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Capsule 120 

 121 

The main goals and activities of the EUSTACE project are discussed along with some key 122 

results, including a global, multi-decadal daily air temperature record from satellite and in 123 

situ measurements.  124 
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Abstract 125 

 126 

Day-to-day variations in surface air temperature affect society in many ways, but daily 127 

surface air temperature measurements are not available everywhere. Therefore, a global 128 

daily picture cannot be achieved with measurements made in situ alone and needs to 129 

incorporate estimates from satellite retrievals. 130 

This article presents the science developed in the EU Horizon 2020-funded EUSTACE project 131 

(2015-2019, https://www.eustaceproject.org) to produce global and European, multi-132 

decadal ensembles of daily analyses of surface air temperature complementary to those 133 

from dynamical reanalyses, integrating different ground-based and satellite-borne data 134 

types. Relationships between surface air temperature measurements and satellite -based 135 

estimates of surface skin temperature over all surfaces of Earth (land, ocean, ice and lakes) 136 

are quantified. Information contained in the satellite retrievals then helps to estimate air 137 

temperature and create global fields in the past, using statistical models of how surface air 138 

temperature varies in a connected way from place to place; this needs efficient statistical 139 

analysis methods to cope with the considerable data volumes. Daily fields are presented as 140 

ensembles to enable propagation of uncertainties through applications. Estimated 141 

temperatures and their uncertainties are evaluated against independent measurements and 142 

other surface temperature data sets. 143 

Achievements in the EUSTACE project have also included fundamental preparatory work 144 

useful to others, for example: gathering user requirements; identifying inhomogeneities in 145 

daily surface air temperature measurement series from weather stations; carefully 146 

quantifying uncertainties in satellite skin and air temperature estimates; exploring the 147 
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interaction between air temperature and lakes; developing statistical models relevant to 148 

non-Gaussian variables; and methods for efficient computation.  149 
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Body text 150 

EU Surface Temperature for All Corners of Earth (EUSTACE, 151 

https://www.eustaceproject.org) is a 4-yr research project funded by the European Union 152 

Horizon 2020 research and innovation programme (EU H2020; Grant Agreement 640171; 153 

see Appendix A for a list of the Consortium’s institutions) that started on 1 January 2015.  154 

EUSTACE has used temperature estimates from satellites to boost the  amount of 155 

information available beyond that provided by weather stations and ships to help to 156 

construct a prototype global, multi-decadal daily air temperature record presented on a 157 

0.25⁰ latitude by 0.25⁰ longitude grid. 158 

 159 

Near-surface air temperature (typically measured at a height of about 2 m above ground 160 

level at meteorological stations) is a fundamental quantity for many of the activities 161 

undertaken in climate science and in many of the societal concerns that climate services aim 162 

to support; it is something that we all experience directly in our day-to-day lives. Near-163 

surface air temperature has been measured almost continuously in some places and across 164 

the global oceans by ships for well over a century. Designated as an Essential Climate 165 

Variable (ECV), these records allow for the construction of a useful climate data record 166 

(CDR) in those places for the period covered. Globally, however, there a number of locations 167 

where either access to the measurements is not possible, or no air temperature records 168 

exist. As well as long records of direct measurements of near-surface air temperature, we 169 

have information from satellite retrievals (i.e. remotely-sensed, indirect estimates) of 170 

temperature. However, satellite retrievals tend not to pertain to the air temperature that 171 

we experience directly, but either to an average temperature of a higher layer in the 172 
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atmosphere or to the skin temperature of the surface of the Earth. These quantities are 173 

related to near-surface air temperature, more or less tightly depending on the type of 174 

surface and the surface-lower-atmosphere interactions. Therefore, it is possible to use 175 

satellite-derived temperatures together with near-surface air temperature measurements 176 

to create a more complete climate data record of air temperature. Thus, EUSTACE created a 177 

prototype global climate data record of near-surface air temperature for every day since 178 

January 1850 using both direct measurements of air temperature and estimates of it based 179 

on satellite skin temperature retrievals. 180 

 181 

Near-surface air temperature products provide valuable information for a range of activities, 182 

from the monitoring of current conditions (e.g. Sánchez-Lugo et al. 2019) to the assessment 183 

of past variability (e.g. Osborn et al.  2017) to their use in seasonal-to-decadal forecasting 184 

(e.g. Kushnir et al. 2019), climate model evaluation (e.g. Walters et al. 2019), detection and 185 

attribution of climate change (e.g. Jones and Kennedy 2017), Intergovernmental Panel on 186 

Climate Change Assessments (e.g. Hartmann et al. 2013), agricultural modelling (e.g. 187 

Weedon et al. 2011), health modelling (e.g. Xu et al. 2019) and other downstream uses. 188 

Such a daily surface air temperature product could form part of the future operational 189 

monitoring system for surface air temperature over the polar regions, over Africa and South 190 

America. EUSTACE has already enabled monitoring of lake surface water temperature to be 191 

included in the annual State of the Global Climate reports (for the years 2015, 2016, 2017 192 

and 2018; Woolway et al., 2016, 2017a and 2018; Carrea et al., 2019). EUSTACE products are 193 

complementary to products from dynamical reanalyses (e.g. Buizza et al. (2018)) with much 194 

of the work dedicated to the preparation of input surface temperature observations, for 195 
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which EUSTACE has performed thorough uncertainty analyses, which were previously 196 

lacking.  197 

 198 

Dynamical reanalyses combine historical and recent observations with numerical weather 199 

prediction models to produce dynamically-consistent reconstructions of past weather and 200 

climate. These reanalyses require observational data with well -characterised uncertainties. 201 

The new, validated, estimates of uncertainty in satellite surface skin temperature 202 

observations developed by EUSTACE are of benefit to them. EUSTACE products also provide 203 

an alternative source of near-surface air temperature data that is independent from 204 

numerical weather prediction models and extends further back in time than most dynamical 205 

reanalyses. 206 

 207 

Results from scientific projects are often not produced in a format that can be used easily by 208 

others; in general, processing or translation is needed. Two-way interaction with potential 209 

users from the start of a project helps to increase the relevance and usability of products to 210 

various potential user groups. EUSTACE collected information on user requirements in several 211 

ways, via: user consultation workshops; questionnaires and interviews; a literature review on 212 

user requirements (Bessembinder et al. 2016; Bessembinder 2017, including the results from 213 

a large number of national and EU projects); testing of example mock-up datasets; and 214 

describing specific use cases with “trail blazer” users. 215 

 216 
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These activities resulted in greater insight into how climate data are used, data format 217 

preferences, and which variables are needed (i.e. not just daily mean temperature, but also 218 

minimum and maximum temperature), amongst other things. We used many of the user 219 

requirements collected to design the EUSTACE data file structure and the user guides; for 220 

example, a quick start guide is provided as part of the product user guide, together with 221 

example use cases. 222 

 223 

While many of the ideas used within EUSTACE have been trialled elsewhere for individual 224 

regions (e.g. Cristóbal et al. (2008)), or for different time scales (e.g. Kilibarda et al. (2014)), 225 

EUSTACE has brought them together for the first time to create global, multi -decadal daily 226 

products. EUSTACE has performed an integrating function, bringing together products and 227 

expertise from a wide range of European, national and international initiatives. EUSTACE has 228 

also followed much of the road map of “recommended steps towards meeting societal 229 

needs for surface temperature understanding and information” set out previously in the 230 

EarthTemp Network Community Paper (Merchant et al. 2013). In particular, EUSTACE has 231 

made progress in seven out of the ten broad aims identified therein: 232 

 develop more integrated, collaborative approaches to observing and understanding 233 

Earth’s various surface temperatures; 234 

 build understanding of the relationships between different surface temperatures, 235 

where presently inadequate; 236 

 make surface temperature datasets easier to obtain and exploit for a wider 237 

constituency of users; 238 
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 consistently provide realistic uncertainty information with surface temperature 239 

datasets; 240 

 communicate differences and complementarities of different types of surface 241 

temperature datasets in readily understood terms; 242 

 rescue, curate and make available valuable surface temperature data that are 243 

presently inaccessible; and 244 

 build capacities to accelerate progress in the accuracy and usability of surface 245 

temperature datasets. 246 

 247 

Computer code has been developed both to estimate air temperature from satellite data 248 

and to create daily maps of mean air temperature; this code has been publicly released 249 

