. For the 336 

MODIS atmospheric constituent dataset, the records with missing value filled by 9999 were excluded 337 

from the dataset. 338 

Each record of atmospheric constituents and meteorological data was identified uniquely by the year 339 

and month. Thus, an integrated dataset combining the meteorological data with the corresponding 340 

atmospheric constituent data was subsequently built by the unique identification. The records with 341 

missing data of atmospheric constituent data or meteorological data were further removed. Then two 342 

sub-datasets were built; the first 75% of the records were used for modelling and calibration, and the 343 
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remaining 25% for evaluation and validation. 344 

3. Results and discussion 345 

The performances of the researched models were presented in Table 1 and Tables 3-5. The calibrated 346 

coefficients of the models were presented in supplementary data. All the collected empirical models 347 

(models 1-43) performed well with the average RMSE of 1.269 MJ m-2 and the average RRMSE of 348 

12.58%. Model 25 was the most accurate one with the lowest RMSE of 0.967 MJ m-2 and the RRMSE 349 

of 9.58%, while the error indicators were similar to models 12, 13, 15, 22 and 24. Overall, the 350 

sunshine-based models (models 1-25) had the average RMSE of 1.051 MJ m-2 and the average RRMSE 351 

of 10.41%, which were lower than 1.574 MJ m-2 and 15.61%, respectively, for the temperature-based 352 

models (models 26-43), suggesting that the sunshine-based models were superior to the 353 

temperature-based models. This confirmed the results of previous studies. For example, Chen et al. [23] 354 

evaluated the performances of 273 sunshine-based and temperature-based models and the results 355 

suggested that the sunshine-based models are generally more accurate than the temperature-based 356 

models in China. Besharat et al [84] comprehensively reviewed 78 empirical models, and the evaluation 357 

showed that the sunshine-based models outperformed the temperature-based models in Iran. 358 

Models 2-5 are the revisions of the A-P model by changing the structure from linear to nonlinear 359 

forms. Models 1-5 had very similar estimations, indicating that such revisions by changing the structure 360 

from linear to nonlinear were generally ineffective and yielded little improvement. This agreed well with 361 

previous conclusions from Yorukoglu and Celik [24], Zhou et al. [25] and Chen et al [6] who 362 

investigated and compared the performances of sunshine-based models, and reported that the revised 363 

versions of A-P model, including the linear exponential, linger logarithm, quadratic and cubic models, 364 

performed similar to the A-P model. Only a few works reported better performances. For instance, 365 

Bakirci [28] evaluated some sunshine duration models and observed that the linear exponential 366 
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performed best in different regions of Turkey. Newland [22] found that the linear logarithmic function 367 

showed better estimation than the A-P model in South China. 368 

Models 6-9 and 14, modified from the A-P model by introducing air temperatures, had lower 369 

estimation errors than the A-P model and models 2-5, indicating that inclusion of air temperatures 370 

enhanced the performances of the sunshine duration models. This was further proved by the better 371 

performances of models 12, 15, 16 and 19 than the model 17, and lower estimation errors of models 13, 372 

20 and 21 than the model 10. The results were consistent with those from Khil-Ha Lee [26], Chen et al. 373 

[85] and Boluwaji and Onyedi [86] who found the models incorporating sunshine duration and air 374 

temperatures provided better estimations than the sunshine duration models. While Wu et al. [87] 375 

reported that modification from the A-P model by introducing air temperature performed similarly to the 376 

A-P model in China. 377 

Models 17 and 18 were modifications to sunshine duration models by introducing relative humidity, 378 

and models 10 and 11 were modifications from the A-P model using precipitation and atmospheric 379 

pressure, respectively. Models 10, 17 and 18 performed similarly to models 1-5, indicating that 380 

inclusions of relative humidity and precipitation did not improve the estimation of the sunshine duration 381 

models. This was also demonstrated by the similar performances of models 13, 16, 20, 21 and 22 to the 382 

corresponding models 6, 7, 9, 14 and 15. These results were in agreement with Meenal [88] who 383 

evaluated 16 empirical models and found the exclusion of relative humidity did not affect the accuracy 384 

of sunshine duration models. Chen and Li [30], and Chen et al. [62] also observed that modifications to 385 

the A-P model using relative humidity and precipitation had the similar estimations with the A-P model. 386 

Model 11 showed lower RMSE and RRMSE than the models 1-5, suggesting that inclusion of 387 

atmospheric pressure decreased the estimation error of the sunshine duration models. The result was 388 

different from that of Chen and Li [30] who reported that atmospheric pressure did not contribute to the 389 
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improvement in estimating accuracy of the A-P model.  390 

When sunshine duration data were unavailable, the temperature-based models (models 26-43) 391 

generated reasonable estimations with the average RMSE of 1.574 MJ m-2 and average RRMSE of 392 

15.61%. Model 42 gave the best estimation with the lowest RMSE of 1.154 MJ m-2 and the RRMSE of 393 

11.44%, followed by model 43 with similar error indicators to model 42. 394 

Models 27-29, 32, 35 and 36 only using average or maximum or minimum temperature had the 395 

average RMSE of 1.875 MJ m-2 and average RRMSE of 18.59%, which were relatively higher than 396 

other temperature-based models. The poor performances of these models had also been reported by 397 

Chen et al. [89] who claimed that the models using temperature only were unsuitable for estimating solar 398 

radiation in China. The average RMSE and RRMSE decreased to 1.519 MJ m-2 and 15.07%, respectively, 399 

for models 26, 30, 31 and 33 which used the combination of maximum and minimum temperatures. The 400 

