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Abstract 15 

The increasing construction of buildings and infrastructure in cities heavily influences 16 

pollutant dispersion and causes a spread of increased particle concentrations. Real-time data and 17 

information on local pollution levels are highly desired by residents, urban planners and policy-18 

makers. Such information is scarce due to the high cost of real-time measurement. To fill the gap, 19 

the aim of this research is to develop a model that can rapidly estimate particulate pollution based 20 

on a data-driven artificial neural network modelling approach. The key influential factors such as 21 

background pollution level, weather conditions, urban morphology and local pollution sources are 22 

embedded in the model in association with local emission sources of pollution relating to 23 

construction activities and traffic flows. The data for urban spatial-variables (building and road) and 24 

traffic information is processed with the aid of the Geographic Information System using self-25 

developed Python scripts. The geographic dataset containing the required information for each grid 26 

is integrated with the artificial neural network model to perform forecasting of particle 27 
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concentrations. The model has been verified with measurements from a case study with 20 sample 28 

locations in Chongqing, China, showing that the average relative error of particle concentration 29 

estimation compared to measurement is 17.56% for PM10 and 16.04% for PM2.5. A map of a time-30 

specific spatial interpolation of particle concentrations which visualises real-time pollution is 31 

consequently produced based on the method. The method can be used as a tool for real-time air 32 

quality forecasting with suitable adaptations for any other dense urban area with minimum 33 

information from local observation stations. 34 

 35 

Keywords: Particulate matter; Artificial Neural Network (ANN); Urban morphology; Traffic 36 

emissions; Geographic Information System (GIS); Spatial interpolation 37 

 38 

Acronyms 39 

ANN Artificial Neural Network 

API Air Pollution Index 

CFD Computational Fluid Dynamics 

GIS Geographic Information System 

MLR Multiple Linear Regression 

PCA Principal Component Analysis 

PM Particulate matter, also Particle 

SLR Simple Linear Regression 

WHO World Health Organization 

 40 

Nomenclature 41 

𝑎𝑗
𝑙 The jth neuron in the lth layer 

Acs Area of the construction site (m2) 

Ai Coverage area of the building i (m2) 
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𝑏𝑗
𝑙 Bias of the jth neuron in the lth layer 

Bias Average bias 

BCR Building coverage ratio 

BH Coverage-area-weighted average building height (m) 

CSt Average congestion status in a land lot (0, 1.0~4.0) 

Dcs Distance of nearest construction site (m) 

Dt Distance to the nearest main road (m) 

𝑓(∗) Activation function 

hh Hour sequence in a day 

hi Height of the building i (m) 

Li Length of the road i (m) 

LCt Lane-count of the nearest main road 

m Total number of roads in the target area 

�̅� Average of measured values 

Mi The ith measured value 

n Total number of building in the target area 

Ni Number of lanes for the road i 

�̅� Average of predicted values 

Pi The ith predicted value 

r Pearson correlation coefficient 

RF Precipitation (mm) 

RH Relative humidity (%) 

RMSE Root mean square error 

S Total land area of the target (m2) 

SLt Speed limit of the nearest main road (km.h-1) 

SLRL Single-lane road length per unit area (km.km-2) 

Temp Temperature (°C) 
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𝑤𝑗𝑘
𝑙  Weight for the connection from the kth neuron in the (l-1)th layer to the jth neuron in the lth layer 

W Day sequence in a Week 

WS Wind speed (m.s-1) 

 42 

1 Introduction 43 

Cities and towns accommodate people to live, study, work and entertain. The scale and speed 44 

of global urbanisation have drawn research attention towards the issue of air pollution. The outdoor 45 

atmospheric environment mainly contains particulate matter (PM), ozone (O3), nitrogen oxides 46 

(NOx), sulphur dioxide (SO2) and other pollutants (World Health Organization, 2006). Airborne 47 

particles, existing across a wide range of size with diameter from >100μm to <0.1μm, can be 48 

categorized in terms of aerodynamic diameter, which determines where the particles can penetrate 49 

human organs. PM10 with an aerodynamic diameter that is generally 10μm and smaller possibly 50 

enters the lungs; PM2.5 with an aerodynamic diameter that is less than 2.5μm possibly enters the 51 

bloodstream (United States Environmental Protection Agency, 2018). Some of these particles are 52 

emitted directly from sources, such as construction sites, unpaved roads, or fires, but some particles 53 

form in the atmosphere resulting from some complex chemical reactions. Thus, PM has a 54 

complicated composition made up of hundreds of substances categorised as inorganic particles, 55 

organic particles and living particles, which makes them of greater health significance than any 56 

other air pollutants. The consequences arising from the entry of PM into the human body are 57 

determined by the composition of, and exposure to, the PM. Overall, recent epidemiological studies 58 

have confirmed that inhaling PM can cause asthma (Kim et al., 2013; Künzli et al., 2000), lung 59 

cancer (Pope III et al., 2002), gastric cancer (Weinmayr et al., 2018), cardiovascular diseases 60 

(Künzli et al., 2000; Nayebare et al., 2019; Pope III et al., 2002), respiratory diseases (Guilbert et 61 

al., 2019; Künzli et al., 2000), preterm birth (Li et al., 2017), birth defects (Z. Li et al., 2019), 62 

premature death (Künzli et al., 2000; Lelieveld et al., 2015) and similar health effects. 63 

In recent years, there is a growing need by the public for informed knowledge on outdoor 64 

particle pollution and its impact on human health. In the built environment, natural ventilation, as 65 
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one of the powerful passive measures for low energy building design, encountered many challenges 66 

due to the outdoor pollution (Costanzo et al., 2019; Tong et al., 2016; Yao et al., 2018). The 67 

quantification of pollution concentrations is essential for risk assessment of some environmental-68 

related diseases (Künzli et al., 2000). However, there is a lack of practical methods of providing 69 

spatial- and temporal-based quantitative particle concentrations using the limited information 70 

available from public sources. 71 

 72 

1.1 Literature review of prediction methods 73 

There are two main approaches to acquire particle concentration levels: on-site measurements 74 

and modelling predictions. The on-site measurement method is highly accurate as it directly reflects 75 

the true value of the sampling point when ignoring any system errors. Many cities in the world have 76 

official pollution observation stations providing overall ambient air quality information (China 77 

National Environmental Monitoring Centre; Department of Environment, Food & Rural Affairs). 78 

They provide reference values for a region, known as the background pollution level in this article. 79 

