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Deviations from Gaussianity in deterministic discrete time dynamical systems
Jeroen Wouters1, a)

Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX,
UK

In this paper we examine the deviations from Gaussianity for two types of random variable converging to a normal
distribution, namely sums of random variables generated by a deterministic discrete time map and a linearly damped
variable driven by a deterministic map. We demonstrate how Edgeworth expansions provide a universal description of
the deviations from the limiting normal distribution. We derive explicit expressions for these asymptotic expansions
and provide numerical evidence of their accuracy.

Central limit theorems are a cornerstone of probability
theory and have many applications. The limits appearing
in such theorems are in reality never attained, so it is im-
portant to investigate the deviations from Gaussianity as
the limit is approached. In this article we explore devia-
tions from the limiting normal distribution for variables
generated by deterministic dynamical systems. We derive
expressions for an expansion around the limiting distribu-
tion.

I. INTRODUCTION

Randomness provides a powerful way of describing the
large-scale behaviour of many systems in the natural and man-
made world. Well-known examples are Brownian particle mo-
tion, price evolution on financial markets and the evolution of
the Earth’s climate. However, many of these systems are de-
scribed by deterministic dynamical systems on small scales.
A natural question is then how randomness arises from deter-
ministic dynamics.

One much-explored way in which a random variable can
arise from deterministic dynamical systems is through vari-
ations of the central limit theorem. In such theorems, many
nearly independent contributions are added or integrated over
to result in a Gaussian random variable. This principle has
for example been explored for systems with a bath of a large
number of deterministic oscillators1. Another way to obtain
sums of nearly independent contributions is to sum over time
series of sufficiently mixing dynamical systems. The evolu-
tion is completely deterministic, with the only randomness
appearing through the initial conditions. This approach has
been investigated for discrete time dynamical systems2–4. An
extension of this case can be found in the study of slow-fast
dynamical systems where instead of simply summing the out-
put of a dynamical system the slow variable has a non-trivial
dynamics of its own5–7.

In these theorems we have to consider specific limits, for
example, taking the number of oscillators, the length of sums
or the time scale separation to infinity. Such conditions
are of course never fulfilled in reality. Therefore, the dis-
tributions observed in a physical system will deviate from
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the limiting distribution predicted by theory. These devia-
tions can in many cases be successfully described by Edge-
worth expansions, which provide correction terms to the limit-
ing distribution8–11. Edgeworth expansions have furthermore
been used to develop reduced order models for slow-fast dy-
namical systems12.

Here we consider two applications of Edgeworth expan-
sions. First of all, we describe a method to derive the Edge-
worth coefficients of sums of dependent random variables. We
corroborate our results by numerical experiments. Secondly,
we show that some recent results on approximations of in-
variant distributions of slow-fast discrete maps are in fact a
specific case of the Edgeworth expansion.

The article is structured as follows. In Section II we give
a brief overview of central limit theorems and the Edgeworth
expansion. In Section III we examine sums of time series of
a deterministic dynamical system with random initial condi-
tions. In Section IV we study a type of slow-fast dynamical
system with linear damping of the slow variable. We show
that the deviations of the invariant measure of the slow vari-
able can effectively be described by an Edgeworth expansion.

II. CENTRAL LIMIT THEOREMS AND EDGEWORTH
EXPANSIONS

The convergence of appropriately normalized sums of ran-
dom variables to Gaussian, Poisson or other infinitely divis-
ible distributions is an important topic in probability theory
and dynamical systems theory. Theorems showing such con-
vergence are known as central limit theorems (CLT). A CLT
holds for a sequence of random variables zi with i ∈ N and
E[zi] = 0 if xn := 1√

n ∑n
i=1 zi converges in distribution to a nor-

mal distribution N0,σ2 with mean 0 and variance σ2 as n→∞.
If xn converges to a normal distribution N0,σ2 the variance

σ2 is given by σ2 = limn→∞V[xn], withV[xn] the variance of
xn. For a stationary generating process zi, we have

V[xn] :=E[x2
n] =

1
n

n−1

∑
i=0

n−1

∑
j=0
E[ziz j]

= E[z2
1]+2

n−1
n
E[z1z2]+2

n−2
n
E[z1z3]

+ . . .+2
1
n
E[z1zn],

where the last equality holds by stationarity of the sequence
zi. Therefore σ2 is determined by the correlation structure of
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zi as

σ2 =E[z2
1]+2

∞

∑
i=2
E[z1zi]. (1)

This expression is sometimes referred to as the Green-Kubo
formula.

Central limit theorems have been shown to hold for i.i.d
random variables13, independent but non-identical random
variables14, weakly dependent random variables15 and deter-
ministic discrete time maps2–4,16,17. In the case of determinis-
tic maps randomness is introduced by a random choice of the
initial condition.

Formally, the CLT can be derived by considering the char-
acteristic function χn(θ) := E[eiθxn ]. By Taylor expanding
ln χn in θ we have that

ln χn(θ) =
∞

∑
k=0

c(k)n

k!
(iθ)k

where c(k)n is the k-th cumulant of Xn, satisfying the recursive
relation

c(k)n = m(k)
n −

k−1

∑
l=1

(
k−1
l −1

)
m(k−l)

n c(l)n ,

where m(k)
n is the k-th central moment of xn: m(k)

n :=E
[
xk

n
]

If

it can be demonstrated that c(2)n → σ2 and c(k)n → 0 for k ⩾ 3

then χn → e−
σ2
2 θ 2

, the characteristic function of the normal
distribution N0,σ2 . The convergence in distribution of xn then
follows from Lévy’s continuity theorem13.