(Rayner 2019). Information contained in the satellite retrievals helps to create more-250 

complete fields in the past, via statistical models of how surface air temperature varies in a 251 

connected way from place to place. As the data volumes involved are considerable, the 252 

EUSTACE partnership included statisticians and computer scientists, enabling the 253 

development of efficient analysis methods.  As a result, EUSTACE has been able to 254 

demonstrate that these methods can be built into a fully functional processing system, with 255 

research-level maturity (EUMETSAT, 2014) which exploits the features of modern high 256 

performance computing resources to deliver the more-complete datasets described below. 257 

This system could be used in future to update some of the EUSTACE data sets described 258 

here to enable their use in climate monitoring. 259 

 260 
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The datasets that are currently commonly used to monitor surface temperatures globally 261 

are constructed as a combination of air temperature observations over land and sea surface 262 

temperature observations over ocean. The current versions of the most widely used global 263 

near-surface temperature datasets, HadCRUT4 (Morice et al., 2012), NOAAGlobalTemp 264 

(Smith et al., 2008; Vose et al., 2012) and GISTEMP (Hansen, 2010), extend from the mid-265 

19th century to present and are derived from in situ observations only; temperature 266 

retrievals from satellites are not used in their construction. These global temperature 267 

datasets are presented at monthly resolution because summaries of monthly average  268 

temperatures are more commonly available for individual meteorological stations and cover 269 

a greater region of the Earth than daily or sub-daily summaries in the 19th century and early 270 

20th century. The density distribution of available in situ temperature observations limits 271 

the spatial resolution of these products.  For example, HadCRUT4 is provided as monthly 272 

fields on an equi-angle latitude-longitude grid at 5⁰ resolution. 273 

 274 

Surface air temperature datasets covering land regions, but not ocean or sea ice, are  275 

available at higher spatial and temporal resolutions. For example, Rhode (2013a; 2013b) use 276 

a larger number of meteorological stations than do HadCRUT4, NOAAGlobalTemp or 277 

GISTEMP, together with a statistical interpolation algorithm, to produce a monthly surface 278 

air temperature dataset at higher spatial resolution; an experimental daily analysis has also 279 

been produced. Other high-resolution datasets of air temperatures over land are available 280 

and are commonly used in climate modelling (Harris et al., 2013) and hydrological modelling 281 

(Weedon et al., 2011). Higher temporal resolution air temperatures derived from land 282 

meteorological station observations are also available, including the daily GHCN-D databank 283 
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(Menne et al., 2012), and the sub-daily HadISD databank (Dunn et al., 2016). Gridded 284 

temperature fields based on GHCN-D are available in the HadGHCN-D dataset (Caesar, et al., 285 

2006) covering a time period from 1950 to present. HadISD is presented as time series for 286 

individual meteorological stations only. However, none of these latter datasets are  based on 287 

homogenised data (see below). 288 

 289 

The existing coarse-resolution global temperature datasets are widely used in global and 290 

regional climate assessments; however their utility is limited in some applications that 291 

require information at high temporal and/or spatial resolutions, such as the assessment of 292 

temperature extremes, national climate assessments, regional impact studies and validation 293 

of climate simulations from high-resolution climate models. These global temperature 294 

datasets are also often expressed in terms of temperature anomalies (temperatures relative 295 

to average conditions over some reference period), rather than in terms of absolute 296 

temperature information, which is commonly needed in these applications. EUSTACE 297 

provides products that can be used for the study of absolute temperatures, as well as 298 

providing information relevant to temperature anomalies. 299 

 300 

Figure 1 provides an overview of the EUSTACE process and shows how different activities 301 

linked together to transform the source datasets (Appendix B) into the series of EUSTACE 302 

products (Appendix C). Source data sets were chosen to maximise our opportunity to 303 

quantify the components of uncertainty (in the case of satellite data) and the amount of 304 

historical daily information (in the case of weather station data). Wrapped around these 305 

scientific developments were interactions throughout the project with potential users. 306 
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Evaluation against independent reference measurements (Veal, 2019a) and comparison 307 

with other related products (Veal, 2019b) put EUSTACE work into context. 308 

 309 

Through this development process, EUSTACE has contributed to advancing and enabling 310 

climate science in five main areas: 311 

1) Detecting and correcting for non-climatic discontinuities in weather station series: to 312 

provide an accurate picture of variations in air temperature, measurements at 313 

weather stations have been checked for any jumps in the series and then corrected 314 

(Squintu et al., 2019a and b). Such discontinuities might have arisen from changes in 315 

the surroundings of the weather station, the instruments used, the location of the 316 

station, or the measurement procedure (Brugnara et al., 2019). 317 

2) Estimating consistent skin temperature uncertainties: EUSTACE used satellite data on 318 

the surface skin temperature of the land, ocean and ice, obtained from European 319 

reprocessing projects with diverse approaches to estimating uncertainty. Therefore, 320 

we derived consistent uncertainty estimates for these data over all surfaces in order 321 

to use them together effectively (Ghent et al. 2019; Nielsen-Englyst et al. 2019a). 322 

3) Estimating air temperature from satellite data: while in some locations air 323 

temperature records can span periods of a century or more, in many areas there is a 324 

lack of information. EUSTACE has helped to provide daily air temperature 325 

information by using temperature estimates from satellite measurements to boost 326 

the amount of information beyond that already available from weather station 327 

records and ships (Nielsen-Englyst et al. 2019; Høyer et al. 2018; Kennedy and Kent, 328 

2019).  329 
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4) Understanding the role of lakes: a number of EUSTACE studies explored various 330 

aspects of the relationship between lake surface water temperature and air 331 

temperature, demonstrating the place of lakes in the global climate system, their 332 

response to climate change and the importance of using spatially-resolved data to 333 

explore aspects of the response of lakes to climate change (Woolway and Merchant, 334 

2017; 2018; Woolway et al. 2017b, c, d; 2018b). 335 

5) Estimating complete fields: EUSTACE used cutting-edge statistical methods to exploit 336 

the links between air temperature in different places and through time to estimate 337 

daily air temperatures in places and at times when neither direct measurements, nor 338 

estimates from satellite were available 339 

 340 

Hereafter, we will briefly discuss these activities, together with the independent validation 341 

of EUSTACE products. 342 

 343 

Detecting and correcting for non-climatic discontinuities in weather station series  344 

 345 

Most instrumental temperature series suffer from non-climatic artefacts (i.e. discontinuities 346 

or “breaks”; e.g., due to the relocation of weather stations, changes in the instrument 347 

shelter, changes in observation practices) which often result in sudden changes in the time 348 

series (e.g. Peterson et al., 1998; Brandsma and Können, 2006). Changes like this are not 349 

often adequately documented, so we need to use an automated method to detect them 350 

that we can apply to a global dataset. Correcting for these changes is termed 351 
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“homogenisation”. Until recently, homogenisation efforts have mostly addressed the 352 

monthly or annual time scales and have only adjusted shifts in the mean value. This is not 353 

sufficient when dealing with daily data as inhomogeneities can affect not just the mean, but 354 

the entire distribution of variables (Trewin, 2013). The effects of, for example, shelter 355 

changes on temperature depend non-linearly on the ambient weather conditions such as 356 

sunshine and wind. 357 

 358 

Homogenisation of daily and sub-daily data has received more attention in recent years (e.g. 359 

Aguilar et al. 2008), but efforts are still rare compared to work on monthly data (Venema et 360 

al. 2012). Existing methods correcting daily or sub-daily temperature data can be grouped 361 

into three basic categories: 362 

1) Corrections of the mean: Methods that start from monthly mean break sizes (i.e. 363 

sizes of non-climatic discontinuities), which are then distributed to individual days. 364 

