
An adaptive restart mechanism for 
continuous epidemic systems 
Conference or Workshop Item 

Accepted Version 

Ayiad, M. M. and Di Fatta, G. (2019) An adaptive restart 
mechanism for continuous epidemic systems. In: International 
Conference on Internet and Distributed Computing Systems, 
10-12 October, Naples, Italy, pp. 57-68. doi: 
https://doi.org/10.1007/978-3-030-34914-1_6 Available at 
https://centaur.reading.ac.uk/90173/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1007/978-3-030-34914-1_6 
To link to this article DOI: http://dx.doi.org/10.1007/978-3-030-34914-1_6 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



An Adaptive Restart Mechanism For Continuous Epidemic Systems

Mosab M. Ayiad Giuseppe Di Fatta

Department of Computer Science, University of Reading
Whiteknights, Reading, Berkshire, RG6 6AY, UK
email: {mosab.ayiad, g.difatta}@reading.ac.uk

Abstract

Software services based on large-scale distributed systems demand continuous and decentralised solutions
for achieving system consistency and providing operational monitoring. Epidemic data aggregation algorithms
provide decentralised, scalable and fault-tolerant solutions that can be used for system-wide tasks such
as global state determination, monitoring and consensus. Existing continuous epidemic algorithms either
periodically restart at fixed epochs or apply changes in the system state instantly producing less accurate
approximation. This work introduces an innovative mechanism without fixed epochs that monitors the
system state and restarts upon the detection of the system convergence or divergence. The mechanism makes
correct aggregation with an approximation error as small as desired. The proposed solution is validated and
analysed by means of simulations under static and dynamic network conditions.
Keywords Distributed Computing, Continuous Systems, Decentralised Aggregation, Epidemic Protocols,
Node Churn

1 Introduction

Network services in large-scale distributed systems often require decentralised solutions for monitoring system-
wide state and maintaining its consistency. For example, an online service where participants join and leave
independently of the service may need to track the number of active participants to successfully complete a
specific task [1]. Also, distributed applications for unmanned vehicles may repeatedly attempt to coordinate a
universal speed limit to optimise system performance or to avoid catastrophic scenarios [2]. In Wireless Sensor
Networks (WSN), devices frequently collect data from their sensors and require to have a view of the network
with fresh aggregated information [3]. Recent trends in Edge computing have considered moving Cloud services
away from centralised computation and data centres towards the edges of the network: Edge computing can
benefit from decentralised monitoring and processing capabilities [4]. Distributed consensus protocols enable
decentralisation in Blockchain [5] and ensure that all participants collectively maintain a common transaction
ledger without a central authority: these protocols also require a robust and continuous adaptation to changes
in the system conditions.

Epidemic protocols are based on a Peer-to-Peer (P2P) paradigm for decentralised communication and
computation in large and extreme-scale distributed systems. They adopt randomised communication models
inspired by biological systems, which have natural diffusion properties [6]. In general, applications may incorporate
one or more epidemic algorithms to implement a desired service and forming a single epidemic system for a
particular task. Epidemic systems are typically adopted for two main tasks: (1) information dissemination
and (2) data aggregation. In a dissemination task, information that is in the interest of other participants is
propagated in the system, e.g., information of updates and failures [7, 8]. A data aggregation task uses the
epidemic diffusion process to compute a global synopsis of a distributed set of data values. Data aggregation
tasks are fundamental for a wide range of services, especially in computing global system properties, e.g., for
estimating system size and for resource monitoring [1, 3]. Moreover, they can be used as components of more
complex applications, such as failure detection [8], distributed data mining [9], system consistency and global
consensus [7].

Theoretical and practical analyses have shown stochastic guarantees on the convergence to the desired target
of stable epidemic systems [6, 7]. Achieving and detecting convergence is critical for many services: for example,
it is a prerequisite for actions such as termination and restart [1, 10]. Moreover, real-world systems are generally
asynchronous and highly dynamic. Nodes can have arbitrary start times and non-simultaneous processing cycles
[7]. Also, nodes usually have access to different clocks, encounter variable communication delays and may lose
messages or message order. In dynamic systems, nodes can join and leave arbitrarily (a.k.a ’Node Churn’) [10],
and may suddenly fail or become unreachable [1].

