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A B S T R A C T

Background: Faba bean (Vicia faba L.) seeds are an excellent source of plant-based protein. In spite of the vast
nutritional and environmental benefits provided by faba bean cultivation, its use as a food crop has been re-
stricted, primarily due to the presence of the pyrimidine glycosides vicine and convicine (v-c). Ingestion of v-c
can cause favism in individuals with a genetically inherited deficiency in glucose-6-phosphate dehydrogenase
(G6PD). In monogastric animals, v-c can cause decreased feeding efficiency. The elimination of these glucosides
is a goal of most faba bean breeding programs worldwide.
Scope and approach: Our review focuses on the current genetic, molecular and biochemical knowledge sur-
rounding the accumulation of v-c in faba beans. The gap between the current knowledge and what remains
unknown is discussed. This review also explores historical and obscure information on v-c in faba bean.
Key findings and conclusions: A low-v-c faba bean line was identified in the 1980s and this trait has been in-
troduced into several modern cultivars. It has been shown that low-v-c faba beans are safe for G6PD-deficient
individuals. A robust molecular marker is now available for marker-assisted breeding to reduce levels of v-c. The
biosynthetic pathway of v-c is not yet understood and is currently under investigation. An international co-
ordinated effort, led by the authors of this paper, is making progress towards full elucidation of the pathway.
Further efforts in this direction could lead to lower levels of these compounds than the current low v-c genotypes
offer, perhaps even complete elimination.

1. Introduction

Cultivation of faba bean (Vicia faba L.) as a legume crop delivers
generous economic and environmental benefits, stemming from its low
reliance on nitrogen inputs and consequent reduced greenhouse gas
emissions. Production of plant-based protein has a much lower en-
vironmental cost than that of animal-based protein. Faba bean provides
symbiotically fixed nitrogen, thus improving soil fertility for itself and
successive crops. As a non-host of many cereal pathogens, it can break
the cycle of soil-borne diseases in cereal crops (Köpke & Nemecek,

2010). Faba bean is a versatile crop used globally as food, feed, forage,
and medicine and as a cover crop. Its seeds help meet the basic dietary
needs of millions of people and animals worldwide, as they are a rich
source of plant protein, nutrients and dietary fiber (Duc, 1997; Multari,
Stewart, & Russell, 2015; Warsame, O'Sullivan, & Tosi, 2018). The
immature green pods and seeds of faba bean are marketed as a fresh or
frozen vegetable. The dry seeds are widely cooked directly or first
canned. Faba bean has a wide adaptability across various global agro-
ecological zones including the northern temperate, Mediterranean and
sub-tropical savannah. In 2016, faba bean global production was 4.5

https://doi.org/10.1016/j.tifs.2019.07.051
Received 15 March 2019; Received in revised form 28 June 2019; Accepted 30 July 2019

∗ Corresponding author.
E-mail addresses: hamid.khazaei@usask.ca, hamid.khazaei@gmail.com (H. Khazaei).

Trends in Food Science & Technology 91 (2019) 549–556

Available online 02 August 2019
0924-2244/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/09242244
https://www.elsevier.com/locate/tifs
https://doi.org/10.1016/j.tifs.2019.07.051
https://doi.org/10.1016/j.tifs.2019.07.051
mailto:hamid.khazaei@usask.ca
mailto:hamid.khazaei@gmail.com
https://doi.org/10.1016/j.tifs.2019.07.051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tifs.2019.07.051&domain=pdf


million tons (Tg) from 2.4 million ha (M ha). China was the major
producer, with 1.6 M ha (36% of the world production) followed by
Ethiopia (0.88M ha) and Australia (0.42M ha) (FAOSTAT, 2017). In
the European Union, its cultivated area was nearly 0.66M ha with a
production of 2.0 Tg (Eurostat, 2019).