B-C model (model 30) and model 31 had similar estimations, which were slight better than the H-S 401 

model (model 26). 402 

Model 37 using relative humidity and average temperature showed much lower RMSE and RRMSE 403 

than model 27, suggesting that inclusion of relative humidity increased the estimating accuracy of the 404 

models only using air temperature. This was further confirmed by the better performances of models 38 405 

and 43 over the corresponding models 27 and 29.  406 

Model 40 using atmospheric pressure and temperature range outperformed model 26, suggesting that 407 

modifications to the H-S models by introducing atmospheric pressure can enhance its performance. This 408 

was also indicated by the lower estimation errors of model 41 than model 38. These results agreed well 409 

with the findings of Chen and Li [30] who founded the additional inclusion of atmospheric pressure and 410 

relative humidity decreased the estimating errors of the temperature models. Model 39 performed 411 

similarly to the H-S model, indicating that inclusion of the precipitation as an additive form hardly 412 
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improved its accuracy, whereas Ouali and Alkama [67] discovered that the application of precipitation 413 

enhanced the performance of temperature models in Algeria. 414 

Among the models (models RS1-15) using atmospheric constituents, model RS15 using all the 415 

atmospheric constituents had the lowest RMSE of 1.267 MJ m-2 and the lowest RRMSE of 12.56%, 416 

which were very similar to the corresponding values of 1.269 MJ m-2 and 12.58% for the model RS12 417 

using cloud fraction, cloud optical thickness and precipitable water vapor amount. Models RS2-4, 8 and 418 

10 showed higher estimating errors than other modes. It was generally recognized that cloud cover was 419 

the most important factor attenuating solar radiation [42]. However, the model RS1 only using cloud 420 

fraction explained 61% of the solar radiation variance (supplement data). The result confirmed the 421 

previous finding that dependence of global solar radiation on cloud was not entirely deterministic [90]. 422 

The estimation errors of models RS5 and RS7 were much lower than model RS1, suggesting that 423 

inclusion of cloud optical thickness and precipitable water vapor amount markedly increased the 424 

estimating accuracy of the models only using cloud fraction. This was also proved by the better 425 

performances of models RS 11-13 than model RS1. While model RS6 generated similar estimation with 426 

model RS1, generally implying that aerosol optical thickness did not contribute to the improvement in 427 

estimating accuracy. The results confirmed the previous findings over China [42]. 428 

All the integrated models combining the meteorological variables and atmospheric constituents 429 

showed good performances with the average RMSE of 1.071 MJ m-2 and the RRMSE of 10.62%, which 430 

were lower than the corresponding values of 1.269 MJ m-2 and 12.58% for the empirical models 1-43, 431 

suggesting that incorporation of atmospheric constituents enhanced the performance of empirical models 432 

employing meteorological variables. The models (16th column in Tale 2 and Table 4-5) using the 433 

meteorological variables and all the atmospheric constituents had the lowest average RMSE of 0.929 MJ 434 

m-2 and the RRMSE of 9.22% and they performed similarly to the models (13th column Tale 2 and Table 435 



 

 20 

4-5) using the meteorological variables and cloud fraction, cloud optical thickness and precipitable water 436 

vapor amount. Amongst all the integrated models, the model M25RS15 performed best with the lowest 437 

RMSE of 0.817 MJ m-2 and the RRMSE of 8.11%. 438 

Models M1RS2-M25RS2 had the average RMSE of 0.938 MJ m-2, which was 10.63% lower than the 439 

models 1-25, suggesting that incorporation of cloud optical thickness into the sunshine-based models 440 

improved their estimations. The average RMSE of models M1RS1-M25RS1, M1RS3-M25RS3, and 441 

M1RS4-M25RS4 were 1.016 MJ m-2, 1.045 MJ m-2, and 1.017 MJ m-2, respectively, which were very 442 

similar to 1.051 MJ m-2 for models 1-25. This implied that additional inclusions of cloud fraction, 443 

aerosol optical depth, and precipitable water vapor amount to the sunshine-based models yielded little 444 

improvement. The reason for lack of improvement may be that the potential effects of those additional 445 

variables had already been implicitly reflected in the sunshine-based models. The other reason may lie in 446 

the inter-dependency of different variables [6].  447 

Models M1RS5-M25RS5, M1RS8-M25RS8, and M1RS9-M25RS9 performed better than models 448 

1-25 with an average of 14.72%, 10.88%, and 13.99% lower RMSE, respectively. Models 449 

M1RS11-M25RS11, M1RS12-M25RS12, and M1RS14-M25RS14 outperformed models 1-25 with an 450 

average of 14.99%, 18.12%, and 13.84% higher accuracy, respectively. While models M1RS7-M25RS7, 451 

and M1RS10-M25RS10 generated similar estimations to models 1-25. These results further indicated 452 

that combining the cloud optical thickness and meteorological variables enhanced the performance of 453 

the sunshine-based models, while incorporations of cloud fraction, aerosol optical depth, and 454 

precipitable water vapor amount accounted less for the improvement in estimation accuracy. 455 

In the case that sunshine duration data were unavailable, the integrated models combining the 456 

meteorological variables and the atmospheric constituents had the average RMSE of 1.242 MJ m-2 and 457 

the average RRMSE of 12.31%, which were lower than the corresponding values of 1.574 MJ m-2 and 458 
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average RRMSE of 15.61% for models 26-43, suggesting that incorporation of atmospheric constituents 459 

into the temperature-based models improved the estimation accuracy. Overall, model M42RS15 460 

generated the best estimations with the lowest RMSE of 0.903 MJ m-2 and the RRMSE of 8.95%. 461 

Models M26RS1-M43RS1, M26RS2-M43RS2, and M26RS4-M43RS4 had the average RMSE of 462 

