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Abstract

Using betting odds from two recent seasons of English Premier League football
matches, we evaluate probability and point forecasts generated from a standard
statistical model of goal scoring. The bookmaker odds show significant evidence of the
favourite-longshot bias for exact scorelines, which is not generally present for match
results. We find evidence that the scoreline probability forecasts from the model
are better than what the odds of bookmakers imply, based on forecast encompassing
regressions. However, when we apply a simple betting strategy using point forecasts
from the model, there are no substantial or consistent financial returns to be made over
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on average inefficient.
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1 Introduction

In this study, we evaluate two sources of association football (soccer) match forecasts:

betting markets and a standard statistical model. Ultimately, the two most important

aspects to the outcome of a football match are the result and the scoreline. The result is

a win for either team, or a draw (tie). The scoreline gives the number of goals scored by

each team. A football scoreline is a pair of non-negative integers, which may be correlated

due to the common conditions both teams face within a match, or because we expect that

teams and their tactics will respond within matches to the goals scored (or not) by their

opponents (e.g., Heuer and Rubner, 2012). The states of nature dictated by football match

outcomes matter significantly, economically or otherwise; teams progress in competitions,

fans gain bragging rights and joy, and bettors may make returns (or losses). While the result

generally determines the state of nature that matters to these different agents (e.g., winning

a round-robin or knock-out competition), the scoreline can sometimes be the first tie-breaker

after the result. League positions and championships, when teams are tied on cumulative

points totals from results, are frequently determined by some function of scorelines (e.g., the

difference between goals scored and conceded, or head-to-head records between teams over

multiple matches). Some cup competitions have scoreline-related tie-breaker rules, such as

‘away goals’.1 Fundamentally though, the result is a function of the scoreline.

The majority of attention in the academic literature on forecasting football has focused

on results, rather than scorelines, perhaps due to the more complicated nature of the

latter (e.g., Angelini and De Angelis, 2019; Forrest and Simmons, 2000; Forrest et al.,

2005; Goddard, 2005). But scorelines also matter. Based on our observation and a rough

estimation from the world’s largest sports betting exchange in 2019, Betfair Exchange, the

exact scoreline in a football match is a popular outcome to predict and bet on: focusing on

pre-kick-off markets for several important matches (i.e., high liquidity markets, of £1million

or more matched bets, e.g., the English Premier League or competitive internationals), for

every £1.00 worth of bets made on the result outcomes of a match, approximately £0.20

worth of bets are made on the exact scoreline markets in the same match. This compares

with £0.70 worth of bets placed on the total number of goals scored in a match, £0.25 on

the Asian Handicap markets, and £0.20 on the margin (goal difference) between the two

teams at the end of a match. Notably, these other mentioned match outcomes and popular

prediction markets are all functions of the final scoreline. As there are only three possible

outcomes for the result, and many times more potential outcomes for the scoreline, it follows

that forecasting the scoreline is more difficult. Historically, the most likely result outcome

from a football match is a home win (occurring roughly 48% of the time), while the most

likely scoreline outcome is a 1-1 draw (occurring roughly 11% of the time).2

1For example, in the UEFA Champions League, if two teams are equally matched after playing each
other twice, home and away, i.e., the cumulative scoreline is a draw, then the team which has scored more
goals away from home is the winner.

2Author calculations using the entire history of football matches listed on Soccerbase.com, i.e., from
511,759 recorded matches up to 8 January, 2019.
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Within economic forecasting in recent decades there has been a trend toward probability

(or density) forecasts: attaching probabilities to the different possible outcomes of an event

or time series. Bookmakers essentially produce density forecasts by offering odds on a range

of different scorelines. Well-established statistical methods for predicting scorelines also

generate probability forecasts. In this study, we evaluate a standard statistical model of

football match scoreline forecasting, assuming a bivariate Poisson distribution for goals,

which follows from various previous contributions to the football forecasting literature (e.g.,

Maher, 1982; Dixon and Coles, 1997; Goddard, 2005; Karlis and Ntzoufras, 2005). In

particular, we compare the model’s performance over two seasons of the English Premier

League (EPL), 2016/17 and 2017/18, against betting markets. Therefore, we also treat the

betting markets (or odds setters) as probability forecasters.

We evaluate these two sets of forecasts primarily using the Mincer and Zarnowitz (1969)

regression-based framework. We find that both bookmakers and the statistical model appear

to be biased in terms of predicting scoreline outcomes. However, forecasts from neither

source are generally biased for result outcomes. We also carry out an analysis of forecast

encompassing (e.g., Chong and Hendry, 1986; Fair and Shiller, 1989). The statistical model

does encompass the scoreline odds-implied forecasts from betting markets. In other words,

the model probabilities provide ‘better’ forecasts of the football match scorelines over the

two seasons studied. However, this is not sufficient that a simple betting strategy based

on the model forecasts for scoreline outcomes would have generated a positive return on

investment, using averages of the odds available, not least because these odds implied a

particularly high profit margin (or overround) for bookmakers of approximately 12%. We

also find no evidence that this simple betting strategy, based on the model forecasts, would

have generated positive returns on the markets for either the margin of victory or the

total goals scored in a match. However, there is some evidence that the model would have

generated marginally positive returns when betting on result outcomes.

Several papers have previously looked at odds setters as football match forecasters.