In spite of the many benefits of faba bean, its cultivation and con-
sumption has been historically restricted due to the pyrimidine glyco-
sides vicine and convicine (v-c), which are stored in cotyledons of most
faba beans at about 1% of dry matter (Khamassi et al., 2013; Purves,
Zhang, Khazaei, & Vandenberg, 2017). The presence of v-c causes fa-
vism, an acute haemolytic anaemia, in human individuals who have an
X chromosome-inherited glucose-6-phosphate dehydrogenase (G6PD)
deficiency (Luzzatto & Arese, 2018). V-c also cause a significant re-
duction in the efficiency of production systems for broiler chickens,
laying hens and pigs (Vilariño, Métayer, Crépon & Duc, 2009; Crépon
et al., 2010; Grosjean et al., 2000; Lessire et al., 2017). Though still a
matter of speculation, the ability to synthesize v-c and accumulate high
concentrations in the seed is thought to have evolved because of a
beneficial antibiotic effect during seed germination (Griffiths &
Ramsay, 1992; Pavlik, Vanova, Laudova, & Harmatha, 2002; Ramsay &
Griffiths, 1996). The level of v-c in faba bean seeds was shown to be the
main mortality factor for Callosobruchus maculatus (L.) larvae and some
other phytophagous pests (Desroches, El Shazly, Mandon, Duc, &
Huignard, 1995).

Vicine and convicine are thermostable, but their concentration can
be greatly reduced by soaking the seeds in water or in a weak acid
solution (Hegazy & Marquardt, 1983; Jamalian & Ghorbani, 2005) prior
to cooking. Thermal processing such as boiling, roasting, microwave
irradiation, and frying can reduce the v-c content in faba bean seeds
(Hussein, Motawei, Nassib, Khalil, & Marquardt, 1986; Ganzler & Salgó,
1987; Muzquiz et al., 2012; Cardador-Martinez et al., 2012). In addi-
tion, the combination of enzyme treatment with fermentation
(Pulkkinen et al., 2019) or of alkaline extraction with acid precipitation
can reduce v-c content by more than 99% (Vioque, Alaiz, & Girón-Calle,
2012). However, removal or destruction of v-c by dry milling for pro-
tein concentration on an industrial scale is problematic because air
classification of faba bean protein (Tyler, Youngs, & Sosulski, 1981)
concentrates the v-c up to nearly four-fold in the protein fraction
(Fig. 1). Pitz, Sosulski, and Hogge (1980) reported a similar trend. Wet
processing methods for protein purification, e.g., isoelectric precipita-
tion, can remove anti-nutritional factors such as v-c from protein frac-
tions, but these methods are costly and energy-intensive (reviewed in
Singhal, Karaca, Tyler, & Nickerson, 2016). The best solution for the
reduction of v-c is breeding for low v-c faba beans, and the discovery of
a low-v-c accession with up to 95% reduction in v-c content compared
to wild type has enabled the transfer of the low v-c trait to faba bean
cultivars by sexual crosses (Duc, Sixdenier, Lila, & Furstoss, 1989).

Genetic approaches to reducing v-c levels have been challenging
because of the mixed breeding system of the crop (Drayner, 1956) and

the lack of any knowledge regarding the biosynthetic pathway of v-c. In
the last few years, there has been significant investment and progress in
molecular breeding and functional genomics of v-c in faba bean
(Maalouf et al., 2018). This has been driven mainly by the need to
extend crop rotations because of environmental concerns and by the
globally increasing demand for plant-based protein. An additional
motivation has been the rotational benefits of the crop in legume-sup-
ported cropping systems (Watson et al., 2017). In this review, we bring
together the current genetic, molecular, and biochemical knowledge
surrounding the accumulation of v-c with perspectives on how this
knowledge can be used to breed new solutions to a very old problem.