Node churn and unreliable networks have a detrimental effect on the efficiency and the robustness of epidemic
systems [10, 11]. In extreme case, the inherent properties of the epidemic systems cannot be guaranteed: tasks

1



may not converge or may converge to incorrect results. Therefore, it is essential to maintain a robust and
consistent state at any time for a system to remain operational and predictable. Through constant restarting,
an epidemic system can monitor its global state and achieve distributed consistency. Conventional continuous
epidemic systems typically use a restart mechanism at fixed time intervals, i.e. epochs [1], which may unnecessarily
penalise the performance or may not provide sufficient guarantees on the convergence. Some epoch-less techniques
provide imprecise approximations and may take a long time for adapting the system to the correct state [3, 12,
13].

The work in this paper introduces a novel epidemic algorithm with an adaptive restart mechanism. The
mechanism restarts an epidemic task upon the detection of convergence or divergence in autonomous and variant
epochs. Also, the mechanism ensures correct convergence to the target for all nodes through aggregating nodes
decisions and acquiring consensus on the restart action. Moreover, the mechanism is lightweight producing small
communication overhead, which can be piggybacked on existing protocol messages.

The paper is organised as follows. The model of epidemic systems is described in the next section. In
particular, the data aggregation process and the seed selection method are discussed in Section 2.1. Section 2.2
describes the intrinsic convergence property of epidemic algorithms and the common methods for detecting local
and global convergence. Section 2.3 addresses convergence detection under dynamic network conditions. The
proposed algorithm and the restart mechanism are described in Section 3. Experimentations and results are
presented in Section 4. Finally, Section 5 lists some related work and Section 6 provides conclusive remarks.

2 The Model of Epidemic Systems

An epidemic system consists of a large number of nodes N , connected to a network infrastructure (e.g., the
Internet), which cooperate by exchanging messages to provide a system-wide decentralised service. Each node is
assigned a unique identifier and communicates with random peers that are selected uniformly from the system
(a.k.a uniform gossip [6]). The Node Cache Protocol (NCP) [14] is a simple peer-sampling service adopted for
the purpose of this work, although any other membership protocol with better properties can be used (e.g., [10]).

In this work the epidemic protocols adopt the asynchronous model of ’Symmetric Push-Sum Protocol ’ (SPSP)
[14]. The model is a non-atomic Push-Pull scheme that does not lock waiting for a response after sending a
Push message. Message order is not guaranteed and message interleaving can be present [10]. Protocols generate
a Push message in each ’Cycle’. Cycles are time intervals of fixed length T that are typically set to be greater of
the Round Trip Time (RTT) on the diameter of the network. The parameter T is sufficient for the delivery of
most messages within a cycle [1, 7, 14]. Moreover, subsequent cycles may overlap among various nodes as global
cycle synchronisation is not enforced.

The transport protocol is assumed reliable (e.g., TCP); this limits failure types to node churn. Churn is
a collective behaviour in a system where new nodes join and existing nodes depart at arbitrary times. The
voluntary or adversary departure of nodes is not specified and both cases are treated as generic node failure.
Although new nodes can join the system at any time, they do not participate in the current cycle of the ongoing
epidemic task: they start contributing in the following cycle [1]. The fractions of joined and departed nodes in a
specific time interval define the churn rates. The distribution of churn rates over time intervals is not assumed
constant and there must be a time at which the system is sufficiently stable to allow convergence.