Forrest et al. (2005) studied bookmakers in the 1990s and 2000s, finding that they were

increasingly accurate during this time, reflecting growing commercial pressure in the

industry. Štrumbelj and Šikonja (2010) updated this finding, but highlighted an aspect of

the strangeness of football match scorelines: the draw. These authors found that bookmaker

odds provided little predictive information on the relative frequency of draws, and noted

that Pope and Peel (1989) and Dixon and Pope (2004) had found something similar in earlier

studies. Štrumbelj and Šikonja (2010) suggested that this reflected the residual nature of

the draw outcome; it is the remaining probability mass after the home and away teams’

strengths have been accounted for. Angelini and De Angelis (2019) studied the odds of

online bookmakers on football matches in 11 top European professional leagues between

2006 and 2017. Using a forecast-based approach, they tested whether these markets were

generally efficient, finding that they were in most countries, even if the best odds on match

outcomes were selected from among bookmakers. This result was further supported by Elaad
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et al. (2019), who found that after accounting for heterogeneity among online bookmakers,

the prices set on result outcomes in the EPL and the rest of professional English football

were generally unbiased as forecasts. However, Angelini et al. (2019) have found significant

evidence of mispricing and bias in a betting exchange, specifically Betfair Exchange, for the

EPL, both in pre-match and in-play odds. Dixon and Pope (2004) is one of the contributions

in the literature that has considered football scoreline outcomes rather than just results,

finding that the markets for exact scoreline predictions were generally inefficient in the

1990s. To some extent, we are updating their study here.

There is a substantial literature studying the behavioural biases implied by sports

forecasts, not least betting odds. Perhaps most famously and extensively studied is the

favourite-longshot bias, whereby the probability forecasts implied by prediction market

prices typically suggest that favourites, i.e., those most likely to win, are underbet. Rational

explanations of this bias focus on the potential for relative risk-love among gamblers (see for

a summary Ottaviani and Sørensen, 2008). In football, Cain et al. (2000) showed that this

bias appears in UK football results odds, though Angelini and De Angelis (2019) found less

convincing evidence in more recent years throughout the European betting market odds for

match results. We find evidence here of significant favourite-longshot bias in football match

scoreline odds, though none for result outcomes. In other words, the betting markets would

appear to overestimate the likelihood of a rare scoreline, such as 4-4, over more common

ones, such as 1-0 or 1-1. This may be consistent with behavioural or misperception-based

explanations of the favourite-longshot bias, such as bettors not being able to distinguish

between events with different low probabilities of occurring (e.g., Snowberg and Wolfers,

2010).

There are many previous studies statistically modelling the outcomes of football matches,

and which have subsequently evaluated the forecasting performance of such models against

betting markets, mostly focusing on result outcomes. Maher (1982) analysed both the

independent and the bivariate Poisson processes of goal arrival, while Dixon and Coles (1997)

adjusted that model to account for a tendency toward low-scoring and close matches, a

common feature of English football in the early 1990s, the period they were focused on. Like

ourselves, Dixon and Coles (1997) were interested in the potential for inefficiencies in betting

markets, considering whether betting on home or away wins based on their model forecasts

could generate consistently positive returns. Boshnakov et al. (2017) introduced a bivariate

Weibull count model of goals to this topic, which they documented as improving upon

the Poisson model of Dixon and Coles (1997) or Karlis and Ntzoufras (2005). Like Dixon

and Coles (1997), they evaluated their model’s forecasts by using it to inform a potentially

successful betting strategy, looking at both result outcomes and whether more than 2.5 goals

were scored in a match. Similarly, Buraimo et al. (2013) have demonstrated that betting

whenever positive returns were expected based on the University of Warwick’s ‘Fink Tank’

statistical model’s probability forecasts, which were published in a British newspaper, could
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have generated positive expected returns on match result outcomes for each EPL season

between 2006/07 and 2011/12.

The rest of the article is organised as follows: Section 2 introduces the data; Section 3

sets out the methodology we employ; Section 4 presents our results; and Section 5 concludes.

2 Data

The EPL is generally regarded as the foremost domestic club competition globally.3 For our

sample of forecasts, we consider the 380 matches played in each of the 2016/17 and 2017/18

EPL seasons. We focus on these two recent seasons so that our results are relevant to how

sports betting markets function today, given the rapid change to this industry sector over

the past few decades, not least due to the increased competition, as most of the activity

has moved online and away from the high street (Forrest, 2008). We extract data on the

outcomes of football matches from Soccerbase.com, including for the EPL seasons before

2016/17 to estimate the statistical forecasting model, which is described later.

The right panel of Table 1 displays the distribution of match results in the 2016/17 and

2017/18 EPL seasons, showing that there were more home wins in 2016/17 than in the

following season, and fewer draws. As home wins happen almost half the time, this provides

a näıve forecasting method. Forrest and Simmons (2000) documented that newspaper

tipsters tended to have a lower success rate than such a näıve forecasting method as always

picking the home team to win. Table 2 presents the distribution of scorelines across the two

seasons that we focus on. The left panel is the 2016/17 season and the right panel is the

2017/18 season. There were 33 different unique scorelines in 2016/17 and 32 in 2017/18,

of which around two thirds involved each team scoring at most two goals. Within each

panel, the rows represent the number of goals scored by the home team, and the columns

give scorelines where the away team scored a particular number of goals. The top left entry

in each panel is a 0-0 draw. 7.1% of matches in 2016/17 and 8.4% in 2017/18 had 0-0

scorelines. There were slightly more draws in 2017/18 than 2016/17, and fewer goals, but

these differences between the two seasons are generally not statistically significant.

