

New generation of climate models track recent unprecedented changes in Earth's radiation budget observed by CERES

Article

Accepted Version

Loeb, N. G., Wang, H., Allan, R. P. ORCID: https://orcid.org/0000-0003-0264-9447, Andrews, T., Armour, K., Cole, J. N.S., Dufresne, J.-L., Forster, P., Gettelman, A., Guo, H., Mauritsen, T., Ming, Y., Paynter, D., Proistosescu, C., Stuecker, M. F., Willén, U. and Wyser, K. (2020) New generation of climate models track recent unprecedented changes in Earth's radiation budget observed by CERES. Geophysical Research Letters, 47 (5). e2019GL086705. ISSN 0094-8276 doi: https://doi.org/10.1029/2019GL086705 Available at https://centaur.reading.ac.uk/89128/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1029/2019GL086705

Publisher: AGU

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES

- 1 Norman G. Loeb^{1*}, Hailan Wang², Richard Allan³, Timothy Andrews⁴, Kyle Armour⁵,
- 2 Jason N.S. Cole⁶, Jean-Louis Dufresne⁷, Piers Forster⁸, Andrew Gettelman⁹, Huan Guo¹⁰,
- 3 Thorsten Mauritsen¹¹, Yi Ming¹⁰, David Paynter¹⁰, Cristian Proistosescu^{12,13}, Malte F.
- 4 Stuecker¹⁴, Ulrika Willén¹⁵, Klaus Wyser¹⁵
- 5 ¹NASA Langley Research Center, Hampton, VA, USA
- ⁶ ²Science Systems and Applications, Inc., Hampton, Virginia, USA
- ⁷ ³Department of Meteorology and National Centre for Earth Observation, University of
- 8 Reading, Reading, UK
- ⁹ ⁴Met Office Hadley Centre, Exeter, UK
- ⁵Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
- ¹¹ ⁶Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change
- 12 Canada, Victoria, BC, Canada
- 13 ⁷Laboratoire de Météorologie Dynamique, Intitut Pierre et Simon Laplace, Paris, France
- ¹⁴ ⁸School of Earth and Environment, University of Leeds, Leeds, UK
- ⁹National Center for Atmospheric Research, Boulder, CO, USA
- ¹⁰NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, NJ,
 USA
- ¹¹Department of Meteorology, Stockholm University, Stockholm, Sweden
- ¹⁹ ¹²Joint Institute for the Study of the Atmosphere and Ocean, University of Washington,
- 20 Seattle, WA, USA
- 21 ¹³Departments of Atmospheric Sciences and Geology, University of Illinois Urbana-
- 22 Champaign, IL, USA
- 23 ¹⁴Department of Oceanography and International Pacific Research Center, School of
- Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu,
 HI, USA
- ¹⁵Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping,
 Sweden
- 28

29 Key Points

- There is good agreement between radiation budget variations observed by CERES and simulated by seven state-of-the-art climate models
- The relationship between global mean net TOA radiation and surface temperature is
 sensitive to changes in regions dominated by low clouds
- Most models underestimate shortwave flux changes in response to SST changes over the east Pacific, suggesting too weak a "pattern effect"
- 36

³⁷

^{*} Corresponding Author: Norman G. Loeb, <u>norman.g.loeb@nasa.gov</u>; NASA Langley Research Center, Hampton, VA 21 Langley Boulevard, Hampton, VA 23681

38

Abstract

39 We compare top-of-atmosphere (TOA) radiative fluxes observed by the Clouds and the 40 Earth's Radiant Energy System (CERES) and simulated by seven general circulation 41 models forced with observed sea-surface temperature (SST) and sea-ice boundary 42 conditions. In response to increased SSTs along the equator and over the eastern Pacific 43 (EP) following the so-called global warming "hiatus" of the early 21st century, simulated 44 TOA flux changes are remarkably similar to CERES. Both show outgoing shortwave and 45 longwave TOA flux changes that largely cancel over the west and central tropical Pacific, 46 and large reductions in shortwave flux for EP low-cloud regions. A model's ability to 47 represent changes in the relationship between global mean net TOA flux and surface 48 temperature depends upon how well it represents shortwave flux changes in low-cloud 49 regions, with most showing too little sensitivity to EP SST changes, suggesting a "pattern 50 effect" that may be too weak compared to observations.

51

Plain Language Summary

52 Earth's radiation budget describes the balance between radiation from the sun intercepted 53 by Earth and radiation returned back to space through reflection of solar radiation and 54 emission of terrestrial thermal infrared radiation. This balance is a fundamental property 55 of Earth's climate system as it describes how Earth gains and sheds heat. Here we use 56 observations from the Clouds and the Earth's Radiant Energy System (CERES) to evaluate 57 how seven state-of-the-art climate models represent changes in Earth's radiation budget 58 during and following the so-called global warming "hiatus" of the early 21st century. The 59 models were provided observed sea-surface temperature and sea-ice boundary conditions 60 as well as natural and anthropogenic forcings. We find remarkable agreement between observed and simulated differences in reflected solar and emitted thermal infrared radiation
between the post-hiatus and hiatus periods. Furthermore, a model's ability to correctly
relate Earth's radiation budget and surface temperature is found to depend upon how well
it represents reflected solar radiation changes in regions dominated by low clouds,
particularly those over the eastern Pacific ocean.

68 **1. Introduction**

69 A key measure of radiative feedback in the climate system, and therefore climate 70 sensitivity, is the relationship between net top-of-the-atmosphere (TOA) radiation and 71 global mean surface air temperature change. From climate model simulations in which CO2 72 is quadrupled instantaneously, the climate feedback parameter can be determined from the 73 slope of a linear regression fit between net flux and surface temperature change, with the 74 intercept yielding the imposed forcing (Gregory et al., 2004). This linear framework 75 assumes that the climate feedback parameter is constant in time, so that variations in net 76 flux and surface temperature are related by a constant of proportionality. However, 77 numerous modeling studies have shown that for transient warming, global radiative 78 feedback is time-varying (Murphy 1995; Senior and Mitchell 2000; Winton et al. 2010; 79 Armour et al. 2013; Andrews et al. 2015; Paynter et al. 2015; Gregory & Andrews, 2016; 80 Zhou et al., 2016; Armour, 2017; Proistosescu & Huybers, 2017; Marvel et al., 2018; 81 Silvers et al., 2018). This is primarily due to temporal changes in surface warming patterns, 82 which induce changes in global radiation that differ from those associated with global 83 warming (Armour et al., 2013; Rose et al., 2014; Andrews et al., 2015; Zhou et al., 2016, 84 2017; Ceppi & Gregory, 2017; Haugstad et al., 2017; Andrews & Webb, 2018; Silvers et 85 al., 2018; Andrews et al. 2018; Dong et al. 2019). These "pattern effects" (Stevens et al., 86 2016) can be a result of both internal variability and climate forcing (Mauritsen, 2016).