2. The souls of the dead: faba beans

Faba bean has had a controversial history in its centre of diversity,
the Mediterranean region. Although it was one of the earliest domes-
ticated crops of Near Eastern agricultural systems (Caracuta et al.,
2015), some cultures in the ancient world considered it an undesirable
crop. In some regions, in historical periods, its cultivation was banned.
Herodotus, the Greek historian of the 5th Century BCE, wrote that
Egyptians refused to cultivate faba bean. In Rome, priests of Jupiter
were not allowed to touch or even mention them, due to their asso-
ciation with death and decay (Johnson, 1963). The Greek philosopher,
Pythagoras, banned his followers from eating faba beans and he was
often illustrated avoiding them (Fig. 2). It is claimed that this aversion
caused his life to end tragically because he did not want to walk into a
faba bean field when he was pursued by the people of Crotonia in

Fig. 1. Vicine and convicine concentrations in the air classification fractions
(dry processing), starch and protein of faba bean cv. CDC Snowdrop. The vicine
and convicine detection method is described in Purves et al. (2017).

Fig. 2. An illustration showing Pythagoras avoiding faba bean plants. “Do Not
Eat Beans” [fol. 25 recto], 1512/1514. Photo © National Gallery of Art,
Washington D.C.
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Southern Italy and he was killed at the field's edge (Arie, 1959; Meletis;
Konstantopoulos, 2004). The faba bean was, however, highly regarded
in other historical periods and regions for the benefits it provided. For
example, the Fabaria was a feast celebrated in ancient Rome during the
month of June in celebration of Carna, the goddess of vital organs and
health (Johnson, 1963).

This historical suspicion of faba bean may be rooted in its patho-
logical effects in individuals susceptible to favism, which is induced in
humans that carry G6PD deficiency. The deficiency is common in the
Mediterranean basin, Middle East, North Africa, and other areas in
which malaria is or has been endemic (Luzzatto & Arese, 2018). Surveys
of G6PD deficiencies in malaria-endemic countries indicate an average
frequency of 8%, reaching over 20% in India, China, Pakistan and Ni-
geria (Howes et al., 2012). Around the Mediterranean basin, fre-
quencies range from under 1% to over 20% (Al-Musawi et al., 2012). In
Rome, a large survey revealed a G6PD deficiency frequency of 1.1%,
whereas in Sardinia the frequency averaged 7.5% with a maximum of
33% (Maffi et al., 2014). By comparison, in the Sassari province of
Sardinia, favism occurs at the frequency of 1.2 cases per 10,000 in-
dividuals (Meloni, Forteleoni, Dore, & Cutillo, 1983) compared to
Northern Europe and the United States, with only 1 case per 50,000
(Kalfa, 2016). Awareness of the size of the at-risk population in Italy,
coupled with rare reports of individual cases of haemolytic crisis in
G6PD-deficient subjects said to have been brought on by exposure to
faba bean pollen (e.g. Brodribb, 1966), led to local ordinances still in
force in numerous areas stipulating that flowering faba bean crops can
be required to be destroyed if grown within 300m of a residence or
public place frequented by a sufferer of favism; furthermore, displays of
fresh faba beans must be restricted to specially labelled, closed con-
tainers. This type of ordinance appears to treat all living faba bean plant
parts as potential contact allergens, despite the well-understood
etiology of favism having nothing to do with the immune system. In
fact, there is no evidence that v-c are contained in any appreciable level
in pollen, which is not wind-borne, nor is there a means of ingestion of
pollen such that an interaction with red blood cells could take place.
The ‘pollen favism’ myth has been categorically refuted (Luzzatto &
Arese, 2018), so we posit that such restrictive ordinances are untenable
and should be repealed.

3. Etiology of favism

G6PD deficiency, at a global average frequency of 4.9%, is wide-
spread in the human population, affecting more than 400 million
people worldwide (Nkhoma, Poole, Vannappagari, Hall, & Beutler,
2009). The G6PD gene is on the X chromosome, so the deficiency is
more frequently and severely expressed in men. Favism is an acute
hemolytic anemia that occurs after the consumption of faba beans
containing high levels of v-c. In red blood cells, v-c are metabolized into
their aglycone derivatives, divicine and isouramil, which in turn oxidize
intracellular glutathione (Winterbourn, 1989). In order to preserve
redox homeostasis, oxidized glutathione must be reduced back to glu-
tathione, a process that requires reducing equivalents from the co-factor
NADPH. Since the only source of NADPH in red blood cells is the
pentose phosphate pathway, of which G6DP is a crucial enzyme, G6PD-
deficient individuals cannot regenerate the oxidized glutathione effi-
ciently. The resulting oxidative damage causes the affected red blood
cells to aggregate before they can be removed by the immune system.
The G6PD enzyme deficiency is caused by various mutant alleles of the
G6PD gene. There are various levels of deficiency, from severe (po-
tentially fatal) to an extreme overexpression (Cappellini & Fiorelli,
2008).