2.1 Data Aggregation and Seed Selection

The proposed restart mechanism and many epidemic systems require global data aggregation and, in particular,
the global sum of a distributed set of numeric attributes or measurements. Each node i holds a local data
value xi and for this task it initialises and updates a local tuple τi to perform a global aggregation process on
the distributed values {xi, 0 < i ≤ N}. Let τi be 〈ςi, vi, wi〉, where vi is initialised with xi, wi is the weight
element of the tuple and ςi is an identifier further described below. The initialisation of the weights determine
the aggregation function. For global summation, the initial weights follows a peak distribution [6, 14]. At the
start time t0, it is required to set wî,t0 = 1 at a single node î (seed node), and wi,t0 = 0 at all other nodes. The

determination of the seed node î in a real-world decentralised system is challenging and requires a leader election
step.

To overcome this initialisation issue, we introduce a seed selection method as follows. The tuple identifier ς
is used as ’seed ’ selector. The seed is a Unique Universal Identifier (UUID) generated by a global function F().
There are two implementations of the function F used in this work. Fα(i, t) which computes a UUID given a
node identifier i and the current time t. The output of Fα(i, t) preserves the natural order, such that for any
two UUIDs: Ui = Fα(i, ti) and Uj = Fα(j, tj), Ui < Uj , ⇐⇒ ti < tj ∨ ti = tj ∧ i < j. On the other hand, the
function Fβ(i) generates a random UUID.

Initially, all nodes are seed nodes and the tuple τi in each node i is initialised to τi = 〈F(), xi, 1〉, where each
ςi,t0 identifies a unique seed in the system. The initial diffusion process selects only one seed in the system for

2



this epoch. During the diffusion process, seeds propagate in the system following a random-walk fashion and
each node performs a selection operation. Apart from the seed initialisation, the data aggregation process is
based on SPSP [14].

2.2 Convergence Detection

In epidemic systems for information dissemination or data aggregation, local convergence is achieved when the
local states of nodes have reached the desired target within a marginal error. In dissemination tasks, nodes
achieve and detect convergence by receiving a copy of a particular information item [7]. In aggregation tasks,
each node holds a local value, such as a local attribute or measurement. The data aggregation process aims at
computing a numeric target value V at every node, which corresponds to some global synopsis function (e.g.,
average, sum, max, sample, etc.) over the distributed set of local values. During the epidemic process each
node i updates a local estimate ei,t of V at every cycle t. The convergence process corresponds to a reduction in
the variance of the local estimates. Eventually, all nodes converge to the target value when the local estimation
error εi,t is smaller than a global tolerance threshold ε [1, 6, 14].

Methods for local detection of convergence in aggregation processes are heuristic and require application-

specific parameters. In a general method [1, 14, 15], each node i computes the estimation error εi,t =
|ei,t−V|

V
,

and verifies the criterion εi,t < ε. The method also counts the number of consecutive cycles (Υ) in which the
criterion is verified. The parameter Υ is used to avoid a precocious detection of convergence, which may be
caused by the fluctuation of ei,t. However, this method requires some a priori global knowledge of the target
value V. Typically, this information is unavailable or hard to obtain in real-world conditions: it is ultimately the
goal of the epidemic process. The method in [7, 16] uses a technique based on the moving-average on local and
remote estimates in order to approximate the target value and the estimation error. This approach is adopted
in this work to compute the Standard Error (SE). SE does not require the correct target and provides less
uncertainty in error measurements around the mean in comparison to other statistical measures.

In addition to the local detection of convergence, the detection of global convergence may also be required in
some epidemic systems [7, 15]. Global convergence is needed for acquiring local awareness on the convergence of
other nodes, and it is usually achieved through a poll-alike process, in which every node places a vote after the
occurrence of a local event (e.g., detection of local convergence). Ultimately, the poll result at each node provides
certainty on the occurrence of the event in other nodes. This technique is applied for achieving consensus for
global synchronisation in the proposed restart mechanism.

2.3 Convergence Detection under Churn

Although epidemic processes are intrinsically fault-tolerant thanks to redundancy and the lack of single points of
failures, the system dynamics can have a detrimental impact on the data aggregation process due to the violation
of the ’mass conservation’ invariant [6, 11, 14]. The mass refers to the ideal aggregate of the initial values of
all nodes in the system, which has to be conserved at all times for the formal correctness of the aggregation
process. Previous work [11] has shown that under dynamic conditions, the accuracy of local estimates cannot
be guaranteed, leading to an incorrect convergence: results may significantly differ from the true target due to
the violation of system mass. Nevertheless, convergence to or divergence from the correct target can still be
detected under some moderate churn conditions. In this work, the proposed solution can detect the violation of
the system mass invariant to validate or invalidate the aggregation results at convergence.