However, the cost of on-site measurement, including sensors, maintenance and labour, is very high 80 

(Mihăiţă et al., 2019), which makes it impractical to take measurement everywhere. Additionally, it 81 

is unable to measure in an occasion when it does not occur. The modelling prediction method has 82 

made up for those defects, and it is further classified into two types: 1) high-dimension, process-83 

driven, physical models and 2) low-dimension, data-driven, statistical models. 84 

The physics-based model, normally the numerical model of particle dispersion, simulates the 85 

dispersion process based on basic computational fluid dynamics (CFD) theory and the mass transfer 86 

mechanism; it demands sufficient knowledge of microclimate conditions, particle emission sources 87 

and the explicit description of physical deposition and chemical transformation processes (Lateb et 88 

al., 2016; Li et al., 2006). This method is mostly used to analyse the pollutant dispersion around 89 

buildings from certain known sources (Ai and Mak, 2013; Short et al., 2018). Several studies that 90 

have used CFD techniques to predict pollutant concentration have focused on the street canyon 91 

(Blocken et al., 2012; Tominaga and Stathopoulos, 2011; Vicente et al., 2018). The direct dust 92 
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emissions from vehicles provide the main source of data in the model (B. Li et al., 2019) along with 93 

consideration of the by-products from chemical reactions (Kim et al., 2019). Assumptions of 94 

boundary conditions and estimations of some parameters, like the deposition rate or transformation 95 

rate, are crucial and can cause rather large biases for different schemes (Stern et al., 2008). The 96 

computation time is usually significant depending on the specific model and hardware capacity 97 

(Salim et al., 2011), making it unlikely to provide full time-series data. 98 

In recent years, low-dimensional, data-driven modelling is being favoured due to its highly 99 

efficient simulation based on the established relationships between variables and responses, while 100 

ignoring the limited knowledge of the processes involved. The multiple linear regression (MLR) 101 

and the artificial neural network (ANN) are mainstream approaches to handle the pollutant 102 

concentration estimation. MLR is a simple and straightforward way to explain the relationship 103 

between one continuous dependent variable and some independent variables. It is very important to 104 

recognise that some variables lack multicollinearity (Shieh and Fouladi, 2003). To be more concise, 105 

it comes to the simple linear regression (SLR), where the independent variable should be a synthetic 106 

and representative index. Zhou et al. (2018) applied the SLR to evaluate the relationship between 107 

the Air Pollution Index (API) and 7 indices related to urban size, urban shape irregularity and urban 108 

fragmentation. He et al. (2015) used the vehicle count, traffic-light period, wind speed, temperature 109 

and relative humidity to predict particle concentrations at an urban intersection, and combined the 110 

MLP model and principal component analysis (PCA) to improve the predictive accuracy of the 111 

time-series PM concentration. 112 

For non-linear features, the ANN model inspired by the biological neural network that 113 

constitutes animal brains shows better performance (Haykin, 2009). Özdemir et al. (2014) and 114 

Chaloulakou et al. (2003) investigated the relationships between PM10 levels and meteorological 115 

factors (including surface temperature, relative humidity, and wind speed and direction) by 116 

comparing ANN models and MLR models, whose results demonstrate that ANNs can provide 117 

adequate solutions to demands for predictions of particulate pollution. 118 

Some studies used historical measurement data to predict current and even future data. For 119 

example, Ishak et al. (2016) and Saeed et al. (2017) used historical observations by two popular 120 
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statistical learning methods: the support vector machine and the random forest. Perez and Reyes 121 

(2001) confirmed that the information extracted from the PM2.5 time series may be used to 122 

implement a neural network architecture in order to make predictions of this quantity several hours 123 

into the future whilst others recognised some influencing factors, using the data at that time to make 124 

predictions. The main step for this strategy is to determine the predictors (known as features in 125 

computer science) and prepare a representative training dataset, in order to provide sufficient 126 

information for the networks (Deligiorgi and Philippopoulos, 2011; Shieh and Fouladi, 2003). Most 127 

studies considered the relation between particle concentration and meteorological parameters 128 

(Chaloulakou et al., 2003; Özdemir and Taner, 2014). He and Liu ( 2012) added the traffic volume 129 

factor into a statistical distribution model - the goodness-of-fit test - to find the lognormal 130 

distribution of PM concentration due to the change of traffic volume between morning and 131 

afternoon. Honarvar and Sami (2019) further considered the road network structure data to predict 132 

the PM concentration based on a transfer learning perspective in which a neural network and 133 

regression was leveraged as the core of the prediction. The urban morphology also influences the 134 

dispersion of particles, Gennaro et al. ( 2013) developed the ANN model to forecast PM10 daily 135 

concentrations in two contrasting environments: a regional background site and an urban 136 

background site, with local meteorological data and information about the origin of air masses 137 

being used as inputs. The model performance showed better results for the regional background site 138 

than for the urban site because of the unexpected local sources in the urban background site that 139 

sometimes occurred. Reasonable inclusion of closely related factors can increase the accuracy of the 140 

model’s predictions. So far, a holistic method to quantify particle concentrations in a dense urban 141 

area simultaneously considering the overall urban pollution level, meteorological conditions, urban 142 

morphology and local pollution sources is lacking. 143 

 144 

1.2 Aim and scope 145 

The aim of this research is to develop a spatial-and-temporal-dependent model that can quickly 146 

estimate PM concentrations at any time and location within an urban area using limited observed 147 
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data. The ANN model will be applied for its ability to simulate nonlinear functions, to incorporate 148 

various heterogeneous variables and its speed of implementation. Overall pollution level, 149 

meteorological conditions, urban morphology and local pollution sources are all considered within 150 

the model for their close relationship to the particle concentration. All the data for the prediction can 151 

be accessed from a ready-made, real-time, data platform released for the public after digital 152 

processing. The beneficiaries will be threefold: 1) residents can take necessary protective actions; 2) 153 

policy-makers and planners use policy instruments to control pollution; and 3) building end-users 154 

and facilities managers can effectively operate ventilation systems. 155 

 156 

2 Methods 157 

The ANN method is attempted in the development of an urban air pollution distribution model 158 

that provides particle concentration as the targeted output. The major process of this method is to 159 

identify the predictors that significantly influence the outputs. The research framework is described 160 

in Figure 2. As shown in the figure, there are four steps: a) data collection of predictors (Step 1), b) 161 

field measurements of particles (Step 2), c) the modelling process and verification (Step 3) and d) 162 

application for estimations (Step 4). Finally, a case study area located in Chongqing, China, is 163 

selected to demonstrate the process involved in the development of the method. 164 