2.1 Bookmaker odds

While bookmakers exist to profit maximise rather than forecast event outcomes per se, to do

the former they must do the latter sufficiently well. We consider the decimal odds d set by

a bookmaker. Decimal odds are inclusive of the stake (the money amount bet), such that if

the potential event outcome being bet on occurs, the bettor is paid dz, where z is the stake.

If it does not occur, then the bettor loses their stake z. The implied outcome probability of

a given decimal odd set is p = 1/d. Decimal odds relate to the traditional UK presentation

3It is a derivative of the Football League, founded in 1888. The total club revenues for the EPL at £5.3bn
are almost equal to the sum of the next two leagues combined, Spain’s La Liga (£2.9nb) and Germany’s
Bundesliga (£2.8nb) (see 2018 Deloitte Annual Review of Football Finance; www2.deloitte.com/uk/.
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of fractional odds, f , by d = f + 1. In reality, there is an overround (or vig) included in the

prices of the outcome set for any given event and bookmaker; if the implied probabilities for

all outcomes in the event space are summed, then they will add to more than one. Various

methods have been suggested to correct for the overround such that applied researchers

can then interpret posted bookmaker odds as implied probabilities (see the summary of

these methods by Štrumbelj, 2014, as well as Manski, 2006, for a theoretical discussion

on interpreting betting prices as implied probabilities). In the analysis which follows, we

use the most simple of these corrections, by dividing the raw probability implied by the

quoted odds on each outcome by the booksum, which is the sum of all the implied quoted

probabilities offered for the various possible outcomes on some event (e.g., over all possible

scorelines offered).4

We obtain the bookmaker odds for all EPL match outcomes listed on Oddsportal.com,

where in this study we will use the odds for the result, scoreline, margin of victory

(plus/minus x goals) and the total number of goals scored. From this source, we have

information from 51 individual bookmakers, and also a betting exchange, Matchbook. The

odds reflect what was offered immediately before matches kicked off. The left panel of

Table 1 presents the average among these sources of the odds-implied probability for

the three different match result outcomes, without adjusting for the overround. Betting

market prices were more consistent in the period we study than the actual match outcomes,

predicting in both seasons the home teams to win 46% of the time, the away teams to

win 32% of the time, and the draw to occur 25% of the time (implying an overround of

about 4%). In the right panel of Table 1, we present the actual frequencies, suggesting that

bookmakers tended to over-estimate the likelihood of an away win. Table 3 presents the

implied probability, or frequency, from the average bookmaker odds for each match scoreline

in each season. To demonstrate how diverse these predictions are, in 2016/17, at least some

bookmakers offered odds on scorelines of 7-4, 7-5, 7-6 and 6-7 for the Premier League, but in

2017/18 such odds were never offered. In the entire history of the (English) Football League

since 1888, of more than 220,000 matches, there have been twenty-one 7-4 scorelines, five

7-5 scorelines, and no 7-6 or 6-7 scorelines. The scoreline odds-implied probabilities indicate

a sizeable average overround of about 12%, with the majority of implied probabilities being

higher than the actual proportions from Table 2. This compares with an average overround

of about 4% for the result outcomes. As for the result outcomes, variation between the two

seasons in the odds-implied scoreline frequencies is smaller than in the actual proportions

of scoreline outcomes.

3 Methodology

To compare and evaluate the implied bookmaker forecasts described above, we generate a

set of probability forecasts using a statistical model. The model we select for this purpose

4The implied probability of match outcome i from the bookmaker odds is then given by: pi =
(1/di)/

∑
i(1/di).
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is well-known, and could be arguably considered as the ‘standard’ or ‘benchmark’ statistical

model for football match scoreline forecasting (e.g., Goddard, 2005). We briefly describe

our application of this model in Section 3.1. In Section 3.2, we discuss the methods we will

use to evaluate and compare both the bookmakers as forecasters and the statistical model.

3.1 Scoreline forecasts from a ‘standard’ statistical model

To create scoreline forecasts, we first estimate the goal arrival process in football matches

using a bivariate Poisson regression model, of the form proposed (and coded) by Karlis and

Ntzoufras (2003, 2005), which is also based on the original Maher (1982) and Dixon and

Coles (1997) approaches, and which is applied by Dixon and Pope (2004); i.e., the goals

scored by each team in a football match are modelled as jointly Poisson distributed. The

counts of goals scored in match i for the home and visiting teams can be thought of as

functions of their own strengths, Xi1 and Xi2, respectively, and some third common factor

Xi3, representing the match conditions (e.g., weather, time of the year). If the goals of the

home team in match i are denoted by hi, and those of the visiting team by ai, then we can

define three Poisson distributed random variables Xi1, Xi2, Xi3, such that hi = Xi1 + Xi3

and ai = Xi2 + Xi3. We assume that these are jointly distributed according to a bivariate

Poisson distributed, with BP (λi1, λi2, λi3). The regression model can be written as:

(hi, ai) ∼ BP (λi1, λi2, λi3) ,

log(λik) = w′ikβk , k = 1, 2, 3 ,
(1)

where wik is a vector of explanatory variables, and βk is a potentially large vector of

coefficients, to be estimated along with the λ parameters. We include fixed effects for both

teams in a match in wik, for each k = 1, 2, to allow for teams having particular goal scoring

or defending strengths irrespective of who their opponent is. The explanatory variables also

include day of the week and month fixed effects for the modelling of λi3, to reflect the fact

that midweek matches may have different properties to weekend ones, and matches in the

middle of winter may be different to those in the autumn or spring. We also add an indicator

in the λi3 equation for whether a match follows a break in the season for international

matches. We include information in the model about the varying lagged league positions and

the recent form of each team, following the application in Goddard (2005). We also include

our calculations of each team’s measured Elo (1978) strengths as they varied throughout

the season, based on the historical results for all relevant teams, including those not playing

in the EPL in the period studied. The Elo rankings, and the predictions that they imply

for match outcome probabilities, are commonly used to estimate the relative strengths of

football teams, both in practical applications (e.g., https://www.eloratings.net/) and in

academic research (e.g., Hvattum and Arntzen, 2010). We also add variables to the λi1 and

λi2 equations for whether each team is still in the main domestic cup competition, the FA

Cup, at the time of the current EPL match, i.e., whether they have already been knocked

out. Goddard (2005) found this to matter for goal arrival in league matches, and others have
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found this to matter for league attendance, and attendance to matter for home advantage.

We also add variables to these equations for whether each team can still achieve a top-two

position in the league, and a variable for whether a team is returning to domestic action

having played in European competition in their previous match, since this may affect squad

rotation and player tiredness, and thus goal scoring or defending.

The statistical model is estimated by maximum likelihood up to each round of ten

matches between the twenty EPL teams in each season, using the past calendar year of

matches, and the estimated parameters are subsequently used to make predictions. The

values of λ̂ik are used to generate probabilities for a range of scorelines of the upcoming

match. By summing over these scorelines, probability forecasts of the three different result

outcomes can also be generated. Combinations of the λs give predictions of the mean (or

expected) number of goals scored within matches, as well as the Poisson goal scoring rate

of each team.

To test the efficiency of the bookmaker markets in the 2016/17 and 2017/18 EPL seasons,

using a simple betting strategy, we generate scoreline point forecasts (picks) in two ways.

First, we use whatever the statistical model outputs as the most likely scoreline as the

pick, which we call Unconditional forecasts. Second, we condition the scoreline pick on the

most likely forecast result outcome. In this case, if all the probabilities of the home win

scorelines sum to a larger number than all the probabilities of either the draw or the away

win scorelines, then we would choose the most likely home win scoreline as the pick. We call

these Conditional forecasts; i.e., conditional on the most likely result outcome, what is the

most likely scoreline? This tends to generate differences, as empirically the most common

scoreline is a 1-1 draw (see Table 2), but the most likely result outcome is a home win.

3.2 Forecast evaluation and comparison

The issue of forecasting football match scorelines is interesting along a number of dimensions.

In particular, the difficulty of the task is emphasised by considering the variation in goals

scored by teams over matches. In our forecast sample of 760 EPL matches over the two

seasons, the mean number of goals scored per match is 2.73 and the variance is 2.78.

Conditional on a home win, the variance of home goals is 1.5 and the variance of total

goals is 2.7, while conditional on an away win occurring, the variance of away goals is 1.3

and the variance of total goals is 2.3. Furthermore, any match has a number of outcomes

and sub-outcomes that can matter in terms of how scoreline forecasts are evaluated. Each

of the following main outcomes could be considered when asking whether bookmaker odds

reflect accurate or efficient forecasts of match scoreline outcomes:

Scoreline: the actual numbers of goals scored by each team in match i. The scoreline is a

pair of numbers, si = (hi, ai), where the number of goals scored by the home team is

always listed first. Throughout what follows, we denote the actual scoreline by si and

any forecast of it by ŝi, etc.
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Result: whether either team wins the match, or it ends in a draw. We denote the result of

some match i as ri. The result can be defined as a single variable taking three values:

one each for a home win, an away win and a draw. For example, we could define the

following values:

ri = r(si) =


0 if hi < ai

0.5 if hi = ai

1 if hi > ai .

(2)

Note that the result ri is a function of the scoreline, so ri = r(si).

Margin: the difference between the goals scored by the two teams in match i;

mi = m(si) = hi − ai.

Total goals scored: the total number of goals scored by both teams in match i;

ti = t(si) = hi + ai.

3.2.1 Return on investment

Evaluating scoreline forecasts according to betting prices is arguably the most natural

evaluation method, since it reflects the potential payoffs from making decisions based

on those forecasts. It can also tell us whether these markets are efficient, in so far as

whether the readily-available information and methods used by our statistical forecasting

model are already reflected in market prices. If not, and the model generated forecasts

imply a consistently profitable betting strategy, then these markets might be determined

as inefficient. In the case of the bookmaker exact scoreline markets, the average overround

is relatively high at 12%, as discussed above. In which case, the statistical forecasting

model would need to be substantially more accurate than the odds-implied predictions of

the bookmakers for there to be any simple profitable strategy based on the former.