1.282MJ m-2, 1.388 MJ m-2, and 1.414 MJ m-2, respectively, which were lower than 1.574 MJ m-2 for 463 

models 26-43. This suggested that combining the cloud fraction, cloud optical thickness, and 464 

precipitable water vapor amount and meteorological variables increased the estimation accuracy of the 465 

temperature-based models, which was further indicated by the better performances of models 466 

M26RS5-M43RS5, M26RS7-M43RS7, M26RS9-M43RS9, and M26RS12-M43RS12 over models 467 

26-43. The improvement was more pronounced for incorporation of cloud fraction which decreased the 468 

RMSE of models 26-43 by 17.65%. Models M26RS3-M43RS3 performed similarly to models 26-43, 469 

implying that inclusion of aerosol optical depth did not markedly affect the performances of the 470 

temperature-based models. The similar performances of models M26RS6-M43RS6, M26RS8-M43RS8, 471 

and M26RS10-M43RS10 to the corresponding models M26RS1-M43RS1, M26RS2-M43RS2, and 472 

M26RS4-M43RS4 further confirmed this result. 473 

4 Concluding remarks 474 

This study coupled the meteorological variables with the MODIS atmospheric products to estimate 475 

global solar radiation. 25 sunshine-based empirical models and 18 temperature-based empirical models 476 

were collected. A total of 645 coupled models incorporating cloud fraction, cloud optical depth, aerosol 477 

optical depth and precipitable water vapor amount into those empirical models were developed. The 478 

researched models were evaluated and compared at Chongqing in the Three Gorges Reservoir Area in 479 

China. The results suggested that the coupled models markedly outperformed the sunshine-based and 480 

temperature-based models, and incorporation of atmospheric constituents enhanced the performance of 481 



 

 22 

empirical models. The average RMSE decreased from 1.269 MJ m-2 for the empirical models to 1.071 482 

MJ m-2 for the coupled models. Overall, the model incorporating atmospheric constituents into the 483 

model proposed by Ouali and Alkama [67] generated the best estimation with the lowest RMSE of 0.817 484 

MJ m-2 and the RRMSE of 8.11%. In the case that sunshine duration data was unavailable, the model 485 

integrating atmospheric constituents with the model suggested by Chen and Li [30] was the most 486 

accuracy one with the lowest RMSE of 0.903 MJ m-2 and the RRMSE of 8.95%. If all the 487 

meteorological variables were available, the model RS15 using all the atmospheric constituents can be 488 

used to estimate global solar radiation with reasonable accuracy. 489 

The main novelty of this study is that this is so far the first effort to explore the estimation of global 490 

solar radiation combining the MODIS atmospheric products with meteorological variables, and to 491 

develop coupled models incorporating the atmospheric constituents into empirical models. Moreover, 492 

the most accurate models under different scenarios of data availability were proposed. The results 493 

demonstrated that coupling remote sensing with the meteorological variables can enhance the 494 

performance of conventional empirical models, which may provide a promising alternative to generate 495 

global solar radiation data with better accuracy. 496 

Due to the simplicity, operability and reasonable accuracy, empirical model was the most widely used 497 

method in estimating solar radiation. In recent years, many studies investigated the performances of 498 

machine learning algorithms such as back-propagation algorithms, extreme learning machines and 499 

random forests, and the results showed a great potential in estimating global solar radiation. Thus, it is 500 

important for the future works to couple remote sensing with the ground measurements of 501 

meteorological variables to estimate solar radiation using machine learning algorithms. 502 
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Table 1 Formulas for estimating global solar radiation using atmospheric constituents  723 

Model ID Equation a RMSE RRMSE 

RS1 Rs/Ra = a + b1CF 1.828 18.12% 

RS2 Rs/Ra = a + b1COT 2.237 22.18% 

RS3 Rs/Ra = a + b1AOT 2.889 28.64% 

RS4 Rs/Ra = a + b1PW 2.387 23.66% 

RS5 Rs/Ra = a + b1CF + COT 1.498 14.85% 

RS6 Rs/Ra = a + b1CF + AOT 1.815 17.99% 

RS7 Rs/Ra = a + b1CF + PW 1.497 14.84% 

RS8 Rs/Ra = a + COT + AOT 2.147 21.28% 

RS9 Rs/Ra = a + COT + PW 1.952 19.35% 

RS10 Rs/Ra = a + AOT + PW 2.391 23.70% 

RS11 Rs/Ra = a + CF + COT + AOT 1.464 14.52% 

RS12 Rs/Ra = a + CF + COT + PW 1.269 12.58% 

RS13 Rs/Ra = a + CF + AOT + PW 1.495 14.82% 

RS14 Rs/Ra = a + COT + AOT + PW 1.948 19.31% 

RS15 Rs/Ra = a + CF + COT + AOT + PW 1.267 12.56% 

a Rs, Ra, CF, COT, PWV and AOT are monthly mean global solar radiation, extraterrestrial solar 724 

radiation, cloud fraction, cloud optical thickness, precipitable water vapor amount and aerosol optical 725 

thickness, respectively. 726 

 727 
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Table 2 The coupled models incorporating atmospheric constituents into the empirical models 735 