 165 
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 166 

Figure 1: The framework of this research. 167 

 168 

2.1 Predictors (Step 1) 169 

Determining the predictors and preparing a representative training dataset is key to 170 

successfully training an ANN model that can run accurately. Through the analysis of the dispersion 171 

process of PM in the UCL (Oke et al., 2017), some main factors affecting the local particle 172 

concentration were identified. There are temporal differences in atmospheric particle pollution 173 

level, which is regarded as the boundary of the neighbourhood-scale pollution. Abundant research 174 

has reported that the local particle concentrations are related to the meteorological conditions, 175 

which directly influence their deposition processes (Jacob and Winner, 2009; Tai et al., 2010; Tian 176 

and Chen, 2010). The urban form has an influence on the airflow (Z. Li et al., 2019), which affects 177 

the dispersion of pollutants, and the vortex generated plays an important role in the retention of 178 

pollutants. There are also many sources of particle pollution in a city, such as traffic and 179 

construction sites. Transportation emits contaminants produced by the combustion of fossil fuels 180 
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(Fan et al., 2018; Giovanis, 2018), whose contribution to total emissions into the air reaches 7.61% 181 

for PM10 and 9.98% for PM2.5 in Europe (European Environment Agency (EEA), 2018). 182 

Construction activities deteriorate air quality (Dong and Ng, 2015) in the process of land clearing, 183 

the operation of diesel diggers and generators, demolition, burning, mixing and so on (Zuo et al., 184 

2017). These sources directly discharge pollutants to adjacent areas, resulting in an increased 185 

particle concentration with little timely diffusion. From the above analysis, four categories of data 186 

are required for modelling as predictors, which are described as follows: 187 

 188 

(1) Background particle pollution level 189 

The local emission, dispersion and deposition status contributes to the overall air pollution 190 

level on a macro scale; in return, the local air pollution level can be considered using an overall air 191 

pollution level added to the features influencing the production and movement of pollutants. Hence, 192 

the particle pollution monitoring data from some official observation sites near the ground are used 193 

to represent the overall pollution level. This information is available on official measurement sites 194 

in the studied areas containing data from a number of scattered locations. It indicates the overall 195 

level of particle concentrations for the whole area at a particular time. 196 

 197 

(2) Meteorological conditions 198 

Studies have shown that particle concentrations are related to meteorological variables. Tai et 199 

al. (2010) reported that the PM2.5 concentration tends to be lower at high wind speeds, as wind force 200 

helps the dispersion of PM. Temperature is mostly found to be positively correlated with particle 201 

concentration (Tai et al., 2010; Tian and Chen, 2010). Precipitation efficiently scavenges PM as 202 

with wet deposition, which makes it negatively related to particle concentration (Jacob and Winner, 203 

2009; Tai et al., 2010). Therefore, the meteorological conditions around the target areas are essential 204 

parameters. The meteorological parameters including ground-level (2m height) air temperature, 205 

relative humidity, wind speed and precipitation are used as predictors in this research. 206 

 207 

(3) Urban morphology 208 
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The physical environment of cities as determined by dimensions, densities and infrastructure 209 

patterns, directly influences the configuration of the urban atmosphere and affects the urban 210 

microclimate and air contamination (Z. Li et al., 2019). Urban morphology is an important 211 

consideration for urban planning, some categorized patterns are shown with neatly arranged urban 212 

structures (Ratti et al., 2003). Given that the arrangement of buildings could be scattered and quite 213 

random, subject to the complicated topographical conditions, this research attempts to use some 214 

generalized indices to describe the building arrangement patterns. There are many factors used to 215 

describe urban morphology corresponding to different scales of interest. For the neighbourhood or 216 

block scale (0.1 ~ 10km) this research focuses on, the building coverage ratio (BCR), average 217 

building height (BH), building volume density (BVD) and the frontal area (FA) index are often 218 

used. There is evidence that the floor area ratio and building density are positively associated with 219 

particle concentrations in some cities (Shi et al., 2019). 220 

BCR is the percentage of the total area covered by buildings in a target area, indicating the 221 

horizontal compactness of the infrastructure, which is the most commonly used index for 222 

quantifying the building density at land lot scale (Yu et al., 2010): 223 

𝐵𝐶𝑅 =
∑ 𝐴𝑖

𝑛
𝑖=1

𝑆
 224 

(1) 225 

where S is the total target land area; 226 

Ai is the coverage area of the building i; and 227 

n is the total number of buildings in the target area. 228 

BH here is coverage-area-weighted, i.e. the height of a building with a larger coverage area 229 

contributes more to the average building height of the target area: 230 

𝐵𝐻 =
∑ (𝐴𝑖 × ℎ𝑖)𝑛

𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

 231 

(2) 232 

where hi is the height of the building i. This index shows the vertical extension of the land surface. 233 

In this research, the BCR for different height levels (0m, 10m, 20m, 30m, 40m, 60m and 80m) 234 
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and the area-weighted average BH in a land lot of 500m*500m are applied. 235 

 236 

(4) Pollution sources 237 

Industries, transportation and construction activities are recognised as the three main pollution 238 

sources in an urban area (Xu et al., 2018). Assuming there is no polluting factory in the central 239 

urban area, the magnitudes of transportation and construction in each surveyed area are calculated 240 

using the metrics described below. 241 

Transportation: 242 

Roads are one of the pollution emission sources in an urban area (Health Effects Institute, 2010; 243 

Sun et al., 2018). It is challenging to obtain real-time counts for the running flow of different types 244 

of vehicle. However, the statistics of transportation facilities and information from the real-time 245 

released platform of road condition can be used to represent the pollutant emission level of the 246 

locations. 247 

Urban transportation infrastructure investment is related to air pollution (Sun et al., 2018). The 248 

length of each road on a 500m*500m buffer area centred on the sampling point can be measured, 249 

and the number of lanes for each road can be counted, hence the single-lane road length per unit 250 

area (SLRL) can be calculated using: 251 

𝑆𝐿𝑅𝐿 =
∑ (𝐿𝑖 × 𝑁𝑖)

𝑚
𝑖=1

𝑆
 252 

(3) 253 

where S is the total target land area, 254 

Li is the length of the road i; 255 

Ni is the number of lanes for the road i, and 256 

m is the total number of roads in the target area. The SLRL index shows the scale of road 257 

construction, reflecting the possible density of traffic pollution sources in the surrounding area. 258 