3 The Adaptive Restart Mechanism

Algorithm 1 is a continuous epidemic process that runs over sequential epochs, where each epoch has an
incremental global identifier (ι). The epoch is the inter-restart interval, and two subsequent epoch identifiers may
exist in the system for some time after restart. Nodes are enforced to join the epoch with the higher identifier.
Epoch length is variant and depends on the detection of convergence or divergence. The algorithm consists of
several aggregation processes, sequential and parallel. The process A corresponds to the intended objective of the
epidemic task. The process C is a subsequent phase for achieving consensus. Nodes join the Consensus phase
after they achieve local convergence. Also, the algorithm encompasses a tuple P of several aggregation processes
such that each p ∈ P runs in parallel with the process A. Processes in the tuple P are used for the convergence
detection, and their results defines the convergence correctness state (i.e. convergence or divergence).

The intended epidemic task defines the initialisation of the process A. The process C and processes in P are
all initialised for the aggregate count. The process C counts nodes which have achieved local convergence, and
each process p estimates the total number of nodes joined the process A.

Each process p ∈ P will initially start with a different random seed identifier at each node in the system.
During the aggregation process, seeds of all processes in P are piggybacked and propagated with the messages

3



from the process A. The seed selection method makes a random selection for each process due to the random
seed initialisation. Moreover, a node failure will affect a random seed of each process, and causes each process to
achieve different convergence. Convergence state can be verified using local estimates ep,t, ∀p ∈ P. A correct
convergence is confirmed when all local estimates in P converges to the same target, ∀ep,t ≈ V, p ∈ P. Otherwise,
∃ep,t 6≈ V indicates a divergence, which implies experiencing dynamical conditions during the aggregation process.

The procedure DetectConvergence illustrates convergence detection method. The method calculates the
average of estimates in P every cycle and inserts the average in the queue Q. Eventually, estimates average
will converge to an approximation result, and the error among elements of Q becomes very small. The method
verifies the detection of convergence using the SE of Q and monitoring it approaching the tolerance threshold ε1
for a number of consecutive cycles Υ. Next, the method verifies the state of the convergence using the SE of
estimates in P. The criterion validates that the error among local estimates of processes in P is above a tolerance
threshold of ε2. The limits ε1, ε2 and Υ are global application parameters as described in Section 2.2.

Upon the detection of divergence in a node i, the node initiates a global restarting process using a new epoch
identified ιi + 1. The restart steps are described in procedure Restart. Also, upon the detection of a correct
convergence, node i makes a transition to the Consensus phase by starting the process C. Other nodes may join
the phase at the same time or later when they converge. The seed selection process unifies the seed elements,
and each node participates in the phase by adding 1 to the total data mass in the process C. In the Consensus
phase, the detection method records the estimate of the process C in Q at every cycle. Each node uses the SE of
Q and the thresholds ε1 and Υ to locally detect the convergence of the Consensus phase.

Achieving convergence in the Consensus phase indicates the agreement among nodes to restart the epidemic
task as they all have converged to the correct target (i.e. global convergence). However, small number of nodes
in the Consensus phase are enforced to join the next epoch, although they did not yet detect convergence,
which optimises the inter-times between epochs. Also, it adapts the epidemic task should it experience any
dynamical conditions during the Consensus phase.

Procedure ResolveEpoch has two duties: (1) discovering and joining new epochs, and (2) applying the seed
selection method to unify seed elements for each process. Each node receives a new epoch identifier starts a
new epoch and reinitialise local processes as shown in procedure Restart. Also, the procedure updates the local
tuples upon the detection of a new seed with smaller identifier. The algorithm in lines 9− 11 continue processing
the received message and responses to the sender node by a Pull message with the adopted epoch identifier and
seed elements. In lines 12− 14, the algorithm updates the local tuple for each process.