We calculate the returns from betting on the result, scoreline, margin or total goals

scored in a match, otherwise referred to as a return on investment (ROI), as follows. If di

are the decimal odds in match i for the scoreline (or other outcome) consistent with the

forecast ŝi, then the ROI from a one unit bet on that event outcome would be:

ROIi = di1{si = ŝi} − 1 . (3)

Throughout our analysis, for scorelines and the over-under markets of total goals scored or

the margin of victory, we use the mean of the bookmaker odds that we collected. In the case

of results, we take the best available bookmaker odds among those collected, all as posted

right before matches began.
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3.2.2 Regression-based methods and forecast encompassing

The following is based on the Mincer and Zarnowitz (1969) regression-based forecast

evaluation framework and extensions thereof. If we denote p̂ij as our probability forecast

of match i for event outcome j, and yij as the relevant binary specific outcome (e.g., a

scoreline), taking a value of one if that outcome happened and zero if not, then the linear

regression model is given by:

yij = α + βp̂ij + εij , (4)

where α and β are the intercept and slope coefficients, respectively, and εij is the the error

term. The weak efficiency of a forecast depends on the restriction α = 1 − β = 0 holding.

A stronger test of efficiency includes other information available at the forecast origin, and

can be tested using the regression model:

yij = α + βp̂ij + z′iγ + νij , (5)

where zi is a vector of potentially other important variables for explaining the outcome, yij,

and νij is the error term. Strong efficiency further requires that γ = 0 holds in addition. If

γ 6= 0, then other known information at the forecast origin is relevant and the forecast is

not efficient.

Taking expectations of (4) yields that for unbiasedness we require E(p̂ij) = α/(1 − β).

To test for this, we could estimate the regression:

êij = θ + νij , (6)

where êij = yij − p̂ij is the forecast error and νij is the error term, with the null hypothesis

that θ = 0. Strictly speaking, in addition to the hypothesised restrictions holding, we

require that the residuals from each regression estimation are approximately normally

distributed, and free from any autocorrelation or heteroskedasticity. In their application

for newspaper tipsters’ football match forecasts, Forrest and Simmons (2000) add a range

of variables that are public information into zi, including the recent results of each team

and league-standing-related information. We do similarly, by using our derived dynamic

Elo (1978) ratings of teams, and the implied predicted match outcome probabilities from

these ratings. When testing the efficiency of the scoreline forecasts, we also include in zi

the historic frequency of each scoreline, the current league points of the home team, the

recent form of the home team, measured by the number of league points gained in the their

last six matches, and for the latter two variables we also include the difference between the

home and away teams in these values.

Other forecasts could be added to this regression analysis. In doing so, we could test

whether any of the various forecasts are encompassing one another. A forecast a is said to

encompass forecast b if it can explain variation in the forecast errors from forecast b, and
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forecast b cannot explain any of the variation in the forecast errors from forecast a:

êija = θa + φap̂ijb + νija , (7)

êijb = θb + φbp̂ija + νijb , (8)

and H0H0H0 : φa = 0, φb 6= 0, i.e., can one forecast explain what another forecast cannot? Chong

and Hendry (1986) and Fair and Shiller (1989) both consider the possibility of encompassing

in this manner. If φa 6= 0 and φb 6= 0, then a linear combination of the forecasts would be

on average more effective than taking any single forecast in isolation. For example, focusing

on the case of the bookmaker implied probabilities, in this way we can test whether our

generated statistical model probabilities add any information when trying to determine

the accurate probability of a future football match outcome taking place. If we find that

the statistical model forecasts do encompass the bookmaker implied ones, then we could

conclude quite simply that the former are better forecasts.

4 Results

4.1 Forecast efficiency

In this section, to evaluate individually and comparatively the statistical model and betting

markets as sources of football match forecasts, we describe the results of Mincer and

Zarnowitz (1969) regression-based efficiency tests. We pool the 2016/17 and 2017/18 EPL

seasons, so the number of match forecasts studied in each of these regressions is 760. When

we refer to Model forecasts, we are evaluating the probability forecasts produced using the

bivariate Poisson model set out in Section 3.1. By Bookmaker forecasts, we are referring to

the implied probabilities of outcomes derived from odds, as described before.

Table 4 presents the outcomes from regressions evaluating the weak and strong efficiency

of scoreline forecasts as per Equation (4) and Equation (5), respectively, with a column for

each forecast type. Across both forecast methods in the strong efficiency cases (columns

(3) and (4), Table 4), the additional variables in the regressions are insignificant, i.e., γ in

Equation (5) is insignificant from 0. This means that the weak efficiency testing results

(columns (1) and (2), Table 4) are practically identical. This is not unexpected. While

these team-specific variables must matter for result outcomes, given the sheer number of

possible scoreline outcomes they simply are not important. It might be anticipated that

the historical frequency of each scoreline would be significant, but our findings suggest that

this is factored into each type of forecast. The bottom row of Table 4 reports an F -test of

strong efficiency, which here is the null hypothesis that α = 0, β = 1, and γ = 0. The null

hypothesis is heavily rejected in each case at standard levels of significance. In other words,

the forecasts are suggestively not efficient and there is evidence of mispricing in the betting

markets. The β̂ coefficient on the Bookmaker forecasts, 1.16, is significantly greater than one

at standard levels, which is indicative of the well-known favourite-longshot bias. Hence, we
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can document the existence of this bias among football match scorelines odds, whereas it has

typically only been described for result outcomes in the previous literature. This implies that

a profitable betting strategy for scorelines, if it exists given the magnitude of the overround

in these markets, is likely to be attained by betting on favourites (short odds, e.g., 1-1)

more frequently than on longshots (long odds, e.g., 4-4). In contrast, the Model provides

forecasts in these two seasons which exhibit a significant reverse favourite-longshot bias for

scorelines. This suggests that the Model, and perhaps the assumed Poisson distribution of

the goal scoring in football, is biased against high scoring matches.