For the direct influence of nearby pollution sources, the main road near the sampling point is 259 

selected, and its distance measured. The congestion status was accessed from the navigation 260 

software. The congestion status is categorized into four levels: i.e. green for ‘clear’, yellow for 261 
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‘slow-moving’, red for ‘congested’ and red-black for ‘heavily congested’, however, the specific 262 

vehicle velocities of each status depend on the road speed limits, which can also be obtained 263 

through field investigation. Finally, the distance to the nearest main road, with its speed limit, lane 264 

count and congestion status act as inputs into the model as the estimators for local traffic emissions. 265 

Construction activities: 266 

A large amount of dust generated from a construction site can spread over a wide area over a 267 

long period (Greater London Authority, 2014). The area of construction sites and the distance from 268 

the sampling point are input into the model as the estimators for construction emissions. If there is 269 

no construction site appearing in the surrounding area, the area of construction sites is set as 0m2, 270 

and the distance is set as 10km.  271 

 272 

Table 1 lists all the predictors identified for the ANN model. The tick for ‘Temporal’ indicates 273 

the data varying with time, and the tick for ‘Spatial’ indicates the data varying with location. The 274 

day in a week (W = 1 for Monday, 2 for Tuesday… 7 for Sunday) and the hour in a day (hh = 0, 1, 275 

2… 23) are also added into the predictors for capturing the law of periodic variations. 276 

 277 

Table 1: The list of predictors used in the ANN model. 278 

Categories Predictors Indices for input Temporal Spatial 

Time periodicity Week Sin(W/7*2π) and 

Cos(W/7*2π) 

√  

Hour Sin(hh/24*2π) and 

Cos(hh/24*2π) 

√  

Background level Monitoring from regulatory sites (μm.m-3) Average PM10 or 

PM2.5 concentrations 

√  

Meteorological conditions Temperature (°C) Temp √ √ 

Relative humidity (%) RH √ √ 

Wind speed (m s-1) WS √  

Precipitation (mm) RF √  

Urban morphology BCR for different height levels in a land lot of 

500m * 500m 

BCR0, BCR10, BCR20, 

BCR30, BCR40, BCR60 

and BCR80 

 √ 

BH in a land lot of 500m*500m (m) BH  √ 
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Categories Predictors Indices for input Temporal Spatial 

Pollution 

sources 

Emissions from 

traffic in the local 

area. 

Distance to the nearest main road (m) Dt  √ 

Speed limit of the nearest main road (km.h-1) SLt  √ 

Lanes count of the nearest main road LCt  √ 

Average congestion status in a land lot of 

500m*500m (0, 1.0~4.0) 

CSt √ √ 

Emissions from 

traffic in the 

surrounding area. 

Single-lane road length per unit area in a land 

lot of 500m*500m (km.km-2). 

SLRL  √ 

Emissions from 

construction 

activities. 

Area of construction site within 500m (m2). Acs  √ 

Distance of nearest construction site (m). Dcs  √ 

 279 

2.2 Field measurements for particles (Step 2) 280 

In this step, locations are to be selected for the measurements of particle concentrations, and 281 

the real-time measured value at the specific location represents the predicted variable. One of the 282 

feasible field measurement procedures is depicted in the case study example (Section 3.1). 283 

 284 

2.3 Data-driven modelling and verification (Step 3) 285 

ANN-based, data-driven modelling is an entirely different approach to conventional 286 

algorithms. It is normally a computing system vaguely inspired by the biological neural networks 287 

that constitute human brains (Haykin, 2009). The structure of a fully connected feed-forward ANN 288 

consists of the input layer, the hidden layers and the output layer (Figure 2-a). The activation of 𝑎𝑗
𝑙   289 

(the jth neuron in the lth layer) is related to the neurons in the (l-1)th layer (Figure 2-b) by the 290 

equation: 291 

𝑎𝑗
𝑙 = 𝑓(∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑛𝑙−1

𝑘=1

+ 𝑏𝑗
𝑙) 292 

(4) 293 

where 𝑎𝑘
𝑙−1 is the kth neuron in the (l-1)th layer; 294 
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nl-1 is the total number of neurons in the (l-1)th layer; 295 

𝑤𝑗𝑘
𝑙  is the weight for the connection from the kth neuron in the (l-1)th layer to the jth neuron in the lth 296 

layer; 297 

𝑏𝑗
𝑙 is the bias of the jth neuron in the lth layer; and 298 

𝑓(∗) is the activation function, which determines its nonlinear properties. 299 

 300 

      301 

2a)                                       2b) 302 

Figure 2: The structure of fully-connected feed-forward ANN. a) The whole network structure; b) The internal 303 

operations of a neuron. 304 

 305 

The package “caret” (Kuhn., 2018) in the software R (v 3.5.1) (R Core Team, 2018) is used to 306 

train the ANN model. All the data for the predictors are fed into the input neurons and the 307 

measurement data are fed into the output neuron. The whole dataset is randomly divided into two 308 

subsets, one for model training and the other for testing using the ratio of 3:1. The cross-validation 309 

is used in the training process using the training dataset. The testing dataset is individually used for 310 

the verification of the ANN model. 311 

The effectiveness of the prediction can be evaluated by statistics measuring how well the 312 

observed outcomes are replicated by the model. The root mean square error (RMSE) and the mean 313 

absolute error (MAE) are the most common indicators used with prediction models. RMSE uses the 314 
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square root of the second sample moment of the differences between predicted values and measured 315 

values to represent the overall accuracy, i.e. 316 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝑀𝑖)2𝑛

𝑖=1

𝑛
 317 

(5) 318 

where Pi is the ith predicted value, Mi is the ith measured value, and n is the volume of the datasets to 319 

compare. 320 

The Pearson correlation coefficient (r), a value between -1 and +1, is a measure of the linear 321 

correlation between predicted values and measured values, i.e. 322 

𝑟 =
∑ (𝑃𝑖 − �̅�)(𝑀𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑀𝑖 − �̅�)2𝑛

𝑖=1

 323 

(6) 324 

where �̅� is the average of the measured values, and �̅� is the average of the predicted values. 325 

The average bias (Bias), or say the average of the predicting errors, is calculated to describe 326 

how much the model underestimates or overestimates the situation, thus: 327 

𝐵𝑖𝑎𝑠 =
∑ (𝑃𝑖 − 𝑀𝑖)