Empirical 

model 
RS1 RS2 RS3 RS4 RS5 RS6 RS7 RS8 RS9 RS10 RS11 RS12 RS13 RS14 RS15 

M1 M1RS1 M1RS2 M1RS3 M1RS4 M1RS5 M1RS6 M1RS7 M1RS8 M1RS9 M1RS10 M1RS11 M1RS12 M1RS13 M1RS14 M1RS15 

M2 M2RS1 M2RS2 M2RS3 M2RS4 M2RS5 M2RS6 M2RS7 M2RS8 M2RS9 M2RS10 M2RS11 M2RS12 M2RS13 M2RS14 M2RS15 

M3 M3RS1 M3RS2 M3RS3 M3RS4 M3RS5 M3RS6 M3RS7 M3RS8 M3RS9 M3RS10 M3RS11 M3RS12 M3RS13 M3RS14 M3RS15 

M4 M4RS1 M4RS2 M4RS3 M4RS4 M4RS5 M4RS6 M4RS7 M4RS8 M4RS9 M4RS10 M4RS11 M4RS12 M4RS13 M4RS14 M4RS15 

M5 M5RS1 M5RS2 M5RS3 M5RS4 M5RS5 M5RS6 M5RS7 M5RS8 M5RS9 M5RS10 M5RS11 M5RS12 M5RS13 M5RS14 M5RS15 

M6 M6RS1 M6RS2 M6RS3 M6RS4 M6RS5 M6RS6 M6RS7 M6RS8 M6RS9 M6RS10 M6RS11 M6RS12 M6RS13 M6RS14 M6RS15 

M7 M7RS1 M7RS2 M7RS3 M7RS4 M7RS5 M7RS6 M7RS7 M7RS8 M7RS9 M7RS10 M7RS11 M7RS12 M7RS13 M7RS14 M7RS15 

M8 M8RS1 M8RS2 M8RS3 M8RS4 M8RS5 M8RS6 M8RS7 M8RS8 M8RS9 M8RS10 M8RS11 M8RS12 M8RS13 M8RS14 M8RS15 

M9 M9RS1 M9RS2 M9RS3 M9RS4 M9RS5 M9RS6 M9RS7 M9RS8 M9RS9 M9RS10 M9RS11 M9RS12 M9RS13 M9RS14 M9RS15 

M10 M10RS1 M10RS2 M10RS3 M10RS4 M10RS5 M10RS6 M10RS7 M10RS8 M10RS9 M10RS10 M10RS11 M10RS12 M10RS13 M10RS14 M10RS15 

M11 M11RS1 M11RS2 M11RS3 M11RS4 M11RS5 M11RS6 M11RS7 M11RS8 M11RS9 M11RS10 M11RS11 M11RS12 M11RS13 M11RS14 M11RS15 

M12 M12RS1 M12RS2 M12RS3 M12RS4 M12RS5 M12RS6 M12RS7 M12RS8 M12RS9 M12RS10 M12RS11 M12RS12 M12RS13 M12RS14 M12RS15 

M13 M13RS1 M13RS2 M13RS3 M13RS4 M13RS5 M13RS6 M13RS7 M13RS8 M13RS9 M13RS10 M13RS11 M13RS12 M13RS13 M13RS14 M13RS15 

M14 M14RS1 M14RS2 M14RS3 M14RS4 M14RS5 M14RS6 M14RS7 M14RS8 M14RS9 M14RS10 M14RS11 M14RS12 M14RS13 M14RS14 M14RS15 

M15 M15RS1 M15RS2 M15RS3 M15RS4 M15RS5 M15RS6 M15RS7 M15RS8 M15RS9 M15RS10 M15RS11 M15RS12 M15RS13 M15RS14 M15RS15 

M16 M16RS1 M16RS2 M16RS3 M16RS4 M16RS5 M16RS6 M16RS7 M16RS8 M16RS9 M16RS10 M16RS11 M16RS12 M16RS13 M16RS14 M16RS15 

M17 M17RS1 M17RS2 M17RS3 M17RS4 M17RS5 M17RS6 M17RS7 M17RS8 M17RS9 M17RS10 M17RS11 M17RS12 M17RS13 M17RS14 M17RS15 

M18 M18RS1 M18RS2 M18RS3 M18RS4 M18RS5 M18RS6 M18RS7 M18RS8 M18RS9 M18RS10 M18RS11 M18RS12 M18RS13 M18RS14 M18RS15 

M19 M19RS1 M19RS2 M19RS3 M19RS4 M19RS5 M19RS6 M19RS7 M19RS8 M19RS9 M19RS10 M19RS11 M19RS12 M19RS13 M19RS14 M19RS15 

M20 M20RS1 M20RS2 M20RS3 M20RS4 M20RS5 M20RS6 M20RS7 M20RS8 M20RS9 M20RS10 M20RS11 M20RS12 M20RS13 M20RS14 M20RS15 

M21 M21RS1 M21RS2 M21RS3 M21RS4 M21RS5 M21RS6 M21RS7 M21RS8 M21RS9 M21RS10 M21RS11 M21RS12 M21RS13 M21RS14 M21RS15 

M22 M22RS1 M22RS2 M22RS3 M22RS4 M22RS5 M22RS6 M22RS7 M22RS8 M22RS9 M22RS10 M22RS11 M22RS12 M22RS13 M22RS14 M22RS15 
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Table 2 The coupled models incorporating atmospheric constituents into the empirical models (continued) 737 