We also consider the (implied) probability forecasts of the three different match result

outcomes. In Table 5, we present the weak and strong efficiency regression test results,

estimating equivalent regression models as before with scorelines, i.e., Equation (4) and

Equation (5), including the Elo-ranking based predicted match outcome as an explanatory

variable. For the draw outcome, we take the squared difference of the Elo prediction from

0.5, referring to this as a ‘Balance’ measure.5 The table of results has three panels: the top

panel for the home win outcome, the middle panel for the draw, and the bottom panel for

the away win. We also present the F -test of efficiency (null hypothesis of α = 0, β = 1

and γ = 0). Despite some individually significant coefficients for γs, the test nonetheless

does not reject the null of strong efficiency for the Model and Bookmaker forecasts in all

three outcome cases at standard levels. The results are qualitatively the same for the

weak efficiency tests. The β̂ coefficient on the Bookmaker forecasts is only significantly

different from one for the away win at standard levels, when including the ELO prediction

as an extra explanatory variable. This suggests that the typical favourite-longshot bias for

football match results only shows up in the away win odds in the EPL during this period and

on average amongst the considered sample of bookmakers. As for the scorelines, the Model

shows evidence of generating forecasts which exhibit a significant reverse favourite-longshot

bias, implying that it too infrequently predicts surprising match outcomes.

4.1.1 Forecast encompassing

We now consider the outcomes of encompassing regressions, described by Equations (7)-(8).

We apply the bilateral regression encompassing tests for the Model and Bookmaker

probability forecasts over all 760 sample matches and for all scorelines which bookmakers

posted odds on. The forecast encompassing results are summarised in Table 6. This shows

the t-statistics for the equivalent of the estimated φa and φb coefficients. The results are

presented such that the row is the particular forecast error in the regression equation (the

dependent variable), and the column is the other forecast being added into the model

(the explanatory variable). Hence for the Model probabilities, the entry in the first row

and column is blank, since we cannot enter the Model probability forecast into the Model

probability forecast error regression model. We highlight t-statistics that are very significant,

i.e., 3.8 or larger, based on the rule of thumb established in Campos et al. (2003) for adjusting

5As the Elo prediction lies on the unit interval, where 0 implies a certain away win and 1 a certain home
win, we can take 0.5 to imply a ‘certain’ draw.
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t-statistics with large sample sizes (here it is 61,560). Using our notation and definition of

encompassing from before, reading from right to left in the table for a particular source

of forecast errors a (b), the t-statistics give the values of φb (φa) for the other source of

forecasts (column). When asking if the Model probabilities (a) encompass the Bookmakers

(b), {φ̂b : t-stat = 1.80} and {φ̂a : t-stat = 8.77}. To repeat, one forecast source is said

to encompass another if H0H0H0 : φa = 0, φb 6= 0, and vice versa if H0H0H0 : φa 6= 0, φb = 0. If

φa 6= 0 and φb 6= 0, then a linear combination of such forecasts would be more effective than

taking any single forecast in isolation. The results do show that the Model probabilities (a)

significantly encompass the Bookmaker probability forecasts. Therefore, we can conclude

that the ‘standard’ statistical model for forecasting football match scorelines dominates

the Bookmaker odds-implied forecasts, and that it is in a sense better at this prediction

job. This is consistent with other attempts in the literature to compare statistical models

and bookmakers as football match forecasters (e.g., Dixon and Pope, 2004; Buraimo et al.,

2013; Boshnakov et al., 2017), though in these previous cases the comparisons used betting

strategies and returns on investment, and, apart from Dixon and Pope (2004), they focused

on match results rather than scorelines.

4.2 A simple betting strategy

Table 7 shows the returns on investment from systematically betting before every match the

same amount on the outcomes implied by the point forecasts from the statistical model. In

other words, these returns are derived by assuming that the forecaster used their scoreline

point forecast, for each of the 380 matches in a season, to place a £x bet on each of the

markets for the correct result, the correct scoreline, the margin being equal or greater than

that implied by the predicted scoreline, and the total goals being equal or greater than that

implied by the predicted scoreline. We consider two sets of point forecasts derived from the

statistical model, Unconditional and Conditional, as defined earlier.

In general, betting on results based on the statistical model could have generated positive

returns. However, this assumes that the bettor made use of the best available odds from

the range of bookmakers available in the UK. Over the 2016/17 season, a ROI of 12.7%

was possible using this simplest of betting strategies for result outcomes, if following the

Conditional pick from the model. Surprisingly, the Unconditional picks provided a positive

4.8% ROI over the 2017/18 season, whereas the the Conditional picks provided a ROI of

-0.2%, despite the latter reflecting the most likely result outcomes according to the model

and the former not doing so.