Daily corrections are computed by fitting a spline or piecewise linear function 365 

between monthly mean corrections (e.g. Vincent et al. 2002). This is the easiest 366 

approach, but comes with a risk that the tails of the distribution would not be 367 

properly corrected. 368 

2) Corrections of higher order moments of the distribution: Methods that directly 369 

adjust the distribution of daily temperature based on a daily reference series (e.g. 370 

Trewin, 2013). This is better suited for extremes, but it requires longer and better 371 

correlated reference series than method 1). 372 
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3) Methods that incorporate basic physics such as the effects of radiation and 373 

ventilation on the temperature shield (e.g., Auchmann and Brönnimann 2012).  This 374 

requires detailed metadata that are not usually available for large datasets.  375 

Until quite recently, no global dataset of homogenised daily land surface air temperature 376 

was available. Corresponding homogenisation work was restricted to a few regions such as 377 

Canada (Vincent et al. 2002), the Mediterranean region (e.g., Brunet et al. 2006, Kuglitsch et 378 

al. 2009), Australia (Trewin, 2013) and China (Xu et al. 2013). 379 

 380 

Most break-detection methods require highly correlated reference series. However, a non-381 

climatic network-wide break point (e.g., the simultaneous introduction of new instruments) 382 

can be difficult to detect if reference series are from the same network. For global studies, 383 

only unhomogenised daily temperature data have been available through GHCN-Daily and 384 

other sources, which are not suitable in all locations for analysing trends in extremes, for 385 

example. Berkeley Earth have produced an experimental gridded daily temperature product 386 

over land (see a description of their method in Rohde et al. (2013a; b)), but their 387 

homogenised daily station series are not available and the analysis was constructed without 388 

directly homogenising daily data. Rather, Rohde et al. (2013 a; b) constructed fields of daily 389 

anomalies (from their monthly mean values) and added them to the existing homogenised 390 

monthly dataset. 391 

 392 

EUSTACE has combined multiple break-detection algorithms (those of Caussinus and Mestre 393 

(2004), Toreti et al. (2012), and Wang (2008)). We applied them either to annual and semi-394 
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annual averages of differences between each station and neighboring reference series (our 395 

relative tests; all methods used), or to the averages of the target station alone (our absolute 396 

test; Wang (2008) only used), in the absence of neighboring stations or if available reference 397 

series are not suitable (Brugnara et al. (2019) provides details). Using multiple methods of 398 

detecting discontinuities provides an ability to assess the robustness of the results. Figure 2 399 

illustrates the coverage of the EUSTACE station dataset and indicates the type of break 400 

detection method applied to each station (relative or absolute) and also where application 401 

of the break detection methods has not been possible because of insufficient record length 402 

(i.e., less than 10 years). A simple likelihood index is formed from a 50-member break 403 

detection ensemble and users of the EUSTACE global station dataset can select a likelihood 404 

threshold appropriate to their needs, such that the detection power is maximised whilst 405 

minimising the false alarm rate. This is the first global daily station dataset with estimated 406 

locations of non-climatic discontinuities and their likelihood, together with valuable 407 

metadata, e.g. on resolution of measurements. 408 

 409 

In addition to break detection, the EUSTACE global station dataset has undergone other 410 

quality checks both on the air temperature measurements themselves and on reported 411 

station altitudes (Brugnara et al. 2019). Appendix C provides a link to the resulting dataset of 412 

daily mean, maximum and minimum temperature. 413 

 414 

For European weather station series, EUSTACE has made adjustments, where possible, to 415 

reduce the impact of non-climatic discontinuities. Briefly, we used an iterated quantile-416 

matching approach (an example of method type 2 above) to adjust the distributions of the 417 
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measurements, not just their means, by comparing to the measurement distributions at 418 

nearby reference stations (Squintu et al. (2019a; b) give details). The homogenisation brings 419 

the distributions before and after each station change much closer together, adjusting for 420 

the non-climatic effects of such discontinuities. 421 

 422 

Applying the quantile matching to the whole European station dataset has an impact on the 423 

apparent trends in temperature over Europe (see Squintu et al., 2019a). Sometimes, the 424 

EUSTACE corrections increase the trend and sometimes they decrease it.  Where stations 425 

previously showed negative trends since 1951, they show positive trends in most cases after 426 

homogenisation; in all cases making them more consistent with their neighbouring stations.  427 

 428 

This is the first time that a pan-European station dataset of daily data has been 429 

homogenised to reduce the impact of non-climatic discontinuities. The homogenised 430 

European station dataset is provided separately from the global station dataset and 431 

comprises part of the European Climate Assessment and Dataset (ECA&D) product. A 432 

gridded 100-member ensemble dataset available either on a 0.1⁰ latitude by 0.1⁰ longitude 433 

grid or a 0.25⁰ latitude by 0.25⁰ longitude grid, based on the homogenised station records 434 

has also been developed as a contribution to the next version of the E-OBS dataset (Cornes 435 

et al., 2018). A two-step method (documented in Cornes et al., 2018) was used to create the 436 

ensemble: (i) the daily values were fitted with a Generalised Additive Model, to capture 437 

large-scale spatial trends and (ii) the residuals from this were then interpolated using 438 

stochastic Gaussian Random Field simulation. Appendix C provides a link to the CEDA 439 

catalogue record for these datasets of daily mean, maximum and minimum temperature. 440 
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 441 

Estimating consistent skin temperature uncertainties 442 

 443 

EUSTACE uses surface temperature retrievals over land, ocean and ice based on information 444 

gathered by infra-red satellite sensors. One of our key aims is to estimate the uncertainty in 445 

our air temperature products, so first we addressed the inconsistency in the availability of 446 

uncertainty estimates for skin temperature retrievals over different surfaces.  Here skin 447 

temperature is the temperature at a few microns below the top-most surface of the land, 448 

ocean or ice. 449 

 450 

Uncertainty in surface skin temperature retrieved from satellites arises from various sources 451 

(Merchant et al., 2015): 452 

1) Radiometric noise in the measurements made by the satellite sensor. This is usually 453 

the simplest component of uncertainty, and a standard “uncertainty propagation” 454 

can be applied to derive the surface skin temperature uncertainty associated with 455 

any surface skin temperature retrieval, given information about the radiometric 456 

noise. There is usually no or negligible correlation of error from this source between 457 

different surface skin temperature retrievals. 458 

2) Limitations of the retrieval process would introduce uncertainty into the surface skin 459 

temperature even if the actual radiometric measurements made had zero error. For 460 

physically-derived retrievals, this component can be isolated and estimated if 461 

representative simulations of the retrieval process are available ; this is not the case 462 
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where purely empirical relationships are used. An important aspect of this 463 

component of uncertainty is that the errors are likely to be correlated in space and 464 

time, and therefore may not “average out” in a simple way when transforming data 465 

from finer to coarser spatio-temporal scales. 466 

3) Effects that are more systematic, principally: sensor calibration (which may drift over 467 

time) and radiative transfer simulation (including the effects of imperfect instrument 468 

characterisation and incorrect surface emissivity assumptions, although sub-pixel 469 

emissivity variability over land is usually considered random despite having local, 470 

coherent structure. See Ghent et al. 2019 for further discussion of uncertainties 471 

arising from misspecification of emissivity). 472 

 473 

In addition to the above, error is introduced into surface skin temperature estimates 474 

because of imperfect cloud detection (when infrared sensors are used, as in EUSTACE; see 475 

Bulgin et al. 2018), unrecognised atmospheric aerosol, sensor anomalies, signal 476 

contamination, geo-location error, corrupted data streams, etc. Errors arising from these 477 

contributing sources are often far from Gaussian in their distributions, with complex effects 478 

on surface skin temperature uncertainty. These uncertainties have not been quantified in 479 

EUSTACE. 480 

 481 

For all surfaces, EUSTACE estimated uncertainties partitioned according to the correlation 482 

structure of the different contributing error sources, following the method developed by 483 