𝑛
𝑖=1

𝑛
 328 

(7) 329 

Relative error histograms are plotted to show the frequency of the appearance of errors at a 330 

different scale, which tells what percentage of the data lies within the acceptable tolerance. 331 

 332 

2.4 Application for estimation – Spatial interpolation (Step 4) 333 

After training and verification of the model, it would be theoretically possible for the 334 

estimation of particle concentrations at any location and time, as long as all the information for the 335 

prediction variables is provided. Thus, one of its applications could be a spatial interpolation. 336 

An area of interest can be divided into a 500m*500m grid. All the data for the predictors with 337 
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spatial variations (BCR, BH, SLRL, CSt, Dt, Acs and Dcs) are calculated with the aid of GIS and self-338 

developed Python scripts. 339 

In general, spatial-variable factors could be divided into two types: building information and 340 

road information. The building information, as vector data, could be used for spatial analysis. 341 

However, road information is in the form of raster data (like an image) which should be converted 342 

into vector data. In order to extract useful information from road information data and convert it to 343 

the vector data format, the ModelBuilder, which could be thought as a visual programming 344 

language application in ArcMap (a GIS program), is applied to process the data. Figure 3 is the 345 

work chart for extracting road data in the ModelBuilder. In addition, the extracted road information 346 

could be converted into vector data for spatial analysis. After obtaining construction and road 347 

spatial data in vector format, a fishnet, namely dividing an area into finite small squares, is used to 348 

count spatial features at different locations. 349 

 350 

 351 

Figure 3: Flow chart for extracting road information. 352 
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 353 

In order to calculate these spatial variables, the ‘Spatial Join’ (Esri., 2019a) and ‘Near’ (Esri., 354 

2019b) in the Analysis tools of the ArcMap are mainly used. The Spatial Join is the tool used to 355 

connect the properties of one feature class to the properties of another feature class, based on spatial 356 

relationships. To be more specific, this tool could be used to calculate the length of the road, the 357 

total area and the number of buildings in a region. Hence, spatial variables of BCR at different 358 

heights, BH, SLRL, CSt and Acs are calculated through the Spatial Join tool in the ArcMap. 359 

Additionally, the Near tool is used to calculate the distance and other proximity information 360 

between the input features and the closest features in other layers or feature classes. Therefore, the 361 

spatial information for Dt and Dcs is analysed by the Near tool in the GIS software. 362 

The corresponding data for each predicting variable for every grid forms a dataset, which is 363 

input into the trained model, and the output is the corresponding particle concentrations of each grid 364 

location. 365 

 366 

3 Verification of the method using a case study 367 

Chongqing has become one of the fastest developing cities in China, accompanied by rapid 368 

urbanisation and infrastructure construction on a grand scale. Consequently, its ambient air quality 369 

has been gradually deteriorating over the last few years. Chongqing was selected as the case-study 370 

city in this research to verify and demonstrate the process for developing this research method and 371 

its application. 372 

 373 

3.1 Measurement of real-time particle concentrations 374 

The data used for this study was from field measurements carried out in the dense central 375 

urban area of Chongqing between July 2015 and January 2016 covering summer, autumn and 376 

winter seasons. For security reasons, monitoring devices were located in some residences, and the 377 

sampling tube was extended out of the window with a pole. A total of 20 dwellings was selected in 378 
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central districts (Figure 4). Continuous 4~5 days monitoring data were collected for each location 379 

successively (totally 84 days). The field measurement period for each location is indicated in the 380 

Supplementary Material 1. 381 

 382 

 383 

4a)                                              4b) 384 

Figure 4: The location of the field measurement campaign. a) The central urban area of Chongqing (the black 385 

square frame); b) The distribution of sampling sites (red dots). 386 

 387 

The measured parameters include temperature, relative humidity and PM concentration (Table 388 

2). In order to measure these parameters accurately, avoiding the influence of indoor disturbances, 389 

the sampling point was located 2 metres outside the window or balcony, and a supporting rod was 390 

specially laid for this purpose (Figure 5). Onset HOBO UX100-011 is an automatic logger 391 

comprising a temperature sensor, an RH sensor and memory to record the data. It was directly hung 392 

on the end of the rod due to its small size. TSI DustTrak 8534 is a light-scattering laser photometer 393 

that gives real-time aerosol mass readings, which can simultaneously measure size-segregated mass 394 
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fraction concentrations corresponding to PM2.5 and PM10. This device uses a sheath air system that 395 

isolates the aerosol in the optics chamber to keep the optics clean for improved reliability and low 396 

maintenance. Jiang (Jiang, 2013) has conducted a series of experiments to verify that the results 397 

from the aerosol monitoring method using DustTrak DRX have strong consistency with the results 398 

from a tapered element oscillating microbalance. It was calibrated with the zero filters every day 399 

before the sampling started. All the monitoring equipment was set-up to log data at 1-min intervals, 400 

and the collected data could be readily processed for specific purposes. 401 

 402 

Table 2: Real-time measuring equipment for temperature, relative humidity, PM concentration (PM10 and PM2.5), 403 

and their technical specifications. 404 

Model Manufacturer Variables Range Accuracy Resolution 

HOBO UX100-011 Onset Temperature -20 ~ 70 °C ± 0.21 °C (0 ~ 50 °C) 0.024 °C 

Relative humidity 1% ~ 95% ± 2.5% (10% ~ 90%) ~ 

± 3.5% (0% and 100%) 

0.05% (25 °C) 

DustTrak 8534 TSI PM concentration 0.001 ~ 150 mg m-3 ± 0.1% of reading 0.001 mg m-3 

 405 

    406 

5a)                            5b) 407 

Figure 5: Measurement devices for outdoor thermal conditions and particle pollution levels. a) The location of 408 

outdoor sampling point; b) The measuring equipment. 409 
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 410 

3.2 The dataset for the predictors 411 

3.2.1 Background pollution level 412 

The hourly PM10 and PM2.5 data are obtained from the National Air Quality Real-time Release 413 

Platform (http://106.37.208.233:20035/) (China National Environmental Monitoring Centre) by the 414 

China National Environmental Monitoring Centre. There are 6 official observation sites (with 415 

reference numbers ‘1414A’, ‘1417A’, ‘1419A’, ‘1423A’, ‘1424A’, and ‘1425A’) in the central 416 

Chongqing area selected for the case study, and an average of 6 sites made up the predicting dataset. 417 