Over the 2016/17 season, the model point forecasts provided negative ROIs from betting

using the average scoreline odds in the sample of 51 bookmakers, though these were smaller

in magnitude than the average overround of 12%. However in 2017/18, both sets of

model picks would have implied substantially more negative ROIs, with losses of more

than 25%. Despite the efficiency testing results of Section 4.1 demonstrating that the

average bookmaker correct scoreline odds appear to be mispriced, with a favourite-longshot
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bias, and the encompassing regression results suggesting that the statistical model is a

better forecaster, the simple betting strategy is generally not successful. In other words,

without devising a more complicated strategy, such as identifying ‘value’ bets, there is

no significant evidence from the statistical model suggesting that the UK betting markets

for football match outcomes are inefficient, based on common methods and using readily

available historical information about match features and outcomes. In part, this could be

an indictment of the ‘benchmark’ statistical model, which we have earlier showed tends to

significantly under-predict the frequency of high scoring matches.

To put these returns in perspective, we also consider what the bettor would have earned

from systematically betting the same amount on the home win in every match. As mentioned

previously, this strategy may be näıve, but it has been shown to outperform semi-expert

(newspaper) tipsters in the past in English football (Forrest and Simmons, 2000). The ROI

over the 2016/17 and 2017/18 seasons using the best result outcome odds from this strategy

would have been 9.8%. The ROIs from two similarly näıve strategies based on average

scoreline odds are -21.9% and -12.6% from always betting on 1-1 and 1-0, respectively,over

the same period.

5 Conclusion

We have studied the forecasts of scorelines in association football matches. We compared the

odds-implied probability forecasts of bookmakers against those we generated ourselves from

a standard statistical model. We found that over two seasons of EPL matches, 2016/17 and

2017/18, both sources of forecasts were generally inefficient for exact scoreline outcomes.

The model-based forecasts tended to under-predict high-scoring and less likely outcomes,

whereas the bookmaker forecasts implied an over-prediction of unlikely scorelines. In spite

of this, both sets of forecasts were efficient at predicting match result outcomes. There was

some evidence that the scoreline model was ‘better’ than the bookmakers. This difference

was not enough that a simple and systematic betting strategy, based on point forecasts from

the model, could generate positive financial returns. However, the evidence of significant

mispricing in scoreline odds, despite the large overround set by bookmakers, does suggest

that an alternative statistical model could in theory generate greater financial returns on

football match scorelines than result markets, especially if it applied the odds from betting

exchanges.

There is substantial room for further research in this area. It remains the case that the

wider literature in this area, which studies either the practice of forecasting or issues of

financial market efficiency, has not paid much regard to the diverse range of betting and

prediction market data available for any given event. For example, we know of no study

which has studied how the prices, liquidity and volumes on different markets for the same

event on betting exchanges co-move, or whether the way in which they move together (or
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not) reveals sizeable inefficiencies, or whether any of this suggests particular behavioural

responses to the arrival of new information.
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TABLE 1: Result outcomes in the 2016–17 and 2017–18 EPL seasons (%): comparison of
actual outcomes with the average implied frequency from bookmaker prices

Bookmakers Actual
Season Home Draw Away Home Draw Away
2016/17 46.1 25.3 32.3 49.2 22.1 28.7
2017/18 46.3 25.3 32.4 45.5 26.1 28.4

Source: author calculations using Oddsportal.com and Soccerbase.com

TABLE 2: Frequency of scoreline outcomes in the 2016–17 and 2017–18 EPL seasons (%).

2016–17 2017–18
Away goals Away goals

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Home goals

0 7.1 5.5 4.5 2.6 1.8 0.3 0.0 0.0 8.4 6.1 3.9 3.2 1.8 0.0 0.3
1 10.0 10.0 6.3 3.2 1.8 0.3 0.3 0.3 11.6 11.8 6.3 1.3 1.8 0.3 0.0
2 8.7 7.9 4.5 0.8 0.5 0.0 0.0 0.0 7.1 8.4 5.0 2.9 0.3 0.3 0.0
3 5.0 6.8 2.1 0.5 0.5 0.0 0.0 0.0 3.9 3.4 1.1 0.8 0.0 0.0 0.0
4 2.9 1.3 1.6 0.5 0.0 0.0 0.0 0.0 2.4 2.9 0.3 0.5 0.0 0.0 0.0
5 0.8 0.5 0.0 0.0 0.3 0.0 0.0 0.0 2.4 0.8 0.3 0.0 0.3 0.0 0.0
6 0.0 0.5 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0

Source: Soccerbase.com

TABLE 3: Implied frequency (probability) from average bookmaker odds for scoreline
outcomes in the 2016–17 and 2017–18 EPL seasons.