Empirical 

model 
RS1 RS2 RS3 RS4 RS5 RS6 RS7 RS8 RS9 RS10 RS11 RS12 RS13 RS14 RS15 

M23 M23RS1 M23RS2 M23RS3 M23RS4 M23RS5 M23RS6 M23RS7 M23RS8 M23RS9 M23RS10 M23RS11 M23RS12 M23RS13 M23RS14 M23RS15 

M24 M24RS1 M24RS2 M24RS3 M24RS4 M24RS5 M24RS6 M24RS7 M24RS8 M24RS9 M24RS10 M24RS11 M24RS12 M24RS13 M24RS14 M24RS15 

M25 M25RS1 M25RS2 M25RS3 M25RS4 M25RS5 M25RS6 M25RS7 M25RS8 M25RS9 M25RS10 M25RS11 M25RS12 M25RS13 M25RS14 M25RS15 

M26 M26RS1 M26RS2 M26RS3 M26RS4 M26RS5 M26RS6 M26RS7 M26RS8 M26RS9 M26RS10 M26RS11 M26RS12 M26RS13 M26RS14 M26RS15 

M27 M27RS1 M27RS2 M27RS3 M27RS4 M27RS5 M27RS6 M27RS7 M27RS8 M27RS9 M27RS10 M27RS11 M27RS12 M27RS13 M27RS14 M27RS15 

M28 M28RS1 M28RS2 M28RS3 M28RS4 M28RS5 M28RS6 M28RS7 M28RS8 M28RS9 M28RS10 M28RS11 M28RS12 M28RS13 M28RS14 M28RS15 

M29 M29RS1 M29RS2 M29RS3 M29RS4 M29RS5 M29RS6 M29RS7 M29RS8 M29RS9 M29RS10 M29RS11 M29RS12 M29RS13 M29RS14 M29RS15 

M30 M30RS1 M30RS2 M30RS3 M30RS4 M30RS5 M30RS6 M30RS7 M30RS8 M30RS9 M30RS10 M30RS11 M30RS12 M30RS13 M30RS14 M30RS15 

M31 M31RS1 M31RS2 M31RS3 M31RS4 M31RS5 M31RS6 M31RS7 M31RS8 M31RS9 M31RS10 M31RS11 M31RS12 M31RS13 M31RS14 M31RS15 

M32 M32RS1 M32RS2 M32RS3 M32RS4 M32RS5 M32RS6 M32RS7 M32RS8 M32RS9 M32RS10 M32RS11 M32RS12 M32RS13 M32RS14 M32RS15 

M33 M33RS1 M33RS2 M33RS3 M33RS4 M33RS5 M33RS6 M33RS7 M33RS8 M33RS9 M33RS10 M33RS11 M33RS12 M33RS13 M33RS14 M33RS15 

M34 M34RS1 M34RS2 M34RS3 M34RS4 M34RS5 M34RS6 M34RS7 M34RS8 M34RS9 M34RS10 M34RS11 M34RS12 M34RS13 M34RS14 M34RS15 

M35 M35RS1 M35RS2 M35RS3 M35RS4 M35RS5 M35RS6 M35RS7 M35RS8 M35RS9 M35RS10 M35RS11 M35RS12 M35RS13 M35RS14 M35RS15 

M36 M36RS1 M36RS2 M36RS3 M36RS4 M36RS5 M36RS6 M36RS7 M36RS8 M36RS9 M36RS10 M36RS11 M36RS12 M36RS13 M36RS14 M36RS15 

M37 M37RS1 M37RS2 M37RS3 M37RS4 M37RS5 M37RS6 M37RS7 M37RS8 M37RS9 M37RS10 M37RS11 M37RS12 M37RS13 M37RS14 M37RS15 

M38 M38RS1 M38RS2 M38RS3 M38RS4 M38RS5 M38RS6 M38RS7 M38RS8 M38RS9 M38RS10 M38RS11 M38RS12 M38RS13 M38RS14 M38RS15 

M39 M39RS1 M39RS2 M39RS3 M39RS4 M39RS5 M39RS6 M39RS7 M39RS8 M39RS9 M39RS10 M39RS11 M39RS12 M39RS13 M39RS14 M39RS15 

M40 M40RS1 M40RS2 M40RS3 M40RS4 M40RS5 M40RS6 M40RS7 M40RS8 M40RS9 M40RS10 M40RS11 M40RS12 M40RS13 M40RS14 M40RS15 

M41 M41RS1 M41RS2 M41RS3 M41RS4 M41RS5 M41RS6 M41RS7 M41RS8 M41RS9 M41RS10 M41RS11 M41RS12 M41RS13 M41RS14 M41RS15 

M42 M42RS1 M42RS2 M42RS3 M42RS4 M42RS5 M42RS6 M42RS7 M42RS8 M42RS9 M42RS10 M42RS11 M42RS12 M42RS13 M42RS14 M42RS15 

M43 M43RS1 M43RS2 M43RS3 M43RS4 M43RS5 M43RS6 M43RS7 M43RS8 M43RS9 M43RS10 M43RS11 M43RS12 M43RS13 M43RS14 M43RS15 
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Table 3 Performance of the collected empirical models 740 

Empirical  

model 
RMSE RRMSE 

Empirical  

model 
RMSE RRMSE 

Model 1 1.129 11.19% Model 26 1.621 16.07% 

Model 2 1.129 11.19% Model 27 1.94 19.23% 

Model 3 1.128 11.18% Model 28 2.099 20.81% 

Model 4 1.129 11.19% Model 29 1.801 17.86% 

Model 5 1.127 11.18% Model 30 1.532 15.19% 

Model 6 1.041 10.32% Model 31 1.523 15.10% 

Model 7 1.05 10.41% Model 32 1.796 17.81% 

Model 8 1.031 10.22% Model 33 1.404 13.92% 

Model 9 1.015 10.07% Model 34 1.315 13.04% 

Model 10 1.124 11.14% Model 35 1.981 19.64% 

Model 11 1.055 10.46% Model 36 1.631 16.17% 

Model 12 0.969 9.60% Model 37 1.31 12.98% 

Model 13 0.997 9.89% Model 38 1.471 14.58% 

Model 14 1.077 10.68% Model 39 1.612 15.98% 

Model 15 0.98 9.71% Model 40 1.581 15.67% 

Model 16 1.067 10.58% Model 41 1.37 13.59% 

Model 17 1.113 11.03% Model 42 1.154 11.44% 

Model 18 1.111 11.02% Model 43 1.194 11.84% 

Model 19 0.972 9.64%    

Model 20 1.028 10.19%    

Model 21 1.04 10.31%    

Model 22 0.979 9.70%    

Model 23 1.012 10.03%    

Model 24 0.968 9.60%    

Model 25 0.967 9.58%    
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Table 4 The RMSE (MJ m-2) of the coupled models  741 