87 The "pattern effect" is the reason why general circulation models (GCMs) driven 88 with historical patterns of sea-surface temperature (SST) and sea-ice concentrations (SIC) 89 yield climate feedback parameters that are more stabilizing—implying a lower climate 90 sensitivity—compared to simulations that are forced with projected long-term increases in

91 greenhouse gas concentrations (Zhou et al., 2016; Andrews et al., 2018; Marvel et al., 92 2018). While global mean surface temperatures have been continuing to increase in recent 93 decades, there has been relatively less warming (or even cooling) over the eastern tropical 94 Pacific (e.g., McGregor et al., 2014) and Southern Oceans (e.g., Armour et al., 2016). These 95 regional patterns have been shown to produce greater low-level cloud cover and reflection 96 to space, explaining why there was a more stabilizing climate feedback parameter observed 97 during the past forty years compared to that of future warming (Zhou et al., 2016, 2017; 98 Andrews et al., 2018; Dong et al. 2019). Zhou et al. (2016) further argue that SST pattern-99 induced low-cloud cover anomalies may have also contributed to reduced warming 100 between 1998 and 2013, a period that has come to be known as the global warming "hiatus" 101 (e.g., McGregor et al., 2014). More recently, Fueglistaler (2019) demonstrated the 102 influence of SST pattern changes on observed tropical mean SW cloud radiative effect 103 using data from the Clouds and the Earth's Radiant Energy System (CERES).

104 In this study, we use CERES observations to evaluate how state-of-the-art climate 105 models represent changes in Earth's radiation budget following a large change in SST patterns. The CERES data reveal a 0.83 Wm⁻² reduction in global mean reflected 106 107 shortwave (SW) flux during the three years following the hiatus, resulting in an increase in 108 net energy into the climate system (Loeb et al., 2018a). Furthermore, decreases in low-109 cloud cover are found to be the primary driver of the decrease in SW flux. The low-cloud cover decreases are associated with increases in SST reaching 2°C on average in some 110 111 locations over the eastern Pacific Ocean following a change in the sign of the Pacific 112 Decadal Oscillation from negative to positive phase.

113 In light of these dramatic changes, we ask the question: can climate models 114 reproduce the changes observed by CERES if they are provided observed SSTs and SIC? 115 Such a comparison serves as a "reality check" on the models used to study the pattern 116 effect, low-cloud feedbacks and changes in total climate feedback during the historical 117 period. We caution that there is no attempt here to provide an "emergent constraint" on 118 future climate (Klein and Hall, 2015) that can be used to constrain long-term climate 119 feedback and climate sensitivity. Rather, the goal is to determine whether or not current 120 atmospheric models are capable of reproducing the TOA radiative response to a large-scale 121 and well-observed event that arguably involves processes relevant to the representation of 122 both current and future climate.

123 **2. Data and Methods**

124 **2.1 Observations**

We use observational data from the CERES EBAF Ed4.1 product (Loeb et al., 2018b, 2019) for March 2000–December 2017. EBAF provides monthly mean TOA and surface SW and longwave (LW) radiative fluxes on a 1°×1° grid. Here, only the TOA fluxes are considered. TOA radiative fluxes in EBAF are derived from CERES SW and LW radiance measurements.

Also considered are atmospheric and surface data from the European Centre for
Medium-Range Weather Forecasts ERA5 reanalysis product (Hersbach et al., 2018). We
use near-surface air temperature (T_s), surface pressure, 700 hPa air temperature and SST.
The first three parameters are used to calculate the estimated inversion strength (EIS)
(Wood and Bretherton, 2006).

135 **2.2 CMIP6 AMIP Simulations**

136 TOA radiative fluxes, T_s and EIS from seven models participating in the Coupled 137 Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016) are considered (Table 138 1). The simulations are forced with monthly time-varying observationally derived fields of 139 SST and SIC using the Atmospheric Model Intercomparison Project (AMIP) boundary 140 conditions (Gates et al., 1999; Hurrell et al., 2008; Taylor et al., 2000). Between the start 141 of the CERES record in 2000 and the official end-date of CMIP6 AMIP in 2014, all 142 simulations have time-varying natural and anthropogenic forcings. We have run AMIP 143 simulations three more years, through the end of 2017. In those simulations, radiative 144 forcings are held fixed at 2014 levels between 2015-2017 for all models except EC-Earth3-145 Veg, which used the Shared Socioeconomic Pathways (SSP2-4.5) radiative forcings (Riahi 146 et al., 2016). The time dependent forcings beyond 2014 have small perturbations that are 147 not expected to influence the results. The main influence on TOA flux variability is from 148 SST, which is time dependent through 2017 in all models. Monthly time-varying observed 149 fields of SST and SIC are either from merged Reynolds/HADISST (Hurrell et al., 2008) or HadISST1 (Rayner et al., 2003) (Table 1). All AMIP simulation output are spatially 150 151 interpolated onto a $1^{\circ} \times 1^{\circ}$ grid.

Since AMIP simulations use observed SSTs and SIC boundary conditions, the model atmosphere responds to SSTs but there is no equivalent ocean surface response to atmospheric changes. This is in contrast to observations, which include two-way atmosphere-ocean interactions. A reasonable question to ask, therefore, is whether it is reasonable to evaluate models by comparing AMIP simulations and observations. This has been addressed in several studies with different models (Andrews et al., 2015; He and

7

Soden, 2016; Haugstad et al., 2017; Mauritsen and Stevens, 2015). The studies find that time-varying net feedback parameters simulated by atmosphere-ocean GCMs (AOGCMs) and AMIP-style simulations for the same models forced using the AOGCM SST and SIC boundary conditions are consistent, suggesting that AMIP-style simulations and observations should also show consistent results.

