
Sovereign rating actions and the implied 
volatility of stock index options 
Article 

Accepted Version 

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 

Tran, V. ORCID: https://orcid.org/0000-0001-9561-8118, 
Alsakka, R. and ap Gwilym, O. (2014) Sovereign rating actions
and the implied volatility of stock index options. International 
Review of Financial Analysis, 34. pp. 101-113. ISSN 1057-
5219 doi: https://doi.org/10.1016/j.irfa.2014.05.010 Available 
at https://centaur.reading.ac.uk/88880/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.irfa.2014.05.010 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



 
 

Sovereign rating actions and the implied volatility of stock index options 

 

Vu Trana, Rasha Alsakkab,*, Owain ap Gwilym b 

a School of Management, Swansea University, Swansea, SA28PP 

b Bangor Business School, Bangor University, Bangor LL57 2DG, UK 

 

This version: 4th April 2014 

 

Abstract  

This paper examines the interaction between the equity index option market and sovereign 

credit ratings. S&P and Moody’s signals exhibit strong impact on option-implied volatility 

while Fitch’s influence is less significant. Moody’s downgrades reduce the market 

uncertainty over the rated countries’ equity markets. Strong causal relationships are found 

between movements in the option-implied volatility and all credit signals released by S&P 

and Fitch, but only actual rating changes by Moody’s, implying differences in rating 

agencies’ policies. The presence of additional ratings tends to reduce market uncertainty. The 

findings highlight the importance of rating information in the price discovery process and 

offer policy implications. 
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1. Introduction 

Credit rating agencies (CRAs) provide valuable functions in assessing credit risk and in 

financial market development (e.g. Coffee, 2006; Bank of England, 2011). However, “hard-

wiring”1 and “cliff effects”2 of credit rating signals have been under scrutiny during the 

global financial crisis (International Monetary Fund (IMF) 2010; Bank of England, 2011). In 

response, rating-based rules and guidelines have been under consideration to be dismissed 

(e.g. US Securities and Exchange Commission (SEC) 2011a, b), and a new CRA regulation 

regime has been established in the European Union (EU).   

This paper investigates the interaction between sovereign rating news and the equity 

index option market. This market is typically inhabited by institutional informed traders (see 

Chakravarty et al., 2004; Chen et al., 2005; Jin et al., 2012). Much literature identifies that the 

derivative markets play a leading role in the price discovery process (e.g. Blanco et al., 2005; 

Acharya and Johnson, 2007; Avino et al., 2013). Therefore, the dynamics of derivative 

markets can provide important information regarding the credit quality of underlying entities. 

In 2011, the turnover of equity index options traded on organised exchanges over the world 

was US$ 166 trillion (Bank for International Settlements, 2012). The equity index option 

market is the second largest segment of exchange-traded financial derivative markets, after 

interest rate derivatives. Given the prominence of both derivative markets and CRAs, 

interesting questions about the interaction between the index option market and credit rating 

actions can be raised. Such investigations must also consider CRAs’ ‘through the cycle’ 

rating philosophy, which implies that credit ratings are stable and possibly lag behind option 

market indicators.3  

                                                            
1 Credit ratings are embedded into regulations and investment mandates thus making them more influential. 
2 Sudden difficulties caused by rating downgrades because many market participants are forced to sell-off 
securities that are downgraded below certain rating thresholds. 
3 Outlook and watch procedures are expected to alleviate the lag to some extent because they help CRAs to 
avoid rating reversals and to mitigate the tension between rating accuracy and rating stability.  
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Volatility is of crucial interest to institutional investors who hold large international 

diversified portfolios. In terms of economic mechanisms, this paper’s analysis is motivated 

by prior literature on the links between sovereign credit risk and the corporate and financial 

sectors’ overall risk, equity market performance and uncertainty (e.g. Arellano, 2008; 

Acharya et al., 2014; Bedendo and Colla, 2013; Borensztein et al., 2013; Gennaioli et al., 

2014). This is discussed further in Section 2.2. 

To the best of our knowledge, there is no prior investigation of the relationship between 

credit ratings and option markets. We address a gap in knowledge about the relative 

information content from the two sources. Moreover, we demonstrate the importance of 

sovereign rating information in the context of first-mover as well as additional rating signals. 

Several robustness checks are performed using non-parametric approaches and Monte Carlo 

experiments. The paper highlights differences in rating policy and varying influence of rating 

signals from the largest three CRAs, namely Moody’s, S&P, and Fitch. 

The main findings are summarised as follows. Firstly, sovereign rating news has a 

significant impact on the option market in various respects depending on the type of news 

and across CRAs. Secondly, there is strong evidence of causality between movements in the 

option market and all types of rating signals from S&P and Fitch, but only actual rating 

changes from Moody’s, thus highlighting differences in rating policies. Moreover, the market 

reactions to S&P and Moody’s signals infer that additional ratings are still informative and 

help reduce market uncertainty. Such results shed light on the price (credit information) 

discovery process. Finally, the findings contribute to the debate surrounding the regulation of 

CRAs and their ratings. 

The remainder of the paper is organised as follows. The next section reviews related 

literature, Section 3 describes the data, Section 4 discusses the research hypotheses and 

methodologies, Section 5 presents the empirical results and Section 6 concludes the paper. 



3 
 

2. Literature review 

2.1. Credit ratings and regulation 

The rating industry performs a gate-keeping role for international capital markets (e.g. 

Coffee, 2006). Issuers seek ratings to improve the marketability of their financial obligations, 

and/or to increase their trustworthiness to business counterparties. Investors use ratings as a 

cost-effective indicator of securities’ credit risk. Credit ratings provide three essential 

economic functions: information production, monitoring, and certification. Firstly, CRAs 

mitigate the fundamental adverse selection problem between borrowers and investors. 

Through the gathering and analysis of data relating to creditworthiness, CRAs mitigate 

informational asymmetry and adverse selection problems, decrease the risk premium of a 

debt issue, and hence increase the liquidity of assets (Bank of England, 2011).  

Secondly, rating-based guidelines and rules perform a monitoring role and mitigate 

principal-agent problems. Moreover, by signalling a potential downgrade via negative 

outlooks or watch lists, CRAs also encourage an issuer to improve its creditworthiness (IMF, 

2010). To the extent that investors respond to rating changes by adjusting their portfolios, 

such negative rating announcements impose the implicit threat on issuers that failure to act 

will degrade their ability to refinance in the future.  

Thirdly, CRAs provide a certification function for fund managers, regulators, central 

banks, and other market participants in distinguishing between securities with different risk 

characteristics, and specifying terms and conditions in financial contracts (IMF, 2010). 

Examples of credit ratings’ certification function can be found in many aspects of 

investments (e.g. Cantor et al., 2007). The certification function is found in regulatory capital 

requirements for insurance firms (Campbell and Taksler, 2003; Coffee, 2006), commercial 

banks and other financial institutions (Basel Committee on Banking Supervision, 2011), and 

in the US SEC’s regulatory references (see SEC 2011a, b).  
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The fact that credit ratings have been “hard-wired” into regulations has widened their 

influence. Regulators use credit ratings to restrict public managed funds to invest in debts 

below certain levels of credit ratings, usually the investment-speculative threshold. The 

motivations for using credit ratings as an instrument for market regulation are: (i) aiming at 

financial soundness via establishing prudential minimum credit quality for portfolio holdings 

(e.g. IMF, 2010; White, 2010); (ii) encouraging a minimum credit quality of securities 

issuance to protect investors (e.g. Coffee, 2006).  

CRAs have faced extensive scrutiny for being too lax in rating structured securities, and 

this is widely regarded as a contributing factor to the US subprime crisis (e.g. White, 2010; 

Bank of England, 2011). In response, several regulatory proposals to monitor CRAs have 

been approved or are under consideration, while rating-based rules and guidelines have been 

under consideration to be dismissed. Many G-20 countries have introduced or are in the 

process of implementing new regulatory changes on CRAs (Bank of England, 2011). In the 

US, the Dodd-Frank Act requires thorough revisions of the role of credit ratings in the US 

regulatory framework. For instance, in March and April 2011, SEC proposed amendments 

removing references to credit ratings in the Investment Company Act of 1940 and the 

Securities Exchange Act of 1934, which are the legal backbone of the US financial system 

(SEC, 2011a, b). In November 2012, one rule, which regulates Business and Industrial 

Development companies who operate under state statutes, among six proposals in SEC 

(2011a) was adopted. As at March 2014, the remaining proposals are still under consideration 

and have not been legally approved.  

CRAs are also accused of precipitating the EU sovereign debt crisis by issuing multiple 

downgrades on Greece, Ireland, Portugal, Spain, and Italy. Politicians in the EU have called 

for further regulation to improve quality and transparency in sovereign ratings. Since 2012, 

all CRAs operating in Europe are required to register with the European Securities and 
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Markets Authority and to observe demanding rules which incorporate the International 

Organization of Securities Commissions’ Code of Conduct Fundamentals for Credit Rating 

Agencies (revised in 2008). 