Empirical 

model 
RS1 RS2 RS3 RS4 RS5 RS6 RS7 RS8 RS9 RS10 RS11 RS12 RS13 RS14 RS15 

Model 1 1.108 1.011 1.129 1.064 0.984 1.110 1.026 1.012 0.954 1.050 0.986 0.909 1.012 0.950 0.904 

Model 2 1.107 1.003 1.129 1.063 0.969 1.109 1.026 1.004 0.953 1.047 0.969 0.902 1.011 0.949 0.899 

Model 3 1.106 1.004 1.129 1.064 0.973 1.108 1.026 1.005 0.953 1.048 0.973 0.904 1.012 0.949 0.901 

Model 4 1.107 1.003 1.129 1.063 0.968 1.109 1.027 1.003 0.952 1.047 0.968 0.902 1.011 0.949 0.899 

Model 5 1.106 0.999 1.128 1.063 0.965 1.107 1.027 1.000 0.952 1.047 0.965 0.901 1.012 0.948 0.899 

Model 6 1.005 0.910 1.023 1.038 0.863 0.988 1.005 0.901 0.885 1.021 0.855 0.845 0.987 0.879 0.838 

Model 7 1.014 0.918 1.030 1.050 0.869 0.994 1.014 0.907 0.899 1.030 0.859 0.855 0.994 0.888 0.845 

Model 8 0.996 0.899 1.017 1.027 0.852 0.982 0.995 0.893 0.873 1.015 0.847 0.834 0.982 0.871 0.832 

Model 9 0.987 0.884 1.011 1.015 0.844 0.982 0.986 0.884 0.873 1.011 0.843 0.835 0.981 0.872 0.833 

Model 10 1.099 0.988 1.122 1.06 0.949 1.098 1.024 0.988 0.953 1.048 0.949 0.905 1.011 0.948 0.899 

Model 11 1.009 0.947 1.048 1.051 0.894 1.002 1.006 0.946 0.944 1.04 0.893 0.891 0.995 0.941 0.888 

Model 12 0.923 0.874 0.969 0.967 0.824 0.923 0.917 0.874 0.867 0.967 0.824 0.821 0.917 0.867 0.821 

Model 13 0.974 0.882 0.996 0.997 0.844 0.972 0.973 0.881 0.871 0.996 0.843 0.835 0.971 0.87 0.833 

Model 14 1.062 0.962 1.076 1.021 0.942 1.06 0.992 0.954 0.912 1.02 0.932 0.874 0.989 0.912 0.874 

Model 15 0.927 0.892 0.977 0.98 0.834 0.926 0.925 0.889 0.877 0.977 0.833 0.828 0.924 0.874 0.826 

Model 16 1.049 0.962 1.06 0.974 0.942 1.04 0.924 0.954 0.903 0.973 0.931 0.855 0.923 0.901 0.853 

Model 17 1.089 1.01 1.115 1.002 0.984 1.091 0.942 1.012 0.937 1.001 0.985 0.879 0.942 0.937 0.879 

Model 18 1.083 1.002 1.113 1.002 0.965 1.083 0.937 1.002 0.933 1.001 0.962 0.864 0.937 0.933 0.864 

Model 19 0.921 0.882 0.971 0.972 0.826 0.921 0.92 0.881 0.867 0.971 0.826 0.82 0.919 0.867 0.82 

Model 20 0.997 0.909 1.014 1.025 0.863 0.983 0.996 0.901 0.884 1.012 0.854 0.845 0.982 0.878 0.838 

Model 21 1.008 0.917 1.023 1.04 0.869 0.99 1.008 0.907 0.899 1.023 0.859 0.855 0.99 0.888 0.844 

Model 22 0.927 0.892 0.976 0.979 0.831 0.926 0.925 0.889 0.877 0.976 0.83 0.826 0.924 0.874 0.824 
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Table 4 The RMSE (MJ m-2) of the coupled models (continued) 742 

Empirical 

model 
RS1 RS2 RS3 RS4 RS5 RS6 RS7 RS8 RS9 RS10 RS11 RS12 RS13 RS14 RS15 

Model 23 0.954 0.930 1.011 0.977 0.877 0.954 0.922 0.928 0.905 0.976 0.875 0.854 0.921 0.903 0.852 

Model 24 0.920 0.882 0.968 0.968 0.829 0.920 0.919 0.882 0.866 0.968 0.829 0.822 0.919 0.866 0.821 

Model 25 0.920 0.882 0.968 0.968 0.825 0.920 0.918 0.881 0.866 0.968 0.825 0.818 0.918 0.865 0.817 

Model 26 1.409 1.423 1.514 1.521 1.225 1.344 1.278 1.296 1.344 1.472 1.140 1.112 1.263 1.275 1.084 

Model 27 1.410 1.593 1.925 1.662 1.165 1.397 1.351 1.591 1.269 1.653 1.162 1.054 1.340 1.268 1.052 

Model 28 1.469 1.702 2.086 1.917 1.208 1.454 1.441 1.7 1.437 1.899 1.203 1.122 1.424 1.434 1.117 

Model 29 1.353 1.489 1.791 1.529 1.118 1.344 1.287 1.488 1.188 1.528 1.116 1.01 1.284 1.185 1.01 

Model 30 1.407 1.391 1.445 1.404 1.227 1.341 1.28 1.274 1.299 1.379 1.141 1.118 1.264 1.245 1.089 