Model (Short Name)Model (Long Name)CountryResolution (°) (lonxlat)SST/SIC DatasetReferenceCESM2(Long Name)USA1.25x0.94Merged Reynolds/HADISSTGettelman et al. (2019)CanESM5CanESM5 AMIPUSA1.25x0.94Merged Reynolds/HADISSTSwart et al. (2019)CanESM5CanESM5 AMIPCanada2.8x2.8Merged Reynolds/HADISSTSwart et al. (2019)EC-Earth3-VegEC-Earth3-Veg AMIPEurope/EC0.7x0.7Merged Reynolds/HADISSTDavini et al. (2017)ECHAM6.3echam6.3.05-LR AMIPGermany1.875x1.86HadISST1Mauritsen et al. (2019)GFDL-AM4GFDL-AM4 AMIPUSA1.25x1.00HadISST1Zhao et al. (2018)HadGEM3HadGEM3-GC31-LL AMIPUK1.875x1.25HadISST1Williams et al. (2018)IPSL-CM6AIPSL-CM6A-LR AMIPFrance2.5x1.27Merged Reynolds/HADISSTHourdin et al. (2018)				no stady.		
CESM2CESM2 AMIPUSA1.25x0.94Merged Reynolds/HADISSTGettelman et al. (2019)CanESM5CanESM5 AMIPCanada2.8x2.8Merged Reynolds/HADISSTSwart et al. (2019)EC-Earth3-VegEC-Earth3-Veg AMIPEurope/EC0.7x0.7Merged Reynolds/HADISSTDavini et al. (2017)ECHAM6.3echam6.3.05-LR AMIPGermany1.875x1.86HadISST1Mauritsen et al. (2019)GFDL-AM4GFDL-AM4 AMIPUSA1.25x1.0HadISST1Zhao et al. (2018)HadGEM3HadGEM3-GC31-LL AMIPUK1.875x1.25HadISST1Williams et al. (2018)IPSL-CM6AIPSL-CM6A-LR AMIPFrance2.5x1.27Merged Reynolds/HADISSTHourdin et al. (2013)	Model (Short Name)	Model (Long Name)	Country	Resolution (°) (lonxlat)	SST/SIC Dataset	Reference
CanESM5CanESM5 AMIPCanada2.8x2.8Merged Reynolds/HADISSTSwart et al. (2019)EC-Earth3-VegEC-Earth3-Veg AMIPEurope/EC0.7x0.7Merged Reynolds/HADISSTDavini et al. (2017)ECHAM6.3echam6.3.05-LR AMIPGermany1.875x1.86HadISST1Mauritsen et al. (2019)GFDL-AM4GFDL-AM4 AMIPUSA1.25x1.0HadISST1Zhao et al. (2018)HadGEM3HadGEM3-GC31-LL AMIPUK1.875x1.25HadISST1Williams et al. (2018)IPSL-CM6AIPSL-CM6A-LR AMIPFrance2.5x1.27Merged Reynolds/HADISSTHourdin et al. (2013)	CESM2	CESM2 AMIP	USA	1.25x0.94	Merged Reynolds/HADISST	Gettelman et al. (2019)
EC-Earth3-VegEC-Earth3-Veg AMIPEurope/EC0.7x0.7Merged Reynolds/HADISSTDavini et al. (2017)ECHAM6.3echam6.3.05-LR AMIPGermany1.875x1.86HadISST1Mauritsen et al. (2019)GFDL-AM4GFDL-AM4 AMIPUSA1.25x1.0HadISST1Zhao et al. (2018)HadGEM3GFDL-AM4 AMIPUK1.875x1.25HadISST1Williams et al. (2018)HadGEM3HadGEM3-GC31-LL AMIPUK1.875x1.25Merged Reynolds/HADISSTWilliams et 	CanESM5	CanESM5 AMIP	Canada	2.8x2.8	Merged Reynolds/HADISST	Swart et al. (2019)
ECHAM6.3echam6.3.05-LR AMIPGermany1.875x1.86HadISST1Mauritsen et al. (2019)GFDL-AM4GFDL-AM4 AMIPUSA1.25x1.0HadISST1Zhao et al. (2018)HadGEM3HadGEM3-GC31-LL AMIPUK1.875x1.25HadISST1Williams et al. (2018)IPSL-CM6AIPSL-CM6A-LR AMIPFrance2.5x1.27Merged 	EC-Earth3-Veg	EC-Earth3-Veg AMIP	Europe/EC	0.7x0.7	Merged Reynolds/HADISST	Davini et al. (2017)
GFDL-AM4GFDL-AM4 AMIPUSA1.25x1.0HadISST1Zhao et al. (2018)HadGEM3HadGEM3-GC31-LL AMIPUK1.875x1.25HadISST1Williams et al. (2018)IPSL-CM6AIPSL-CM6A-LR AMIPFrance2.5x1.27Merged Reynolds/HADISSTHourdin et al. (2013)	ECHAM6.3	echam6.3.05-LR AMIP	Germany	1.875x1.86	HadISST1	Mauritsen et al. (2019)
HadGEM3HadGEM3-GC31-LL AMIPUK1.875x1.25HadISST1 Williams et al. (2018)IPSL-CM6AIPSL-CM6A-LR AMIPFrance2.5x1.27Merged Reynolds/HADISSTHourdin et al. (2013)	GFDL-AM4	GFDL-AM4 AMIP	USA	1.25x1.0	HadISST1	Zhao et al. (2018)
IPSL-CM6AIPSL-CM6A-LR AMIPFrance2.5x1.27Merged Reynolds/HADISSTHourdin et al. (2013)	HadGEM3	HadGEM3-GC31-LL AMIP	UK	1.875x1.25	HadISST1	Williams et al. (2018)
	IPSL-CM6A	IPSL-CM6A-LR AMIP	France	2.5x1.27	Merged Reynolds/HADISST	Hourdin et al. (2013)

163 Table 1 List of CMIP6 models considered in this study.

164 **2.3 Methods**

165 Deseasonalized monthly anomalies are determined by differencing the average in 166 a given month from the average of all years of the same month. We consider TOA flux 167 differences between means for the post-hiatus and hiatus periods, where the hiatus period 168 is defined as July 2000–June 2014 and the post-hiatus period is July 2014–June 2017. The 169 corresponding SST difference pattern (Figure 1) shows marked SST increases during the 170 post-hiatus period along the entire coast of North America, central Pacific Ocean, and to a 171 lesser extent, along the coast of South America. In addition to examining global results, we 172 also investigate how the models capture flux changes in a domain dominated primarily by 173 low clouds over the eastern Pacific (EP) (see box in Figure 1).

Figure 1. Post-hiatus—hiatus difference in sea-surface temperature. The black box shows
the EP domain defined by 10°N-40°N and 150°W-110°W.

177 **3. Results**

178 **3.1 Global TOA Flux Anomalies**

A comparison between SW flux anomalies from CERES and the seven CMIP6 models is provided in Figures 2a-g, with positive numbers indicating anomalous upward radiation at the TOA. The corresponding comparisons for LW upward and net downward fluxes are shown in Figures S1 and S2. The CERES observations show appreciable positive SW and negative LW anomalies at the beginning of the CERES record, following a period of prolonged La Niña conditions that started in mid-1998 and ended in mid-2001. Anomalies remain fairly weak between 2002 and 2013. Starting in 2014, a marked trend toward negative SW anomalies occurs that reaches a minimum value in January 2017, one year after the peak of the 2015/2016 El Niño event (one of the largest on record). SW anomalies return to near-normal levels at the end of 2017.

189 The CanESM5 and HadGEM3 models track the observed SW anomalies 190 remarkably well during the entire period. All models except ECHAM6.3 capture the large 191 negative SW flux anomalies during the post-hiatus period, but three models fail to 192 reproduce the large positive anomalies at the beginning of the CERES record. While the 193 overall mean correlation coefficient between model and observed monthly SW anomalies 194 is only 0.33±0.098, the standard deviation in CMIP6 SW monthly anomalies is consistent 195 with CERES (Table S1). For LW and net, most of the models closely track the CERES 12-196 month running average, but they are less successful at capturing monthly variations. When 197 annual anomalies are considered, model-observed correlation coefficients increase by a 198 factor of 2 (Table S1). This is likely because more of the variability at annual time-scales 199 is driven by interannual variability in the SST boundary conditions, whereas significant 200 sub-annual variability is due to atmospheric stochastic variability, which is poorly 201 correlated between models and observations (Proistosescu et al., 2018).

Figure 2. Deseasonalized anomalies in global mean TOA SW upward flux for CERES
 and each of the seven CMIP6 models considered in Table 1. Thin lines correspond to
 monthly anomalies; thick lines are 12-month running averages. Correlation
 coefficients (r) between model and observed monthly anomalies are also shown.