A. Deviations from the limiting distribution

The formal derivation of the CLT in the previous section
can be extended to provide more details on the way in which
the limiting distribution is approached. This results in a so-
called Edgeworth expansion, describing the deviations from
the limiting distribution in orders of 1√

n .

We assume that the cumulants c(k)n can be expanded in or-
ders of

√
n as

c(2)n = σ2 +
1
n

c(2,1)+o
(

1
n

)
(2)

c(3)n =
1√
n

c(3,1)+o
(

1
n

)
c(4)n =

1
n

c(4,1)+o
(

1
n

)
with c(3,1) and c(4,1) constants, and we assume that c(p)

n = o(n)
for p > 4. This assumption can be easily verified for i.i.d.
random variables and has been also shown to hold for weakly
dependent random variables18. These assumptions allow to
expand the characteristic function

χn(θ) = exp
(

c(2)n
(iθ)2

2!
+ c(3)n

(iθ)3

3!
+ c(4)n

(iθ)4

4!
+ . . .

)
= exp

(
1
n

c(2,1)
(iθ)2

2!
+

1√
n

c(3,1)
(iθ)3

3!

+
1
n

c(4,1)
(iθ)4

4!
+o
(

1
n

))
exp
(
−σ2 θ 2

2

)
=

(
1+

1√
n

c(3)∞
(iθ)3

3!

+
1
n

(
c(2,1)

(iθ)2

2!
+ c(4,1)

(iθ)4

4!
+

1
2

(
c(3,1)

(iθ)3

3!

)2
)

+o
(

1
n

))
× exp

(
−c(2)∞

θ 2

2

)
.

Since χn is essentially the Fourier transform of ρn, the
distribution of xn, an expansion in orders of 1√

n of ρn can
be obtained by taking the inverse Fourier transform of χn.
This results in the so-called Edgeworth expansion13 ρn(x) =
ρ(2)

n (x)+o( 1
n ) uniformly in x, with

ρ(2)
n (x) = n0,σ2(x)

(
1+

c(3,1)

6σ3√n
H3

( x
σ

)
+

c(2,1)

2σ2n
H2

( x
σ

)
+

c(4,1)

24σ2n
H4

( x
σ

)
+

(c(3,1))2

72σ4n
H6

( x
σ

))
, (3)

where n0,σ2(x) = 1√
2πσ2 e−

x2

2σ2 is the limiting normal distribu-

tion and Hk(x) = (−1)nex2/2 dn

dxn e−x2/2 are Hermite polynomi-

als. We have ρn(x) = ρ(2)
n (x)+ o

( 1
n

)
and ρn(x) = ρ(1)

n (x)+

o
(

1√
n

)
with

ρ(1)
n (x) = n0,σ2(x)

(
1+

c(3,1)

6σ3√n
H3

( x
σ

))
. (4)

The expansion can also be continued to higher orders of 1√
n ,

resulting in higher order Hermite polynomials. Note that as
n → ∞, we obtain the CLT result again.

III. SUMS OF DYNAMICAL SYSTEMS

In this section we examine the convergence of normalized
sums xn := 1√

n ∑n
i=1 f1(yi), where the yi are generated by a

dynamical system yi+1 = g(yi), with y1 ∼ µ , i.e. the initial
conditions are distributed according to the natural invariant
measure of this dynamical system µ . In Appendix A we for-
mally show that sums xn =

1√
n ∑n

i=1 f1(yi) indeed follow a cu-
mulant expansion as in Eq. (2). We derive explicit expressions
relating the coefficients c(2,1), c(3,1) and c(4,1) to the correla-
tion functions of the dynamical system g, supplementing the
Green-Kubo formula of Eq. (1). The functional form of the
expansion is that presented in Eqs. (3) and Eqs. (4).
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We obtain

c(2,1) =−2
∞

∑
k=1

kE[ f1(y) f1(gk(y))] (5)

c(3,1) =E[ f1(y)3]+
∞

∑
k=1

3(E[ f1(y)2 f1(gk(y))]

+E[ f1(y) f1(gk(y))2]) (6)

+6
∞

∑
k=1

∞

∑
l=1
E[ f1(y) f1(gk(y)) f1(gk+l(y))]

c(4,1) =E[ f 4
1 ]+4

∞

∑
k=1

(
E

[
f1(y) f1(gk(y))3

]
+E

[
f1(y)3 f1(gk(y))

])
+6

∞

∑
k=1

(
E

[
f1(y)2 f1(gk(y))2

]
−E

[
f1(y)2]2) (7)

+12
∞

∑
k=1

∞

∑
l=1

(
E

[
f1(y) f1(gk(y)) f1

(
gk+l(y)

)2
]
−E

[
f1(y) f1(gk(y))

]
E
[

f 2
1
])

+12
∞

∑
k=1

∞

∑
l=1
E

[
f1(y) f1(gk(y))2 f1(gk+l(y))

]
+12

∞

∑
k=1

∞

∑
l=1

(
E

[
f1(y)2 f1(gk(y)) f1(gk+l(y))

]
−E

[
f1(y)2]

E

[
f1(y) f1(gl(y))

])
+24

∞

∑
k=1

∞

∑
l=1

∞

∑
m=1

(
E

[
f1(y) f1(gk(y)) f1(gk+l(y)) f1(gk+l+m(y))

]
−E

[
f1(y) f1(gk(y))

]
E [ f1(y) f1(gm(y))]

)
−3σ4 +6σ2c(2,1)

Here the expectation valueE is taken with respect to the phys-
ical invariant measure µ of yi+1 = g(yi). Note that these cor-
rection coefficients involve higher-order correlation functions
when compared to the Green-Kubo equation (1).