Merchant et al. (2014) and expanded in Merchant et al (2015). Uncertainties are split into 484 

those arising from uncorrelated random effects, from effects which are locally correlated 485 
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(these arise from atmospheric effects and/or from uncertainties in the specification of 486 

emissivity) and from effects which are correlated over large space and time scales.  The 487 

derivation of uncertainties in land surface temperature is documented in Ghent et al. (2019) 488 

and in Nielsen-Englyst et al. (2019a) for ice surface temperature. Uncertainties in sea 489 

surface temperature are as calculated by Merchant et al . (2014).  490 

 491 

Links to EUSTACE products containing these consistently-estimated uncertainties are given 492 

in Appendix C. 493 

 494 

Estimating air temperature from satellite skin temperature 495 

 496 

Before we can use the satellite data to estimate air temperature, we have to understand the 497 

relationship between surface air temperature and surface skin temperature and how it 498 

varies throughout the day, by surface type and through the seasons. The challenges are 499 

different in each domain, so EUSTACE explored the relationship separately over land, ocean 500 

and ice. Based on our understanding of the factors influencing the relationship in each case, 501 

we developed multiple linear regression relationships. As well as in situ measurements and 502 

satellite skin temperature estimates, these use extra information to help to categorise the 503 

way the skin/air temperature relationship behaves, such as vegetation, latitude and snow 504 

cover. Inclusion of altitude was found to provide no additional skill due to a lack of high 505 

altitude weather stations, although it does affect the relationship. Wind speed has a clear 506 

influence on the relationship (Good 2016), but use of wind speed information (from a 507 
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dynamical reanalysis) in the regression provided no additional skill. The changing vegetation 508 

fraction information used also acts as a proxy for some other relevant surface effects, such 509 

as urbanisation, but there was no explicit attempt here to model the impact of urbanisation. 510 

The uncertainty arising from excluded effects is also not dealt with explicitly in the error 511 

model. We withheld a pre-defined set of in situ measurements from the regression to use in 512 

validation of the results. We then used the regression relationships to estimate air 513 

temperature when and wherever a satellite skin temperature retrieval  is available, i.e. in 514 

clear-sky conditions over the period of record. 515 

 516 

The relationship between skin and air temperature is not straightforward; Good (2016) 517 

explores this over land. Simultaneously-measured air and skin temperature vary relative to 518 

each other over the course of a day. Depending on conditions, the skin temperature can 519 

become much warmer than the air temperature when the sky is clear, but when cloud is 520 

present, the skin temperature quickly decreases to a value close to the air temperature. The 521 

daily maxima and minima in the skin and air temperatures usually occur at different times of 522 

day and the amplitudes of their diurnal cycles are often quite different. These differences 523 

also vary with season and with location. Nielsen-Englyst et al. (2019b) found a very different 524 

relationship over ice-covered surfaces in Greenland with the closest coupling between skin 525 

and air temperature occurring at noon in the summer under clear skies, when the sun 526 

warms the surface. At other times, particularly in darkness, the surface is often colder than 527 

the air above it through radiative cooling and the formation of a surface inversion layer. 528 

Under overcast skies, the surface can become warmer than the overlying air during more of 529 

the day. Spatial mismatches between satellite retrievals and in situ measurements mean 530 
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that care needs to be taken on the resolution of satellite data used to develop the 531 

relationships. Consequently, we train our regression over land on skin temperature at 0.05⁰ 532 

latitude by 0.05⁰ longitude resolution, as the relationship with air temperature has been 533 

shown to peak at this resolution (Sohrabinia et al. 2014). Weather stations were 534 

preferentially selected for model training if their land cover type matched the dominant 535 

land cover type in the surrounding 5⁰ latitude by longitude area. Retrievals from infrared 536 

sensors are only available in clear sky conditions, so we might expect that to bias our 537 

understanding of the relationship. By using in situ measurements from both clear and 538 

cloudy conditions, we mitigate the impact of this (see Høyer et al. 2015; Nielsen-Englyst et 539 

al., 2019a; Kennedy and Kent, 2019 for details on the relationships between skin and air 540 

temperature across different surfaces).  541 

 542 

Once a regression relationship has been derived, that relationship is used to estimate air 543 

temperature where we have skin temperature retrievals. We perform this procedure 544 

separately over land, ocean and ice and build up a global picture of air temperature based 545 

on the available satellite measurements (see an example in Figure 3). Global regression 546 

coefficients are used over land. Here, the estimation is most challenging, largely due to a 547 

lack of representative station measurements, in high altitude regions (for both daily 548 

minimum and maximum temperature) and at high latitudes and/or with high snow cover 549 

(for daily maximum). 550 

 551 

Since we previously estimated our skin temperature retrieval uncertainties arising from 552 

components with different correlation structures, when we propagate those through the 553 
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regression-based air temperature estimation together with the uncertainties inherent in the 554 

estimation, we can also derive components of uncertainty in the air temperature estimates 555 

arising from random, locally-correlated and systematic effects. This means that the 556 

uncertainties in our air temperature estimates are also estimated consistently across the 557 

different surfaces and can be propagated appropriately through an application. 558 

 559 

EUSTACE air temperature estimates from satellite are provided on a 0.25⁰ latitude by 0.25⁰ 560 

longitude grid in separate files for each surface (land, ocean and ice). Daily mean 561 

temperatures are provided over ocean and ice and daily maximum and minimum is 562 

provided over land. Appendix C provides access information. 563 

 564 

Understanding the role of lakes 565 

 566 

EUSTACE has undertaken work using both lake surface water temperature from satellites 567 

and from in situ measurements gathered by the project to better understand the 568 

relationship between lake surface water temperature and near surface air temperature. 569 

 570 

Lakes can show an amplified response of summer surface water temperature to near surface 571 

air temperature variability over the lake. This amplification of response is variable, but greater 572 

for cold lakes (e.g., those situated at high latitude and high elevation) and for deep lakes 573 

(Woolway and Merchant, 2017). Over-lake atmospheric boundary-layer stability is found to 574 

be more frequently unstable, with over-lake air temperature lower than lake surface water 575 
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temperature, at lower latitudes (Woolway et al., 2017b). In summer, the frequency of 576 

unstable conditions decreases with increasing lake area, as a result of an increase in wind 577 

speed with lake size, affecting heat and carbon fluxes between the atmosphere and the lake. 578 

A study of Central European lakes shows variable warming rates across the year, but these 579 

lakes have warmed most in spring with significant trends seen over the last few decades 580 

(Woolway et al., 2017c). Abrupt changes seen in these lakes in the 1980s are consistent with 581 

abrupt changes in air temperature at the same time. Warming trends seen across nineteen 582 

large Northern Hemisphere lakes (Woolway and Merchant, 2018) vary significantly across 583 

lakes as well as between them. Deeper areas of large lakes exhibit longer correlation time 584 

scales of lake surface water temperature anomalies and a shorter stratified warming season. 585 

Deep areas of large lakes consequently display higher rates of increase of summer lake surface 586 

water temperature.  587 

 588 

Wind speed has a substantial impact on stratification of lakes, which can have a greater 589 

influence than air temperature (Woolway et al. 2017d), and is a controlling factor on lake-air 590 

turbulent heat fluxes. Variations in turbulent heat fluxes over lakes have a marked seasonal 591 

cycle in some cases, with heat loss higher over large lakes and at low latitudes (Woolway et 592 

al., 2018b). The relative contribution of latent and sensible heat fluxes to the total heat flux 593 

differs between lakes and with latitude.  594 

 595 

The relationship between lake surface water temperature and near surface air temperature 596 

is a two-way interaction. Air temperature influences lake temperature (via its role in 597 

turbulent fluxes) and the presence of a lake has an impact on the air temperature in its 598 
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vicinity; an impact that metaphorically has some “memory” of earlier air temperature 599 

anomalies by virtue of the thermal inertia of the lake. The lake influence can be substantial, 600 

and in some instances be in excess of 2°C. In some regions, in particular where lakes are 601 

abundant (e.g., Northern Europe), their influence on the surrounding climate needs to be 602 

considered. For EUSTACE, the key question is how the lake modifies the dynamics over time 603 

of the daily minimum, maximum, and mean air temperature in its vicinity. EUSTACE has 604 

estimated the region of influence of lakes globally, provided in the Supplemental material to 605 

facilitate the inclusion of this effect in future air temperature analyses. 606 

 607 

Estimating more-complete fields 608 

 609 

Having used surface skin temperature retrievals over all surfaces of Earth to estimate near 610 

surface air temperature, we have global, but not globally-complete, fields covering the last 611 

few decades. Gaps remain due to the impact of clouds on the satellite estimates, for 612 

example. We also have over a century and a half of spatially-incomplete data from ships and 613 

weather stations. Night-only ship data were used, to avoid daytime biases, and adjusted to 614 

represent air temperature at 2 m following Kent et al., 2013. To try to complete the picture, 615 

we needed to use statistical modelling to capture information on how temperature covaries 616 

between locations. This information is contained in both the satellite estimates from the 617 

recent past and the weather station and ship measurements (Woodruff et al. 2011).  The 618 

statistical modelling helps us understand unobserved regions on any given day. 619 