 

2.2. Economic and market impact of sovereign ratings 

Prior literature shows that sovereign credit risk can spill-over to corporate and financial 

sectors, cross-border investments, and the national economy in numerous ways. Arellano 

(2008) shows that a sovereign default triggers significant surges in the volatilities of interest 

rates, consumption and output. Borensztein el al. (2013) and Bedendo and Colla (2013) show 

that corporate credit risk and borrowing costs are strongly correlated with the evolution of 

sovereign credit risk. Bedendo and Colla (2013) suggest that a government in financial 

distress is more likely to “transfer risk” to corporates by increasing taxation, imposing foreign 

exchange controls, or expropriating private investments.  

Acharya et al. (2014) illustrate a strong relation between sovereign and banks’ risks. 

Deterioration in sovereign creditworthiness significantly triggers increases in banks’ risks not 

only because of their large holdings of government bonds but also due to the reduction in the 

value of government guarantees to banks. For example, in 2011-2012, numerous European 

banks were downgraded by CRAs who explained these downgrades by deteriorations in their 

governments’ financial capacities and willingness to bailout these entities. Moreover, the 

Committee on the Global Financial System (2011) highlights how the European sovereign 

debt crisis affected banks’ ability to raise funding. Collateral damage, risk aversion, and 

crowding-out effects are crucial channels via which deteriorations in sovereign 

creditworthiness strain banks’ funding conditions. The funding difficulties, in turn, force the 

banks to squeeze the credit supply for the economy and consequently threaten the prospects 

of the national economy (Gennaioli et al., 2014).  
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Another strand of literature presents evidence that sovereign credit rating actions are 

influential in many financial markets. Sovereign credit ratings are a major factor influencing 

sovereign yield spreads (e.g. Afonso et al., 2012). Generally, the impact of rating news in the 

debt market is asymmetric. Negative rating news imposes significant impact while the 

influence of positive actions is much more muted. Moreover, sovereign rating news spills 

over to other sovereign bond yields (e.g. Gande and Parsley, 2005; Arezki et al., 2011).  

Equity markets are also affected by sovereign rating news in a similar asymmetric 

manner. Kaminsky and Schmukler (2002) find that rating changes (on emerging sovereigns) 

affect the rated countries’ stock indices. Ferreira and Gama (2007) find that (S&P’s) 

sovereign rating changes of one country impose an asymmetric impact on the stock markets 

of other countries. Sovereign rating downgrades cause negative reactions whereas upgrades 

have no significant impact. Arezki et al. (2011) reveal that sovereign downgrades have 

significant spill-over effects not only across (European) countries but also across financial 

markets, i.e. sovereign credit default swaps (CDS), banking, insurance, and stock markets, 

during the period overlapping the European sovereign debt crisis. Alsakka and ap Gwilym 

(2013) find that both positive and negative credit news affects not only the rated country 

exchange rate but also spills over to other countries’ exchange rates. The market reactions 

vary across CRAs’ signals. 

For derivatives markets, prior literature on the impact of rating actions is restricted to 

examining the CDS market. Norden and Weber (2004) find significant increases in 

(corporate) CDS spreads in advance of negative (corporate) rating events implying that the 

CDS market anticipates negative rating events. Results for positive rating events are much 

less significant. Afonso et al. (2012) find that the CDS market reacts to negative sovereign 

rating events while the reaction to positive events is much more muted. Additionally, rating 

downgrades seem to be anticipated by the CDS market.  
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The above issues suggest that strong economic linkages exist between sovereign rating 

actions and equity market performance and thus market-wide volatility. However, the 

relationship between sovereign ratings and equity options (or implied volatility) has been 

ignored by prior literature. We address a gap in knowledge about the relative information 

content from the two sources.  

Given the prior evidence on the economic links between sovereign risk and uncertainty 

of the national economy, sovereign rating announcements are expected to impact market 

participants’ risk expectations. However, the option market (or implied volatility) will not 

necessarily react to negative (positive) rating news in a negative (positive) direction like other 

financial markets, as evidenced in e.g. Kaminsky and Schmukler (2002), Gande and Parsley 

(2005), Ferreira and Gama (2007), Arezki et al. (2011). Beber and Brandt (2006, 2009) reveal 

that scheduled macroeconomic news always reduces financial market uncertainty regardless 

of whether the news is more negative or more positive compared to prior expectations.4 The 

higher ex-ante uncertainty over the content of the macroeconomic news, the larger the drop in 

the market uncertainty when the news is released.  

Of course, credit rating news is not scheduled. However, market participants often 

consult with multiple CRAs (e.g. Cantor et al., 2007; Bongaerts et al., 2012). Therefore, it is 

rational for investors to expect actions from the other CRAs after a rating announcement from 

a ‘first mover’ CRA. We, thus, expect variation in the market reaction across CRAs. Prior 

literature also shows that there are variations in other market reactions to rating news released 

by different CRAs (e.g. Alsakka and ap Gwilym, 2013). 

The option market is typically inhabited by institutional, informed traders (e.g. 

Chakravarty et al., 2004; Chen et al., 2005; Jin et al., 2012). Derivative markets also play a 

                                                            
4 While Beber and Brandt (2006) employ the second moment of option-implied state-price-densities to proxy the 
(US Treasury) market uncertainty, Beber and Brandt (2009) use (US T-bonds, S&P 500 index, Eurodollar, 
stocks) options-implied volatilities. 
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leading role in the price discovery process (e.g. Blanco et al., 2005; Acharya and Johnson, 

2007; Avino et al., 2013). Sovereign credit issues are less opaque to observe compared to 

those of corporate, banks and other issuers. Therefore, the market reactions of implied 

volatility to sovereign rating signals could be in either positive or negative directions. 

 

3. Data 

This study is based on an unbalanced panel dataset which covers 24 countries during 

the period from January 2000 to April 2012. The availability of traded stock index options 

determines the sample size and sample periods, i.e. we include all countries with data 

available for stock index options, except for 5 countries without any rating actions during the 

options sample period (Canada, Malaysia, Norway, Sweden, Switzerland).5 Table 1 lists the 

countries and the sample periods.  

 
3.1. Credit ratings 

Rating information is collected from Moody’s, S&P, and Fitch publications. This 

dataset consists of daily observations of long-term foreign-currency credit ratings, outlook 

and watch status of sovereigns rated by these three leading CRAs. Fig. 1 presents the 

distribution of daily ratings of sovereigns for each CRA. None of the 24 sovereigns were 

rated lower than BBB- (Baa3) by S&P, Fitch, and Moody’s during the sample period. About 

60% of the daily observations are in the triple-A rating category, and 2%-5%, 4%-7% and 

around 3.5% are at AA+/Aa1, AA/Aa2 or AA-/Aa3 rating categories. These proportions 

reflect the developed nature of the sample countries, which obviously coincides with the 

development of liquid stock index option markets.  

                                                            
5 Greece is excluded due to very low trading volume for stock index options. Options on Portugal PSI 20 and 
Ireland ISEQ were not traded during the sample period. 
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We convert sovereign ratings to numerical scores within a 31-point comprehensive 

credit rating (CCR) scale in order to capture information on both actual ratings and 

outlook/watch procedures. On the CCR scale, rating symbols are converted as follows: 

AAA/Aaa ≡ 31, AA+/Aa1 ≡ 28, AA/Aa2 ≡ 25 ... BBB-/Baa3 ≡ 4, lower than BBB-/Baa3 ≡ 1. 

Adjustments for (positive/negative) outlook and watch announcements are made by adding 

±1 and ±2, respectively, on the CCR scale.  

There is non-linearity in the rating scale, which means that the differences between 

rating levels are not equal. For example, a downgrade from AAA to AA+ or a downgrade 

from the investment grade to the junk grade have different implications to a downgrade from 

A to A-. Historical observations on default rates across rating categories also suggest such 

non-linearity (see e.g. IMF, 2010 and many others). In order to control for this, we employ a 

logit-transformation of the rating scale, constructed as follows: 










CCR

CCR
LCCR

32
ln  

Prior literature has used a logarithm transformation of the rating scale (e.g. Alsakka and 

ap Gwilym, 2013), but their transformation is different to ours. Their transformation gives the 

highest weight for rating changes on AAA and near bankruptcy issuers and the lowest weight 

for rating changes near the investment-speculative boundary. In contrast, our transformation 

gives greatest weights for rating changes on AAA and those near the investment-speculative 

threshold.  

There are several reasons why we adopt this particular log-transformation of the rating 

scale. Firstly, the speculative threshold is considered as very critical among rating users. For 

example, the U.S. Investment Company Act of 1940 restricts pension funds and 

municipalities to the investment-grade range. Insurance firms also rely heavily on assets with 

investment-grade ratings because regulatory capital reserves increase significantly for 
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speculative assets (Campbell and Taksler, 2003). The speculative threshold is one of the most 

critical concerns to investors (e.g. Cantor et al., 2007; Bongaerts el al., 2012). Therefore, it is 

reasonable to assign more weight to rating changes around this threshold. Secondly, there is 

no rating observation lower than BBB- during the sample period. Thirdly, it is reasonable that 

rating changes at the top of the scale are also given more weight (e.g. as evidenced by the 

reactions to sovereign downgrades of France, UK, and USA in 2011-2013). 