2016–17 2017–18
Away goals Away goals

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Home goals

0 8.8 7.6 4.0 1.7 0.9 0.7 0.6 0.3 8.5 7.3 3.6 1.5 0.9 0.6 0.6 0.4
1 10.5 13.1 6.7 2.5 1.0 0.7 0.3 0.3 10.2 12.6 6.2 2.3 1.0 0.7 0.3 0.4
2 6.8 9.1 5.9 2.3 0.9 0.4 0.3 0.2 6.5 8.7 5.6 2.1 0.9 0.4 0.3 0.3
3 3.1 4.2 3.0 1.5 0.6 0.3 0.3 0.1 2.9 3.9 2.7 1.3 0.5 0.3 0.3 0.3
4 1.4 1.7 1.3 0.7 0.4 0.3 0.2 0.1 1.4 1.6 1.2 0.6 0.4 0.3 0.3
5 0.9 0.9 0.6 0.3 0.3 0.2 0.2 0.1 0.9 0.9 0.5 0.4 0.3 0.3 0.3
6 0.6 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.7 0.3 0.4 0.3 0.3 0.3 0.3
7 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.7 0.6 0.4 0.3

Source: author calculations using Oddsportal.com and Soccerbase.com
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TABLE 4: Weak & strong efficiency tests for forecast scoreline outcomes

Weak Strong

Model Bookmakers Model Bookmakers

(1) (2) (3) (4)

Constant (α̂) 0.002 −0.002 0.002 −0.002
(0.002) (0.003) (0.002) (0.003)

Forecast (β̂) 0.839∗∗∗‡‡ 1.156∗∗∗‡‡ 0.839∗∗∗‡‡ 1.156∗∗∗‡‡

(0.014) (0.018) (0.014) (0.018)

Scoreline freq. −0.00005 0.001
(0.015) (0.015)

Points (H) 0.00000 0.00001
(0.00003) (0.00003)

Points diff. −0.00000 −0.00001
(0.0001) (0.0001)

Form (H) 0.00000 −0.00003
(0.0002) (0.0002)

Form diff. 0.00000 0.00001
(0.0001) (0.0001)

Elo prediction 0.00001 −0.0001
(0.004) (0.004)

Observations 61,560 61,560 61,560 61,560
Adjusted R2 0.052 0.063 0.052 0.063
Resid. std. error 0.107 0.107 0.108 0.107
F test of efficiency 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01, two-tailed tests of difference from zero. †p<0.1; ‡p<0.05; ‡‡p<0.01,
two-tailed tests of difference from one for β̂.
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TABLE 5: Weak & strong efficiency tests for forecast result outcomes (home win, draw,
away win)

Weak Strong

Model Bookmakers Model Bookmakers

(1) (2) (3) (4)

Constant (α̂) 0.112∗∗∗ 0.043 0.005 0.071
(0.040) (0.038) (0.045) (0.045)

Home-win forecast (β̂) 0.810∗∗∗‡ 0.957∗∗∗ 0.317∗∗‡‡ 1.158∗∗∗

(0.080) (0.076) (0.130) (0.200)

Elo prediction 0.660∗∗∗ −0.238
(0.138) (0.215)

Adjusted R2 0.117 0.173 0.142 0.176
F -test of efficiency 0.919 0.995 0.610 0.978

Constant (α̂) 0.116∗∗ 0.005 0.195∗∗∗ 0.016
(0.052) (0.061) (0.065) (0.102)

Draw forecast (β̂) 0.482∗∗‡‡ 0.979∗∗∗ 0.299‡‡ 0.945∗∗∗

(0.191) (0.246) (0.211) (0.354)

Elo predict (balance) −0.795∗∗ −0.068
(0.393) (0.508) )

Adjusted R2 0.007 0.019 0.011 0.020
F -test of efficiency 0.894 1.000 0.835 1.000

Constant (α̂) 0.023 −0.047∗ 0.432∗∗∗ −0.313∗∗

(0.028) (0.027) (0.091) (0.131)

Away-win forecast (α̂) 0.892∗∗∗ 1.090∗∗∗ 0.442∗∗∗‡‡ 1.406∗∗∗‡

(0.079) (0.074) (0.124) (0.169)

Elo prediction −0.557∗∗∗ 0.343∗

(0.119) (0.165)

Adjusted R2 0.143 0.221 0.166 0.225
F -test of efficiency 0.973 0.979 0.67 0.916
Observations 760 759 760 759

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01, two-tailed tests. †p<0.1; ‡p<0.05; ‡‡p<0.01, two-tailed tests of differ-
ence from one for β̂.
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TABLE 6: Encompassing testing for scoreline forecasts

Model Prob. Bookmaker
Model Prob. 1.80
Bookmaker 8.77

Note: bold-faced numbers indicate t-statistics larger than 3.8,
i.e., significant values, based on the rule of thumb established in
Campos et al. (2003) for adjusting t-statistics with large sample
sizes. The positive sign of the statistics implies that the column
forecasts on average increase the errors of the row forecasts.

TABLE 7: Applying a simple betting strategy using the scoreline forecasting model

ROI (%)

Result Scoreline Margin Total Goals
(1) (2) (3) (4)

2016/17
Unconditional -3.4 -10.8 -3.9 -1.9
Conditional 12.7 -5.2 3.1 -1.6

2017/18
Unconditional 4.8 -25.8 -6.7 -6.5
Conditional -0.2 -26.6 -6.5 -7.6

Notes: Columns (1)-(4) give implied returns on investment from betting the amount x over the whole
season on each and every match, consistent with the scoreline point forecast made based on the statistical
model (row), i.e., a total investment by the forecaster/bettor over the season of 380x for either the result,
scoreline, margin or total number of goals in a match.
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