It has been widely shown that G6PD deficiency reduces the severity
of malaria (Arese, 2006; Louicharoen et al., 2009; Mbanefo et al., 2017;
Ruwende & Hill, 1998). The malaria parasite's development in mutant
red blood cells causes the oxidation level to increase. Since the deficient
individuals cannot rapidly reduce glutathione in the red blood cells, the

immune system identifies these cells as damaged and removes them
before the parasite can reproduce. Thus, G6PD deficient individuals
exhibit reduced severity of malaria due to the parasites being removed
by the immune system before it undergoes schizogenesis (Cappellini &
Fiorelli, 2008).

Other than avoiding the ingestion of v-c from faba bean or oxidizing
drugs such as quinone (Arese, Gallo, Pantaleo, & Turrini, 2012), there is
no treatment for favism, and prevention depends on the subjects
knowing that they are G6PD-deficient. This is not generally the case
unless and until they experience a haemolytic crisis that is correctly
diagnosed. An alternative approach to prevention could be the devel-
opment and use of faba bean cultivars with low levels of the glucosides.
Such varieties have been developed and are commercially available in
some countries (Khamassi et al., 2013; Purves et al., 2017). Im-
portantly, a recent study confirmed that consumption of large portions
of low-v-c faba beans by G6PD-deficient men was safe and favism did
not develop in any of the men (Gallo et al., 2018).

4. V-c in other plant species

Vicine was first isolated from seeds of common vetch (Vicia sativa L.)
in the late 1800s (Ritthausen & Kreusler, 1870), and in 1914 the
compounds were discovered in faba bean (Johnson, 1914). V-c have
also been found in other Vicia species, such as V. narbonensis (Pitz et al.,
1980; Griffiths & Ramsay, 1996), but their synthesis is not unique to the
Vicieae tribe. Vicine was also isolated from the seeds of bitter melon or
gourd (Momordica charantia L.), a member of the Cucurbitaceae family
(Dutta, Chakaavarty, Chowdhury & Pakrash, l981; Zhang, Wang,
Zhang, Liu, & Hu, 2003; Lucas, Dumancas, Smith, & Arjmandi, 2010).
Our data revealed that bitter melon had higher vicine concentration in
its seed (1–2% of the seed by dry weight) than faba bean, but that the
convicine concentration was very low (Table 1). A draft genome se-
quence of bitter gourd has been published (Urasaki et al., 2017) and
could be helpful in investigating the biosynthetic pathway of v-c. There
are contrasting findings on the presence of v-c in beetroot (Chenopo-
diaceae, Von Lippmann, 1896; Pitz et al., 1980) and in Lathyrus species
(Fabaceae, Jamalian, Aylward, & Hudson, 1977; Pitz et al., 1980;
Griffiths & Ramsay, 1992).

5. Sites of synthesis and accumulation of v-c

V-c are concentrated in the cotyledons of both fresh and dry seeds of
faba bean (Crépon et al., 2010). It was suggested that v-c synthesis
occurs within the developing pod (Brown & Roberts, 1972). Pitz,
Sosulski, and Rowland (1981) and Ramsay and Griffiths (1996) re-
ported that v-c were possibly synthesized during the seed filling stage,
most likely in the testa of the seed. The hypothesis was that v-c are
synthesized in the testa and then transported to the cotyledons,

Table 1
Vicine and convicine concentration in bitter melon (Momordica charantia) and
faba bean (Vicia faba) seeds at maturity stage.