207 208

3.2 Post-Hiatus—Hiatus Differences

209 We find encouraging similarities between regional patterns of post-hiatus—hiatus 210 flux difference for CERES and the mean of the seven CMIP6 models (Figure 3a-f). The 211 CERES observations show a marked SW decrease during the post-hiatus period off the 212 west coast of North America (Figure 3a), a region characterized by persistent marine 213 stratocumulus. Surface warming in the East Pacific reduces the vertical stratification, 214 which reduces low-cloud cover (Klein and Hartmann 1993) and reflected solar radiation. 215 Large decreases in low-cloud cover in this region are thought to have played a significant role in causing record-breaking warm SST anomalies after 2014 (Johnson and Birnbaum, 216

2016; Myers et al., 2018). In the tropics, CERES shows positive SW and negative LW 218 differences in the central Pacific, and differences of the opposite sign in the western Pacific 219 (Figures 3a and 3c). These patterns are consistent with an eastward shift in the location of 220 tropical convection during the 2015/2016 El Niño event. The marked SW and LW tropical 221 differences largely cancel, however, and are thus less prominent in the regional distribution 222 of net flux differences (Figure 3e). Large positive net flux differences appear off the west 223 coasts of the Americas since cancellation between SW and LW is weaker there.

224 The flux difference pattern for the mean of the seven CMIP6 models is similar to 225 CERES (Figures 3b, 3d and 3f). Like CERES, the CMIP6 mean SW flux decreases in the 226 region of large SST increase off the west coast of North America (Figure 3b). However, 227 the magnitude of the decrease is weaker than CERES. Results for the individual models 228 show that CanESM5 and HadGEM3 produce SW flux decreases that are larger than the 7-229 model mean and occur in the same location as CERES (Figure S3). Large decreases also 230 occur for IPSL-CM6A and CESM2, but the locations differ from CERES. The SW flux 231 decrease with SST off the west coast of North America is qualitatively consistent with 232 other satellite studies that found a negative correlation between low-cloud cover and SST 233 from passive (Myers and Norris, 2015; Qu et al., 2015; McCoy et al., 2017; Yuan et al., 234 2018) and active sensors (Myers and Norris, 2015; Cesana et al., 2019).

In the tropics, the locations of negative SW and positive LW anomalies in the South Pacific Convergence Zone (SPCZ) and Maritime Continent, and positive SW and negative LW anomalies in the central Pacific coincide with CERES (Figures 3a-d). However, the magnitudes of the CMIP6 model anomalies are larger than CERES both for the sevenmodel mean (Figures 3a-b) and most of the models individually (Figures S3-S4). The

12

CMIP6 model mean reproduces the large positive net downward flux anomalies off the
west coast of North America and along the equator seen in CERES (Figure 3e-f, Figure
S5).

243

Figure 3. Post-hiatus—hiatus difference in (a, b) SW upward, (c, d) LW upward and (e,
f) net downward TOA flux for CERES (left column) and average of seven CMIP6
model simulations (right column).

When averaged globally, all CMIP6 models except ECHAM6.3 show negative SW and positive LW upward flux differences between the post-hiatus and hiatus periods, consistent with CERES (Figure S6). The ECHAM6.3 model underestimates the magnitude of negative SW differences associated with decreases in low clouds off the west coast of 251 North America and convection over the western tropical Pacific yet shows strong positive 252 SW (and negative LW) differences in the central tropical Pacific and over North America, 253 resembling a slight geographical shift of tropical convection in the zonal direction (Figures 254 S3e, S4e). Excluding ECHAM6.3, the root-mean-square difference of the other six CMIP6 models relative to CERES is 0.3 Wm⁻² and 0.15 Wm⁻² for SW and LW, respectively. The 255 256 model most consistent with CERES is HadGEM3, which in addition to producing very 257 similar global mean post-hiatus—hiatus differences, reproduces observed regional patterns 258 rather well.

259 In the EP domain, the post-hiatus—hiatus difference in reflected SW flux is almost 260 entirely associated with changes in T_s, based upon a multivariate regression analysis of SW 261 against T_s and EIS (see Supporting Information). All of the models have a T_s contribution 262 to the SW flux difference that is too weak compared to the observations (Figure S7). We 263 also find little correlation between how well a model represents the SW flux post-hiatus— 264 hiatus difference in the EP domain and the corresponding climatological mean value 265 (Figure S11). The CESM2 model shows the greatest climatological mean bias (-10 Wm⁻²) yet its bias in the post-hiatus-hiatus difference is only 1 Wm⁻². In contrast, EC-Earth3-266 Veg shows a climatological mean bias of 2 Wm⁻² and a post-hiatus—hiatus difference of 267 268 4 Wm⁻². Notably, all of the models but two (ECHAM6.3 and IPSL-CM6A) have negative 269 biases in the climatological mean SW flux. This is consistent with earlier studies that have 270 shown models having a tendency to underestimate low-cloud cover in the subtropical 271 stratocumulus regions off the west coasts of North and South America and Africa (Zhao et 272 al., 2018). These results imply that good agreement between observed and model 273 climatology does not necessarily imply good agreement in climate variability.

274 **3.3 Pattern Effect**

275 To examine the influence of the SST pattern change during the CERES period 276 (Figure 1) on the relationship between net flux and surface temperature, we use an approach 277 similar to Andrews et al (2018), who demonstrated the influence of the pattern effect on 278 the net climate feedback parameter (λ_N) for the historical record (1871-2010) and long-279 term CO₂ forcing. We refer to a radiative restoring coefficient (Lutsko and Takahashi, 2018) for the CERES period (β_N) instead of λ_N in order to emphasize that β_N is primarily 280 a response to internal variability in the climate system whereas λ_N is primarily a response 281 to external radiative forcing. We define β_N as $\beta_N = (\delta N - \delta F)/\delta T_s$, where δN is net flux 282 283 anomaly, δF is the effective radiative forcing anomaly and δT_s is the surface temperature 284 anomaly. Here, δ are annual anomalies over the CERES period. F is obtained from the 285 Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) 286 forcing time series updated and extended following Dessler and Forster (2018). We 287 determine β_N for 2001-2017 and 2001-2014 from CERES and each of the seven CMIP6 288 models by calculating the slope of $\delta N - \delta F$ against δT_s using a standard ordinary least 289 squares fit. To calculate δF , the same time-varying F is assumed for CERES and each 290 CMIP6 model through 2014. For 2015-2017, F is held fixed at the 2014 value for the 291 CMIP6 models but is time-varying for CERES. The uncertainty in the regression slope is 292 represented by its 95% confidence interval.

For CERES, β_N becomes dramatically less stabilizing when the three post-hiatus years are included (Figure 4a), changing from -2.1 Wm⁻² K⁻¹ (-5.5 to 1.3 Wm⁻² K⁻¹) for 2001-2014 to -0.53 Wm⁻² K⁻¹ (-1.9 to 0.83 Wm⁻² K⁻¹) for 2001-2017. The change in β_N is mainly due to a strong positive SW feedback (Figure S12) associated with the large decrease in global mean reflected SW flux during the post-hiatus period. We note that the 95% confidence intervals in β_N for these short periods are large owing to the short record of CERES. With the exception of ECHAM6.3, all of the model β_N values for 2001-2017 fall within the 95% confidence interval of the observations. Excluding ECHAM6.3, the mean of the other six models have a less stabilizing β_N compared to CERES for 2001-2014 by 0.3 Wm⁻² K⁻¹ and a more stabilizing β_N by approximately the same magnitude for 2001-2017.