Outlook and watch signals are defined as follows. Negative watch signals include 

placing a sovereign on watch for possible downgrade and withdrawing watch status for 

possible upgrade (without an actual upgrade). Positive watch signals include placing a 

sovereign on watch for possible upgrade and withdrawing watch status for possible 

downgrade (without an actual downgrade). Negative outlook signals include changes to 

negative outlook from stable/positive outlook, and changes to stable outlook from positive 

outlook (without any rating change). Positive outlook signals include changes to positive 

outlook from stable/negative outlook, and changes to stable outlook from negative outlook 

(without any rating change). During the period, there are 13 (29), 10 (16), 9 (19) positive 

(negative) outlook announcements for the sample countries made by S&P’s, Moody’s, and 

Fitch, respectively. The corresponding figures of watch actions are 11 (11), 9 (11), and 3 (3) 

(see Table 2). 

Table 2 presents the sovereign credit rating events for each CRA. In total, there are 78 

(126) positive (negative) rating events released by the CRAs during the sample periods for 

the selected sovereigns. S&P released the most rating news with 33 positive and 56 negative 

signals. There are 26 (39) positive (negative) rating announcements by Moody’s while the 

figures are 19 (31) by Fitch. Almost all of the rating events are “clean” i.e. are not followed 

by same direction rating signals from other CRA(s) within at least 1 week. There are only 12 

rating events which involve more than one CRA taking action on the same sovereign within 
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one week. This is in support of the view that each CRA has its own policy on rating 

timeliness and rating stability (e.g. Alsakka and ap Gwilym, 2010).6 

The majority of rating events are single, whereby they do not involve both a rating 

downgrade/upgrade and outlook or watch signals, simultaneously. There are only 2/65 rating 

events made by Moody’s, and 1/50 by Fitch which are such multiple-rating events. S&P have 

released no such multiple-rating events during the sample periods. The majority of rating 

events are also within 3-point signals in the CCR scale which mean an outlook or watch 

announcement or a 1-notch downgrade/upgrade in isolation. There are only 3/89 rating events 

made by S&P, 6/65 by Moody’s, 3/50 by Fitch which are multiple-notch 

downgrades/upgrades. 

 
3.2. Implied volatility 

Data on 30-day call option- implied volatility (IV) upon the countries’ stock indices is 

collected from DataStream. The primary sources of data on premium, strike price, and 

maturity of the call options are the exchanges where these options are traded. The IV is 

estimated via the Black-Scholes model (for European style contracts) and the Cox-Ross-

Rubinstein binomial model (for American style contracts). An interpolation is calculated 

based on four series of call option contracts: two nearest to at-the-money and two nearest to 

30-day maturity. We use at-the-money contracts to mitigate the effects of skewness and 

smile.7 Also, the 30-day maturity means that the IV estimates short-term expected volatility 

which coincides with the short-term horizon of the rating watch procedure. 

There are 35,683 daily observations of 30-day implied volatility. Fig. 2 presents the 

distribution of the IV. During the sample periods, there are 315 observations where IV is 

                                                            
6 Market participants value both rating accuracy and stability. Rating stability is appreciated by many market 
participants, especially regulators, pension funds, mutual funds who often follow passive investment strategies. 
In these cases, a precisely accurate but wildly volatile rating system induces unbearably high transaction costs. 
7 Prior studies show that IVs are usually much higher for deep in the money and deep out of the money option 
contracts compared to at-the-money contracts, and this is known as the “smile” pattern. 
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greater than 100% in Hungary (14/01/2003-16/6/2003), Poland (7/2001, 10-11/2001, 2-

8/2002, 11/2002), and Russia (10/2008-4/2009). All (most) of these observations are 

associated within 1 month to at least one observation of absolute value of the underlying 

index return larger than 1% (3%). 54% of the observations are associated with at least one 

observation of absolute value of the index return larger than 10%. There were nine rating 

signals on the three sovereigns during these periods. Therefore, we do not exclude these 

observations in order to avoid possible information loss. Moreover, equivalent empirical 

investigations based on excluding the 315 observations produce qualitatively similar results 

(discussed further in Section 5).  

Our main interest is in the dynamics of the IV, and Fig. 3 presents the distribution of 

daily changes in the IV. The changes are very much centred around zero with a mean of 

0.0000451, median of 0, and standard deviation of 0.031.8 

 

4. Hypotheses and methodological framework 

4.1. Hypothesis I: Influence of rating news in the option market  

 H0: Credit rating news does not impose a discernable influence on the option market. 

Therefore, changes in the IV around any type of rating event are not statistically different 

from zero. 

In this stage, we use a standard event study. The event window is one week before 

and after rating events in order to mitigate any information contamination. Three intervals are 

defined as [-5, -1], [-1, 1], [1, 5]. t=0 denotes the day when a rating announcement is released. 

The [-1, 1] window is chosen rather than [0, 1] in order to control for any time zone issue.9 In 

addition, we only include clean events which are not followed or overlapped by rating 

                                                            
8 We exclude 23 observations of the daily ∆IV whose absolute values are greater than 50%, accounting for 
0.067% of total observations.  
9 Please note that our [-1, 1] window is equivalent to [0, 1] in other studies which examine financial assets 
returns because an asset return for day 0 incorporates information on the asset’s prices in day -1 and day 0. 
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announcement(s) on the same sovereign by another CRA(s) within at least 1 week in order to 

further avoid information contamination.10 With such a short distance in time (i.e. one week), 

it is highly plausible that two (or more) CRAs are reacting to the same underlying credit 

issue. Rating signals from different CRAs are pooled together in order to increase the 

numbers of events and hence the power of the testing procedure.11  

Prior literature shows that the option market is efficient and there is no significant 

evidence of forecastability of implied volatility. Konstantinidi et al. (2008) use numerous 

economic indicators in several econometric models in an attempt to forecast the evolution of 

US and European option implied volatilities, but none of these variables is significant and the 

adjusted R2 values of all the models are very near to zero. Moreover, out-of-sample 

forecasting evidence mostly favours the random walk model for evolution of the IVs. Jiang 

and Tian (2012) also support the random walk hypothesis for modelling the implied volatility 

extracted from S&P 500 index options. Therefore, we examine changes in the IV instead of 

modelling an abnormal element in the changes.12 

In order to avoid any possible bias due to the distribution of the sample mean of the 

∆IV due to the limited numbers of rating events, non-parametric tests are employed as 

robustness checks. The non-parametric tests are sign- and Wilcoxon tests, testing whether the 

medians of the ∆IV during the time windows are significantly different to zero. 

 

 

 

                                                            
10  Only for this event study, we exclude 12 ‘unclean’ rating events (mentioned in Section 3.1). Later 
investigations are based on all rating events. 
11 We are aware that the market reaction might vary across CRAs. The potential for varying reactions is 
examined by later methodologies. 
12 We also conducted Durbin-Watson and Breusch-Godfrey tests for the random walk of IVt in our sample. For 
most countries, the null hypothesis that IVt follows a random walk is accepted. The exceptions are Austria, 
France, Japan, Russia, Taiwan and USA. Results are available on request.  



14 
 

4.2. Hypothesis II: Varying impact across CRAs’ actions 

 H0: The impact of rating signals on the option market is similar across CRAs.  

Varying market reactions to rating news from different CRAs are reported in the 

literature (e.g. Bongaerts et al., 2012; Alsakka and ap Gwilym, 2013). The following 

regression is estimated: 

              ∆IVi, s = α + β* ∆LCCRi, t + γ*CCR i, t + θ*Co + ψ*Y + εi,t                    (1) 

∆IVi,s represents changes in the implied volatility for sovereign i during time windows s 

around credit signals from each CRA. Time windows are restricted to 3 months before- and 

after- credit signals. Specifically, [-66, -22], [-22, -5], [-5, -1] capture the market movements 

preceding rating news by 3 months, 1 month and 1 week, respectively; [-1, 1] conveys the 

market movements when rating news is released; [1, 5], [5, 22], [22, 66] capture market 

movements after rating news during 1 week, 1 month, 3 months later.  

ΔLCCR measures the sovereign credit signals, representing the 1-day change in the 

log-transformation of the CCR for sovereign i at event date t. CCR is the comprehensive 

credit rating from each CRA, which is included as an explanatory variable to control for 

macroeconomic news and other fundamentals of the rated sovereigns (e.g. Prati et al., 2012; 

Alsakka and ap Gwilym, 2013). As macroeconomic and other fundamentals are determinants 

of sovereign ratings, the inclusion of ratings, in addition to country and year dummies, helps 

control for the likelihood that IV might be more volatile in countries with weak 

macroeconomic conditions. Thus, including CCR reduces any potential omitted variable bias.  

Co and Y are full vectors of country and year dummies. For each country and year in 

our data, we define one dummy variable. In total, there are 24 country dummies and 13 year 

dummies (2000-2012). 

Estimations of Eq. (1) are based on event days plus a country-matched random 

sample, drawn from the full sample after excluding non-event observations within the time 
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windows around rating events, in order to mitigate rating clustering and market noise issues 

(see Ferreira and Gama, 2007).13 It is noteworthy that the sample consists of observations on 

non-consecutive days that may be very distant from each other.  

In order to consider varying impacts across CRAs’ actions (if any), we estimate Eq. 

(1) for each CRA separately. For each CRA, there are three separate estimations for different 

types of signals (i.e. actual rating, outlook, watch announcements) in order to investigate the 

asymmetric market behaviour (if any). For ease of interpretation, the absolute value of 

∆LCCR is used.  