Vicine (mg/g dry
weight)

Convicine (mg/g dry
weight)

Origin

M. charantia
BT-1 21.35 0.006 USA
BT-3 18.27 0.016 China
BT-4 17.92 0.012 China
BT-5 11.29 0.007 Jade Dragon

V. faba
ILB 938/2 4.64 3.090 Columbia
Mélodie/2a 0.29 0.014 France
CDC Snowdrop 5.64 0.940 Canada

Components were measured following Purves et al. (2017).
a Marketed as low v-c.
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resulting in fresh faba bean seeds having the highest v-c concentration
(Pitz et al., 1981; Ray & Georges, 2010). V-c are also present in roots of
faba bean (Ramsay & Griffiths, 1996), while stem, petiole, and leaf
tissue accumulate only low amounts (Griffiths & Ramsay, 1996; un-
published data of the authors). The v-c concentration in the seed de-
creases rapidly with seed development (Burbano, Cuadrado, Mercedes,
& Cubero, 1995; Hussein et al., 1986; Jamalian & Bassiri, 1978).
Burbano et al. (1995) found slightly more than an 8-fold reduction of v-
c concentration during seed development, with the highest concentra-
tion in young, fresh seeds at 80% moisture content.

6. Discovery of genetic sources of low v-c

From the 1970s to the mid-1980s, a wide range of faba bean
germplasm was screened worldwide with the aim of finding a reliable
source of low v-c (Bjerg, Norgaard, Olsen, Poulsen, & Sorensen, 1985;
Collier, 1976; Engel, 1970; Gardiner, Marquardt, & Kemp, 1982;
Hussein et al., 1986; Jamalian, 1978; Pitz et al., 1981). The efforts
revealed little variation for v-c, with a mean concentration of ap-
proximately 1% of seed DM. No source lacking v-c was found. Later,
Duc et al. (1989) reported a low v-c genotype [line 1268 (4)(1)] after
screening a germplasm collection of 919 accessions. Line 1268 (4)(1)
was an introduction from a collection of the Department of Plant Ge-
netic Resources, Radzikov, Poland. The low v-c trait was found to be
inherited as a single recessive Mendelian character that was associated
with a nearly zero v-c content in seeds; it was designated “vc–“. The
discovery of this gene opened a realistic possibility for breeding low v-c
faba beans.

A second gene for reduced v-c content, vcr, was reported after
screening 6700 M2 mutants from the cv. Troy (the first faba bean bred
by NPZ and promoted in UK in the 1980s) by Ramsay, Griffiths, and
Dow (1991). The vcr gene had up to a 20-fold reduction in v-c con-
centration with respect to wild-type faba bean, similar to vc–. It was
suggested that the vcr gene from mutant plant MTG77 was dominant.
Another mutation program in Greece, which used gamma-ray irradia-
tion of the Greek cultivar Polycarpe, resulted in a source of low vicine
levels (Kara, Lithourgidis, Tsaftaris, Psomas, & Tzavella-Klonari, 1988).
The latter two potential sources of low v-c are not available for further
investigations from genebanks or host institutes. The genetic interac-
tions among these reported sources remain unresolved.

6.1. Low v-c germplasm catalogue

Low v-c cultivars have been released mainly by INRA (Institut
National de la Recherche Agronomique) in France and marketed by
Agri-Obtentions (https://www.agriobtentions.com/pulses/field-bean.
html). Existing registered low v-c faba cultivars in the French cata-
logue are Disco, Mélodie, Divine, Dixie, Fabelle, Medina, AO 1155, and
Betty. The level of v-c in seeds of most of these cultivars was re-
confirmed by Khamassi et al. (2013) and by Purves et al. (2017). The
cultivars Lady, Mandoline, Nakka, and Tiffany from NPZ (Norddeutsche
Pflanzenzucht, https://www.agriobtentions.com/pulses/field-bean.
html) have also been commercially released as low v-c cultivars
(Puspitasari, 2017). All the above-mentioned cultivars carry the vc–

gene. Segregating populations have been developed using this gene for
genetic studies (Khazaei, Link, Street, & Stoddard, 2018a; Khazaei,
Stoddard, Purves, & Vandenberg, 2018b). Cultivation of the low v-c
faba bean varieties remains limited. For example, they represented only
13% of French faba bean production in 2014 (Lessire et al., 2017). Low
v-c faba bean cultivars are under development in many other countries,
including Finland, Denmark, the UK and Canada.