 620 
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The state-of-the-art in the spatial statistics research community was previously far ahead of 621 

the methods that had been introduced to the Earth sciences, both in terms of generality and 622 

computational efficiency. In particular, methods capable of propagating uncertainty from 623 

multiple input data sources and realistic modelling of uncertainty due to spatial variability 624 

had seen only very limited use in the Earth sciences. 625 

 626 

Current methods for spatial interpolation in Earth sciences that also include statistical 627 

uncertainty estimates fall mainly into two categories: low-dimensional function 628 

representations (e.g. Banerjee et al., 2008, Wikle, 2010), and local covariance-based kriging 629 

methods (e.g. Furrer et al., 2006). Given a realistic computational effort, none of these 630 

approaches provide full quantification of uncertainties on long and short spatial and 631 

temporal scales simultaneously; low-dimensional basis methods cannot capture small-scale 632 

variability and dealing with statistical non-stationarity is challenging for covariance-based 633 

methods. New techniques for statistical spatio-temporal models have been developed 634 

recently by combining numerical methods for stochastic partial differential equations 635 

(SPDEs) with efficient Bayesian computations for Markov random fields. When combined 636 

with methods for fast computations for hierarchical statistical models (e.g., Rue et al., 2013) 637 

they can handle multiple scales as well as non-stationarity (Lindgren et al., 2011, Bolin and 638 

Lindgren, 2011), for a cost similar to that of low-dimensional models. Previously, these 639 

methods have successfully been used in ecology, epidemiology, and geology, but not until 640 

now for datasets of the size and resolution of global historical daily  temperature datasets. 641 

EUSTACE development has made extensive use of these methods to create a global daily 642 

mean air temperature analysis on a 0.25⁰ latitude by 0.25⁰ longitude grid. 643 
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 644 

We model daily mean air temperature measurements, first, as an average of each day’s 645 

maximum and minimum temperature and, second, as a combination of the true 646 

temperature plus bias terms (including accounting for locally-correlated biases in the air 647 

temperature estimates from satellite) and other errors affecting each measurement type. 648 

We then assume that the true daily mean air temperature can be modelled as a linear 649 

combination of three different components: a moving long-term average climatology; a 650 

large-scale component representing inter-annual variability and a daily, weather-related 651 

component. Each component is modelled as a linear combination of Gaussian variables and 652 

is solved conditioned on the other components, starting with the climatology. The solution 653 

is improved iteratively starting with the climatology, followed by the large-scale and then 654 

the local component, moving from the broadest and slowest scales, to the shortest and 655 

fastest. The process is then repeated. The estimation of the climatology component benefits 656 

directly from the inclusion of satellite-derived data. The time-variation of the large-scale 657 

component is informed largely by the long-term in situ measurements from ships and 658 

weather stations. The correlations captured by the local component benefit from both the 659 

satellite-derived and in situ data. Different types of errors in the input measurements are 660 

associated with the individual component to which they are most relevant. For example, 661 

station biases arising from non-climatic discontinuities are associated with and estimated as 662 

part of the large-scale component, because breaks in the station series are identified at an 663 

annual resolution. To make the computation tractable, we use a combination of local linear 664 

basis functions. These basis functions combine to describe variation in space (for the daily 665 

component) and, in some cases, also in time (for the large-scale component). The basis 666 

functions are defined on a nested triangular mesh which also helps to speed up the 667 
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computation. This Bayesian method allows us to represent uncertainty in the process by 668 

drawing samples from the posterior distributions of the model components.  Figure 4 669 

illustrates the additional information this generates and the uncertainty in different 670 

components of the process for 1 January 2006. 671 

 672 

We generate ten samples of possible representations of mean near surface air temperature 673 

for each day from 1 January 1850. The usefulness of the complete field is determined 674 

strongly by the availability of measurements to constrain the analysis. Therefore, where we 675 

have estimated values which add no additional information (as defined by climatology or 676 

large-scale uncertainties greater than a threshold), we mask these out of the analysis (white 677 

areas in top right panel of Figure 4). In addition, in a few limited areas the statistical model 678 

produced extreme climatological values; these were also masked. Consequently, the 679 

analysis is not globally-complete. 680 

 681 

The purpose of EUSTACE is to provide information on daily near surface air temperature to 682 

enable assessments of vulnerability to its daily variations, rather than for monitoring of 683 

large-scale changes on longer timescales. Nonetheless, it is important to know how the 684 

global analysis compares to data sets developed for large-scale monitoring. The upper 685 

panels of Figure 5 shows regional annual average near surface air temperature anomaly in 686 

the EUSTACE global analysis v1.0 since 1850 for Europe and North America, together with 687 

the same quantity in: a blend of CRUTEM4 (Jones et al., 2012) and HadNMAT2 (Kent et al., 688 

2013); NOAAGlobalTemp (Smith et al., 2008; Vose et al., 2012); GISTEMP (Hansen, 2010); 689 

and Berkley Earth (Rohde et al., 2013a and b). From 1895 onwards, the data sets agree 690 
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closely. Prior to 1895, there are very few daily station measurements in the EUSTACE global 691 

station data set, so the EUSTACE analysis v1.0 relies on night marine air temperature to infer 692 

values over Europe. This causes a discrepancy in the EUSTACE analysis when compared to 693 

the global surface temperature monitoring data sets, which are themselves instead based 694 

on monthly weather station values. Monthly average data are more plentiful for the late 695 

nineteenth century, having been digitised separately from daily values. Over North America, 696 

the agreement is good back to 1870. 697 

 698 

More pertinent to the aims of EUSTACE is the ability of the global analysis v1.0 to represent 699 

the evolution of daily near surface air temperature at a particular location. Having withheld 700 

a large number of station records from the development of the analysis, we can examine 701 

how the analysis compares to these records over the course of example years. The lower 702 

panels of Figure 5 show this for Cimbaj, Uzbekistan in 1975 and for Fort Nelson, Canada in  703 

2003. The station records for these locations were not included in the analysis so provide an 704 

independent comparator. The uncertainty in the analysis is larger for Cimbaj than for Fort 705 

Nelson (shown by the envelope around the EUSTACE analysis v1.0 time se ries). Nonetheless, 706 

in both locations, the analysis compares well on a day-to-day basis with the record of daily 707 

mean near surface air temperature from GHCN-D v3.26. In particular, we see that the gaps 708 

in the Fort Nelson record for 2003 are completed by the EUSTACE analysis method, which 709 

uses information from other weather station records and air temperature estimated from 710 

satellite to infer the missing values. 711 

 712 
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The EUSTACE prototype global daily air temperature ensemble is openly available via the 713 

CEDA archive (see Appendix C). 714 

 715 

Validation 716 

 717 

The EUSTACE daily air temperature estimates (both the air temperatures estimated from 718 

satellite and the global analysis) were matched with withheld validation measurements 719 

from land stations, ice stations, moored buoys, ships and ice buoys. These data were 720 

excluded from both the derivation of regression relationships between skin temperature 721 

retrievals from satellite and air temperature and from the production of the global daily 722 

analysis fields. Veal et al. (2019a) presents the full evaluation, but Figure 6 summarises the 723 

results for the EUSTACE global analysis.  724 

 725 

Over ocean, the EUSTACE global analysis v1.0 performs well over the period 1850-2015, 726 

with a global median discrepancy (robust standard deviation, RSD) of +0.00 K (1.76 K) 727 

against withheld ship measurements (Woodruff et al., 2011) adjusted to a height of 2 m. 728 