We remark that our equation (7) for c(4,1) differs substan-
tially from the one given in18 without derivation. The numer-
ical experiments described in Section III A show an excellent
agreement with our equations, but not with those in18.

A. Numerical experiment

We verify the expansion (3) for the case where yi is gener-
ated by the deterministic tripling map yi+1 = 3yi mod1 and
f1(y) = y5 + y4 − 1

6 − 1
5 . The invariant measure µ of the

tripling map is the uniform distribution on [0,1], therefore
E[ f1] = 0.

The expansion coefficients c(2,1), c(3,1) and c(4,1) can be ex-
plicitly computed in this case by iterating over the Markov
partitions of the tripling map. A code listing to perform this
calculation in the open-source mathematics software system
SageMath19 can be found in Appendix C.

Figure 1 demonstrates the approximation of histograms of
sums xn =

1√
n ∑n

i=1 f1(yi) of the tripling map with the approx-
imation by both the CLT and the Edgeworth expansion. The
Edgeworth expansion clearly approximates the true histogram
much closer.

IV. LINEARLY DAMPED MULTI-SCALE SYSTEMS

We now consider dynamical systems of the linear Langevin
type, where the deterministic output yn is not simply summed,

but an additional damping term is introduced as

xn+1 = λxn +
√

τyn (8)
yn+1 = g(yn) (9)

where λ = e−τ , the expectation value of yn w.r.t. the in-
variant measure µ of g is zero and we will take the limit
τ → 0. These maps have been studied in10,20 and are a spe-
cific case of the slow-fast maps considered in621. As demon-
strated in6, as τ → 0, the paths of y converge weakly to an
Ornstein-Uhlenbeck process dX =−Xdt +σdW , where σ2 is
the Green-Kubo variance σ2 =E[y2

0]+2∑∞
i=1E[y0yi]. Specif-

ically, the invariant measure of x converges to a Gaussian dis-
tribution. We will now study the deviations of this measure
from the Gaussian distribution for small but non-zero τ .

A. Limiting distribution

For the system (8)-(9), the dependence of xn on the history
of the deterministic noise yi can be made explicit by iterating
Eq. (8). We get xn = λ nx0 +∑n−1

i=0
√

τλ iyn−1−i. In the limit
n → ∞ the impact of the initial condition x0 will disappear
exponentially fast as λ n. By a change of time i → i−n+1 we
are left to consider the distribution of x∞ = ∑∞

i=0
√

τλ iy−i.

An expression for the variance of the limiting invariant
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-2 0 2
x32

0.00

0.01

0.02

0.03
p
d
f

ρn
n0,σ²

-2 0 2
x
32

0.00

0.01

0.02

0.03

p
d
f

ρnρn(2)

Figure 1. The probability density of sums 1√
n ∑n

i=1 f1(yi) with n =

32, f1(y) = y5+y4− 1
6 −

1
5 and yi generated by the tripling map from

initial conditions y1 uniformly distributed on [0,1] (ρn, dashed line)
using 107 samples. Compared to the Gaussian distribution of the
Central Limit Theorem (n0,σ 2 , top figure, solid line) and the second

order Edgeworth expansion as in Eq. (3) (ρ(2)
n , bottom figure, solid

line).

measure is easily obtained, since

E[x2
∞] =

∞

∑
i, j=0

τλ i+ j
E[y−iy− j]

=
∞

∑
i=0

τλ 2i
E[y−iy−i]+

∞

∑
k=1

∞

∑
i=0

τλ 2i+k
E[y−iy−i−k]

+
∞

∑
k=1

∞

∑
i=0

τλ 2i+k
E[y−i−ky−i]

= τ
1

1−λ 2E[y
2
0]+2τ

∞

∑
k=1

λ k

1−λ 2E[y0yk].

Taking the limit τ → 0, we obtain

σ2
∞ = lim

τ→0
E[x2

∞] =
1
2
E[y2

0]+
∞

∑
k=1
E[y0yk].

B. Corrections to the limiting distribution

A similar calculation allows us to obtain the first Edgeworth
correction term. Calculating the third cumulant of the invari-
ant distribution, we get

E[x3
∞] =

√
τ3

∞

∑
i, j,k=0

λ i+ j+k
E[y−iy− jy−k]

=
√

τ3
E[y3

0]
1

1−λ 3 +3
√

τ3
∞

∑
j=1
E[y2

0y j]
λ 2 j

1−λ 3

+3
√

τ3
∞

∑
i=1
E[y0y2

i ]
λ i

1−λ 3 +6
√

τ3
∞

∑
i, j=1

E[y0yiy j]
λ 2 j+i

1−λ 3

and in the limit τ → 0

c(3,1) = lim
τ→0

1√
τ
E[x3

∞] (10)

=
1
3
E[y3

0]+
∞

∑
j=1
E[y2

0y j]+
∞

∑
i=1
E[y0y2

i ]+2
∞

∑
i, j=1

E[y0yiy j].

The functional form of the expansion is that presented in Eq.
(4).

C. Numerical experiments

Here we consider the second order Chebyshev map g(y) =
2y2 − 1. For this map, we have that E[y0yi] =

1
2 δ0,i, so

σ2
∞ = 1

4 . The map is conjugate to the Bernoulli shift by
y0 = cos(πu) = (exp(iπu)−exp(−iπu))/2. Iterates are given
by yn = cos(πnu) and correlation functions are

E[yn1 . . .ynr ] = ∑
σ

∫ 1

0
du

r

∏
j=1

1
2

exp(iπσ j2n j u)

=
1
2r ∑

σ
δ (σ12n1 + . . .+σr2nr)

where the sum is over the set {(σ1, . . . ,σr)|σi ∈ {−1,1}}22.
The only third order correlation function that is non-zero is
therefore E[y2

1y2] =
1
4 . This shows that, by Eq. (10), c(3,1) =

1
4 .