From the particle monitoring data in the official observation sites (Figure 6), we can see that 418 

the most severely polluted days are aggregated in winter, but there is still a lot of time in other 419 

seasons that have reached the limit. However, the limit set by the Chinese government(General 420 

Administration of Quality Supervision, Inspection and Quarantine and China, 2012), which is 421 

150μg.m-3 for PM10 and 75 μg.m-3 for PM2.5 (red solid threshold line in Figure 6), is more relaxed 422 

than that of the World Health Organization (WHO) (2006) values, which is 50 μg.m-3 for PM10 and 423 

25 μg.m-3 for PM2.5 (red dotted threshold line in Figure 6); consequently, most of the days cannot be 424 

regarded as a “safe day” when compared to the WHO standard values. 425 

 426 

http://106.37.208.233:20035/
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 427 

Figure 6: The 24-h average particle concentrations: a) PM10; b) PM2.5. The data from surrounding air quality 428 

monitoring sites: blue for the average, red for the maximum, and green for the minimum, and the data from the 429 

field measurement: the black dotted line. 430 

 431 

The on-site measurements of PM10 and PM2.5 are compared with the officially released data 432 

(Figure 6). A similar trend is observed for the PM concentration throughout the urban area of 433 

Chongqing. However, the pollution level varies for different regions within urban areas, which 434 

indicates the importance of the spatial interpolation of pollution levels in obtaining local pollution 435 

status. 436 

 437 

3.2.2 Meteorological conditions 438 

Daily and hourly weather observations are obtained from the China Meteorological 439 

Administration (http://data.cma.cn/) (China Meteorological Administration). The observation site 440 

chosen is called Shapingba (57516), which is located in the urban area of Chongqing, and it is the 441 

closest to all the on-site measuring points.  442 

The entire measurement period spanning from summer through autumn to winter, experiences 443 

all kinds of typical climate conditions for Chongqing (Figure 7). This city suffers a continuous 444 

http://data.cma.cn/
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heatwave from the beginning of July to the beginning of September with an average temperature of 445 

28.4°C, and there were totally 21 days when the highest temperature reaches 35°C from 7th Jul. to 446 

10th Sep. 2015, with the daily lowest temperature peaking at 29.3°C on 2nd and 3rd Aug. 2015. 447 

Thereafter, a warm-season lasted for 1.5 months from 11th Sep. to 25th Oct. 2015 with an average 448 

temperature of 21.8°C. The autumn in Chongqing is very short from the end of October for one 449 

month, declining sharply towards early winter with the air temperature averaging 9.2°C from 13th 450 

Dec. 2015 to 20th Jan. 2016. The humidity is high throughout the year, with an average relative 451 

humidity of 77.7%, and there are 89 days when the average relative humidity is above 80% (1st Jul. 452 

2015 – 31st Jan. 2016). Chongqing is categorised in the calm wind zone with an average wind speed 453 

of around 1m.s-1. In that summer, most of the days were exposed to sunlight, except several days 454 

(15th and 22nd Jul., 17th Aug., 5th and 12th Sep. 2015) with rainstorms (>50mm in 24 hours). 455 

However, the sunlight is very rare for this region in winter when most days are very humid with 456 

drizzle. 457 

 458 
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 459 

Figure 7: The weather conditions during the measurement period. a) Temperature, including daily mean, 460 

maximum and minimum value from weather station (line chart), and statistics from the field measurement 461 

(boxplot); b) Relative humidity, including daily mean and minimum values from weather stations (lines chart), 462 

and statistics from the field measurement (boxplot); c) Wind speed, including daily maximum and mean values; d) 463 

Sunshine hours, total hours of sunny time in a full day; e) Precipitation, total rainfall in 24 hours (last night 20:00 464 

to 20:00). 465 

 466 

The black dots with IQR bar (Figure 7) show the measurement of temperature and relative 467 

humidity from the field tests. It follows the trend captured by the weather stations. For the context 468 

of the urban environment, the urban heat island effect makes the positive bias (+ 0.98 °C) for almost 469 

all the temperature measurements. The highest local temperature during the period of the field 470 
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measurement reached 42.6°C (15:00 12th Aug. 2015). 471 

 472 

3.2.3 Urban morphology 473 

The BCR at different heights (Figure 8-b) is calculated to express the urban form for the density 474 

of the buildings (which reflect the changes in the vertical direction), using a set of values to depict 475 

more details of the three-dimensional morphological characteristics of the urban area. Furthermore, 476 

the building volume per unit land area could be estimated by the area enclosed by the polyline and 477 

the coordinate axis (Figure 8-c). In general, the BCR at different heights and BH are not exhaustive 478 

but sufficient enough to reflect the impact of urban morphology on the dispersion of air pollutants 479 

in this research. 480 

 481 

 482 

8a)                               8b)                               8c) 483 

Figure 8: Numerical transformation of urban morphology. a) The actual building model of the location ‘20’; b) 484 

The BCR for different height levels on this land plot; c) The dotted line diagram of the relationship between BCR 485 

and height level, and the dashed line indicates the BH of this land plot. 486 

 487 

The BCR at different height levels and the BH are calculated as the urban morphology 488 

characteristics of input variables (Figure 9). Given that government regulations impose no 489 
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restrictions on building height in Chongqing, both high and low buildings are found together in the 490 

central urban area. The highest building in these surveyed areas is lower than 100 metres. Buildings 491 

in the non-commercial area generally meet this rule because the super-high-rise buildings (greater 492 

than 100 meters in height) need to follow a much stricter design and construction code. (The 493 

Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2005).  494 

The selected areas in this study have different morphological characteristics. For example, the 495 

lowest ground-level density is 0.1393 at location ‘06’, and the highest is 0.2882 at location ‘20’. 496 

Almost no high-rise buildings are shown in locations ‘01’, ‘03’, ‘06’, ‘11’, ‘13’ and ‘15’; high-rise 497 

buildings are very sparsely present in locations ‘04’, ‘07’ ‘08’, ‘12’, ‘16’,’19’ and ‘20’ but appear 498 

more frequently in locations ‘02’, ‘05’, ‘09’, ‘10’, ‘14’, ‘17’ and ‘18’. 499 

 500 

 501 

Figure 9: The BCR on each measurement point for different height levels (the dashed line indicates the BH in that 502 

area). 503 

 504 

3.2.4 Local pollution sources 505 

1) Transportation 506 
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The transportation facilities were identified using the satellite image provided by the software 507 

Google Earth Pro (version 7.3.2) on 21st Oct. 2015, which was during the field measurement period 508 