Furthermore, we perform Monte Carlo experiments as robustness checks by repeating 

the country-matched random sampling 10,000 times. Each time, our sample consists of a 

number of event observations plus the same number of random non-event observations. 

Based on this sample, regressions for the CRAs are run and the averages of estimated 

coefficients across the 10,000 times are reported (see Gande and Parsley, 2005). 

 

4.3. Hypothesis III: Causality between sovereign rating and IV 

 H0: Neither sovereign rating actions nor IV changes cause changes in the other variable.  

Given the leading role of derivatives markets (Blanco et al., 2005; Acharya and Johnson, 

2007; Jin, et al., 2012; Avino et al., 2013), we expect some evidence that the option market 

leads rating actions. Nonetheless, the lead-lag relationship between the market and ratings 

assigned by different CRAs could be different since the timeliness and policies of each CRA 

are not necessarily the same. 

Granger causality tests in a panel framework are conducted by estimating separate 

regressions of changes in the IV and sovereign ratings, as follows: 
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13 Equivalent estimations based on the full sample produce qualitatively similar results (available upon request). 
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 (k=5, 22, 66) 

∆IVi,t denotes daily changes in IV. Consistent with prior literature (e.g. Konstantinidi et 

al., 2008), we find that ∆IV is stationary. We employ Augmented Dickey-Fuller, KSS 

(Kapetanios et al., 2003) and KPSS (Kwiatkowski, et al., 1992) tests for stationarity in the 

context of individual time series. In addition, existence of a unit-root in the context of panel 

data is tested using procedures proposed in Im et al. (2003). The results (available upon 

request) from all the tests are in line with each other and strongly support the view that ΔIV is 

globally stationary. 

∆CCR denotes daily changes in the comprehensive credit rating from a given CRA 

(note that there are limited numbers of rating events during the 12-year sample period). We 

use ∆CCR instead of ∆LCCR to avoid any possible bias in the lead-lag relationship in the 

middle of the CCR scale (see Afonso et al., 2012), but we provide further evidence on this in 

Section 5.3. We are interested in the question of whether there are significant market 

movements prior to rating news or not.  

Z is a vector of fundamentals that affect ratings and implied volatility. However, given 

the fact that daily observations are not available for all the fundamentals, we restrict ΔZ to 

contain stock market returns14 (daily log returns of the underlying indices) and changes in 

CCR from the other two CRAs. Firstly, it is reasonable to include equity markets in models 

examining the lead-lag behaviour between the option market and credit rating signals due to 

the fact that the equity market and the option market both play roles in the price discovery 

process (e.g. Chen et al., 2005). Given the well-known leverage effect, the stock index return 

helps control for the fact that credit ratings and the option market do not adjust at the same 

frequency. Secondly, including lagged values of ratings from other CRAs controls for the fact 

                                                            
14 The stock market returns are stationary during the sample period. 
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that both the market participants and CRAs are aware of previous ratings from other CRAs. 

Market participants usually consult with multiple ratings (e.g. Cantor et al., 2007; Bongaerts 

et al., 2012). There is also evidence of interdependence between CRAs’ sovereign ratings 

(Alsakka and ap Gwilym, 2010). Therefore, it would be naïve to assume that either the 

market participants or CRAs are unaware of previous rating actions from other CRAs. 

Equations (2) and (3) are estimated by the fixed effects technique rather than the 

Arellano and Bond (1991) GMM technique due to several reasons. Firstly, there are very 

large numbers of observations for each country. The bias in estimated coefficients of lagged 

values of dependent variables should be close to zero. Secondly, GMM relies on asymptotic 

theory and requires a large number of individuals (N), but N=24 in our sample. Moreover, 

GMM would imply taking the differences of the differences of ratings, IV, and equity returns 

which would amplify the noise in the regressions. It should be borne in mind that the 

frequency of rating changes is much less than those of the market indicators. Taking second 

differences would lead to two consequences which in turn amplify market noise. Firstly, the 

gap between the frequencies and variability of rating changes and those of market indicators 

(i.e. IV and stock returns) would be amplified. Secondly, the leverage effect would be 

neutralized. In testing the possible causality, we employ log-likelihood tests of the joint 

significance of all coefficients of lagged values of the changes in CCR in Eq. (2) and the 

changes in IV in Eq. (3). 

 
5. Empirical results 

5.1. Influence of sovereign rating news in the option market  

Table 3 presents the results of the event study. Panel A of Table 3 demonstrates an 

asymmetric pattern in the market reaction to rating signals. Specifically, there are significant 

responses to rating downgrades while the market impact of upgrades is muted. These 

reactions are confirmed by each testing procedure. Within a week following downgrades, the 
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IV on average reduces by 2.4 percentage points. This is similar to findings in prior literature 

on the impact of rating signals in other markets in the sense that upgrades generally do not 

trigger significant reactions from financial markets (Kaminsky and Schmukler, 2002; Gande 

and Parsley, 2005; Ferreira and Gama, 2007). However, the reduction in IV in response to 

downgrades is unexpected. Why does the option market consider an equity market in a 

recently downgraded country (i.e. a lower creditworthiness), to be less uncertain? One 

possible justification is that the market anticipates credit problems in advance and rating 

downgrades might serve as means of confirming the market anticipation (see Beber and 

Brandt, 2006). However, there is no evidence that upgrades and downgrades are anticipated 

by the market within the prior week. Rating upgrades (downgrades) might be anticipated 

further in advance. Increasing the length of time windows could answer the question. 

However, this approach encounters a rating clustering problem and reduces the number of 

(clean event) observations, hence, the power of the tests. The later methodology relaxes this 

constraint.  

Results from rating outlook signals are presented in Panel B of Table 3. There is no 

evidence that positive outlook signals induce market reactions. For the negative outlook 

signals, the non-parametric tests present significant evidence that the IV on average decreases 

by 1.3 percentage points within the subsequent week. Again, the IV reduces in response to 

negative rating news. The reaction is not immediate but within a short period. The evidence 

supports the previous conjecture about the confirmation effects of rating news.  

Panel C of Table 3 presents results from rating watch signals. The IV significantly 

increases by 1.6 percentage points at the time of both positive and negative watchlist signals. 

The response to negative watch news is short-lived while the market seems to overreact to 

positive watch announcements, i.e. the IV reduces by 2.5 percentage points during the 

following week. Although outlook and watch are monitoring procedures, watchlist is a much 
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stronger statement and CRAs aim at a short-term horizon in resolving the watch status. This 

contributes to explaining the greater relevance of watch announcements to 30-day IV. 

One interesting remark on Table 3 is that only watch announcements trigger immediate 

market responses. The responses are of the same sign, i.e. IV increases, regardless of the sign 

of watch announcements. In contrast, downgrades induce positive (but not immediate) market 

reactions, i.e. IV decreases, implying a confirmation effect of actual rating changes. The 

results suggest that the information content of rating signals for the option market depends on 

signal types rather than whether they are positive or negative.  

 

5.2. Varying responses to CRAs’ signals 

Tables 4 to 6 report the estimated coefficients of Equation (1) examining changes in IV 

during the time windows around rating signals from each CRA. The variable of interest is 

‘ΔLCCR’, representing the 1-day change in the log-transformation of the CCR scale of 

sovereign i at event date t. It should be noted that 1-unit changes in the CCR cause varying 

effects on the LCCR depending on the starting level of a sovereign rating. For example, 1-

notch downgrades on AAA sovereigns cause 1.488-unit decreases while 1-notch downgrades 

on A or A- sovereigns cause 0.379-unit decreases in the LCCR.15 Negative outlook (watch) 

signals on AAA sovereigns cause 0.726-unit (1.165-unit) decreases while equivalent signals 

on A or A- sovereigns cause much weaker responses in the LCCR. 

Table 4 shows that S&P rating news is influential in the market. The only time window 

where the coefficient of ΔLCCR is significant is [-1, 1]. This holds except for cases of 

positive watch announcements.16 The absence of significant coefficients during the other time 

windows implies immediate and short-lived effects of S&P’s rating announcements in the 

                                                            
15 There are downgrades/upgrades without prior outlook or watch signals. 
16 S&P never put a sovereign issuer on watch for possible upgrade during the sample period. All the positive 
watch actions in the S&P sample are confirming actual ratings after being on watch for possible downgrades.   
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market. Downgrades and upgrades impact the market in opposite manners. In cases of 

downgrades, the coefficient of ΔLCCR is significantly greater than zero implying that S&P’s 

downgrades trigger an increase in the IV. The magnitude of the increase depends not only on 

the magnitude of rating downgrades but also the current level of sovereign ratings. The IV, 

on average, increases by 3.8 percentage points in response to 1-notch downgrades on AAA 

sovereigns (1.488*0.0258). The IV decreases by 3.4 percentage points in response to a 1-

notch upgrade of a sovereign to AAA (1.488*0.0227).  