7. V–c phenotyping

Accurate and rapid phenotyping of v-c concentration is important in
faba bean genetic improvement programs. Initially, colorimetric and

spectrophotometric methods (Collier, 1976; Kim, Hoehn, Eskin, &
Ismail, 1982; Olsen & Anderson, 1978; Sixdenier, Cassecuelle,
Guillaumin, & Duc, 1996) were developed, but they are most accurate
at high v-c concentrations and lack specificity or sensitivity. More se-
lective liquid chromatographic (LC) methods, typically using UV de-
tection (Pulkkinen et al., 2015; Quemener, 1988), have also been em-
ployed for the determination of v-c concentration. Although these
methods are more selective and robust, levels of convicine in low v-c
genotypes were frequently reported as zero or undetectable. Because
small, polar analytes such as v-c are well suited for use with hydrophilic
interaction liquid chromatography (HILIC), the use of a HILIC-UV
method enabled quantification of convicine in low v-c seeds (Purves,
Khazaei, & Vandenberg, 2018a). However, the combination of chro-
matographic methods with tandem mass spectrometry (more specifi-
cally, selective reaction monitoring, or SRM) led to large improvements
in sensitivity and selectivity, thereby enabling the routine detection of
much lower v-c values that could be used even for complex biological
extracts (Purves et al., 2018a).

Unfortunately, for rapid analysis, the relatively long acquisition
time required when using chromatographic methods (typical methods
require 10–30min per sample) can be a major limitation. Because
tandem mass spectrometry is highly sensitive and selective, the analysis
of plant seeds was investigated using flow injection analysis (FIA) in-
stead of chromatographic separation (Purves, Khazaei, & Vandenberg,
2018b). Although a 1min FIA-SRM method was successful for screening
faba bean seeds, its key limitation was that the presence of vicine in-
terfered with the determination of convicine concentration. To improve
method selectivity without increasing analysis time, the use of ion
mobility was investigated. Ion mobility involves interactions between
gas-phase ions (such as v-c ions produced during MS analysis) and
neutral gases, such as air, and can be used to separate these ions
(Purves, 2018).

One such technique, high-field asymmetric waveform ion mobility
spectrometry (FAIMS) acts as an ion filter; ions have specific conditions
in which they will be successfully transmitted through the FAIMS de-
vice and into the mass spectrometer with the parameter that controls
ion selection being called the compensation voltage, CV (Purves, 2018).
FAIMS conditions were determined in which v-c and L-DOPA were
transmitted at different CV values, thereby enabling gas-phase ion se-
paration and accurate determination of all three compounds (Purves
et al., 2017). One of the benefits of FAIMS is that analytes of interest are
separated using voltages in the gas-phase on a millisecond time scale.
Thus, unlike an LC analysis where the user must wait for the compound
to elute (separation based on time), with FAIMS, the CV value(s) is
readily cycled to detect the ion(s) of interest. The analysis time for the
FIA-FAIMS-SRM method for the rapid high-throughput phenotyping of
v-c and L-DOPA was< 1min (Purves et al., 2017).

Thus, at present, FIA-FAIMS-SRM is undeniably the most efficient
and accurate approach for quantifying v-c that is available. The initial
set-up cost for such an instrument is substantial, but when used in a
high-throughput manner, subsequent cost is on the order of a few USD
per sample. Although less expensive LC-UV instrumentation can also be
used to distinguish between high and low v-c cultivars, throughput is
much lower and v-c values for low v-c cultivars will not be as accurate,
especially for convicine.

8. Genotype by environment effects on v-c concentration

There is no clear trend in v-c concentration in faba bean seeds
produced in different environments. Previous studies on geno-
type× environment interactions did not establish the mechanisms that
influence environmental effects on v-c concentrations (Gardiner et al.,
1982; Pitz et al., 1981; Pulkkinen et al., 2015). Since v-c are measured
as a concentration, the value is affected by the concentration of other
components of the seed such as starch and protein that are also en-
vironmentally influenced. V-c were reported to have fungicidal effects
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on pathogens (Pavlik et al., 2002), suggesting that their concentration
may increase in wet conditions that promote fungal growth (Pulkkinen
et al., 2015).