4 Simulations and Experimental Analysis

The algorithm is validated via simulations using PeerSim [17]. PeerSim is a Java-based discrete-event P2P
simulation tool that is particularly useful to evaluate distributed protocols in large-scale systems. The simulations
are event-based and adopt the event-driven engine in PeerSim. Three events are used in the simulations: (1)
Start Event occurs only once at the start time of each node. At this event, each node initialises local seed and

Algorithm 1: Adaptive Restart Algorithm

Require: ε1, ε2, Υ, lQ, lP.
Initialisation: ι = 0; Q = ∅; P̃ = {A,C} ∪ P; and ∀p ∈ P̃, p −→ 〈∞, 0, 0〉.

1 At start time t0 at node i:
2 Restart(1, i, t0)
3 Push(i, t0)

4 At each cycle t at node i:
5 DetectConvergence(i, t)
6 Push(i, t)

7 At event ’receive message m from j’ at node i:
8 ResolveEpoch(i, t,m)
9 if m.reply then

10 foreach p ∈ P̃ do p −→ 〈p.ς, p.v2 ,
p.w
2 〉

11 Send 〈ι, P̃, reply = false〉 to j // Pull to j

12 if m.ι == ι then // Update local tuples in all processes

13 foreach p ∈ P̃ do
14 if m.p.ς == p.ς then p −→ 〈p.ς,m.p.v + p.v,m.p.w + p.w〉

4



15 def avg(H = {a1, . . . , an}): 1
n

∑
a // Average

16 def se(H = {a1, . . . , an}): 1√
n

√
1

n−1
∑

(a− avg(H))2 // Standard Error

17 procedure Restart(ι,i, t)
18 ιi = ι
19 phasei = Aggregation
20 Ai −→ 〈Fα(i, t), xi, 1〉 // Reset processes

21 Ci −→ 〈∞, 0, 0〉
22 foreach p ∈ Pi do p −→ 〈Fβ(i), 1, 1〉

23 procedure Push(i,t)

24 foreach p ∈ P̃i do // Divide data elements and copy tuples

25 p −→ 〈p.ς, p.v2 ,
p.w
2 〉

26 j ←− getRandomPeer() // Get random peer

27 Send 〈ιi, P̃i, reply = true〉 to j // Push to node j

28 procedure DetectConvergence(i,t)
29 switch phase do
30 case Aggregation do
31 Qi ∪ avg({p.e : ∀p ∈ Pi}) // Insert estimates average of Pi
32 if se(Qi) < ε1 for Υ cycles then // Detect local convergence

33 if se({p.e : ∀p ∈ Pi}) > ε2 then // Detect divergence

34 Restart(ιi + 1, i, t) // Start a new epoch

35 else // Make transition to Consensus phase

36 if Fα(i, t) < Ci.ς then Ci −→ 〈Fα(i, t), 1, 1〉
37 else Ci −→ 〈Ci.ς,Ci.v + 1,Ci.w〉
38 phase=Consensus

39 case Consensus do
40 Qi ∪ Ci.e
41 if se(Qi) < ε1 for Υ cycles then // Detect global convergence

42 Restart(ιi + 1, i, t) // Start a new epoch

43 procedure ResolveEpoch(i,t,m)
44 if m.ι > ιi then Restart(m.ι, i, t) // New epoch discovered

45 if m.ι == ιi then // Resolve seed elements

46 if m.A.ς < Ai.ς then Ai −→ 〈m.A.ς, xi, 0〉
47 if m.C.ς < Ci.ς then
48 Ci −→ 〈m.C.ς, 0, 0〉 and if phase==Consensus then Ci.v = 1
49 foreach p ∈ Pi do
50 if m.p.ς < p.ς then p −→ 〈m.p.ς, 1, 0〉

data elements. (2)Run Event is scheduled at every cycle for each node to detect convergence and send Push
messages. The event at all nodes stops after a predefined number of cycles. (3) Message Receive Event is a
notification event, in which a receiver node identifies new epochs, applies seed selection method and updates
local tuples.