Negative outlook/watch announcements increase the IV while positive outlooks reduce 

the market uncertainty relating to rated sovereigns’ equity markets. The magnitude of the 

market reactions to positive outlook news is less than for negative outlook. In response to 

negative outlook news on an AAA sovereign, the IV increases 1.7 percentage points 

(0.726*0.0228). The reactions to negative watch signals are stronger, whereby the IV 

increases 2.5 percentage points (1.165*0.0216). Coefficients of CCR are generally 

insignificant, which infers that the current level of creditworthiness does not help to explain 

the dynamics of IV. In other words, the option market already subsumes current financial, 

macro-economic fundamentals of the rated sovereigns, which is consistent with the view that 

the evolution of implied volatility cannot be forecasted (e.g. Konstantinidi et al., 2008; Jiang 

and Tian, 2012). 

Table 5 reports the results of Equation (1) for Moody’s news. There are some 

statistically significant coefficients of ΔLCCR during the pre-event windows. However, it is 

problematic to interpret these as evidence of rating anticipation since the coefficients’ signs 

are not consistent with each other. For example, the IV decreases in advance of downgrades 

but increases prior to negative outlook/watch announcements. All the coefficients of ΔLCCR 

during the [-1, 1] time window are insignificant while those during the [1, 5] time window are 

all significant. The results imply that the market does not react immediately to Moody’s 
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rating news. The reactions come after Moody’s rating news is released, and in an opposite 

manner to the reactions to S&P signals. Moody’s downgrades trigger a decrease in IV while 

its upgrades trigger an increase. The IV decreases by 3.7 percentage points in response to 1-

notch downgrades on AAA sovereigns (1.488*0.0248). However, the IV increases by 9.2 

percentage points in response to 1-notch upgrades of sovereigns to AAA (1.488*0.0615). 

Other results are similar to Table 4. Specifically, coefficients of CCR are generally 

insignificant in explaining changes in IV and strong market reactions are found only during 

one time window. 

Table 6 reports the results of Equation (1) for Fitch. The results show that Fitch’s rating 

news has limited influence in the option markets. There is no significant evidence that Fitch 

rating signals trigger movements in the IV except for cases of downgrades. Here, the 

coefficient of ΔLCCR during the [-1, 1] window is significant and negative implying that 

Fitch’s downgrades induce a decrease in the IV. On average, the IV reduces by 3.3 

percentage points in response to 1-notch downgrades on AAA sovereigns (1.488*0.0222). In 

other words, Fitch’s downgrades reduce the market uncertainty. Results for CCR coefficients 

are very similar to those from Moody’s and S&P. 

Table 7 presents results of the Monte Carlo experiments. The results are strongly 

consistent with those from Tables 4-6. Overall, the market reaction varies across CRAs’ 

signals. There is no significant reaction to Fitch announcements while the reactions to rating 

signals from S&P are opposite to those from Moody’s. The only coefficient which is 

statistically significant in Panel A of Table 7 (reporting the market reactions to S&P signals) 

is of ΔLCCR during the [-1, 1] window. This indicates that S&P’s rating actions trigger 

immediate and short-lived responses from the market. The coefficient is negative meaning 

that S&P’s upgrades (downgrades), where ΔLCCR is positive (negative), significantly reduce 

(increase) IV during the [-1, 1] window. In contrast, the only coefficient which is statistically 
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significant in Panel B of Table 7 (for Moody’s signals) is of ΔLCCR during the [1, 5] 

window. The positive sign of the coefficient indicates significant increases (decreases) in IV 

following Moody’s upgrades (downgrades). 

In summary, there is significant evidence that sovereign credit rating signals induce 

reactions in the option market. There is also an asymmetric pattern in the market reactions. 

However, the asymmetry is not only between negative and positive rating news but also 

across CRAs. The influence of Fitch rating changes is less significant. This is consistent with 

Bongaerts et al. (2012) who reveal that Fitch plays a ‘tiebreaker’ role when there is a split 

between Moody’s and S&P around the investment-speculative threshold.17 All sovereigns in 

our sample are rated at investment-grade (by Moody’s and S&P), which could explain the 

limited impact of Fitch upgrades. The results for Fitch downgrades imply that even 

downgrades from the ‘tiebreaker’ do matter and reduce the market uncertainty. This leads to 

a possible argument that additional ratings are likely to reduce market uncertainty. To some 

extent, this is in line with Beber and Brandt (2006, 2009) who reveal that scheduled 

macroeconomic news always reduces market uncertainty (even when news is more negative 

than prior expectations). Of course, sovereign rating news is not scheduled. However, 

because market participants usually consult with multiple CRAs (e.g. Cantor et al., 2007; 

Bongaerts et al., 2012), it is rational for investors to expect actions from the other CRAs after 

a downgrade from a ‘first mover’ CRA. 

The results from Moody’s downgrades and S&P upgrades lend support to this 

argument. In our sample, all Moody’s downgrades followed S&P downgrade(s) on the same 

sovereign(s) except for downgrades of Hungary in November 2008. 18  Meanwhile, all 

                                                            
17 Bongaerts el al. (2012) is based on corporate ratings. Their decision to treat Fitch as the additional rater was 
based on the market shares. The market shares are similar between corporate and sovereign ratings. 
18 Moody’s downgraded Hungary on 07/11/2008 while S&P downgraded Hungary on 17/11/2008. However, the 
former action narrowed while the latter action widened the split between the two CRAs. Some S&P downgrades 
(on Austria, France, USA) were not followed by Moody’s within our sample periods. 
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Moody’s upgrades during the period led S&P upgrades on the same sovereigns. 19  This 

supports the view that S&P tends to lead in sovereign downgrades while Moody’s tends to be 

‘first mover’ in upgrades (e.g. Alsakka and ap Gwilym, 2010). This section has reported that 

Moody’s downgrades and S&P upgrades significantly reduce the market uncertainty. It is 

worth commenting that the reaction to Moody’s downgrades is found to be significant only 

during the [1, 5] window not the [-1, 1] time window. Moreover, the positive reaction is 

found after Moody’s negative news i.e. downgrades. This reaffirms the implication about the 

confirmation effects of actual rating actions, which was mentioned in Section 5.1. Actual 

rating changes (even downgrades) from CRAs who often lag in a specific type of rating 

action are likely to reduce the market uncertainty.  

In order to further clarify the argument, we re-specify our investigations by including 

dummies indicating whether a rating event widens or narrows the rating split between each 

pair of the CRAs. However, there is a lack of variation in the dummies indicating the split 

changes between Moody’s and S&P in each type of rating news, i.e. downgrades, upgrades 

(as analysed above). Therefore, it is only meaningful to re-specify the investigations on Fitch 

rating news. As previous results support Bongaerts et al.’s (2012) view that Fitch plays a ‘tie-

breaker’ role, the variable is constructed to consider the split between Fitch actual ratings and 

average ratings from Moody’s and S&P. The variable takes the value of 1 if Fitch signals 

reduce the split, -1 if Fitch signals widen the split, and 0 otherwise. The results are 

qualitatively the same as those in Table 6 (available upon request). The only difference is that 

the significance level of ∆LCCR in explaining ∆IV during the [-1, 1] window becomes 5% 

(instead of 10%). The coefficient of the variable is significantly negative at 5%. This result 

indicates that the market consults with Fitch downgrades in the wider context of Moody’s and 

S&P ratings. Implied volatility is reduced when Fitch downgrades reduce the disagreement 

                                                            
19 Some sovereigns experienced upgrades from only one of these two CRAs (Czech Republic, Finland, Israel, 
Korea). 
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between the CRAs about a sovereign’s creditworthiness. This reaffirms the implication about 

the confirmation effects of actual rating news in Section 5.1.  

Overall, these findings support the ‘information producing’ role of credit ratings both in 

the context of ‘first mover’ as well as additional ratings. Taken together, the results stress the 

importance of credit ratings, especially multiple ratings, because additional ratings are likely 

to reduce the market uncertainty. 

 

5.3. Lead-lag relationship between implied volatility and credit ratings 

Table 8 presents the results of Equations (2) and (3). The causality between movements 

of the option-implied volatility and sovereign rating signals varies across CRAs. There is 

highly significant evidence of relationships between S&P and Fitch signals and the option 

market. In contrast, Moody’s signals exhibit no causality in either direction.  

For S&P, the evidence that changes in IV Granger-cause sovereign rating news is 

stronger than that of the reverse relationship. ∆IV Granger-causes sovereign rating news for 

each lag length (i.e. within 1 week, 1 month, and 3 months). Meanwhile, S&P rating news 

only Granger-causes ∆IV for lags within 3 months. The findings are in line with prior papers 

researching rating anticipation by the CDS market (Norden and Weber, 2004; Afonso et al., 

2012) in the sense that rating changes could be anticipated by the derivative market.20 The 

results from Fitch demonstrate stronger implications (than from S&P) that movements of the 

IV Granger-cause rating news instead of vice versa. Specifically, there is no significant 

evidence that Fitch signals Granger-cause ∆IV even for lags within 3 months while there is 

significant evidence that ∆IV Granger-causes Fitch rating actions for lags within 1 month and 

within 3 months. However, we fail to reject the null hypothesis that either ∆IV or Fitch 

                                                            
20 We also estimate probit models testing whether movements in the IV prior to rating events are significant in 
explaining the probabilities of rating events. The results (available upon request) generally agree that (even) 
downgrades (from all the CRAs) could be anticipated by the option market.  