304 We quantify the pattern effect during the CERES period as the ratio of β_N for 2001-305 2017 to that for 2001-2014. This ratio is plotted against the post-hiatus—hiatus difference 306 in SW upward flux for the EP domain in Figure 4b. The IPSL-CM6A model shows remarkable agreement with CERES, whereas the other models have both a β_N ratio that is 307 too large, indicating too weak a pattern effect, corresponding to too weak a SW response 308 309 in the EP domain. The positive correlation in Figure 4b suggests that at least for these 310 periods, a model's ability to represent changes in the relationship between global mean net 311 flux and surface temperature (and therefore the pattern effect) depends critically upon how 312 well it represents SW flux changes in low-cloud regions.

Figure 4. (a) Global net climate feedback parameter for 2001-2017 against that for 20012014. (b) Ratio of 2001-2017 and 2001-2014 global net climate feedback parameters
against NE Pacific region post-hiatus—hiatus SW up difference. Dashed lines
correspond to one-to-one line in (a) and linear regression fit to all points in (b).

- 318 4. Conclusions
- 319

The general agreement between TOA radiation changes simulated by the seven CMIP6 AGCMs considered in this study and CERES is encouraging as it suggests that the models' atmospheric response to large-scale SST pattern changes resulting from a combination of internal and forced variations is realistic. We find that a model's ability to

324	represent changes in the relationship between global mean flux and surface temperature
325	depends critically upon how well it represents SW flux changes in regions dominated by
326	low clouds, such as the EP domain considered here. Part of the reason is because there is
327	less cancellation between SW and LW flux changes in these regions compared to the west
328	and central Pacific, where marked SW and LW differences are quite similar in magnitude
329	but opposite in sign. Over longer timescales, coupled climate model simulations also
330	suggest an important role for low clouds in determining the future climate state. However,
331	model biases could play a critical role (McGregor et al. 2018) in explaining why coupled
332	models are not able to simulate the observed SST pattern during the hiatus (McGregor et
333	al. 2014, Coats and Karnauskas, 2017). We thus caution that consistency between AGCM
334	simulations and observations at interannual timescales is not a guarantee of success in
335	projecting future climate, as other processes operating at longer timescales likely also
336	matter.

337 Acknowledgements

338 N.G.L. and H.W. were supported by the NASA CERES project. R.P.A. was supported by 339 the UK National Environment Research Council (NERC) SMURPHS project 340 (NE/N006054/1). TA was supported by the Met Office Hadley Centre Climate 341 Programme funded by BEIS and Defra. A.G. was supported by The National Center for 342 Atmospheric Research, which is sponsored by the U.S. National Science Foundation. 343 T.M. acknowledges funding from the European Research Council grant #770765 and 344 European Union Horizon 2020 project #820829. This is IPRC publication X and SOEST 345 contribution Y. EBAF Ed4.1 data was downloaded online from: 346 https://ceres.larc.nasa.gov/products-info.php?product=EBAF. ERA5 data from the 347 European Centre for Medium-range Weather Forecast (ECMWF) was downloaded online 348 from: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The EC-349 Earth3-Veg simulations were performed on resources provided by the Swedish National 350 Infrastructure for Computing (SNIC). AMIP model simulation output are available from:

351 https://ceres.larc.nasa.gov/amip_data.php.

352	References
353	
354	Andrews, T., Gregory, J. M., Paynter, D., Silvers, L. G., Zhou, C., Mauritsen, T., et al.
355	(2018). Accounting for changing temperature patterns increases historical estimates
356	of climate sensitivity. Geophysical Research Letters, 45, 8490-8499.
357	https://doi.org/10.1029/2018GL078887.
358	
359	Andrews, T., Gregory, J. M., & Webb, M. J. (2015). The dependence of radiative forcing
360	and feedback on evolving patterns of surface temperature change in climate models.
361	Journal of Climate, 28(4), 1630–1648. https://doi.org/10.1175/jcli-d-14-00545.1.
362	
363	Andrews, T., & Webb, M. J. (2018). The dependence of global cloud and lapse rate
364	feedbacks on the spatial structure of tropical Pacific warming. Journal of Climate,
365	31(2), 641–654. https://doi.org/10.1175/JCLI-D-17-0087.
366	
367	Armour, K. C., Bitz, C. M., & Roe, G. H. (2013). Time-varying climate sensitivity from
368	regional feedbacks. Journal of Climate, 26(13), 4518–4534.
369	https://doi.org/10.1175/JCLI-D-12-00544.1.
370	1 0
371	Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom (2016), Southern
372	Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature
373	Geoscience, 9, 549—554, doi: 10.1038/ngeo2731
374	· · · · · · · · · · · · · · · · · · ·
375	Armour, K. C. (2017). Energy budget constraints on climate sensitivity in light of
376	inconstant climate feedbacks. Nature Climate Change, 7(5), 331–335.
377	https://doi.org/10.1038/nclimate3278.
378	1 0
379	Ceppi, P., & Gregory, J. M. (2017). Relationship of tropospheric stability to climate
380	sensitivity and Earth's observed radiation budget. Proceedings of the National
381	Academy of Sciences of the United States of America, 114(50), 13,126–13,131.
382	https://doi.org/10.1073/pnas.1714308114
383	
384	Cesana, G., and D. E. Waliser (2016). Characterizing and understanding systematic
385	biases in the vertical structure of clouds in CMIP5/CFMIP2 models. Geophys.
386	Res Lett 43 10 538–10 546 doi:10 1002/2016GL070515
387	
388	Cesana G. A. D. Del Genio, A. S. Ackerman, M. Kellev, G. Elsaesser, A. M. Fridlind, Y.
389	Cheng and M-S Yao (2019) Evaluating models' response of tronical low clouds
300	to SST forcings using CALIPSO observations. Atmos. Chem. Phys. 19, 2813–2822
301	https://doi.org/10.5104/acp-10-2813-2010
202	https://doi.org/10.5194/acp-19-2015-2019.
202	Costs S. & Karnauskas K. P. (2017) Are simulated and observed twentieth contury
201	tropical Dacific coa surface tomporature tropde significant relative to internal
374 205	u opical racine sea surface temperature trends significant relative to internal
373 206	variability: Geophysical Research Letters, 44, 9928-9937.
390	nups://u01.0rg/100.1002/201/GL0/4622
39/	