Model 31 1.393 1.362 1.434 1.379 1.222 1.329 1.241 1.249 1.242 1.355 1.137 1.093 1.231 1.199 1.07 

Model 32 1.337 1.592 1.742 1.381 1.165 1.296 1.201 1.587 1.228 1.319 1.162 1.043 1.15 1.214 1.035 

Model 33 1.223 1.212 1.381 1.392 1.03 1.219 1.221 1.181 1.155 1.374 1.021 1.001 1.218 1.136 0.996 

Model 34 1.182 1.177 1.283 1.306 1.022 1.173 1.181 1.14 1.129 1.279 1.011 0.995 1.172 1.104 0.988 

Model 35 1.394 1.699 1.935 1.648 1.206 1.354 1.303 1.699 1.42 1.563 1.203 1.118 1.238 1.404 1.105 

Model 36 1.273 1.475 1.576 1.225 1.117 1.235 1.118 1.466 1.108 1.189 1.114 0.983 1.085 1.102 0.98 

Model 37 1.054 1.239 1.303 1.279 0.971 1.053 1.054 1.231 1.231 1.152 1.274 0.969 0.952 1.052 1.148 

Model 38 1.293 1.368 1.308 1.259 1.188 1.182 1.045 1.204 1.206 1.19 1.073 0.99 1.016 1.127 0.954 

Model 39 1.41 1.424 1.473 1.449 1.21 1.338 1.251 1.288 1.325 1.378 1.14 1.111 1.226 1.244 1.08 

Model 40 1.309 1.396 1.508 1.509 1.143 1.291 1.278 1.297 1.328 1.455 1.109 1.112 1.264 1.251 1.084 

Model 41 1.114 1.299 1.269 1.248 1.05 1.078 1.044 1.186 1.194 1.173 1.005 0.99 1.016 1.107 0.954 

Model 42 1.024 1.028 1.125 1.154 0.919 1.012 1.021 0.998 1.017 1.122 0.905 0.915 1.006 0.993 0.903 

Model 43 1.469 1.702 2.086 1.917 1.208 1.454 1.441 1.7 1.437 1.899 1.203 1.122 1.424 1.434 1.117 
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Table 5 The RRMSE of the coupled models  744 

Empirical 

model 
RS1 RS2 RS3 RS4 RS5 RS6 RS7 RS8 RS9 RS10 RS11 RS12 RS13 RS14 RS15 

Model 1 10.99% 10.02% 11.20% 10.55% 9.76% 11.00% 10.17% 10.03% 9.46% 10.41% 9.77% 9.01% 10.03% 9.41% 8.97% 

Model 2 10.98% 9.94% 11.20% 10.53% 9.60% 10.99% 10.18% 9.95% 9.44% 10.38% 9.61% 8.94% 10.03% 9.40% 8.91% 

Model 3 10.96% 9.96% 11.19% 10.55% 9.64% 10.98% 10.18% 9.97% 9.45% 10.39% 9.65% 8.96% 10.03% 9.41% 8.94% 

Model 4 10.98% 9.94% 11.20% 10.54% 9.60% 10.99% 10.18% 9.95% 9.44% 10.38% 9.60% 8.94% 10.03% 9.40% 8.91% 

Model 5 10.96% 9.91% 11.18% 10.54% 9.57% 10.98% 10.18% 9.91% 9.43% 10.38% 9.57% 8.94% 10.03% 9.40% 8.91% 

Model 6 9.97% 9.02% 10.14% 10.29% 8.55% 9.79% 9.96% 8.93% 8.77% 10.12% 8.47% 8.37% 9.79% 8.71% 8.31% 

Model 7 10.05% 9.10% 10.21% 10.41% 8.62% 9.85% 10.05% 9.00% 8.91% 10.21% 8.52% 8.47% 9.85% 8.81% 8.37% 

Model 8 9.87% 8.91% 10.08% 10.18% 8.45% 9.73% 9.86% 8.85% 8.65% 10.06% 8.39% 8.27% 9.74% 8.64% 8.25% 

Model 9 9.79% 8.77% 10.03% 10.06% 8.37% 9.73% 9.78% 8.76% 8.65% 10.03% 8.36% 8.28% 9.73% 8.64% 8.26% 

Model 10 10.90% 9.79% 11.13% 10.51% 9.41% 10.88% 10.16% 9.79% 9.45% 10.39% 9.41% 8.97% 10.03% 9.40% 8.92% 

Model 11 10.00% 9.39% 10.39% 10.42% 8.87% 9.93% 9.98% 9.38% 9.36% 10.31% 8.85% 8.83% 9.86% 9.33% 8.80% 

Model 12 9.15% 8.66% 9.60% 9.58% 8.17% 9.15% 9.10% 8.66% 8.59% 9.58% 8.17% 8.14% 9.10% 8.59% 8.14% 

Model 13 9.66% 8.74% 9.87% 9.88% 8.36% 9.63% 9.65% 8.74% 8.63% 9.87% 8.35% 8.27% 9.63% 8.62% 8.26% 

Model 14 10.53% 9.54% 10.66% 10.12% 9.33% 10.51% 9.83% 9.45% 9.04% 10.11% 9.24% 8.67% 9.81% 9.04% 8.67% 

Model 15 9.19% 8.84% 9.69% 9.71% 8.27% 9.18% 9.17% 8.81% 8.69% 9.69% 8.26% 8.20% 9.16% 8.67% 8.19% 

Model 16 10.40% 9.54% 10.51% 9.66% 9.33% 10.31% 9.16% 9.45% 8.95% 9.65% 9.23% 8.47% 9.15% 8.93% 8.46% 

Model 17 10.80% 10.02% 11.06% 9.93% 9.75% 10.81% 9.34% 10.03% 9.29% 9.93% 9.76% 8.71% 9.34% 9.29% 8.71% 