The highest discrepancies (analysis minus validation data) are found in the Southern Ocean, 729 

although matchups are sparse here. The global analysis also performs well in most land 730 

regions with a global median discrepancy (RSD) against weather station measurements of -731 

0.23 K (1.76 K), however seasonal median discrepancies over central Asia are high, 6-10 K in 732 

winter at some stations (these most erroneous data have been masked out of the final 733 

product). Over permanent ice domains, the global analysis performs less well, especially 734 
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over sea-ice: regional median discrepancies (RSDs) against ice buoy data are +1.19 K (4.60 K) 735 

in the Arctic and +4.76 K (6.81 K) in the Antarctic; note that these latter two statistics are 736 

affected by the sparsity of in situ measurements against which to compare the EUSTACE 737 

analysis in these regions, but are dominated by a drift over the Poles in the analysis which 738 

has largely been masked out of the final product. The regional median discrepancies (RSDs) 739 

over land-ice (including the Antarctic ice-shelf) against weather station data are lower: 740 

+0.37 K (4.04 K) in the Arctic and +0.47 K (2.68 K) in the Antarctic. 741 

 742 

In addition, estimates of uncertainty are also evaluated using the withheld data. The 743 

uncertainty estimates are assessed by first binning the matchup discrepancies by the value 744 

of the uncertainty on the EUSTACE temperature estimate. Matchup statistics (median and 745 

RSD of the matchup discrepancies) are calculated for each bin. The matchup discrepancy has 746 

contributions from the uncertainty in the in situ reference data as well as the uncertainty on 747 

the EUSTACE temperature estimate. There is also a contribution from matching two 748 

different spatial scales, i.e. a point in situ value with the EUSTACE 0.25⁰ grid box estimate. 749 

The expected match up variance can be modelled as the sum of the squares of these 750 

contributions. The actual and modelled matchup discrepancy variances are plotted in Figure 751 

7. Assuming our estimates of the uncertainty in the reference data and the matchup process 752 

are good then, if the EUSTACE uncertainty estimates are also good, for each bin the 753 

matchup RSD (blue bar) should match the modelled value (dashed line). If the blue bars are 754 

higher than the dashed line then the matchup discrepancy RSD exceeds the modelled value , 755 

indicating that the EUSTACE uncertainty estimate is too low. The uncertainty estimates for 756 

the EUSTACE global analysis v1.0 show little agreement with expectation over ocean 757 
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(overestimated and showing little variation with actual discrepancy), but good agreement 758 

over land. Since the EUSTACE analysis validates extremely well in comparison to withheld 759 

data over the ocean, this mitigates the impact of the less-effective uncertainty estimates 760 

here. Analysis uncertainties are underestimated over ice regions, particularly in the 761 

Northern Hemisphere and over Southern Hemisphere land ice ; here, this arises from 762 

assumptions in the analysis method about the correlation structure of errors in the over-763 

sampled air temperature estimates from satellite. 764 

 765 

The EUSTACE matchup data base is available for non-commercial use (see Appendix C for 766 

details). 767 

 768 

Priorities for future work 769 

 770 

EUSTACE relies on good retrievals of surface skin temperature from infrared satellite 771 

instruments. Adequate removal of values contaminated by cloud between the surface and 772 

the sensor is crucial for accurate skin temperature retrieval, but also for correct estimation 773 

of uncertainties and for accurate estimation of air temperature from skin temperature. The 774 

skin temperature datasets currently used in EUSTACE are sporadically contaminated by 775 

uncleared clouds. Use of improved satellite retrievals will improve the EUSTACE products. 776 

 777 

As a proof-of-concept, EUSTACE has demonstrated that inclusion of air temperatures 778 

estimated from satellite enables the more-stable estimation of the climatological 779 
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component of the global analysis (where biases in air temperature estimates from satellite 780 

are not large or there are sufficient in situ measurements to inform their correction), as 781 

compared to use of in situ measurements alone. Use of longer satellite datasets would 782 

improve the amount of information available to the analysis and improve results further. 783 

Since the inputs to the EUSTACE analysis were fixed, more satellite data have become 784 

available (i.e. version 2 of the Arctic and Antarctic Ice Surface Temperatures from thermal 785 

infrared satellite sensors (AASTI) dataset over ice, Globtemperature land surface skin 786 

temperature from a further Moderate Resolution Imaging Spectroradiometer sensor, and 787 

stable sea surface temperatures from the Advanced Very High Resolution Radiometer series 788 

in the ESA SST CCI v2.1 dataset). 789 

 790 

With more satellite skin temperature information would come the possibility of developing 791 

and applying regionally-varying regression relationships over land. EUSTACE air temperature 792 

estimates from satellite over land currently employ a global relationship determined by 793 

latitude, snow cover and fractional vegetation cover; this results in some (sometimes large) 794 

regionally-varying biases in the resultant air temperature estimates, which are reduced in 795 

the global analysis through the additional statistical modelling undertaken there and the 796 

inclusion of measurements made in situ. 797 

 798 

Interactions with users have demonstrated that information on daily maximum and 799 

minimum temperatures are needed in addition to the daily mean. Although EUSTACE 800 

undertook modelling work to enable the production of a global analysis of maximum and 801 

minimum via the mean and the diurnal temperature range, it proved impossible to pull it 802 
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through into production within the timeframe of the project. Methods developed 803 

demonstrate promise and have applicability beyond surface temperature diurnal 804 

temperature range to other non-Gaussian variables. These prototyped methods would also 805 

enable full propagation of components of uncertainty with different correlation length 806 

scales through to the final analysis; the current EUSTACE global analysis simplifies the 807 

assumptions made to enable the calculations, but consequently results in underestimated 808 

uncertainties, especially over polar regions where satellite data are plentiful.  809 

 810 

Pull-through of the lake influence mask (see Supplemental material) as a covariate (as 811 

distance from coast or altitude are currently specified) in the EUSTACE global analysis has 812 

the potential to improve the air temperature fields local to large lakes (with an influence on 813 

the scale of the EUSTACE grid box or larger, i.e. 0.25⁰ in latitude and longitude).  814 

 815 

The availability of daily measurements made in situ could be increased substantially by 816 

continuing the current international data rescue and digitisation efforts (see Brönnimann et 817 

al. (2018), for example) and by making these and other daily measurements openly 818 

available. Each new set of digitised data has the potential to improve a global analysis of air 819 

temperature by better constraining the statistical modelling, particularly when targeted to 820 

regions currently under-represented in the EUSTACE global station dataset (see Figure 2) or 821 

in under-sampled areas of the ocean, such as the Southern Ocean (Brönnimann et al. 822 

(2018)). 823 

 824 
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In the course of our work, we have identified the following needs to extend the current 825 

observing system: more simultaneous Voluntary Observing Ship measurements of sea-826 

surface and near-surface air temperature (because the network is declining and provides 827 

the only means of measuring near-surface air temperature over ocean globally) and more 828 

weather station measurements of near-surface air temperature in certain surface regimes 829 

(e.g. desert, deep forest, ice, high elevation, high latitude) to both better define the 830 

relationship between skin and near-surface air temperature there and provide more data 831 

for validation. 832 

 833 

Summary and conclusions 834 

 835 

The potential for future improvements outlined above notwithstanding, EUSTACE has 836 

produced a number of novel outcomes: 837 

 a global daily station dataset with estimated locations of non-climatic discontinuities 838 

and their likelihood; 839 

 a pan-European station dataset homogenised to reduce the impact of non-climatic 840 

discontinuities and gridded ensemble analyses for Europe; 841 

 consistently-estimated components of uncertainty in satellite skin temperature 842 

retrievals over different surfaces of Earth; 843 

 air temperature estimates from satellite for each surface (land, ocean and ice) with 844 

propagated uncertainty components; 845 
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 a deeper understanding of the role of lakes in responding to and influencing 846 

surrounding surface air temperature; 847 

 a global, multi-decadal daily analysis of surface air temperature incorporating both 848 

measurements made in situ and estimated from satellite data; and 849 

 validation of products using withheld reference data. 850 

 851 

These data have been made publicly available, where not restricted by source data licenses, 852 

both for direct use and to form the basis of future onward developments (see Appendix C 853 

for details). 854 

APPENDIX A 855 

The EUSTACE team 856 

 857 

The EUSTACE consortium included 9 organisations: 858 

1) Met Office (United Kingdom) 859 

2) The University of Reading (United Kingdom) 860 

3) Science and Technology Facilities Council (United Kingdom) 861 

4) University of Leicester (United Kingdom) 862 

5) Koninklijk Nederlands Meteorologisch Instituut-KNMI (Netherlands) 863 

6) University of Bern (Switzerland) 864 

7) University of Bath (United Kingdom) 865 

8) Danmarks Meteorologiske Institut (Denmark) 866 

9) University of Edinburgh (United Kingdom) 867 
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 868 