(Figure 10-a). The congestion status was accessed from the navigation software Baidu Map 509 

(https://map.baidu.com/) at around half-hourly intervals (Figure 10-b). 510 

 511 

 512 

10a)                                  10b) 513 

Figure 10: Traffic information around the sampling point. a) The satellite image of location ‘18’; b) The 514 

congestion status. 515 

 516 

All the variables providing information on emissions are dependent on the locations (see 517 

Supplementary Material 1). The single-lane road length per unit area (SLRL), indicating the density 518 

of road facilities, varies from 7.9km.km-2 (a relatively isolated residential community) to 519 

37.3km.km-2 (entrance of an inner-ring highway) with an average of 22.11 km.km-2 (standard 520 

deviation: 7.96 km.km-2). 521 

The temporal variations of traffic emissions are characterised by the time periodicity and the 522 

congestion status (Figure 11). For weekdays, the roads used for work commuting generally have 523 

two distinct peaks, which appear in the residential, the commercial for offices and schools, and the 524 

inner-ring highway areas. However, around the commercial areas for entertaining and shopping, the 525 

traffic conditions are not smooth for the whole day. For the weekend, the urban traffic congestion 526 

profile is more diverse. It was smooth for the whole day in the residential areas and the commercial 527 

https://map.baidu.com/
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areas for offices and schools. A peak shows in the afternoon due to a sudden intense utilization of 528 

the highway. The road around the commercial areas for entertaining is congested almost the whole 529 

day, even worse than that during a weekday, and a peak appears at night towards the end of non-530 

home-based activities. This information reflects the road usage at different times and indirectly 531 

supports the estimation of traffic pollutant emissions. 532 

 533 

 534 

Figure 11: Real-time congestion status for a) a weekday and b) a weekend on four typical locations: ‘06’ (Road in 535 

the residential area), ‘07’ (Inner-ring highway), ‘15’ (Road in the commercial area for entertaining) and ‘20’ (Road 536 

in the commercial area for offices and schools). Congestion status was interpolated from four-level road 537 

conditions as shown in Figure 10. 538 

 539 

2) Construction activities 540 

A construction site was identified within 500m of the sampling point using the satellite image 541 

provided by Google Earth Pro software on 21st Oct. 2015 and its area and distance from the 542 

measurement point obtained. Assuming the construction sites have not changed during the period of 543 

field measurements, the data for these two variables are constant and calculated as shown in 544 

Supplementary Material 1. There was a lot of construction work during that time due to intense 545 

development. 16 locations (out of 20) appeared the construction sites, the largest of which was 190 546 
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metres away from the test point with an area of around 127,437m2. 547 

 548 

3.3 Predicted results and verification 549 

The whole dataset is prepared following the above instructions and provided in Supplementary 550 

Material 2. The ANN scripts are provided in Supplementary Material 3. Based on the comparison 551 

with the testing dataset, the predicted results from the ANN model with background pollution level, 552 

weather conditions, urban morphology and local pollution sources are in good agreement with the 553 

measured data (Figure 12). A linear relationship between predicted values and measured values is 554 

found with a Pearson coefficient of 0.954 for PM10 (sig. <0.001), and 0.968 for PM2.5 (sig. <0.001). 555 

The mean square error for PM10 is 11.20μg.m-3, and 9.04μg.m-3for PM2.5. The bias is +1.07μg.m-3 556 

for PM10, and +0.98μg.m-3 for PM2.5. However, when observing the data in Figure 12, the positive 557 

errors appear for the higher concentrations with the negative bias mainly being seen for lower 558 

concentrations. 559 

 560 

 561 

12a)                                            12b)  562 

Figure 12: The comparison between predicted values and measured values of a) PM10 and b) PM2.5. 563 
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 564 

3.4 Application for spatial interpolation 565 

As the data-driven prediction model has been developed for the studied area, the particle 566 

concentrations can be estimated at a specified time and place for this area. To obtain the average 567 

particle concentrations for 6 official sites, the meteorological parameters can be accessed from the 568 

officially released platform at the given time. Information on the urban morphology and local 569 

sources can be processed using satellite images and the GIS system. Then all the data for the 570 

predictors are required to be fed into the model which then outputs the predicted concentration 571 

values. 572 

Following the instructions in Section 2.4, the concentrations of PM10 and PM2.5 in each 573 

500m*500m grid at 08:00 on 04 Jan 2016 are estimated. The mapping of the concentration 574 

distribution (Figure 13) is smoothed out by the Empirical Bayesian Kriging method (Esri, 2018). 575 

The centre is a more densely built area with a greater population than its surroundings, and the 576 

traffic flow is also high, hence it is not surprising to find that the PM concentrations are higher at 577 

the centre of this image. 578 

 579 

 580 

13a)                                     13b) 581 
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Figure 13: The prediction of a) PM10 and b) PM2.5 concentrations of the whole case study area at 08:00 on 04 Jan 582 

2016. 583 

 584 

This model can also be used in any other urban area. Some typical sites need to be selected to 585 

conduct real-time particle monitoring. The particle pollution monitoring data from official 586 

observation sites can be accessed from the local authorised sources. The meteorological conditions 587 

can be accessed from the local meteorology department. For the urban form, the urban planning 588 

department may have such information, however, it also can be obtained by satellite images, and the 589 

related indices can be processed according to the method described above. The road transportation 590 

infrastructure and construction sites can be read from satellite images, and the traffic conditions can 591 

be accessed from the contemporary navigation system. With all the information obtained, the 592 

predicted values can be calculated using the trained and validated ANN model. 593 

 594 

4 Discussion 595 

4.1 Sensitivity analyses 596 

The prediction accuracy of the trained model is largely influenced by the dataset for training 597 

and testing. Factors of influence include, but are not limited to, the selection of the predictors, the 598 

volume of the data set and whether the training data cover the possible span of the predictors. The 599 

following sections discuss two of the issues that affect the accuracy of the model. 600 

 601 

1) The influence of different combinations of predictors  602 

In this study, as is discussed in Section 1.1, five elements are considered as predictors in the 603 

model: time periodicity, background pollution level, weather conditions, urban morphology and 604 

local pollution sources, see Table 3. The trained ANN model is a spatial interpolation model 605 

considering the local divergence denoted as SC0. In order to test the impact of the number of 606 

predictors on the modelling accuracy, we tested another two cases. SC1 is the case which omits the 607 
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predictor for the background pollution level, and SC2 is the case which omits the predictor for 608 