Model 18 10.74% 9.93% 11.03% 9.93% 9.57% 10.74% 9.29% 9.93% 9.25% 9.92% 9.54% 8.57% 9.29% 9.25% 8.57% 

Model 19 9.13% 8.74% 9.63% 9.64% 8.19% 9.13% 9.12% 8.73% 8.60% 9.63% 8.19% 8.13% 9.11% 8.59% 8.13% 

Model 20 9.89% 9.01% 10.05% 10.16% 8.55% 9.74% 9.88% 8.93% 8.76% 10.03% 8.47% 8.37% 9.74% 8.71% 8.31% 

Model 21 9.99% 9.09% 10.14% 10.31% 8.62% 9.82% 9.99% 9.00% 8.91% 10.14% 8.52% 8.47% 9.82% 8.81% 8.37% 

Model 22 9.19% 8.84% 9.68% 9.70% 8.24% 9.18% 9.17% 8.81% 8.69% 9.68% 8.23% 8.18% 9.16% 8.67% 8.17% 
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Table 5 The RRMSE of the coupled models (continued)  745 

Empirical 

model 
RS1 RS2 RS3 RS4 RS5 RS6 RS7 RS8 RS9 RS10 RS11 RS12 RS13 RS14 RS15 

Model 23 9.46% 9.22% 10.02% 9.68% 8.69% 9.46% 9.14% 9.20% 8.98% 9.67% 8.68% 8.46% 9.13% 8.95% 8.45% 

Model 24 9.12% 8.75% 9.60% 9.60% 8.22% 9.12% 9.11% 8.74% 8.59% 9.60% 8.22% 8.14% 9.11% 8.58% 8.14% 

Model 25 9.12% 8.74% 9.59% 9.59% 8.18% 9.12% 9.10% 8.74% 8.58% 9.59% 8.18% 8.11% 9.11% 8.58% 8.10% 

Model 26 13.97% 14.11% 15.01% 15.08% 12.14% 13.32% 12.67% 12.85% 13.33% 14.59% 11.30% 11.02% 12.53% 12.64% 10.75% 

Model 27 13.98% 15.79% 19.08% 16.47% 11.55% 13.85% 13.40% 15.77% 12.58% 16.38% 11.52% 10.44% 13.29% 12.57% 10.43% 

Model 28 14.57% 16.87% 20.68% 19.00% 11.97% 14.42% 14.29% 16.85% 14.25% 18.82% 11.93% 11.12% 14.12% 14.22% 11.08% 

Model 29 13.42% 14.76% 17.75% 15.16% 11.08% 13.32% 12.76% 14.75% 11.78% 15.15% 11.06% 10.01% 12.73% 11.75% 10.01% 

Model 30 13.95% 13.79% 14.32% 13.92% 12.17% 13.30% 12.69% 12.63% 12.88% 13.67% 11.31% 11.08% 12.54% 12.34% 10.79% 

Model 31 13.81% 13.50% 14.22% 13.67% 12.11% 13.18% 12.30% 12.39% 12.31% 13.43% 11.27% 10.84% 12.20% 11.89% 10.61% 

Model 32 13.25% 15.78% 17.27% 13.69% 11.55% 12.85% 11.91% 15.73% 12.17% 13.08% 11.52% 10.34% 11.41% 12.04% 10.26% 

Model 33 12.12% 12.02% 13.69% 13.80% 10.21% 12.08% 12.11% 11.71% 11.45% 13.63% 10.12% 9.92% 12.07% 11.26% 9.87% 

Model 34 11.72% 11.67% 12.72% 12.94% 10.14% 11.63% 11.71% 11.30% 11.19% 12.68% 10.02% 9.86% 11.62% 10.95% 9.80% 

Model 35 13.82% 16.85% 19.18% 16.34% 11.96% 13.42% 12.92% 16.84% 14.08% 15.49% 11.93% 11.08% 12.27% 13.91% 10.96% 

Model 36 12.62% 14.63% 15.62% 12.14% 11.08% 12.24% 11.08% 14.53% 10.99% 11.79% 11.04% 9.75% 10.76% 10.93% 9.72% 

Model 37 10.45% 12.28% 12.92% 12.68% 9.63% 10.44% 10.45% 12.20% 12.20% 11.42% 12.63% 9.60% 9.44% 10.43% 11.38% 

Model 38 12.82% 13.56% 12.97% 12.48% 11.78% 11.71% 10.36% 11.93% 11.96% 11.80% 10.64% 9.82% 10.07% 11.17% 9.46% 

Model 39 13.98% 14.11% 14.61% 14.37% 11.99% 13.27% 12.40% 12.77% 13.13% 13.67% 11.30% 11.01% 12.15% 12.33% 10.70% 

Model 40 12.97% 13.84% 14.95% 14.96% 11.33% 12.80% 12.67% 12.86% 13.16% 14.43% 10.99% 11.02% 12.53% 12.40% 10.75% 

Model 41 11.04% 12.88% 12.59% 12.37% 10.41% 10.69% 10.35% 11.76% 11.84% 11.63% 9.96% 9.82% 10.07% 10.98% 9.46% 

Model 42 10.15% 10.19% 11.16% 11.44% 9.11% 10.04% 10.12% 9.89% 10.08% 11.12% 8.97% 9.07% 9.98% 9.84% 8.95% 

Model 43 10.16% 11.00% 11.48% 11.83% 9.26% 10.05% 10.14% 10.60% 10.80% 11.48% 9.11% 9.21% 9.99% 10.50% 9.09% 
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 746 

Figure.1 Temporal variations of the meteorological variables in Chongqing, China 747 
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