An External Expert Advisory Board comprised: Prof. Peter Thorne (University of Ireland, 869 

Maynooth); Dr. Elizabeth Kent (National Oceanography Centre, Southampton); and Prof. 870 

Doug Nychka (National Centers for Atmospheric Research and Colorado School of Mines). 871 

 872 

APPENDIX B 873 

EUSTACE input data 874 

 875 

The EUSTACE data products are based on a number of input data source s, summarised in 876 

Tables A1-A3. 877 

 878 

Table A1 here 879 

 880 

Table A2 here 881 

 882 

Table A3 here 883 

 884 

APPENDIX C 885 

EUSTACE products 886 
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 887 

The EUSTACE data products have been catalogued in the Centre for Environmental Data 888 

Analysis (CEDA) archive, with individual download pages pointing to the data.   Two 889 

products, the European homogenised data and the gridded European dataset, which also 890 

form part of the European Climate Assessment & Dataset (ECA&D) are made available 891 

separately via ECA&D. 892 

 893 

The EUSTACE data products and their availability and licenses are summarised in the table 894 

below. 895 

 896 

Table A4 here 897 

 898 

Data are made available on an open license (Open Government Licence 899 

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/) where 900 

possible.  For the station datasets and the matchup data base, this was not possible due to 901 

the licensing conditions of the input datasets, which meant they could only be made 902 

available for non-commercial use.  These have been made available under a non-903 

commercial license (Non-Commercial Government 904 

http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/).  905 

 906 

In addition, EUSTACE has produced: 907 
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 User requirements reports; 908 

 Product user guides, including detailed guidance on uncertainties and information 909 

content in the products; and 910 

 Peer-reviewed journal articles. 911 

 912 

Links to all of these can be found on the EUSTACE website 913 

(https://www.eustaceproject.org). 914 

  915 
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Tables. 1240 

 1241 

Table A1. Satellite data on which EUSTACE products are based and period of data used. 1242 

 1243 

Satellite instrument Satellite 

programme 

Variables used Data producers 

Along Track Scanning 

Radiometer (ATSR) series, 

1991-2012 

ESA Sea surface 

temperature at 0.2m 

depth on 0.25⁰ latitude 

by 0.25⁰ longitude grid 

ESA CCI SST, experimental v1.2 (A)ATSR Level 3C data product. See 

Appendix C for data access. 

Advanced Very High 

Resolution Radiometer 

(AVHRR) series, 2000-2009 

NOAA Ice surface skin 

temperature on 

instrument swath 

AASTI v1.0 dataset generated by Met Norway and DMI within the 

NORMAPP and the NACLIM projects. See Appendix C for data 

access. 
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Moderate Resolution 

Imaging Spectroradiometer 

(MODIS) 

Aqua + Terra, 2000-2016 

NASA Land surface skin 

temperature on 

instrument swath 

USGS/NASA (via ESA GlobTemperature). MODIS Collection 6 

radiances downloaded from the NASA Level-1 and Atmosphere 

Archive & Distribution System Distributed Active Archive 

Center [https://ladsweb.modaps.eosdis.nasa.gov/]. See Appendix C 

for data access. 

 1244 

 1245 
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Table A2. Weather station air temperature measurements on which EUSTACE products are 1246 

based and period of data used. 1247 

 1248 

Dataset Link Reference 

Global Historical Climatology 

Network – Daily (GHCN-D), 

version 3.22, 1850-2015 

http://doi.org/10.7289/V5

D21VHZ  

Menne et al., 2012 

International Surface 

Temperature Initiative (ISTI), 

v1.00 stage 2, 1850-2015 

http://www.surfacetempe

ratures.org/databank 

Rennie et al., 2014 

European Climate 

Assessment & Dataset 

(ECA&D), 1950-2015 

https://www.ecad.eu/ 

 

Klein-Tank et al., 2002 

Data rescued by ERA-CLIM 

project, various 

 Stickler et al., 2014 

DECADE project, 1931 

onwards 

http://www.geography.un

ibe.ch/research/climatolo

gy_group/research_projec

ts/decade/index_eng.html  

Hunziker et al., 2017 

Southern Alps homogenized, 

1871-2015 

 Brugnara et al 2016 

Data from the national 

weather service of Argentina 

Servicio Meteorologico 

Nacional Argentina 

 

http://doi.org/10.7289/V5D21VHZ
http://doi.org/10.7289/V5D21VHZ
http://www.surfacetemperatures.org/databank
http://www.surfacetemperatures.org/databank
https://www.ecad.eu/
http://www.geography.unibe.ch/research/climatology_group/research_projects/decade/index_eng.html
http://www.geography.unibe.ch/research/climatology_group/research_projects/decade/index_eng.html
http://www.geography.unibe.ch/research/climatology_group/research_projects/decade/index_eng.html
http://www.geography.unibe.ch/research/climatology_group/research_projects/decade/index_eng.html


66 
 

 1249 

Table A3. Marine in situ measurements on which EUSTACE products are based and period of 1250 

data used. 1251 

 1252 

Dataset Link Reference 

HadNMAT2 observations, 

derived from ICOADS release 

2.5.1, 1850-2010 

http://www.metoffice.gov

.uk/hadobs/hadnmat2/ 

Kent et al., 2013 

 

 1253 

Table A4. EUSTACE products and their access and licensing information 1254 

 1255 

Short name Descriptive name Dataset link License 

Satellite skin temperatures 

Global 

satellite land 

surface 

temperature, 

v2.1 

EUSTACE / 

GlobTemperature: 

Global clear-sky land 

surface temperature 

from MODIS Aqua on the 

satellite swath with 

estimates of uncertainty 

http://catalogue.ceda.ac.uk/uui

d/0f1a958a130547febd40057f5

ec1c837 

Open 

http://catalogue.ceda.ac.uk/uuid/0f1a958a130547febd40057f5ec1c837
http://catalogue.ceda.ac.uk/uuid/0f1a958a130547febd40057f5ec1c837
http://catalogue.ceda.ac.uk/uuid/0f1a958a130547febd40057f5ec1c837
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components, v2.1, 2002-

2016 

EUSTACE / 

GlobTemperature: 

Global clear-sky land 

surface temperature 

from MODIS Terra on the 

satellite swath with 

estimates of uncertainty 

components, v2.1, 2000-

2016 

http://catalogue.ceda.ac.uk/uui

d/655866af94cd4fa6af6780965

7b275c3 

Open 

Global 

satellite ice 

surface 

temperature, 

v1.1 

EUSTACE / AASTI: Global 

clear-sky ice surface 

temperature from the 

AVHRR series on the 

satellite swath with 

estimates of uncertainty 

components, v1.1, 2000-

2009 

https://catalogue.ceda.ac.uk/uu

id/60b820fa10804fca9c3f1ddfa

5ef42a1 

Open 

Global 

satellite sea 

surface 

EUSTACE / CCI: Global 

clear-sky sea surface 

temperature from the 

(A)ATSR series at 0.25 

https://catalogue.ceda.ac.uk/uu

id/b8285969426a4e00b748143

42 

Open 

http://catalogue.ceda.ac.uk/uuid/655866af94cd4fa6af67809657b275c3
http://catalogue.ceda.ac.uk/uuid/655866af94cd4fa6af67809657b275c3
http://catalogue.ceda.ac.uk/uuid/655866af94cd4fa6af67809657b275c3
https://catalogue.ceda.ac.uk/uuid/60b820fa10804fca9c3f1ddfa5ef42a1
https://catalogue.ceda.ac.uk/uuid/60b820fa10804fca9c3f1ddfa5ef42a1
https://catalogue.ceda.ac.uk/uuid/60b820fa10804fca9c3f1ddfa5ef42a1
https://catalogue.ceda.ac.uk/uuid/b8285969426a4e00b74814342
https://catalogue.ceda.ac.uk/uuid/b8285969426a4e00b74814342
https://catalogue.ceda.ac.uk/uuid/b8285969426a4e00b74814342
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temperature, 

v1.2 

degrees with estimates 

of uncertainty 

components, v1.2, 1991-

2012 

Surface air temperatures from in situ measurements 

European 

station 

measure-

ments 

EUSTACE/ECA&D: 