25 
 

signals leads each other in the very short-term, i.e. lags within 1 week. In general, the 

evidence for S&P and Fitch supports the view that changes in option-implied volatility help 

explain changes in creditworthiness of underlying entities which is, to some extent, consistent 

with prior papers (e.g. Collin-Dufresne et al., 2001; Cao et al., 2010).21 

There is no significant evidence of the causality or lead-lag relationship between ∆IV 

and Moody’s actions, even for lags up to 3 months. Among the CRAs, Moody’s explicitly 

provide details on the methodologies of their market implied ratings, e.g. Moody’s KMVTM 

which incorporates information from the option market. Therefore, it is hard to argue that 

Moody’s is unaware of the market movements. However, Moody’s actions are not following 

market movements. In other words, Moody’s ratings are tardy compared to those from S&P 

and Fitch. One logical explanation could be Moody’s following a policy of rating stability.  

In order to further clarify the above argument, we re-estimate Equations (2) and (3) 

based on information of actual rating changes and outlook/watch signals, separately. There is 

significant evidence that ∆IV Granger-causes Moody’s actual rating changes for lags up to 3 

months, but not vice versa. There is no significant evidence that either ∆IV or Moody’s 

outlook/watch signals Granger-cause each other for all lags. There is strongly significant 

evidence that both ∆IV and S&P outlook/watch signals Granger-cause each other for all lags. 

There is also strongly significant evidence that ∆IV Granger-causes Fitch outlook/watch 

signals, but not vice versa (results available upon request). The results imply that S&P and 

Fitch are likely to focus on rating accuracy while Moody’s results are consistent with a 

greater emphasis on rating stability.  

Furthermore, we conduct equivalent causality investigations using ∆LCCR (instead 

∆CCR) in Equations (2) and (3). The results (available upon request) are qualitatively 

different. Specifically, the null hypothesis that ΔIV does not Granger-cause ∆LCCR cannot 

                                                            
21 Collin-Dufresne et al. (2001) use bond spreads while Cao et al. (2010) use CDS spreads. 
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be rejected (even at the 10% significance level). This is true except only for Fitch at lags k = 

66. Movements in the option market Granger-cause rating changes in the linear scale. 

However, this causality relationship is insignificant when the non-linearity of the rating scale 

is taken into account (i.e. there is no evidence that stronger movements happen prior to rating 

news on AAA-rated issuers or those rated near the speculative threshold). This implies that 

the market is aware of credit issues in advance of rating events, yet the magnitude of the 

credit issues remains uncertain, especially for issuers at the top and bottom of the investment-

grade spectrum. 

 

5.4. Discussion of results 

All sovereigns in our sample are rated at the investment-grade (by each CRA) and 

many of them are categorised as developed economies. Such economies are usually 

characterised by informational transparency, which contributes to the possibility that the 

creditworthiness of these sovereigns is likely to be observable by financial market 

participants. As a result, rating changes are more likely to be led by market indicators, such 

as IV. The results shed light on the price (credit quality information) discovery process. The 

causal relationships suggest that the process is not simply one way, but also cannot dismiss 

the importance of rating news. Credit rating signals (especially from S&P and Moody’s) 

significantly influence IV. 

An interesting question over the informational content of rating news can be raised. If 

the IV leads rating news, the informational content of the news would be subsumed in the IV. 

Therefore, there should be no reaction found on and/or after the announcements of the news. 

Nonetheless, reactions to S&P and Moody’s rating news are found to be significant (Tables 4, 

5, and 7). The result implies that a significant part of the informational content of rating 

signals remains until their announcements, even for those led by the option market. Along 
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with the finding that additional ratings are likely to reduce the market uncertainty, the results 

stress the importance and relevance of sovereign ratings to market sentiment.   

In order to check the robustness of our findings against extreme observations, we have 

also conducted equivalent empirical investigations based on excluding the 315 extreme 

observations (mentioned in Section 3.2). The results are qualitatively similar. Specifically, 

the findings of the event study and investigations of varying market responses to individual 

CRAs’ signals do not change. There are only two changes in the lead-lag investigations 

which do not alter our main findings and conclusions.  

 

6. Conclusions 

This paper investigates the interaction between the stock index option market and 

sovereign credit ratings assigned by Moody’s, S&P, and Fitch based on a dataset of 24 

countries, which covers all countries with liquid stock index options markets (except for 

countries without rating actions) during 2000 - 2012. The effects of rating signals are 

evidenced by an event study, and country-matched random sampling regressions. Robustness 

of the results is confirmed by non-parametric tests and Monte Carlo experiments. Granger-

causality tests are employed in order to detect any lead-lag relationships between rating 

actions and market movements. 

A unique contribution to the literature is made by (i) identifying differing influences of 

CRAs on market uncertainty; (ii) demonstrating the important role of additional sovereign 

ratings in reducing market uncertainty; (iii) providing evidence of a two-way relationship 

between sovereign ratings and the equity index option market. 

We find an asymmetric pattern in market responses not only between positive and 

negative events but also varying across CRAs. The market is more likely to react to news 

from S&P and Moody’s rather than from Fitch, consistent with Bongaerts et al. (2012) who 
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argue that Fitch plays a ‘tiebreaker’ role, at least in corporate ratings. Moreover, Fitch 

downgrades trigger a decrease in IV, implying that even downgrades from the ‘tiebreaker' do 

matter and reduce the market uncertainty. Furthermore, the market reactions to Moody’s and 

S&P signals reinforce the analysis that additional signals (both negative and positive) are still 

informative and reduce the market uncertainty. These stress the importance of multiple 

ratings and support the information production role of credit ratings in the context of both 

first-mover as well as subsequent rating news. The results are robust across methodological 

frameworks and specifications. In addition, we find significant causal relationships between 

market movements and all types of rating actions assigned by S&P and Fitch, but only actual 

rating changes from Moody’s. The finding indicates differences in the CRAs’ timeliness and 

policies. S&P and Fitch credit signals reveal a relatively stronger focus on rating accuracy 

while Moody’s emphasises rating stability. The finding also implies that market participants 

observe credit issues and react more quickly than CRAs. 

From these findings, it is not persuasive to argue that credit rating actions precipitated 

the European sovereign debt crisis, as was repeatedly suggested by some commentators. By 

the time of announcements, (even negative) rating actions can serve as a means of confirming 

the market anticipation and reducing market uncertainty. Some potential policy implications 

can be raised. The findings support the view of not “shooting the messengers” as expressed 

by the Association of British Insurers (House of Lords, 2011). In response to the recent 

crises, credit ratings have been under consideration for removal from regulations as well as 

investment guidelines. There are clearly benefits of reducing reliance on credit ratings, but 

proposals such as SEC (2011 a, b) deserve a caveat, particularly in the context of traditional 

debt ratings. A strong degree of heterogeneity exists in market responses to rating news, 

differing by signal, direction and CRA.  
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Table 1 
List of sample countries   

Country Period 

 

Country Period 

Australia 2010-2012 Israel 2010-2012 

Austria 2000-2012 Italy 2007-2012 

Belgium 2010-2012 Japan 2007-2012 

Brazil 2011-2012 Korea 2009-2012 

China 2007-2012 Netherlands 2000-2012 

Czech Republic 2002-2009 Poland 2000-2002 

Finland 2001-2012 Russia 2008-2012 

France 2001-2012 South Africa 2011-2012 

Germany 2000-2012 Spain 2007-2012 

Hong Kong 2007-2012 Taiwan 2010-2012 

Hungary 2002-2009 UK 2001-2012 

India 2010-2012 US 2002-2012 
 

The data set covers 24 countries. The availability of traded stock index options determines the sample 
size and sample periods, i.e. we include all countries during the periods that their stock index options 
are traded (except for Canada, Malaysia, Norway, Sweden, Switzerland who have not experienced 
any rating actions during the sample periods and Greece whose stock index option market is very 
small). 
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Table 2 
Rating events 

 

This table reports numbers of rating events released by the CRAs during the sample periods. Columns (1), (2), (3) report numbers of positive, negative, and 
total rating signals from S&P, respectively. Similarly, columns (4) to (9) report corresponding numbers from Moody’s and Fitch. (10) = (1) + (4) + (7); (11)= 
(2) + (5) + (8); (12)= (3) + (6) + (9).  