‘urban morphology’. 609 

 610 

Table 3: Three input variable schemes are considered from the literature review for comparison. 611 

Input 

variable 

scheme 

Categories 

Time 

periodicity 

Background particle 

pollution level 

Meteorological 

conditions 

Urban 

morphology 

Pollution 

sources 

SC0 √ √ √ √ √ 

SC1 √  √ √ √ 

SC2 √ √ √  √ 

 612 

The predicted performances are presented in Table 4 and Figure 14. From the figure, we can 613 

see that the most accurate model is the one considering five predictors (SC0), which is discussed in 614 

the above-mentioned section. The other two cases also demonstrated a very good performance in 615 

prediction. The SC1 scheme has a Pearson coefficient of 0.938 for PM10 and 0.925 for PM2.5. This 616 

input scheme can be used to predict the pollution level when there is no available information on 617 

real-time pollutant concentration in certain surrounding locations. The SC2 scheme has the worst 618 

performance in terms of presentation accuracy as it ignores the urban morphological information, 619 

unlike the other two schemes. Figure 14 shows the distribution of relative error of PM10 and PM2.5 620 

respectively using the predicted value compared with the measured value. The relative error is most 621 

concentrated around 0 for SC0 but widely scattered for SC2. 622 

 623 

Table 4: The statistics for the prediction performance of models with different predicting variable schemes (Table 624 

3) compared with field measurements (ntest = 494). 625 

Predicting 

variable 

scheme 

Prediction for PM10 Prediction for PM2.5 

RMSE 

(μg.m-3) 

r Bias 

(μg.m-3) 

Average 

relative 

error 

RMSE 

(μg.m-3) 

r Bias 

(μg.m-3) 

Average 

relative 

error 

SC0 11.20 0.954 1.07 17.56% 9.04 0.968 0.98 16.04% 

SC1 13.89 0.938 1.10 20.59% 13.67 0.925 1.30 21.13% 
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Predicting 

variable 

scheme 

Prediction for PM10 Prediction for PM2.5 

RMSE 

(μg.m-3) 

r Bias 

(μg.m-3) 

Average 

relative 

error 

RMSE 

(μg.m-3) 

r Bias 

(μg.m-3) 

Average 

relative 

error 

SC2 16.47 0.901 1.28 24.49% 15.50 0.896 1.41 24.06% 

 626 

 627 

14a-1)                         14a-2)                          14a-3) 628 

 629 

14b-1)                         14b-2)                          14b-3) 630 

Figure 14: The histogram of the relative errors of a) PM10 and b) PM2.5 from models with different input variable 631 

schemes: a-1)/b-1) SC0; a-2)/b-2) SC1 and a-3)/b-3) SC2 (Table 3). 632 

 633 

2) The influence of location selection 634 

The locations used to train the prediction model will affect its accuracy. The ANN model was 635 

trained with data from 5, 10 and 15 locations respectively, and the accuracy of the model prediction 636 
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is given in Table 5. The results with 20 locations show a clear predictive power for the model, even 637 

though 20 locations may not be ideal, it is acceptable. The more locations are chosen, the more 638 

information about the urban morphology the model can learn, and the better its ability to predict 639 

other locations. Generally, the selection of locations should ensure the diversity of spatial 640 

morphologies in different locations. 641 

Table 5: The effect of the number of selected locations on the accuracy of the model prediction. 642 

Number of locations 
ntest Average relative error 

PM10 PM2.5 

20 locations (No. 01 - 20) 494 17.56% 16.04% 

15 locations (No. 06 - 20) 379 19.50% 18.65% 

10 locations (No. 11 - 20) 244 19.88% 19.48% 

5 locations (No. 16 - 20) 119 23.28% 22.65% 

 643 

4.2 Limitations and prospects 644 

The application of the model is based upon the availability of predicting variables. Nowadays, 645 

these data are usually available in major cities worldwide provided by the local meteorological and 646 

air pollution observation stations. However, the application of the model is limited in regions that 647 

lack observation stations. Difficulties often arise in the acquisition of geographic information such 648 

as urban morphology and transportation networks, and their presentation forms vary from place to 649 

place, leading to the need to establish different data pre-processing schemes, as described in Step 1. 650 

Subsequent studies will focus on the application of the model in other cities to demonstrate the 651 

applicability of the model worldwide.  652 

 653 

5 Conclusions 654 

This paper presents a newly developed holistic approach to predicting real-time urban particle 655 

concentrations in conjunction with spatial and traffic information datasets. Four variables are 656 

identified by considering the process of particle dispersion in the urban canopy layer: background 657 

particle concentrations, meteorological conditions, urban morphology and urban pollution sources. 658 
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The method of acquiring building and road traffic information has been developed by using GIS 659 

data, obtained from the urban planning information and satellite images, and self-developed Python 660 

scripts. The prediction model has been verified by a case study of Chongqing city. Continuous four-661 

day measurements of PM10 and PM2.5 were conducted in 20 locations within the city centre area of 662 

Chongqing. The trained model has been verified with the results so that the average relative error of 663 

estimation compared with measurement was 17.56% for PM10 and 16.04% for PM2.5 showing the 664 

modelling to have a good degree of accuracy. 665 

Sensitivity analysis has been conducted in order to test the accuracy level in the absence of the 666 

background particle pollution level or urban morphology information. The results show that the 667 

accuracy levels drop in both cases. For the former case, the relative errors dropped to 20.59% for 668 

PM10 and 21.13 for PM2.5. For the latter case, the relative errors dropped to 24.49% for PM10 and 669 

24.06% for PM2.5. Sensitivity tests have also been done to examine the impact of the number of 670 

locations selected. It is obvious that the greater the number of locations selected, the more accurate 671 

the predicted pollution level is. The worse scenario of 5 locations will reach a relative error of 672 

22.65%. 673 

The model is robust which suggests that it can be used in other cities with the required input 674 

parameters from local sources. It can serve as a tool for a fast estimation of particle concentration in 675 

an urban environment after the input of real-time information including particle concentration 676 

monitoring and meteorological observations from an official site, urban satellite images and traffic 677 

congestion statues, which are already available online for many cities worldwide. Mapping for 678 

spatial interpolation of particle concentrations for an urban area can visualise the pollution situation 679 

providing essential knowledge about air cleanliness, which is desired by residents, policymakers 680 

and built-environment professionals in order to secure the practical development of a healthy 681 

environment. 682 
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