9. Genetics and molecular marker development

9.1. Maternal effects

Duc et al. (1989) reported no effect of the embryo genotype on the
v-c seed phenotype and there is agreement in the literature that the v-c
concentration in faba bean cotyledons is maternally determined (Duc
et al., 1989; Khamassi et al., 2013; Khazaei et al., 2017; Ramsay et al.,
1991; Ramsay & Griffiths, 1996). This consensus fits with the data
showing that v-c are synthesized in the maternal plant tissues (parti-
cularly seed coats as stated above) and then imported into the cotyle-
dons.

9.2. Morphological markers

Hilum color in faba bean (which can be colourless or black) is de-
termined by a single gene under maternal control, with black hilum
being dominant over colourless (Erith, 1930; Khazaei et al., 2015; Sirks,
1931). Due to the fortuitous in-phase linkage of the recessive vc– locus
with a recessive pale hilum variant in the original vc– donor material,
the use of the visible hilum color marker to track vc– in early genera-
tions of crosses between vc– and black hilum genotypes became the
established method for breeding low v-c faba beans. However, this
linkage is now known to be of 5–10 centimorgans distance (Duc,
Marget, Page, & Domoney, 2004; Khazaei et al., 2015); given cv. Betty
as an example of vc– with a black hilum, colourless hilum is no longer a
reliable marker for low v-c (Khazaei et al., 2017; Purves et al., 2018a).
Other sources of colourless hilum are associated with the wild-type Vc–

allele.

9.3. Marker-assisted selection

Faba bean is a diploid species with six large chromosome pairs and a
huge genome of ∼13 Gbp in the haploid complement (Soltis, Soltis,
Bennett, & Leitch, 2003). Molecular breeding in faba bean is relatively
less advanced than in other legume species, but significant progress has
been made to enrich genomic regions linked to the v-c. PCR-based
marker systems including RAPD (random amplification of polymorphic
DNA), AFLP (amplified fragment length polymorphism) as well as iso-
zymes were used to map v-c in BCF2 (backcross) and F6 RIL (re-
combinant inbred line) populations of faba bean (Ramsay, Griffiths,
Waugh, & Powell, 1995). Three genomic regions were found to be as-
sociated with low v-c, one with a very large effect as well as two minor
QTLs.

Gutiérrez et al. (2006) reported two RAPD markers, converted to
CAP (cleavage amplified polymorphism) markers, which were linked to
the low vc– gene using an F2 segregating population (Vf6× line 1268).
Khazaei et al. (2015) employed SNP (single nucleotide polymorphism)
markers, developed for use in comparative mapping between the model
legume Medicago truncatula and faba bean in an F5 RIL population from
Mélodie/2× ILB 938/2. The distribution of v-c concentrations in the
RIL progeny was bimodal, which was consistent with the detection of a
single major QTL at the previously reported vc– locus on chromosome 1,
explaining 76% of the total phenotypic variation. Later, a robust,
breeder-friendly and high-throughput KASP marker (Kompetitive Allele
Specific PCR) was developed and validated for this region (Khazaei
et al., 2017). Recently, the interval of the vc– region was saturated with
additional SNP markers by the development of a 50 K Axiom SNP
genotyping array, assisting to narrow this region; it is also being used as
a basis for the ongoing positional cloning of the gene (O'Sullivan et al.,
2018).