No. of events 
S&P Moody’s Fitch Total 

Positive Negative ∑ Positive Negative ∑ Positive Negative ∑ Positive Negative ∑ 

Column number (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Actual rating 9 16 25 7 12 19 7 9 16 23 37 60 

Outlook 13 29 42 10 16 26 9 19 28 32 64 96 

Watch 11 11 22 9 11 20 3 3 6 23 25 48 

Total 33 56 89 26 39 65 19 31 50 78 126 204 
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Table 3 
Results of the event study 
 

Time window [-5,-1] [-1,1] [1,5] [-5,-1] [-1,1] [1,5] 

Panel A: Actual rating changes 

Downgrade Upgrade 

IV  (%) -1.044 1.023 -2.434* -2.659 0.880 0.854

p-val. of t-test  0.215 0.220 0.066  0.238 0.425 0.685
p-val. of sign test 0.247 0.557 0.009  0.607 0.607 1.000
p-val. of Wilcoxon test 0.163 0.174 0.029 0.543 0.570 0.903

No. of Events 27 19 

Panel B: Outlook signals 

Negative outlook Positive outlook 

IV  (%) -0.719 1.383 -1.274† -0.955 0.618 -0.312

p-val. of t-test  0.140 0.159 0.118  0.153 0.368 0.566
p-val. of sign test 0.220 0.583 0.027  0.327 0.845 1.000
p-val. of Wilcoxon test 0.199 0.227 0.011 0.214 0.380 0.544

No. of Events 57 29 

Panel C: Watch signals 

Negative watch Positive watch 

IV  (%) -0.243 1.551* -0.382 -0.028 1.567* -2.469**

p-val. of t-test  0.760 0.067 0.706  0.963 0.051 0.017
p-val. of sign test 0.541 0.064 0.838  0.523 0.286 0.000
p-val. of Wilcoxon test 0.931 0.029 0.909 0.592 0.040 0.003

No. of Events 24 22 

Only ‘clean’ events from all CRAs are used. IV  reports mean value of changes in the IV during the 
time windows in percentage points. Cases in bold denote significance at least at 10% level in both 2-
sided t-test and either of 2-sided non-parametric tests. *, ** denotes significant in t-test at 10%, 5% level 
of significance. † denotes significant in the non-parametric tests and not in the t-test. See Tables 1 and 2 
for details on the data sample. The reason for mis-matches in no. of events compared to columns 10 and 
11 of Table 2 is the absence of unclean events. 
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This table reports the results of estimations of Equation (1) with Huber-White robust standard errors. For the ease of interpretation, absolute value of ∆LCCR is used. 
p-values are reported in parentheses. *, ** denote significant at 10%, 5% level of significance. Country-matched random sampling from the full sample is used. See 
Tables 1 and 2 for details on the data sample.  

Table 4  
Estimation results of Eq. (1) for the S&P events 

Time window [-66, -22] [-22,-5] [-5,-1] [-1,1] [1,5] [5,22] [22,66] [-66,-22] [-22,-5] [-5,-1] [-1,1] [1,5] [5,22] [22,66] 

Panel A Downgrade Upgrade 

∆LCCR 0.0083 -0.0111 -0.0094 0.0258** -0.0006 -0.0070 0.0074 0.0766 -0.0215 0.0108 -0.0227** -0.0176 0.0050 0.0184 

(0.815) (0.620) (0.374) (0.035) (0.968) (0.758) (0.745) (0.405) (0.594) (0.383) (0.043) (0.104) (0.844) (0.912) 

CCR -0.0073 -0.0016 0.0014 0.0014 0.0018 0.0068 0.0007 -0.0062 0.0009 0.0013 0.00123 0.0013 0.0077* -0.0030 

   (0.109) (0.634) (0.591) (0.252) (0.258) (0.110) (0.883) (0.287) (0.806) (0.717) (0.378) (0.418) (0.096) (0.580) 

Year/ Country Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R2 23.80% 45.43% 7.65% 7.99% 10.93% 35.44% 0.78% 20.86% 44.81% 7.04% 8.96% 11.97% 35.47% 1.03% 

Panel B Negative outlook Positive outlook 

∆LCCR -0.05849 0.0216 -0.0103 0.0228* 0.0063 0.0055 -0.0483 -0.0096 0.0003 0.0081 -0.0161* -0.0046 0.0002 0.0068 

   (0.434) (0.558) (0.310) (0.056) (0.672) (0.828) (0.701) (0.790) (0.990) (0.444) (0.096) (0.785) (0.995) (0.796) 

CCR -0.0081* -0.0003 0.0010 0.0019 0.0017 0.0066 -0.0024 -0.0088* -0.0020 0.0019 0.00113 0.0019 0.0066 0.0001 

(0.087) (0.931) (0.745) (0.120) (0.292) (0.155) (0.664) (0.096) (0.591) (0.550) (0.312) (0.274) (0.167) (0.979) 

Year/ Country Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R2 21.04% 44.69% 7.71% 8.67% 9.39% 18.55% 0.95% 24.05% 45.47% 7.96% 13.09% 12.58% 40.33% 0.71% 

Panel C Negative watch 

 

Positive watch 

∆LCCR -0.07302 0.0276 -0.0194 0.0216* 0.0119 0.0042 -0.0381 0.0519 -0.0450 0.0022 -0.0171 0.0041 -0.0287 0.0594 

(0.518) (0.562) (0.139) (0.082) (0.501) (0.894) (0.848) (0.643) (0.337) (0.870) (0.298) (0.854) (0.355) (0.766) 

CCR -0.007 -0.0012 0.0017 0.0013 0.0016 0.0068 -0.0013 -0.0075 0.0007 0.0012 0.00159 0.0013 0.0071 -0.0036 

  (0.153) (0.746) (0.589) (0.268) (0.336) (0.147) (0.829) (0.146) (0.866) (0.674) (0.213) (0.406) (0.123) (0.584) 

Year/ Country Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R2 21.05% 44.75% 7.50% 8.70% 9.82% 34.30% 1.02% 21.07% 44.95% 7.21% 7.54% 10.08% 33.68% 1.05% 
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This table reports the results of estimations of Equation (1) with Huber-White robust standard errors. For the ease of interpretation, absolute value of ∆LCCR is used. 
p-values are reported in parentheses. *, ** denote significant at 10%, 5% level of significance. Country-matched random sampling from the full sample is used. See 
Tables 1 and 2 for details on the data sample.  

Table 5  
Estimation results of Eq. (1) for the Moody’s events 

 

Time window [-66, -22] [-22,-5] [-5,-1] [-1,1] [1,5] [5,22] [22,66] [-66,-22] [-22,-5] [-5,-1] [-1,1] [1,5] [5,22] [22,66] 

Panel A Downgrade 

 

Upgrade 

∆LCCR 0.0448 -0.0327** 0.0195 0.0019 -0.0248** 0.0101 0.0014 -0.9433 0.4813 -0.0707** 0.0106 0.0615** -0.0118 0.0112 

(0.105) (0.026) (0.131) (0.859) (0.037) (0.620) (0.945) (0.178) (0.119) (0.035) (0.333) (0.016) (0.761) (0.762) 

CCR -0.0015 -0.0021 0.0005 0.0006 0.0016 0.0029 0.0011 -0.0316 0.0122 -0.0005 0.0006 0.0024* 0.0028 -0.0003 

(0.607) (0.298) (0.702) (0.426) (0.102) (0.299) (0.767) (0.140) (0.205) (0.756) (0.478) (0.053) (0.374) (0.930) 

Year/ Country Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R2 34.72% 25.84% 6.86% 7.16% 7.61% 33.21% 1.02% 28.58% 49.56% 8.29% 7.02% 12.97% 32.98% 1.02% 

Panel B Negative outlook 

 

Positive outlook 

∆LCCR 0.4498 -0.2165 0.0372* 0.0029 -0.0371** 0.0118 -0.0078 -0.5782 0.2853 -0.0393 -0.0144 0.0412** -0.0110 -0.0182 

(0.194) (0.156) (0.078) (0.771) (0.023) (0.548) (0.742) (0.235) (0.190) (0.168) (0.116) (0.047) (0.669) (0.459) 

CCR -0.0186 0.0061 -2.2E-05 0.0007 0.0018* 0.0027 0.0009 -0.0207 0.0082 -0.0005 0.0007 0.0019* 0.0033 -0.0007 

(0.210) (0.351) (0.986) (0.373) (0.086) (0.318) (0.794) (0.216) (0.279) (0.715) (0.418) (0.085) (0.262) (0.856) 

Year/ Country Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R2 24.85% 46.93% 7.79% 7.06% 12.52% 33.33% 1.03% 25.46% 47.73% 7.84% 7.46% 12.93% 33.51% 1.05% 

Panel C Negative watch 

 

Positive watch 

∆LCCR 0.5181 -0.2685 0.0439* 0.0041 -0.0328* 0.0041 0.0137 -0.5241 0.2622 -0.0304 -0.0045 0.0285* 0.0053 0.0027 

(0.216) (0.160) (0.098) (0.711) (0.052) (0.860 (0.570) (0.242) (0.194) (0.209) (0.694) (0.093) (0.726) (0.932) 

CCR -0.0214 0.0084 -0.0003 0.0006 0.0018* 0.0030 -0.0004 -0.0159 0.0051 -0.0003 0.0007 0.0020* 0.7260 0.0004 

(0.202) (0.264) (0.846) (0.490) (0.098) (0.295) (0.918) (0.217) (0.382) (0.811) (0.367) (0.051) (0.346) (0.923) 

Year/ Country Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R2 25.28% 47.56% 7.84% 6.74% 11.82% 33.01% 1.02% 24.98% 47.13% 7.80% 6.98% 11.82% 33.36% 1.00% 
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This table reports the results of estimations of Equation (1) with Huber-White robust standard errors. For the ease of interpretation, absolute value of ∆LCCR is used. 
p-values are reported in parentheses. *, ** denote significant at 10%, 5% level of significance. Country-matched random sampling from the full sample is used. See 
Tables 1 and 2 for details on the data sample. 