398	
399	Dessler, A. E., and Forster, P. M. (2018). An estimate of equilibrium climate
400	sensitivity from interannual variability. J. Geophys. Res. Atmos.
401	doi:10.1029/2018ID028481.
402	
403	Davini P and Coauthors 2017: Climate SPHINX: evaluating the impact of resolution
403	and stochastic physics parameterisations in the EC-Earth global climate model
405	Coordi Model Day 10(2):1202
405	Geosci Model Dev. 10(5).1505.
400	Dang V. Draistagagay, C. Armany, K.C. & Dattigti, D.S. (2010). Attributing historical
407	Dong, Y., Proistosescu, C., Armour, K. C. & Batusu, D. S. (2019): Attributing historical
408	and future evolution of radiative feedbacks to regional warming patterns using a
409	green's function approach: The preeminence of the Western Pacific. Journal of
410	Climate, 32, 5471-5491. doi: 10.1175/JCLI-D-18-0843.1.
411	
412	Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K.
413	E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6
414	(CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937-
415	1958, https://doi.org/10.5194/gmd-9-1937-2016
416	
417	Fueglistaler, S. (2019). Observational evidence for two modes of coupling between sea
418	surface temperatures, tropospheric temperature profile, and shortwave cloud radiative
419	effect in the tropics. Geophysical Research Letters, 46.
420	https://doi.org/10.1029/2019GL083990
421	
422	Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., et al.
423	(1999). An overview of the results of the Atmospheric Model Intercomparison Project
424	(AMIP I). Bulletin of the American Meteorological Society, 80(1), 29–55.
425	https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2
426	
427	Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G.,
428	Danabasoglu, G., et al. (2019). High Climate Sensitivity in the Community Earth
429	System Model Version 2 (CESM2), Geophys. Res. Lett. 46, 8329–8337.
430	doi:10.1029/2019g1083978
431	doi:101102)/2019Br005970
432	Gregory, J. M., & Andrews, T. (2016). Variation in climate sensitivity and feedback
433	parameters during the historical period. Geophysical Research Letters 43, 3911–
434	3920 https://doi.org/10.1002/2016GL068406
435	5720. https://doi.org/10.1002/2010GE000400.
435 136	Haugstad A D Armour K C Battisti D S & Rose B F I (2017) Relative roles of
430	surface temperature and elimete forcing netterns in the inconstancy of redictive
138	feedbacks. Geophysical Research Letters 14, 7455, 7463
420	https://doi.org/10.1002/2017GL074272
439 440	ups.//doi.01g/10.1002/201/OL0/45/2
440 441	Ha I & Sadan D I (2016) Dags the lask of sometime in SST foread atmosphere sub-
441 117	models limit their usefulness for elimete change studies? Journal of Climete 20
44Z	A217 A225 http://dx.doi.org/10.1175/JCULD_14.00507_1
443	4517-4525. http://ax.aoi.org/10.11/5/JCL1-D-14-0059/.81

444	
445	Hersbach, H., et al., 2018: Operational global reanalysis: progress, future directions and
446	synergies with NWP. ERA Report Series. European Centre for Medium Range
447	Weather Forecasts Reading UK [Available from:
448	https://www.ecmwf.int/file/276463/download?token=a6uGhnPD]
449	https://www.eeniwi.int/ine/2/0405/downodd.token qodooni Dj
450	Hourdin H et al. (2013): I MDZ5B: The atmospheric component of the IPSL climate
450	model with revisited parameterizations for clouds and convection. Climate Dynamics
451 452	40, 2103, 2222 https://doi.org/10.1007/s00382.012.1343 x
452	+0, 21)5-2222. https://doi.org/10.100//s00562-012-15+5-y.
455 151	Hurrell I. Hack I. Shea, D. Caron, I. & Rosinski, I. (2008). A new sea surface
455	temperature and see ice boundary dataset for the community atmosphere model
455	Lowersh of Climete, 21(10), 5145, 5152, https://doi.org/10.1175/2008ICL12202.1
450	Journal of Chinate, $21(19)$, $5143-5155$. <u>https://doi.org/10.11/5/2008JCL12292.1</u> .
437	Jahrson C. C. and A. N. Dimhaum (2017). As El Nião huilds, Desifie Warm Desl
438	Johnson, G. C., and A. N. Birnbaum (2017), AS EI Nino builds, Pacific warm Pool
439	expands, ocean gains more near, Geophys. Res. Lett., 44 , $458-445$,
400	dol:10.1002/2010GL0/1/0/.
461	Kling C. A. Hull A. (2015) Encourant constraints from the discute from the start
462	Klein, S. A., Hall, A. (2015). Emergent constraints for cloud feedbacks. Curr. Clim.
463	Change Rep., 1:2/6–28/. https://doi.org/10.100//s40641-015-002/-1
464	
465	Klein, S. A., & Hartmann, D. L. (1993). The seasonal cycle of low stratiform clouds.
466	Journal of Climate, 6, 1587-1606.
467	
468	Loeb, N. G., Thorsen, T. J., Norris, J. R., Wang, H., & Su, W. (2018a). Changes in
469	earth's energy budget during and after the "Pause" in Global Warming: An
470	observational perspective. MDPI Climate, 6, 62; doi:10.3390/cli6030062.
471	
472	Loeb, N. G., D. R. Doelling, H. Wang, W. Su, C. Nguyen, J. G. Corbett, L. Liang, C.
473	Mitrescu, F. G. Rose, and S. Kato, 2018b: Clouds and the Earth's Radiant Energy
474	System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA)
475	Edition 4.0 data product, J. Climate, 31, 895-918. doi:10.1175/JCLI-D-17-0208.1.
476	
477	Loeb, N.G., F.G. Rose, S. Kato, D.A. Rutan, W. Su, H. Wang, D.R. Doelling, W.L.
478	Smith, Jr., and A. Gettelman, 2019: Towards a consistent definition between satellite
479	and model clear-sky radiative fluxes. J. Climate, 33, 61-75. doi: 10.1175/JCLI-D-19-
480	0381.1.
481	
482	Lutsko, N. J., & Takahashi, K. (2018). What can the internal variability of CMIP5
483	models tell us about their climate sensitivity? Journal of Climate, 31, 5051-5069.
484	doi:10.1175/JCLI-D-17-0736.1
485	
486	Marvel, K., Pincus, R., Schmidt, G. A., & Miller, R. L. (2018). Internal variability and
487	disequilibrium confound estimates of climate sensitivity from observations.
488	Geophysical Research Letters, 45, 1595–1601.
100	https://doi.org/10.1002/2017CL.07C4/C9

489 https://doi.org/10.1002/2017GL076468.

490	
491	Mauritsen, T., (2016). Clouds cooled the Earth. Nature Geoscience, 9, 865-867.
492	
493	Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., et al. (2019).
494	Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its
495	response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11.
496	998–1038. https://doi.org/10.1029/2018MS001400.
497	<i>yyu 1050. https://doi.org/10.102//2010ht6001100.</i>
498	Mauritsen T & Stevens B (2015) Missing iris effect as a possible cause of muted
490	hydrological change and high climate sensitivity in models. Nature Geoscience 8
500	346,351 doi:10.1038/NGEO2414
500	340-351. doi.10.1038/10E02414
502	MaCou D T Eastman D Hartmann D I and Wood D. The Change in Low Cloud
502	Cover in a Warmed Climate Informed from AIDS MODIS and EDA Interim. I
505	Cover in a warmed Climate Inferred from AIRS, MODIS, and ERA-Inferrm, J.
504	Climate, 30, 3609–3620, https://doi.org/10.11/5/JCLI-D-15-0/34.1, 201/.
505	McCorres C. A. Timmer M. E. Starland M. H. Ersland M. Marifelli E. E. Ka
506	McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, FF. Jin,
507	and Y. Chikamoto (2014), Recent Walker circulation strengthening and Pacific
508	cooling amplified by Atlantic warming, Nature Climate Change, 4, 888–892,
509	doi:10.1038/nclimate2330.
510	
511	McGregor, S., M. F. Stuecker, J. B. Kajtar, M. H. England, & M. Collins (2018): Model
512	Tropical Atlantic biases underpin diminished Pacific decadal variability, Nature
513	Climate Change, 8, 493–498, doi:10.1038/s41558-018-0163-4.
514	
515	Murphy, J. M. (1995): Transient response of the Hadley Centre Coupled Ocean-
516	Atmosphere Model to increasing carbon dioxide. Part 1: Control climate and flux
517	adjustment. Journal of Climate, 8, 36-56. doi:10.1175/1520-
518	0442(1995)008<0036:TROTHC>2.0.CO;2
519	
520	Myers, T. A., Mechoso, C. R., Cesana, G. V., DeFlorio, M. J., & Waliser, D. E. (2018).
521	Cloud feedback key to marine heatwave off Baja California. Geophysical Research
522	Letters, 45, 4345–4352. https://doi.org/10.1029/2018GL078242.
523	
524	Myers, T. A., and J. R. Norris (2016), Reducing the uncertainty in subtropical cloud
525	feedback, Geophys. Res. Lett., 43,2144–2148, doi:10.1002/2015GL067416.
526	
527	Myers, T. A., and J. R. Norris (2015), On the relationships between subtropical clouds
528	and meteorology in observations and CMIP3 and CMIP5 models, J. Clim., 28, 2945-
529	2967.
530	
531	Paynter, D., and T. L. Frölicher (2015), Sensitivity of radiative forcing, ocean heat
532	uptake, and climate feedback to changes in anthropogenic greenhouse gases and
533	aerosols, J. Geophys. Res. Atmos., 120, 9837–9854. doi:10.1002/2015JD023364.
534	