Figure 2 shows that the first Edgeworth approximation
closely matches the deviations from Gaussianity observed in
the distribution of xn for large n and small τ .

V. CONCLUSIONS

In this paper we consider two applications of Edgeworth
expansions.

Firstly, we have derived the Edgeworth coefficients of sums
of dependent random variables. To the author’s knowledge,
this is the first explicit derivation of this expansion in the lit-
erature. Equations for the expansion coefficients can be found
in18, however without derivation. Furthermore, the coefficient
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−2 −1 0 1 2
x

−0.005

0.000

0.005

0.010

Fn −N0,σ2
F
(1)
n −N0,σ2

Figure 2. The difference of the cumulative distribution function (cdf)
Fn(x) := P{xn ≤ x} to the limiting Gaussian cumulative distribution
function N0,σ 2 (solid line) and the difference of the cdf of the Edge-

worth expansion F(1)
n (x) :=

∫ x
−∞ ρ(1)

n (x)dx to N0,σ 2 (dashed line).
Here τ = 0.01, n = 105 and 1010 samples are generated to estimate
Fn.

c(4,1) derived here differs substantially from the one found
there. The numerical experiments in this manuscript corrobo-
rate the correctness of the expressions derived here. Further-
more, they show the high accuracy of the Edgeworth approx-
imation. This in turn supports the hypothesis that an Edge-
worth expansion holds for this dynamical system, an assump-
tion we have not proved here.

Secondly, we show that recent results on approximations
of invariant distributions of slow-fast discrete maps fit into
the general framework of Edgeworth expansions. Approxi-
mations for the invariant distribution of the specific class of
slow-fast linear Langevin maps have been derived in10,20 by
different methods. The derivation given here puts these result
in the context of the well-established topic of Edgeworth ex-
pansions. This provides a new view on these results and opens
the way to extension to other classes of dynamical systems.

ACKNOWLEDGEMENTS

The author would like to thank Georg Gottwald for stimu-
lating and enjoyable discussions.

REFERENCES

1G. W. Ford, M. Kac, and P. Mazur, “Statistical mechanics of assemblies of
coupled oscillators,” J. Mathematical Phys. 6, 504–515 (1965).

2M. Denker, “The central limit theorem for dynamical systems,” Banach
Center Publications 1, 33–62 (1989).

3S. Luzzatto, “Stochastic-Like Behaviour in Nonuniformly Expanding
Maps,” Handbook of Dynamical Systems 1, 265–326 (2006).

4L.-S. Young, “Recurrence times and rates of mixing,” Israel Journal of
Mathematics 110, 153–188 (1999).

5I. Melbourne and A. Stuart, “A note on diffusion limits of chaotic skew-
product flows,” Nonlinearity 24, 1361–1367 (2011).

6G. A. Gottwald and I. Melbourne, “Homogenization for deterministic maps
and multiplicative noise,” Proceedings of the Royal Society A: Mathemati-
cal, Physical and Engineering Science 469 (2013).

7D. Kelly and I. Melbourne, “Deterministic homogenization for fast–slow
systems with chaotic noise,” Journal of Functional Analysis 272, 4063–
4102 (2017).

8K. Fernando and C. Liverani, “Edgeworth expansions for weakly dependent
random variables,” arXiv:1803.07667 [math] (2018), arXiv: 1803.07667.

9L. Hervé and F. Pène, “The Nagaev-Guivarc’h method via the Keller-
Liverani theorem,” Bull. Soc. Math. France 138, 415–489 (2010).

10G. Williams and C. Beck, “Stochastic differential equations driven by de-
terministic chaotic maps: analytic solutions of the Perron–Frobenius equa-
tion,” Nonlinearity 31, 3484–3511 (2018).

11J. Wouters and G. A. Gottwald, “Edgeworth expansions for slow–fast sys-
tems with finite time-scale separation,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 475, 20180358 (2019).

12J. Wouters and G. A. Gottwald, “Stochastic model reduction for slow-fast
systems with moderate time-scale separation,” Multiscale Modeling and
Simulation (to appear).

13W. Feller, An Introduction to Probability Theory and Its Applications,
2nd ed., A Wiley publication in mathematical statistics (Wiley, New York,
1957).

14E. Çınlar, Probability and Stochastics, Graduate texts in mathematics No.
261 (Springer, New York ; London, 2011).

15I. A. Ibragimov, “Some Limit Theorems for Stationary Processes,” Theory
of Probability & Its Applications 7, 349–382 (1962).

16W. Bahsoun and C. Bose, “Mixing rates and limit theorems for random
intermittent maps,” Nonlinearity 29, 1417–1433 (2016).

17M. Nicol, A. Török, and S. Vaienti, “Central limit theorems for sequential
and random intermittent dynamical systems,” Ergodic Theory and Dynam-
ical Systems 38, 1127–1153 (2018).

18F. Götze and C. Hipp, “Asymptotic expansions for sums of weakly depen-
dent random vectors,” Zeitschrift für Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete 64, 211–239 (1983).

19The Sage Developers, SageMath, the Sage Mathematics Software System
(Version 8.6) (2019), https://www.sagemath.org.

20C. Beck, “Dynamical systems of Langevin type,” Physica A: Statistical Me-
chanics and its Applications 233, 419–440 (1996).

21In the notation of6, τ = ε2, f0(y) = y and f (x,y,ε) = e−ε2−1
ε2 x.