The process A is initialised for the aggregate count targetting system size, and hence, seed elements at all
nodes are set using Fα(i, ts), where ts = [0, toff [, and toff is a start time synchronisation offset. The settings
of threshold parameters follow previous work recommendations in [7, 11], and they are set to ε1 = 0.5, ε1 = 1,
Υ = 3, and lQ = 10. The protocol NCP is used with k-regular overlay graph initialisation, where k = 30.

The cycle length T is defined as T = 2×δ+toff , where toff = 250ms, δ is the expected maximum propagation
delay in Internet. Values of δ are randomly generated using a Weibull distribution with the parameters, β = 4
that bounds δ to 125ms, η = 70ms is the average delay value, and γ = 25ms is the minimum delay. A choice of
T = 500ms is sufficiently large for typical applications and large enough to allow most messages to be delivered
within the current cycle.

The results in figure 1 illustrate the selection method and restart mechanism performance. In this experiment,
node churn is disabled and the result shows the algorithm behaviour under stable conditions. The results for the
processes A and C are distinguished for clarity. The figure 1.(a) and 1.(b) show the variation in initial system
mass over time. In the figures, data elements approach the correct value as a result of the selection method.
Particularly, the figure 1.(b) presents the decrease in weights mass due to the selection of the correct seed and
the discarding of other seeds.

Figures 1.(c), 1.(d) and 1.(e) illustrate the correct reach and detection of convergence in each phase. The

5



results validate the algorithm and the restart mechanism efficiency. Each node makes a transition to the
Consensus phase after the detection of the convergence. It also restarts the task after achieving convergence in
the Consensus phase. The figure 1.(d) shows the variation in estimation error in all processes, which indicates
the reach to a correct convergence, the transition to the Consensus phase, and the voting for the global
restarting. Figure 1.(e) shows that 100% of nodes achieve and detect convergence in both phases with nodes
restarting and joining a new epoch asynchronously.

Figure 1.(f) summarises the results of 30 simulation runs for different system sizes. The figure shows
logarithmic increase in inter-restart times (epochs) as the system size increases. It also presents the variation in
the epoch length for different sizes.

Results in figures 2.(a) and 2.(b) illustrate the algorithm behaviour under dynamic conditions. Two
experiments are carried out. The first experiment examines the algorithm sensitivity to a single node failure
and to a modest churn rates. Figure 2.(a) shows the results for a single failure injected at cycle 5 followed by
the failure of 30% of the system between cycles [60− 120]. The second experiment tests the algorithm under
severe condition when a system loses 75% of its nodes during a task. Figure 2.(b) shows the failure of 75%
of the system between cycles [15, 195]. In both experiments, results prove the algorithm abilities to validate
or invalidate convergence even for a single node failure. The algorithm continues restarting until the system
stabilises before it can enter the Consensus phase and return a correct estimation.

The impact of varying the parameter lP has also been examined; however, results are omitted due to space
limitation. The results have shown that the effect was negligible under stable conditions while causing a small
increase in overhead to the underlying network. In dynamic conditions, the increase in the number of processes in
P makes validation of convergence more accurate, especially, for the detection of divergence. Although precision
is essential for the detection of small amount of churn, e.g. single node failure as shown in figure 2.(a), the
accuracy can also be controlled by the tolerance thresholds, and with low cost. From another perspective, the
amount of error that the algorithm can tolerate corresponds to the lost portion of initial system mass. In
early cycles of an aggregation process, node failure may cause a major loss in the system mass, however, after
convergence the impact of churn fades [11]. Therefore, even large churn rates at late cycles cannot result in
divergence detection, the figure 2.(b) shows the impact of this scenario in the cycles [15, 60].