Table 6  
Estimation results of Eq. (1) for the Fitch events 

 

Time window [-66, -22] [-22,-5] [-5,-1] [-1,1] [1,5] [5,22] [22,66] [-66,-22] [-22,-5] [-5,-1] [-1,1] [1,5] [5,22] [22,66] 

Downgrade Upgrade 

∆LCCR 0.0462 0.0425 -0.0124 -0.0222* -0.0108 -0.0107 -0.0254 0.0056 0.0275 -0.0282 0.0050 0.0056 -0.0604 0.0101 

(0.206) (0.341) (0.636) (0.062) (0.636) (0.607) (0.389) (0.886) (0.498) (0.267) (0.780) (0.705) (0.346) (0.877) 

CCR 0.0008 -0.0011 -0.0006 0.0014 0.0007 0.0061* -0.0007 0.0014 -0.0023 -0.0003 0.0019 0.0003 0.0071* 0.0003 

(0.825) (0.701) (0.796) (0.313) (0.655) (0.068) (0.895) (0.721) (0.450) (0.903) (0.206) (0.883) (0.066) (0.962) 

Year/ Country Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R2 20.92% 44.68% 7.34% 7.18% 9.66% 40.84% 0.78% 20.91% 44.70% 7.27% 7.49% 9.33% 33.89% 1.01% 

Negative outlook Positive outlook 

∆LCCR 0.0475* 0.0190 -0.0105 -0.0109 -0.0056 0.0243 -0.0480 -0.0694** -0.0425 0.0027 0.0119 0.0002 -0.0174 0.0176 

(0.099) (0.664) (0.657) (0.422) (0.764) (0.515) (0.164) (0.032) (0.373) (0.934) (0.413) (0.994) (0.546) (0.575) 

CCR -0.0005 -0.0015 -0.0003 0.0009 0.0005 0.0071** -0.0033 0.0018 0.0001 -0.0007 0.0020 0.0004 0.0071* 0.0001 

(0.884) (0.621) (0.885) (0.482) (0.770) (0.052) (0.526) (0.644) (0.963) (0.787) (0.194) (0.815) (0.068) (0.986) 

Year/ Country Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R2 20.97% 44.67% 7.81% 7.27% 9.46% 33.69% 1.03% 20.88% 44.99% 7.49% 7.74% 9.10% 42.31% 0.82% 

Negative watch Positive watch 

∆LCCR 0.0478 0.0298 0.0007 -0.0188 -0.0036 0.0244 -0.0353 -0.0469* -0.0238 0.0030 0.0115 0.0054 -0.0259 0.0389 

(0.120) (0.480) (0.978) (0.119) (0.840) (0.507) (0.276) (0.098) (0.570) (0.901) (0.367) (0.760) (0.472) (0.242) 

CCR 0.0008 -0.0017 -0.0008 0.0019 0.0007 0.0068* -0.0001 0.0002 -0.0014 -0.0002 0.0008 0.0005 0.0072** -0.0032 

(0.829) (0.592) (0.732) (0.182) (0.665) (0.072) (0.993) (0.959) (0.648) (0.906) (0.535) (0.745) (0.048) (0.547) 

Year/ Country Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R2 20.92% 44.65% 7.05% 7.60% 9.34% 33.49% 1.02% 20.93% 44.66% 7.04% 7.28% 9.53% 33.57% 1.02% 
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This table reports the averages across all 10,000 estimations of Equation (1) with Huber-White robust standard errors. Each estimation of the equation is 
based on one independent random country-matched sampling. t-statistics are reported in parentheses. ** denotes significant at 5%. N reports maximum 
number of observations for one estimation as this number varies slightly between estimations. The estimated coefficients of CCR are not reported for ease of 
presentation. Different to Tables 4-6, we do not use absolute value of ∆LCCR here. See Tables 1 and 2 for details on the data sample. 

Table 7  
Results of the Monte Carlo experiment 

Time window [-66, -22] [-22,-5] [-5,-1] [-1,1] [1,5] [5,22] [22,66] 

Panel A: S&P rating news 

∆LCCR 0.0346 -0.0282 0.0111 -0.0202** -0.0058 0.0121   0.0207 

(0.322) (-0.443) (1.092) (-2.038) (-0.425) (0.581) (0.576) 

Year/Country dummies & CCR Yes Yes Yes Yes Yes Yes Yes 

R2 39.78% 42.11% 19.02% 12.62% 16.57% 30.53% 36.39% 

N 253 256 262 262 259 256 248 

No. of estimations 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

Panel B: Moody’s rating news 

∆LCCR -0.3203 0.1994 -0.0291 -0.0042 0.0339** -0.0088 0.0038 

(-1.329) (1.381) (-1.592) (-0.438) (1.984) (-0.418) (0.167) 

Year/Country dummies & CCR Yes Yes  Yes Yes Yes Yes Yes 

R2 41.72% 43.37% 19.67% 11.80% 18.02% 29.86% 36.65% 

N 253 256 263 262 259 256 249 

No. of estimations 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

Panel C: Fitch rating news 

∆LCCR -0.0428 -0.0207 0.0128 0.0111 -0.0024 -0.0196 0.0301 

(-1.219) (-0.457) (0.575) (0.968) (-0.154) (-0.568) (0.880) 

Year/Country dummies & CCR Yes Yes  Yes Yes Yes Yes Yes 

R2 39.92% 41.82% 18.73% 12.03% 16.29% 29.94%  36.61% 

N 254 256 263 262 259 256 249 

No. of estimations 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
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Table 8  
Results of log-likelihood tests of causality between rating actions and implied volatility 
 

This table reports the results from log-likelihood ratio tests after estimations of Equations (2) and (3). LR reports the log-likelihood ratio from the tests of null 
hypothesis that ∆IV (Rating actions) do not cause Rating actions (∆IV). p-val. reports the p-values from the tests. **, *** denote significance at 5%, 1% 
levels. See Tables 1 and 2 for details on the data sample. 

Null hypothesis  

 

Null hypothesis  Null hypothesis  

k = 5 
i.e. lags 
within 1 

week 

∆IV does not cause 
S&P actions 

LR-val. 11.09** ∆IV does not cause 
Moody’s actions 

LR-val. 3.75 

 

∆IV does not cause 
Fitch actions 

LR-val. 6.88 

p-val. 0.0495 p-val. 0.5853 p-val. 0.2299 

S&P actions do not 
cause ∆IV 

LR-val. 7.71 Moody’s actions do not 
cause ∆IV 

LR-val. 7.87 Fitch actions do not 
cause ∆IV 

LR-val. 4.02 

p-val. 0.1730 p-val. 0.1637 p-val. 0.5470 

      

k = 22 
i.e. lags 
within 1 
month 

∆IV does not cause 
S&P actions 

LR-val. 50.60*** ∆IV does not cause 
Moody’s actions 

LR-val. 20.02 ∆IV does not cause 
Fitch actions 

LR-val. 44.73*** 

p-val. 0.0005 p-val. 0.5818 p-val. 0.0029 

S&P actions do not 
cause ∆IV 

LR-val. 30.13 Moody’s actions do not 
cause ∆IV 

LR-val. 10.85 Fitch actions do not 
cause ∆IV 

LR-val. 11.02 

p-val. 0.1153 p-val. 0.9769 p-val. 0.9744 

      

k = 66 
i.e. lags 
within 3 
months 

∆IV does not cause 
S&P actions 

LR-val. 107.90*** ∆IV does not cause 
Moody’s actions 

LR-val. 80.46 ∆IV does not cause 
Fitch actions 

LR-val. 108.38*** 

p-val. 0.0009 p-val. 0.1087 p-val. 0.0008 

S&P actions do not 
cause ∆IV 

LR-val. 116.17*** Moody’s actions do not 
cause ∆IV 

LR-val. 45.7 Fitch actions do not 
cause ∆IV 

LR-val. 51.56 

p-val. 0.0001 p-val. 0.9732 p-val. 0.9037 



41 
 

 

Fig. 1: Distribution of daily rating observations.  

Moody’s symbols (i.e. Aaa, Aa1, Aa2 ... Baa3) are categorised in equivalent S&P and Fitch ratings 

categories (i.e. AAA, AA+, AA, ... BBB-). The dataset covers 24 countries during the period from 

January 2000 to April 2012. We include all countries with traded stock index options, except for 5 

countries without any rating actions during the sample periods (Canada, Malaysia, Norway, Sweden 

and Switzerland) and Greece whose stock index option market is very small. 
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Fig. 2: Daily observations of 30-day maturity implied volatility.  

The dataset covers 24 countries during the period from January 2000 to April 2012. There are 35,683 

daily observations of 30-day implied volatility. Among them, there are 315 observations where IV is 

greater than 100% in Hungary (14/01/2003-16/6/2003), Poland (7/2001, 10-11/2001, 2-8/2002, 

11/2002), and Russia (10/2008-4/2009). All (most) of these observations are associated within 1 

month to at least one observation of absolute value of underlying index return larger than 1% (3%). 

54% of the observations are associated with at least one observation of absolute value of the index 

return larger than 10%. These were periods of turbulence in the three countries. There were nine 

rating signals on these three sovereigns during the periods.  
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Fig. 3: Distribution of daily changes in 30-day implied volatility.  

The dataset covers 24 countries during the period from January 2000 to April 2012. There are 115 

observations where ∆IV is more than 20%. All (most) of them are associated within 1 month to at 

least one observation of absolute value of underlying index return larger than 1% (5%). 
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