22C. Beck, “Higher correlation functions of chaotic dynamical systems-a
graph theoretical approach,” Nonlinearity 4, 1131 (1991).

http://dx.doi.org/10.1016/S1874-575X(06)80028-7
http://dx.doi.org/ 10.1007/BF02808180
http://dx.doi.org/ 10.1007/BF02808180
http://arxiv.org/abs/1803.07667
http://dx.doi.org/10.1088/1361-6544/aabc92
http://dx.doi.org/10.1098/rspa.2018.0358
http://dx.doi.org/10.1098/rspa.2018.0358
http://dx.doi.org/10.1137/1107036
http://dx.doi.org/10.1137/1107036
http://dx.doi.org/ 10.1088/0951-7715/29/4/1417
http://dx.doi.org/10.1017/etds.2016.69
http://dx.doi.org/10.1017/etds.2016.69
http://dx.doi.org/10.1007/BF01844607
http://dx.doi.org/10.1007/BF01844607
http://dx.doi.org/ 10.1016/S0378-4371(96)00254-3
http://dx.doi.org/ 10.1016/S0378-4371(96)00254-3
http://dx.doi.org/10.1088/0951-7715/4/4/006


6

Appendix A: Derivation of the Edgeworth expansion of sums

The aim is to derive expansions in orders of 1√
n of the cumulants of xn =

1√
n ∑n

i=1 f1(yi) as in Eq. (2). The expansion is most
straightforwardly calculated after taking the z-transform w.r.t. n.

Taking the z-transform of the second moment m(2)
n :=E[x2

n|x0 = 0,y0 ∼ µ]

m̂(2)(λ ) :=
∞

∑
n=0

λ nm(2)
n =

∫
δx0 ⊗µ(dx,dy)

∞

∑
n=0

λ nPnx2

=
∫

δx0 ⊗µ(dx,dy)
1

1−λP
x2

where P is the Koopman operator PA(x,y) = A(x+ ε f1(g(y)),g(y)) of the system

xn+1 = xn + ε f1(g(yn))

yn+1 = g(yn) .

Note that in this system, setting x0 = 0, we have xn = ∑n
k=1 ε f1(g(y)). We will later be setting ε = 1√

n to obtain sums of the CLT

form. The operator P can be expanded as P =
(

∑∞
k=0

εk

k! Pk
x

)
Py with PxA(x,y) = f1(g(y))∂xA(x,y) and PyA(x,y) = A(x,g(y)).

Then since (C−D)−1 =C−1 +C−1DC−1 +C−1DC−1DC−1 + . . . we have taking C = 1−λPy and D = λ
(

∑∞
k=1

εk

k! Pk
x

)
Py

m̂(2)(λ ) =
∫

δx0 ⊗µ(dx,dy)

(
λ

1−λ

(
∞

∑
k=1

εk

k!
Pk

x

)
1

1−λ

+
λ

1−λ

(
∞

∑
k=1

εk

k!
Pk

x

)
λPy

1−λPy

(
∞

∑
k=1

εk

k!
Pk

x

)
1

1−λ

)
x2

other terms in the expansion are zero since they have either not enough or too many derivatives ∂x. By the same reasoning, we
can see that

m̂(2)(λ ) =
∫

µ(dy)
(

λ
1−λ

(
ε2

2!
f1(g(y))

2
)

1
1−λ

+
λ

1−λ
(ε f1(g(y)))

λPy

1−λPy
(ε f1(g(y)))

1
1−λ

)
2

= ε2 λ
(1−λ )2E[ f1(y)

2]+2ε2 λ
(1−λ )2E

[
f1(y)

λPy

1−λPy
f1(y)

]
where E[A] =

∫
µ(dy)A(y) with µ the physical invariant measure of yi+1 = g(yi). We now expand the Koopman operator as

Py = p0 +∑∞
i=1 αi pi , with p0 = |1⟩⟨µ| and pi = |li⟩⟨ri|, where the left eigenfunctions (1 and li) and right eigenfunctions (µ and

ri) are mutually orthogonal. We then obtain

m̂(2)(λ ) = ε2 λ
(1−λ )2E[ f1(y)

2]+2ε2 λ
(1−λ )2

∞

∑
i=1

λαi

1−λαi
E[ f1(y)|li⟩⟨ri| f1(y)]

By the inverse z-transform (calculating the residue at λ = 1 of m̂(2)(λ )) we have

m(2)
n = ε2nE[ f1(y)

2]+2ε2
∞

∑
i=1

(
n

αi

1−αi
− αi

(1−αi)2

)
E[ f1(y)|li⟩⟨ri| f1(y)]

= ε2nE[ f1(y)
2]+2ε2nE

[
f1(y)

Py

1−Py
f1(y)]−2ε2

E[ f1(y)
Py

(1−Py)2 f1(y)
]

Noting that Py
1−Py

= ∑∞
k=1 Pk

y and Py
(1−Py)2 = ∑∞

k=1 kPk
y , by setting ε = 1/

√
n, we have

c(2)n = m(2)
n =

(
E[ f1(y)2]+2

∞

∑
k=1
E[ f1(y) f1(gk(y))]

)
+

1
n

(
−2

∞

∑
k=1

kE[ f1(y) f1(gk(y))]

)
+O

(
1
n2

)
= σ2 +

1
n

c(2,1)+O

(
1
n2

)
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with σ2 as given in Eq. (1) and c(2,1) as given in Eq. (5).
Similarly, we obtain for the third moment of xn

c(3)n = m(3)
n =

1√
n

(
E[ f1(y)3]+

∞

∑
k=1

3
(
E[ f1(y)2 f1(gk(y))]+E

[
f1(y) f1(gk(y))2

])
+6

∞

∑
k=1

∞

∑
l=1
E[ f1(y) f1(gk(y)) f1(gk+l(y))]

)

=
1√
n

c(3,1)

with c(3,1) as in Eq. (6).
For the fourth moment, we have

m̂(4)(λ ) =
∞

∑
n=0

λ nm(4)
n

=E

[
λ

1−λ

(
f 4
1

ε4

4!