5 Related work

A simple restarting mechanism for epidemic protocols was introduced in [1], where global restarting was achieved
using fixed length epochs with incremental epoch identifiers. Authors in [12] proposed a technique that restarts
two overlapping aggregation processes in epochs of fixed hops. The protocol improves results in dynamic
conditions; however, results accuracy can only be validated after the next epoch. The work in [3] introduces a
continuous epoch-less data aggregation protocol. The protocol is based on atomic Push-Pull with a timeout
and requires prior information about the system to produce accurate results. The Flow Updating aggregation
protocol [13] operates under dynamic conditions without periodic restarting. Upon failure detection, the protocol
uses symmetric exchanges among neighbour nodes and recovers values instantly, and hence delays system
convergence. The work in [16] introduces two heuristic methods for convergence detection. The first method uses
the moving-average technique for the local detection of convergence, and the second method is used for global
convergence detection by utilising parallel aggregation processes. Authors in [15] provide an analysis for local
and global convergence, which has shown the need for applications-specific parameters in the detection methods.

6 Conclusions

In large and extreme-scale distributed systems, continuous epidemic tasks are useful tools for monitoring and
maintaining system consistency. Through periodic restarting, epidemic processes can detect and adapt to new
conditions. This work introduces a novel continuous epidemic algorithm with an adaptive restart mechanism.
The process restarts either upon acquiring consensus on the global convergence of the epidemic task or upon
the detection of divergence. Moreover, the mechanism is lightweight with optimised communication overhead
that can be piggybacked with regular message exchange. The detection accuracy of the algorithm can be
tuned according to the application preference for any quick approximation or an accurate one that takes longer
to compute. Also, the algorithm introduces a decentralised selection method for data aggregation tasks that
require single-point initialisation. Simulation results validated the performance of the algorithm under static
and dynamic conditions. Further study is required to specify approximation quality through results of multiple
aggregation processes, and use results for system-mass restoration under nodes churn.

6



References

[1] M. Jelasity, A. Montresor, and O. Babaoglu. “Gossip-based Aggregation in Large Dynamic Networks”. In:
ACM Transactions on Computer Systems 23.3 (2005).

[2] Y. Cao et al. “An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination”. In:
IEEE Transactions on Industrial Informatics 9.1 (Feb. 2013).

[3] V. Rapp and K. Graffi. “Continuous Gossip-Based Aggregation through Dynamic Information Aging”. In:
2013 22nd International Conference on Computer Communication and Networks (ICCCN). July 2013.

[4] P. Costa and J. Leitão. “Practical Continuous Aggregation in Wireless Edge Environments”. In: 2018
IEEE 37th Symposium on Reliable Distributed Systems (SRDS). Oct. 2018.

[5] A. Litke, D. Anagnostopoulos, and T. Varvarigou. “Blockchains for Supply Chain Management: Architec-
tural Elements and Challenges Towards a Global Scale Deployment”. In: Logistics 3.1 (2019).

[6] D. Kempe, A. Dobra, and J. Gehrke. “Gossip-based computation of aggregate information”. In: 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings. 2003.

[7] M. M. Ayiad and G. Di Fatta. “Agreement in Epidemic Data Aggregation”. In: 2017 IEEE 23rd International
Conference on Parallel and Distributed Systems (ICPADS). Dec. 2017.

[8] A. Katti and D. J. Lilja. “Efficient and Fast Approximate Consensus with Epidemic Failure Detection at
Extreme Scale”. In: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP). Mar. 2018.

[9] G. Di Fatta et al. “Fault tolerant decentralised K-Means clustering for asynchronous large-scale networks”.
In: Journal of Parallel and Distributed Computing 73.3 (2013). Models and Algorithms for High-Performance
Distributed Data Mining.

[10] P. Poonpakdee and G. Di Fatta. “Robust and efficient membership management in large-scale dynamic
networks”. In: Future Generation Computer Systems (2017).

[11] M. M. Ayiad and G. Di Fatta. “Robust Epidemic Aggregation Under Churn”. In: Internet and Distributed
Computing Systems. Cham: Springer International Publishing, 2018.