535 536 537	Proistosescu, C., & Huybers, P. J. (2017). Slow climate mode reconciles historical and model-based estimates of climate sensitivity. Science Advances, 3(7), e1602821. https://doi.org/10.1126/sciady.1602821
538	<u>https://doi.org/10.1120/301ddv.1002021</u> .
539	Proistosescu C. Donohoe A. Armour K. C. Roe G. H. Stuecker, M. F. & Bitz, C. M.
540	(2018). Radiative feedbacks from stochastic variability in surface temperature and
541	radiative imbalance. Geophysical Research Letters, 45, 5082–5094.
542	https://doi.org/10.1029/2018GL07/67/8
543	
544	Qu, X., A. Hall, S. A. Klein, and A. M. DeAngelis (2015), Positive tropical marine low-
545 546	cloud cover feedback inferred from cloud controlling factors, Geophys. Res. Lett., 42, 7767–7775, doi:10.1002/2015GL065627.
54/	
548 549	Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A. (2003) Global analyses of sea surface temperature, sea
550	ice, and night marine air temperature since the late nineteenth century, J. Geophys.
551	Res., 108(D14), 4407, doi: 10.1029/2002JD002670
552	
553	Riahi, K., et al. (2017): The Shared Socioeconomic Pathways and their energy, land use,
554	and greenhouse gas emissions implications: An overview. Global Environmental
555	Change, 42, 153-168.
556	
557 558	Rose, B. E. J., Armour, K. C., Battisti, D. S., Feldl, N., & Koll, D. D. B. (2014). The dependence of transient climate sensitivity and radiative feedbacks on the spatial
559 560	pattern of ocean heat uptake. Geophysical Research Letters, 41, 1071–1078.
561	https://doi.org/10.1002/2013GE030355.
562	Senior C A & Mitchell I F B (2000): The time-dependency of climate sensitivity
562 563	Geophys. Res. Lett., 27, 2685-2688. https://doi.org/10.1029/2000GL011373.
565	Silvers I. G. Deurter D. & Theo. M. (2018). The diversity of cloud responses to
565	twentieth centum and surface temperatures. Geophysical Research Letters 45, 201
567	400. https://doi.org/10.1002/2017GL075583.
568	
569	Stevens, B., Sherwood, S. C., Bony, S., & Webb, M. J. (2016). Prospects for narrowing
5/0	bounds on Earth's equilibrium climate sensitivity. Earth's Future, 4(11), 512–522.
5/1	https://doi.org/10.1002/2016EF000376.
572	
573	Swart, N. C. and co-authors. (2019). The Canadian Earth System Model version 5
574	(CanESM5.0.3). Geosci. Model. Dev., https://doi.org/10.5194/gmd-2019-17/.
575	
576	Taylor, K. E., Williamson, D., & Zwiers, F. (2000). The sea surface temperature and sea-
577	ice concentration boundary conditions for AMIP II simulations, PCMDI Report No.
578	60, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore
579	National Laboratory.
580	

581 582	Williams, K. D., and Coauthors, 2018: The met office global coupled model 3.0 and 3.1 (GC3.0 & GC3.1) configurations. J. Adv. Model Earth Syst., 10(2):357–380.
583	
584	Winton, M., Takahashi, K. & Held, I. M. (2010): Importance of ocean heat uptake
585	efficacy to transient climate change. Journal of Climate, 23, 2333-23444.
586	doi.org/10.1175/2009JCLI3139.1
587	
588	Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud
589	cover and lower-tropospheric stability. J. Climate, 19, 6425–6432.
590	
591	Yuan, T., Oreopoulos, L., Platnick, S. E., & Meyer, K. (2018). Observations of local
592	positive low cloud feedback patterns and their role in internal variability and climate
593	sensitivity. Geophysical Research Letters, 45, 4438–4445.
594	https://doi.org/10.1029/2018GL077904.
595	
596	Zhao, M., Golaz, JC., Held, I. M., Guo, H., Balaji, V., Benson, R., et al. (2018). The
597	GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation
598	characteristics with prescribed SSTs. Journal of Advances in Modeling Earth
599	Systems, 10, 691–734. https://doi.org/10.1002/2017MS001208.
600	
601	Zhou, C., Zelinka, M. D., & Klein, S. A. (2016). Impact of decadal cloud variations on
602	the Earth's energy budget. Nature Geoscience, 9(12), 871–874.
603	https://doi.org/10.1038/ngeo2828.
604	
605	Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global
606	cloud feedback on the spatial pattern of sea surface temperature change with a
607	Green's function approach. Journal of Advances in Modeling Earth Systems, 9,
(00	2174 2180 https://doi.org/10.1002/2017 MC001006

608 2174–2189. https://doi.org/10.1002/2017MS001096.

Supporting Information for

New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES

Norman G. Loeb¹, Hailan Wang², Richard Allan³, Tim Andrews⁴, Kyle Armour⁵, Jason N.S. Cole⁶, Jean-Louis Dufresne⁷, Piers Forster⁸, Andrew Gettelman⁹, Huan Guo¹⁰, Thorsten Mauritsen¹¹, Yi Ming¹⁰, David Paynter¹⁰, Cristian Proistosescu^{12,13}, Malte F. Stuecker¹⁴, Ulrika Willén¹⁵, Klaus Wyser¹⁵

¹NASA Langley Research Center, Hampton, VA, USA

²Science Systems and Applications, Inc., Hampton, Virginia, USA

³Department of Meteorology and National Centre for Earth Observation, University of Reading, Reading, UK

- ⁴Met Office Hadley Centre, Exeter, UK
- ⁵Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA

⁶Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, Canada

⁷Laboratoire de Météorologie Dynamique, Intitut Pierre et Simon Laplace, Paris, France ⁸School of Earth and Environment, University of Leeds, Leeds, UK

⁹National Center for Atmospheric Research, Boulder, CO, USA

¹⁰NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, NJ, USA

¹¹Department of Meteorology, Stockholm University, Stockholm, Sweden

¹²Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA

- ¹³Departments of Atmospheric Sciences and Geology, University of Illinois Urbana-Champaign, IL, USA
- ¹⁴Department of Oceanography and International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA

¹⁵Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Contents of this file

Figure S1-S12

Table S1

1. Global TOA Flux Anomalies

Figure S1. Same as Figure 2 but for TOA LW upward flux.