)
1

1−λ

]
4!

+E

[
λ

1−λ

(
f1

ε
1!

) λPy

1−λPy

(
f 3
1

ε3

3!

)
1

1−λ

]
4!

+E

[
λ

1−λ

(
f 3
1

ε3

3!

)
λPy

1−λPy

(
f1

ε
1!

) 1
1−λ

]
4!

+E

[
λ

1−λ

(
f 2
1

ε2

2!

)
λPy

1−λPy

(
f 2
1

ε2

2!

)
1

1−λ

]
4!

+E

[
λ

1−λ

(
f1

ε
1!

) λPy

1−λPy

(
f1

ε
1!

) λPy

1−λPy

(
f 2
1

ε2

2!

)
1

1−λ

]
4!

+E

[
λ

1−λ

(
f1

ε
1!

) λPy

1−λPy

(
f 2
1

ε2

2!

)
λPy

1−λPy

(
f1

ε
1!

) 1
1−λ

]
4!

+E

[
λ

1−λ

(
f 2
1

ε2

2!

)
λPy

1−λPy

(
f1

ε
1!

) λPy

1−λPy

(
f1

ε
1!

) 1
1−λ

]
4!

+E

[
λ

1−λ

(
f1

ε
1!

) λPy

1−λPy

(
f1

ε
1!

) λPy

1−λPy

(
f1

ε
1!

) λPy

1−λPy

(
f1

ε
1!

) 1
1−λ

]
4!

= ε4 λ
(1−λ )2E[ f

4
1 ]

+4ε4 λ
(1−λ )2

∞

∑
i=1
E

[
f1

(
λαi

1−λαi
pi

)
f 3
1

]
+4ε4 λ

(1−λ )2

∞

∑
i=1
E

[
f 3
1

(
λαi

1−λαi
pi

)
f1

]

+6ε4 λ
(1−λ )2E

[
f 2
1

(
λ

1−λ
p0 +

∞

∑
i=1

λαi

1−λαi
pi

)
f 2
1

]

+12ε4 λ
(1−λ )2E

[
f1

(
∞

∑
i=1

λαi

1−λαi
pi

)
f1

(
λ

1−λ
p0 +

∞

∑
j=1

λα j

1−λα j
p j

)
f 2
1

]

+12ε4 λ
(1−λ )2E

[
f1

(
∞

∑
i=1

λαi

1−λαi
pi

)
f 2
1

(
∞

∑
j=1

λα j

1−λα j
p j

)
f1

]

+12ε4 λ
(1−λ )2E

[
f 2
1

(
λ

1−λ
p0 +

∞

∑
i=1

λαi

1−λαi
pi

)
f1

(
∞

∑
j=1

λα j

1−λα j
p j

)
f1

]

+24ε4 λ
(1−λ )2E

[
f1

(
∞

∑
i=1

λαi

1−λαi
pi

)
f1

(
λ

1−λ
p0 +

∞

∑
j=1

λα j

1−λα j
p j

)
f1

(
∞

∑
k=1

λαk

1−λαk
pk

)
f1

]
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= ε4 λ
(1−λ )2E[ f

4
1 ]

+6ε4 λ 2

(1−λ )3E[ f
2
1 ]

2

+2ε4 λ
(1−λ )2

∞

∑
i=1

λαi

1−λαi
(2E[ f1 pi f 3

1 ]+2E[ f 3
1 pi f1]+3E[ f 2

1 pi f 2
1 ])

+12ε4 λ 2

(1−λ )3

∞

∑
i=1

λαi

1−λαi
(2E[ f1 pi f1]E[ f 2

1 ])

+12ε4 λ
(1−λ )2

∞

∑
i, j=1

λαi

1−λαi

λα j

1−λα j
(E[ f1 pi f1 p j f 2

1 ]+E[ f1 pi f 2
1 p j f1]+E[ f 2

1 pi f1 p j f1])

+24ε4 λ 2

(1−λ )3

∞

∑
i, j=1

λαi

1−λαi

λα j

1−λα j
E[ f1 pi f1]E[ f1 p j f1]

+24ε4 λ
(1−λ )2

∞

∑
i, j,k=1

λαi

1−λαi

λα j

1−λα j

λαk

1−λαk
E[ f1 pi f1 p j f1 pk f1]

By inverse z-transform of m̂(4)(λ ), calculating the residue of m̂(4)(λ )λ−n−1 at λ = 1 we obtain m(4)
n . Note that there are also

poles at 1/αi, but these contribute terms of order αn
i , which decay exponentially with n and therefore don’t appear in the

Edgeworth expansion.

m(4)
n =ε4nE[ f 4

1 ]

+6ε4 1
2
(n2 −n)E[ f 2

1 ]
2

+2ε4n
∞

∑
i=1

αi

1−αi
(2E[ f1 pi f 3

1 ]+2E[ f 3
1 pi f1]+3E[ f 2

1 pi f 2
1 ])

+12ε4 1
2

∞

∑
i=1

(
n2 αi

1−αi
−n
(

αi

1−αi
+2

αi

(1−αi)2

))
(2E[ f1 pi f1]E[ f 2

1 ])

+12ε4n
∞

∑
i, j=1

αi

1−αi

α j

1−α j
(E[ f1 pi f1 p j f 2

1 ]+E[ f1 pi f 2
1 p j f1]+E[ f 2

1 pi f1 p j f1])