European land station 

daily air temperature 

measurements, 

homogenised 

https://catalogue.ceda.ac.uk/uu

id/81784e3642bd465aa69c7fd4

0ffe1b1b 

Non-

commercial 

use only 

Global 

Station 

Measure-

ments 

EUSTACE: Global land 

station daily air 

temperature 

measurements with non-

climatic discontinuities 

identified, for 1850-2015 

http://catalogue.ceda.ac.uk/uui

d/7925ded722d743fa8259a93ac

c7073f2 

Non 

commercial 

use only 

Validation 

match up 

database, 

v1.0 

EUSTACE: coincident 

daily air temperature 

estimates and reference 

measurements, for 

validation, 1850-2015, 

v1.0 

https://catalogue.ceda.ac.uk/uu

id/4b34a2c6890f4e518cacc8891

1193354 

Non-

commercial 

use only 

https://catalogue.ceda.ac.uk/uuid/81784e3642bd465aa69c7fd40ffe1b1b
https://catalogue.ceda.ac.uk/uuid/81784e3642bd465aa69c7fd40ffe1b1b
https://catalogue.ceda.ac.uk/uuid/81784e3642bd465aa69c7fd40ffe1b1b
http://catalogue.ceda.ac.uk/uuid/7925ded722d743fa8259a93acc7073f2
http://catalogue.ceda.ac.uk/uuid/7925ded722d743fa8259a93acc7073f2
http://catalogue.ceda.ac.uk/uuid/7925ded722d743fa8259a93acc7073f2
https://catalogue.ceda.ac.uk/uuid/4b34a2c6890f4e518cacc88911193354
https://catalogue.ceda.ac.uk/uuid/4b34a2c6890f4e518cacc88911193354
https://catalogue.ceda.ac.uk/uuid/4b34a2c6890f4e518cacc88911193354
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E-OBS EUSTACE / E-OBS: 

Gridded European 

surface air temperature 

based on homogenised 

land station records 

since 1950 

https://catalogue.ceda.ac.uk/uu

id/b2670fb9d6e14733b303865c

85c65d 

Non 

commercial 

use only 

Surface air temperature estimates from statistical analysis 

Air 

temperature 

estimates 

from 

satellite, v1.0 

EUSTACE: Globally 

gridded clear-sky daily 

air temperature 

estimates from satellites 

with uncertainty 

estimates for land, ocean 

and ice, 1995-2016 

https://catalogue.ceda.ac.uk/uu

id/f883e197594f4fbaae6edebaf

b3fddb3 

Open 

Global air 

temperature 

estimates, 

v1.0 

EUSTACE: Global daily air 

temperature combining 

surface and satellite 

data, with uncertainty 

estimates, for 1850-

2015, v1.0 

https://catalogue.ceda.ac.uk/uu

id/468abcf18372425791a31d15

a41348d9 

Open 

 1256 

  1257 

https://catalogue.ceda.ac.uk/uuid/b2670fb9d6e14733b303865c85c2065d
https://catalogue.ceda.ac.uk/uuid/b2670fb9d6e14733b303865c85c2065d
https://catalogue.ceda.ac.uk/uuid/b2670fb9d6e14733b303865c85c2065d
https://catalogue.ceda.ac.uk/uuid/f883e197594f4fbaae6edebafb3fddb3
https://catalogue.ceda.ac.uk/uuid/f883e197594f4fbaae6edebafb3fddb3
https://catalogue.ceda.ac.uk/uuid/f883e197594f4fbaae6edebafb3fddb3
https://catalogue.ceda.ac.uk/uuid/468abcf18372425791a31d15a41348d9
https://catalogue.ceda.ac.uk/uuid/468abcf18372425791a31d15a41348d9
https://catalogue.ceda.ac.uk/uuid/468abcf18372425791a31d15a41348d9
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Figures 1258 

 1259 
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 1260 
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Figure 1. Schematic of work undertaken in the EUSTACE project. Top-most boxes denote 1261 

input data. Ovals denote new development. Other boxes denote EUSTACE products (see 1262 

also Appendix C). Connections between different components are indicated by arrows.  1263 

 1264 
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 1265 

Figure 2. Map of weather stations included in the EUSTACE global station air temperature 1266 

data set and break-detection tests applied (see text). Color of symbols represents length of 1267 

daily surface air temperature record available. Top: no test applied. These stations are those 1268 
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which have records shorter than 10 years. Middle: only absolute test applied. Bottom: 1269 

relative test applied. 1270 

1271 

 1272 

Figure 3. EUSTACE air temperature estimates from satellite. (Top) daily mean air 1273 

temperatures (K) estimated for 01 01 2006. (Bottom) combined uncertainty (K). 1274 
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 1275 

 1276 

Figure 4. Air temperature (K) for 01 01 2006. Top left: input observations of air temperature 1277 

(K). Top right: best guess combined in situ and satellite measurements from EUSTACE 1278 

statistical infilling (K). Areas with climatology or large-scale component uncertainty above a 1279 

threshold are masked. Middle left: total uncertainty (K) in the infilled analysis. Middle right: 1280 

uncertainty (K) in the climatology component. Bottom left: uncertainty in the large-scale 1281 

component (K). Bottom right: uncertainty in the local component (K).1282 
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 1283 

Figure 5. (Top) Annual regional average near surface air temperature anomaly (relative to 1961-1990) in a number of global surface 1284 

temperature data sets, 1850-2015 (left: Europe; right: North America). Orange: EUSTACE global analysis v1.0; cyan: a blend of  CRUTEM4 and 1285 

HadNMAT2; grey: NOAAGlobalTemp; red: GISTEMP; pink: Berkley Earth. (Bottom) Daily near surface air temperature (K and ⁰C) over the 1286 
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course of a year (left: Cimbaj, Uzbekistan in 1975; right: Fort Nelson, Canada in 2003). Orange: EUSTACE global analysis v1.0 (ensemble mean 1287 

and range); royal blue: GHCN-D v3.26 station measurements.1288 
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 1289 

 1290 

Figure 6. Validation of the EUSTACE global analysis v1.0, 1850-2015 against independent 1291 

reference data. (Top left) median discrepancy (K) over land, compared to withheld station 1292 

measurements. (Top right) median discrepancy (K) over ocean, compared to withheld ship 1293 

measurements corrected to 2m. (Bottom row, left to right) discrepancy (K) between 1294 

EUSTACE analysis and withheld reference data over ice-covered regions: Arctic land; Arctic 1295 

sea ice; Antarctic land and Antarctic sea ice. 1296 

 1297 
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 1298 

Figure 7. Validation of the uncertainty estimates for the EUSTACE global analysis  v1.0, 1850-1299 

2015, against independent reference data. Top left: land; top middle: Arctic land ice; top 1300 

right: Antarctic land ice; bottom left: ocean; bottom middle: Arctic sea ice; bottom right: 1301 

Antarctic sea ice. Dashed line: modelled discrepancy; combined EUSTACE uncertainty and 1302 

uncertainty in the validation data (K). Blue bars: robust standard deviation of discrepancies 1303 

between the analysis and the validation data (K). Red line: median discrepancy (K). Green 1304 

bars: number of matchups. 1305 