Figure S2. Same as Figure 2 but for TOA net downward flux.

2. Post-Hiatus—Hiatus Differences

2.1 Regional

Figure S3. Post-hiatus—hiatus difference in SW TOA upward flux for (a) CERES, (b) CESM2, (c) CanESM5, (d) EC-Earth3-Veg, (e) ECHAM6.3, (f) GFDL-AM4, (g) HadGEM3, (h) IPSL-CM6A.

Figure S4. Same as Figure S3 but for TOA LW upward flux.

Figure S5. Same as Figure S3 but for TOA Net flux.

2.2 Global

Figure S6. Global mean post-hiatus—hiatus difference in LW and SW TOA upward flux for CERES and the seven CMIP6 model simulations.

2.3 Multivariate Regression Analysis

We examine the dependence of the post-hiatus—hiatus SW flux difference on T_s and EIS for the EP domain by performing a multiple regression analysis. Anomalies in SW flux for each 1°x1° gridbox are regressed against local anomalies in T_s and EIS. The domain average T_s and EIS contributions to the post-hiatus—hiatus SW flux difference are determined from the area-weighted product of the regression coefficients (∂ SW/ ∂ T_s or ∂ SW/ ∂ EIS) and the T_s or EIS post-hiatus—hiatus difference. We recognize that other meteorological variables can also explain some TOA radiation variability in low-cloud regions (Myers and Norris, 2016), but given the unprecedented changes in SST (and therefore, T_s) observed in the EP domain, we only consider T_s and EIS, the two most dominant meteorological factors found to impact SW cloud feedback (Myers and Norris, 2016).

In the EP domain, the post-hiatus—hiatus difference in reflected SW flux is almost entirely associated with changes in T_s, based upon a multivariate regression analysis of SW against T_s and EIS (Figure S7). All of the models have a T_s contribution to the SW flux difference that is too weak by at least 2 Wm⁻² compared to the observations. The regional pattern of observed SW sensitivity to $T_s (\partial SW / \partial T_c)$, given by the regression coefficient of each 1°x1° gridbox in the EP domain (Figure S8), shows negative values throughout, except for a small area in the southeast portion of the domain. Most of the CMIP6 models show weaker SW sensitivity to T_s with a pattern that differs markedly from the observations. The two models that place the peak negative $\partial SW / \partial T_s$ values in approximately the correct location (e.g., CESM2 and HadGEM3) show weaker peak values compared to the observations and have large positive values south of 15°N. As a result, all of the models produce a weaker T_s contribution to the SW flux difference in Figure S7. The EIS contribution to the SW flux difference (Figure S7) is less than 0.5 Wm⁻² in magnitude in the observations and three of the models (CESM2, CanESM5, and ECHAM6.3), and is closer to ± 1 Wm⁻² for the other models. The regional pattern of observed SW sensitivity to EIS $(\partial SW / \partial EIS)$ shows an area of positive values along the northwest to southeast diagonal in Figure S9a. The CESM2 model shows a remarkably similar $\partial SW / \partial EIS$ pattern to the observations whereas the other model results differ markedly. The regional distribution of the coefficient of determination of the regression in T_s and EIS on monthly timescales (Figure S10a) peaks at 0.42 in the center of the domain and has a pattern that resembles the $\partial SW / \partial EIS$ pattern in Figure S9a.

Figure S7. Post-hiatus—hiatus SW up difference due to surface temperature

 $(\sum (\partial SW / \partial T_s) \delta T_s)$ and EIS $(\sum (\partial SW / \partial EIS) \delta EIS)$ contributions, their sum ($\Delta SW(Regr)$) and the actual observed difference ($\Delta SW(Actual)$) for the EP region (10°N-40°N; 150°W-110°W).

Figure S8. Sensitivity in SW upwards flux to surface temperature.

Figure S10. Multiple linear regression coefficient of determination (R²).

Figure S11. Bias in SW TOA flux post-hiatus—hiatus difference against bias in SW TOA flux climatological mean for the EP region for July 2000-June 2017.

3. Radiative Restoring Coefficient

Figure S12. Observed SW, LW and Net radiative restoring coefficients (β) for 2001-2014 and 2001-2017.

Tables

Table S1. Standard deviation (Stdev) of monthly and annual anomalies in global mean SW, LW and Net TOA flux and correlation coefficient (r) between CERES and each CMIP6 simulation. Last row provides mean CMIP6 Stdev and r with 90% confidence interval. Annual anomalies are calculated from July to June means between 2001-2017.

	SW Anomalies				
	Monthly		Annual		
Name	Stdev (Wm ⁻²)	r	Stdev (Wm ⁻²)	r	
CERES	0.64	1.00	0.44	1.00	
CESM2	0.77	0.35	0.33	0.81	
CanESM5	0.58	0.49	0.35	0.87	
EC-Earth3-Veg	0.59	0.27	0.28	0.44	
ECHAM6.3	0.69	0.080	0.38	-0.07	
GFDL-AM4	0.54	0.34	0.25	0.90	
HadGEM3	0.57	0.45	0.37	0.83	
IPSL-CM6A	0.72	0.34	0.40	0.60	
Mean (90% CI)	0.64±0.065	0.33±0.098	0.34±0.041	0.62±0.26	
		LW An	omalies		
	Mor	nthly	An	nual	
Name	Stdev (Wm ⁻²)	r	Stdev (Wm ⁻²)	r	
CERES	0.51	1.00	0.30	1.00	
CESM2	0.57	0.27	0.27	0.66	
CanESM5	0.43	0.23	0.21	0.40	
EC-Earth3-Veg	0.48	0.25	0.24	0.70	
ECHAM6.3	0.47	0.096	0.19	0.21	
GFDL-AM4	0.49	0.26	0.27	0.68	
HadGEM3	0.48	0.32	0.32	0.69	
IPSL-CM6A	0.34	0.15	0.19	0.45	
Mean (90% CI)	0.47±0.051	0.23±0.055	0.24±0.037	0.54±0.14	
		Net An	omalies		
	Monthly		Annual		
Name	Stdev (Wm ⁻²)	r	Stdev (Wm ⁻²)	r	
CERES	0.69	1.00	0.34	1.00	
CESM2	0.90	0.30	0.33	0.57	
CanESM5	0.61	0.40	0.23	0.66	
EC-Earth3-Veg	0.79	0.29	0.27	0.37	
ECHAM6.3	0.77	0.25	0.40	0.45	
GFDL-AM4	0.68	0.26	0.27	0.71	
HadGEM3	0.45	0.37	0.13	0.60	
IPSL-CM6A	0.71	0.38	0.32	0.52	
Mean (90% CI)	0.70±0.11	0.32±0.044	0.28±0.063	0.55±0.087	