+24ε4 1
2

∞

∑
i, j=1

(
n2 αi

1−αi

α j

1−α j

−n
(

αi

1−αi

α j

1−α j
+2

αi

(1−αi)2
α j

1−α j
+2

αi

1−αi

α j

(1−α j)2

))
E[ f1 pi f1]E[ f1 p j f1]

+24ε4n
∞

∑
i, j,k=1

αi

1−αi

α j

1−α j

αk

1−αk
E[ f1 pi f1 p j f1 pk f1]

=ε4n2

(
3E[ f 2

1 ]
2 +12E

[
f1

Py

1−Py
f1

]
E[ f 2

1 ]+12E
[

f1
Py

1−Py
f1

]2
)

+ ε4n
(
E[ f 4

1 ]−3E[ f 2
1 ]

2 +4E
[

f1
Py

1−Py
f 3
1

]
+4E

[
f 3
1

Py

1−Py
f1

]
+6E

[
f 2
1

P⊥
1−P⊥

f 2
1

]
−12E

[
f1

Py

1−Py
f1

]
E[ f 2

1 ]−24E
[

f1
Py

(1−Py)2 f1

]
E[ f 2

1 ]

+12
(
E

[
f1

Py

1−Py
f1

P⊥
1−P⊥

f 2
1

]
+E

[
f1

Py

1−Py
f 2
1

Py

1−Py
f1

]
+E

[
f 2
1

P⊥
1−P⊥

f1
Py

1−Py
f1

])
−12

(
E

[
f1

Py

1−Py
f1

]
E

[
f1

Py

1−Py
f1

]
+4E

[
f1

Py

(1−Py)2 f1

]
E

[
f1

Py

1−Py
f1

])
+24E

[
f1

Py

1−Py
f1

P⊥
1−P⊥

f1
Py

1−Py
f1

])
=3ε4n2σ4
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+ ε4n
(
E[ f 4

1 ]+4E
[

f1
Py

1−Py
f 3
1

]
+4E

[
f 3
1

Py

1−Py
f1

]
+6E

[
f 2
1

P⊥
1−P⊥

f 2
1

]
+12

(
E

[
f1

Py

1−Py
f1

P⊥
1−P⊥

f 2
1

]
+E

[
f1

Py

1−Py
f 2
1

Py

1−Py
f1

]
+E

[
f 2
1

P⊥
1−P⊥

f1
Py

1−Py
f1

])
+24E

[
f1

Py

1−Py
f1

P⊥
1−P⊥

f1
Py

1−Py
f1

]
−3σ4 +12σ2c(2,1)

)
where P⊥ = ∑∞

i=1 pi.

Finally, setting ε = 1√
n and noting the Pk

⊥ = Pk − p0, we get for the fourth cumulant c(4)n = m(4)
n −3(m(2)

n )2 = m(4)
n −3(σ2 +

c(2,1)
n )2 = 1

n c(4,1) with c(4,1) as given in Eq. (7).

Appendix B: Convergence of cumulants for the tripling map

Here we present additional evidence of the validity of the cumulant expansion of Eq. (2) for sums xn = 1√
n ∑n

i=1 f1(y) with

f1(y) = y5 + y4 − 1
6 −

1
5 of the tripling map yi+1 = 3yi mod 1.

Figure 3 demonstrates that the cumulants of xn indeed vary with n as described in Eqs. (2). The values for σ2, c(2,1), c(3,1) and
c(4,1) analytically derived here (see Eqs. (5)-(7)) indeed give the leading order asymptotics of these cumulants. Furthermore, we
show for the third and fourth cumulants that by including a higher order correction of 1/n, the numerical values are matched
extremely well. An analytic expression for this higher order correction is not derived here, but could be found be the same
techniques developed here.

0 100 200
n

0.49

0.50

0.51

0.52

0.53

c
(2)
n

σ2 + c(2,1)/n

0 100 200
n

1.1

1.2

1.3

√
n c

(3)
n

c(3,1)

fit of c(3,1) + a/n

(a) (b)

0 100 200
n

2.75

3.00

3.25

3.50

3.75

4.00

4.25

nc
(4)
n

c(4,1)

fit of c(4,1) + a/n

(c)

Figure 3. Cumulants of sums of the tripling map, comparing Monte Carlo simulation (blue dots) with analytic asymptotics (yellow dotted
lines) and a fit of the analytic asymptotics with one higher order term (green dashed lines) for (a) the second cumulant, (b) the third cumulant
and (c) the fourth cumulant.
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Appendix C: SageMath code to calculate tripling map cumulant expansion

Tested in SageMath version 8.6, release date 2019-01-15.

k , n , p = v a r ( ’ k , n , p ’ )
assume ( p >1)
assume ( n , ’ r e a l ’ )
assume ( n >0)

# o b s e r v a b l e
A( x ) = x ^5 + x ^4
A( x ) = A( x ) − i n t e g r a l (A, x , 0 , 1 )

# second o r d e r c o r r e l a t i o n
C( n , p ) = sum ( i n t e g r a l ( (A( x ) ) ∗ (A( ( p^n )∗ x − k ) ) , x , k / ( p^n ) ,

( k + 1 ) / ( p^n ) ) , k , 0 , ( p^n ) − 1)
C( n ) = C( n , 3 )

# Green−Kubo e q u a t i o n
sigma2 = C ( 0 ) + 2∗sum ( (C( n ) ) . expand ( ) . s i m p l i f y ( ) ,

n , 1 , oo , a l g o r i t h m = ’ g iac ’ )
# F i r s t c o r r e c t i o n t o second cumulan t
c21 = − 2∗sum ( ( n∗C( n ) ) . expand ( ) , n , 1 , oo , a l g o r i t h m = ’ g iac ’ )