[12] H.-G. Roh and C. L. Ignat. Rapid and Round-free Multi-pair Asynchronous Push-Pull Aggregation. Research
Report RR-8044. INRIA, 2012.

[13] P. Jesus, C. Baquero, and P. S. Almeida. “Flow updating: Fault-tolerant aggregation for dynamic networks”.
In: Journal of Parallel and Distributed Computing 78 (2015).

[14] F. Blasa et al. “Symmetric Push-Sum Protocol for decentralised aggregation”. In: Proceedings of AP2PS
2011, the Third International Conference on Advances in P2P Systems. IARIA, 2011.

[15] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. “An Efficient and Robust Decentralized Algorithm
for Detecting the Global Convergence in Asynchronous Iterative Algorithms”. In: High Performance
Computing for Computational Science - VECPAR 2008. Springer Berlin Heidelberg, 2008.

[16] P. Poonpakdee, N. G. Orhon, and G. Di Fatta. “Convergence Detection in Epidemic Aggregation”. In:
Euro-Par 2013: Parallel Processing Workshops. Vol. 8374. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2014.

[17] A. Montresor and M. Jelasity. “PeerSim: A scalable P2P simulator”. In: 2009 IEEE 9th Int. Conference
on Peer-to-Peer Computing. Sept. 2009.

7



(a)

0

2000

4000

6000

8000

10000

12000

cycles=  20  40  60  80  100  120

seconds=  20  40  60

to
ta

l s
ys

te
m

 m
as

s

Sv in Aggregation phase
Sv in Consensus phase

Epoch barrier
(b)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

cycles=  20  40  60  80  100  120

seconds=  20  40  60

to
ta

l s
ys

te
m

 m
as

s

Sw Aggregation phase
Sw Consensus phase

Epoch barrier

(c)

0

10000

20000

30000

40000

50000

cycles=  20  40  60  80  100  120

seconds=  20  40  60

av
er

ge
 o

f e
st

im
at

es

Aggregation phase
Consensus phase

Processes in P
(d)

10
−13

10
−10

10
−6

10
−3

10
0

10
4

cycles=  20  40  60  80  100  120

seconds=  20  40  60

av
er

ge
 e

st
im

at
io

n 
er

ro
r

Aggregation phase
Consensus phase

Processes in P

(e)

0

0.2

0.4

0.6

0.8

1

cycles=  20  40  60  80  100  120

seconds=  20  40  60

pe
rc

en
ta

ge
 o

f n
od

es

Aggregation phase
Consensus phase

Nodes in convergence
(f)

40

45

50

55

60

65

70

75

80

85

90

N= 10
3

10
4

10
5

10
6

20

25

30

35

40

45

cy
cl

es

se
co

nd
s

inter−restart time (Epoch)

Figure 1: Algorithm performance under stable conditions, V = 104, ε1 = 0.5, ε2 = 1, Υ = 3, lP = 5, lQ = 10

8



(a)

moderate

churn

0

5000

10000

15000

20000
seconds=  20  40  60  80  100  120

sy
st

em
 e

st
im

es

10
−11

10
−7

10
−3

10
1

10
4

cycles=  20  40  60  80  100  120  140  160  180  200  220  240

es
tim

at
io

n 
er

ro
r

Aggregation phase Consensus phase    Processes in P N

(b)

severe

churn

0

5000

10000

15000

20000
seconds=  20  40  60  80  100  120

sy
st

em
 e

st
im

es

10
−11

10
−7

10
−3

10
1

10
4

cycles=  20  40  60  80  100  120  140  160  180  200  220  240

es
tim

at
io

n 
er

ro
r

Aggregation phase Consensus phase    Processes in P N

Figure 2: Algorithm performance under churn, V = 104, ε1 = 0.5, ε2 = 1, Υ = 3, lP = 5, lQ = 10

9


	Introduction
	The Model of Epidemic Systems
	Data Aggregation and Seed Selection
	Convergence Detection
	Convergence Detection under Churn

	The Adaptive Restart Mechanism
	Simulations and Experimental Analysis
	Related work
	Conclusions