Subsequent studies found that concentrations of v-c were not

completely controlled by one locus. A genome-wide association study
detected v-c marker (SNP and AFLP) associations in a relatively large
set of faba bean accessions with normal levels of v-c (Puspitasari, 2017).
Apart from the expected associations of markers near the vc– locus, an
AFLP marker (E40M59-387) was found tightly associated with a minor
v-c gene. This marker was on the faba bean chromosome 5 consensus
genetic map (Webb et al., 2016). Notably, this region was within the
flanking region of the second QTL for v-c which has a minor effect that
explains 15% of phenotypic variation (Khazaei et al., 2015). This
second QTL was located in linkage group 2 (Khazaei, O'Sullivan,
Sillanpää, & Stoddard, 2014), which is a region syntenic with M. trun-
catula chromosome 7. This suggests that at least one minor QTL on
chromosome 5 modulates v-c content in addition to the vc– locus. This
additional minor QTL needs further investigation and validation.

9.4. Candidate gene approach

In the absence of an annotated faba bean reference genome, most
attempts at candidate gene discovery have been until now based on
comparative genomics approaches. The challenge remains that other
model legumes or plants do not synthesize v-c, and only a handful of
Vicia species make these metabolites. Ray, Bock, and Georges (2015)
reported six candidate sequences that may be involved in the v-c bio-
synthetic pathway, and one (contig 4518) of these was used to develop
a robust molecular marker for low v-c (Khazaei et al., 2017). The BLAST
search confirmed that the sequence of contig 4518 was matched to the
Medtr2g009270 gene on M. truncatula chromosome 2. The
Medtr2g009270 gene is annotated as 3,4-dihydroxy-2-butanone 4-phos-
phate synthase. The sequence of this gene is found within the bifunc-
tional riboflavin biosynthesis protein RIBA1 in other sequenced grain
legume species such as soybean (Glycine max [L.] Merr.) and chickpea
(Cicer arietinum L.) (Khazaei et al., 2017).

Gutiérrez, Fernández-Romero, Atienza, Ávila, and Torres (2017)
used comparative genomic approaches, KASPar SNP genotyping assays
and high-throughput genome profiling DarTSeq of an F2 cross
(Vf6× vc–) to fine-map the vc– gene. The target region was narrowed to
an interval of conserved synteny with M. truncatula chromosome 2
between the Medtr2g008210 and Medtr2g010180 gene models. In M.
truncatula, this region contains 136 genes, but the exact gene content
and order of the corresponding Vicia faba interval and the identity of
the causative gene remains unknown.

10. Elimination of v-c in a food matrix

It is possible to degrade v-c in a food matrix. Treatment of a flour-
water mixture (50:50) with a β-glucosidase-carrying strain of
Lactobacillus plantarum resulted in deglucosylation of the v-c and com-
plete degradation of the divicine and isouramil within 48 h (Rizzello
et al., 2016). Treatment of cooked faba beans with ground raw almond
(Prunus dulcis L.) powder, which is a rich source of β-glucosidase, also
resulted in the hydrolysis of the v-c. The degree of hydrolysis ranged
from partial to complete and was dependent on appropriate time,
temperature, and pH conditions (Arbid & Marquardt, 1985). The utility
of the end-product in the food chain has not been tested and some
modification of the procedure may be necessary to make it industrially
applicable. Because vicine and convicine are relatively small molecules
in comparison to proteins, it may be possible to remove them by ul-
trafiltration, as is done for lactose from milk.

11. Conclusions

An international coordinated effort, led by the authors of this paper,
is making progress in identifying the biosynthetic pathway of v-c.
Further effort in this direction could lead to lower levels of these
compounds than the current vc– genotypes offer, perhaps even complete
elimination. At the same time, food scientists are investigating ways of
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eliminating v-c and their aglycones from a food matrix, so that protein
isolates and products derived from them can be labelled as v-c-free
before low-v-c cultivars are available outside of their current region of
adaptation in France and Germany. The combination of these efforts
will enable the widespread use of faba bean as a valuable source of
high-quality protein that can be produced in a sustainable manner for
the expanding plant-based food chain. It will provide plant protein
products suitable for consumption both by those with soybean allergy
or intolerance and by those with a desire to consume local or regional
plant products. Increased usage of faba bean in the food and feed in-
dustries can contribute to reduced demand for imported soybean,
thereby lessening the pressure for land-use change in South America
and other warm-climate regions from which plant proteins are exported
to cool-climate regions.
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