# t h i r d o r d e r c o r r e l a t i o n s
k1 , k2 , n1 , n2 = v a r ( ’ k1 , k2 , n1 , n2 ’ , domain =" p o s i t i v e " )
C3 ( n1 , n2 ) = sum ( sum ( i n t e g r a l ( (A( x ) ) ∗ (A( ( 3 ^ n1 )∗ x − ( k1 −1) ) )

∗ (A( ( 3 ^ ( n1+n2 ) ) ∗ x − (3^ n2 ) ∗ ( k1−1) − ( k2 −1 ) ) ) ,
x , ( k1 −1 ) / ( 3 ^ n1 ) + ( k2 −1 ) / ( 3 ^ ( n1+n2 ) ) , ( k1 −1 ) / ( 3 ^ n1 ) + k2 / ( 3 ^ ( n1+n2 ) ) ) ,

k1 , 1 , 3^ n1 ) , k2 , 1 , 3^ n2 )

# f i r s t c o r r e c t i o n t o t h e t h i r d cumulan t
c31 = ( C3 ( 0 , 0 ) + 3∗sum ( C3 ( n1 , 0 ) . expand ( ) , n1 , 1 , oo , a l g o r i t h m = ’ g iac ’ )

+ 3∗sum ( C3 ( 0 , n2 ) . expand ( ) , n2 , 1 , oo , a l g o r i t h m = ’ g iac ’ )
+ 6∗sum ( sum ( C3 ( n1 , n2 ) . expand ( ) , n2 , 1 , oo , a l g o r i t h m = ’ g iac ’ ) ,

n1 , 1 , oo , a l g o r i t h m = ’ g iac ’ ) )

# f o u r t h o r d e r c o r r e l a t i o n s
k1 , k2 , k3 , n1 , n2 , n3 = v a r ( ’ k1 , k2 , k3 , n1 , n2 , n3 ’ , domain =" p o s i t i v e " )
C4 ( n1 , n2 , n3 ) = sum ( sum ( sum ( i n t e g r a l ( (A( x ) ) ∗ (A( ( 3 ^ n1 )∗ x − ( k1 −1) ) )

∗ (A( ( 3 ^ ( n1+n2 ) ) ∗ x − (3^ n2 ) ∗ ( k1−1) − ( k2 −1) ) )
∗ (A( ( 3 ^ ( n1+n2+n3 ) ) ∗ x − ( 3 ^ ( n2+n3 ) ) ∗ ( k1−1) − 3^ n3 ∗ ( k2−1) − ( k3 −1 ) ) ) ,
x , ( k1 −1 ) / ( 3 ^ n1 ) + ( k2 −1 ) / ( 3 ^ ( n1+n2 ) ) + ( k3 −1 ) / ( 3 ^ ( n1+n2+n3 ) ) ,
( k1 −1 ) / ( 3 ^ n1 ) + ( k2 −1 ) / ( 3 ^ ( n1+n2 ) ) + k3 / ( 3 ^ ( n1+n2+n3 ) ) ) , k1 , 1 , 3^ n1 ) ,
k2 , 1 , 3^ n2 ) , k3 , 1 , 3^ n3 )

# f i r s t c o r r e c t i o n t o t h e f o u r t h cumulan t
a l g o = ’ sympy ’
c41a = C4 ( n1 =0 , n2 =0 , n3 =0)
c41b = sum ( C4 ( n1=n1 , n2 =0 , n3 = 0 ) . expand ( ) , n1 , 1 , oo , a l g o r i t h m = a l g o )
c41c = sum ( C4 ( n1 =0 , n2 =0 , n3=n3 ) . expand ( ) , n3 , 1 , oo , a l g o r i t h m = a l g o )
c41d = sum ( ( C4 ( n1 =0 , n2=n2 , n3 =0) − C( 0 ) ^ 2 ) . expand ( ) , n2 , 1 , oo , a l g o r i t h m = a l g o )
c41e = sum ( sum ( ( C4 ( n1=n1 , n2=n2 , n3 =0) − C( n1 )∗C ( 0 ) ) . expand ( ) ,

n1 , 1 , oo , a l g o r i t h m = a l g o ) , n2 , 1 , oo , a l g o r i t h m = a l g o )
c41 f = sum ( sum ( ( C4 ( n1=n1 , n2 =0 , n3=n3 ) ) . expand ( ) ,

n1 , 1 , oo , a l g o r i t h m = a l g o ) , n3 , 1 , oo , a l g o r i t h m = a l g o )
c41g = sum ( sum ( ( C4 ( n1 =0 , n2=n2 , n3=n3 ) − C( 0 )∗C( n3 ) ) . expand ( ) ,

n3 , 1 , oo , a l g o r i t h m = a l g o ) , n2 , 1 , oo , a l g o r i t h m = a l g o )
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c41h = sum ( sum ( sum ( ( C4 ( n1=n1 , n2=n2 , n3=n3 ) − C( n1 )∗C( n3 ) ) . expand ( ) ,
n2 , 1 , oo , a l g o r i t h m = a l g o ) . expand ( ) , n1 , 1 , oo , a l g o r i t h m = a l g o ) . expand ( ) ,
n3 , 1 , oo , a l g o r i t h m = a l g o )

c41 = c41a + 4∗ c41b + 4∗ c41c + 6∗ c41d + 12∗ ( c41e + c41f + c41g ) + 24∗ c41h
− 3∗ s igma2 ^2 + 6∗ s igma2 ∗ c21


