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Abstract: Individuals who consume a diet deficient in zinc (Zn-deficient) develop alterations
in hypothalamic-pituitary-thyroid axis function, i.e., a low metabolic rate and cold insensitivity.
Although those disturbances are related to primary hypothyroidism, intrauterine or postnatal
Zn-deficient adults have an increased thyrotropin (TSH) concentration, but unchanged thyroid
hormone (TH) levels and decreased body weight. This does not support the view that the
hypothyroidism develops due to a low Zn intake. In addition, intrauterine or postnatal Zn-deficiency
in weaned and adult rats reduces the activity of pyroglutamyl aminopeptidase II (PPII) in the
medial-basal hypothalamus (MBH). PPII is an enzyme that degrades thyrotropin-releasing hormone
(TRH). This hypothalamic peptide stimulates its receptor in adenohypophysis, thereby increasing TSH
release. We analyzed whether earlier low TH is responsible for the high TSH levels reported in adults,
or if TRH release is enhanced by Zn deficiency at weaning. Dams were fed a 2 ppm Zn-deficient
diet in the period from one week prior to gestation and up to three weeks after delivery. We found
a high release of hypothalamic TRH, which along with reduced MBH PPII activity, increased TSH
levels in Zn-deficient pups independently of changes in TH concentration. We found that primary
hypothyroidism did not develop in intrauterine Zn-deficient weaned rats and we confirmed that metal
deficiency enhances TSH levels since early-life, favoring subclinical hypothyroidism development
which remains into adulthood.

Keywords: Zn deficiency; TRH; TSH; subclinical hypothyroidism

1. Introduction

Zinc (Zn) deficiency is a public health problem due to its increasing prevalence not only in
underdeveloped countries but also in first world countries [1–3]. Gestating and lactating women
are the most affected groups [4], leading to Zn malnutrition in their offspring. This impairs fetal
development due to the metal’s involvement in a wide diversity of cellular processes: differentiation,
reproduction, metabolism and neurogenesis [5].

Given that Zn is the cofactor of a wide number of enzymes, deficiency of the metal alters their
activity with severe consequences in children and adults health [6]. For example, Zn-deficient animals
and humans present growth retardation, cold sensitivity and decreased metabolic rate [7], which are
alterations associated with primary hypothyroidism (low thyroid hormone (TH) levels). Moreover,

Nutrients 2017, 9, 1139; doi:10.3390/nu9101139 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0002-9402-2061
http://dx.doi.org/10.3390/nu9101139
http://www.mdpi.com/journal/nutrients


Nutrients 2017, 9, 1139 2 of 11

Zn deficiency is also related to psychiatric disturbances such as depression, anxiety, schizophrenia,
attention deficit hyperactivity disorder and epilepsy [8–11].

The hypothalamic-pituitary-thyroid (HPT) axis is regulated by a negative feedback loop, in such
a way that during primary hypothyroidism the decreased TH serum levels lead to an increased release
of thyrotropin (TSH) from the adenohypophysis (AH) and to a high synthesis and release of the
hypothalamic peptide thyrotropin-releasing hormone (TRH) into the portal blood in order to activate
the HPT axis.

There is controversy about the effects of Zn deficiency on HPT axis. Some authors support the
development of subclinical hypothyroidism [12,13], while others describe the occurrence of a primary
one [14,15]. A previous study from our laboratory in adult rats subjected to intrauterine or postnatal
Zn deficiency, showed an increase in serum TSH levels but unchanged T3 or T4 concentration [16],
which argues against primary hypothyroidism as the main alteration of the HPT axis in Zn deficiency.
Furthermore, these animals maintained a low body weight as adults, which is not compatible with low
circulating TH levels [15,16].

In order to disentangle this controversy, in a previous study we analyzed the effects of
a Zn-deficient diet on the activity of a metalloprotease called pyroglutamyl aminopeptidase II (PPII)
present in the AH and the mediobasal hypothalamus (MBH) [17–20], along with its repercussion in
the function of the HPT axis of gestating and lactating rats and in their adult offspring [16]. The high
specificity of PPII in degrading the hypothalamic peptide TRH when released from the median
eminence into the portal blood, as well as its positive regulation by TH levels, has indicated that the
activity of this enzyme is part of the negative feedback control of the HPT axis exerted by low TH
levels, that would allow a more effective stimulation of TSH release by TRH [21]. However, there is
a TH-independent down-regulation of adenohypophyseal PPII activity in intrauterine and postnatal
Zn-deficient adult rats and in the MBH in whole-life malnourished weanling and adult animals [16].
This supports the fact that low enzyme activity by itself may be responsible for a greater stimulation of
TSH release and serum concentration [16].

Nevertheless, we still have not ruled out if intrauterine Zn deficiency induces an earlier decrease
in T3 and T4 serum concentration since weaning, which could be reducing PPII activity and thus
increasing TSH levels previous to our measurements in ten-week old adults. This will be arguing
against a PPII regulation only by Zn, supporting that the high TSH concentration observed in
Zn-deficient adults results from a previous primary hypothyroidism.

Thus, we here analyzed adenohypophyseal PPII activity, TSH and TH serum levels, as well as
TRH concentration in the median eminence of intrauterine Zn-deficient weanling pups. Our findings
supported that PPII activity might be modulated independently of the changes in TH levels since
weaning. This is relevant to explain the TSH rise when TH concentration is in normal levels as in the
subclinical hypothyroidism induced by Zn deficiency. Moreover, since chronic high TSH serum levels
are associated with increased lipolysis, low body weight and growing rate, our results help to solve
the contradiction of the low body weight maintained by Zn malnourishment in adult animals even
when T3 and T4 levels do not change.

2. Materials and Methods

2.1. Animals and Diets

All procedures described in the present study were approved by the Ethics Committee and Project
Commission of the INPRFM, which follows the regulations established in the Mexican Official Norm
for the use and care of laboratory animals (NOM-062-ZOO-1999).

Ten nulliparous female and six male adult (220–270 g) Wistar rats were obtained from the
INPRFM’s animal housing. They were housed in groups (2–3 animals per cage) and allowed to
acclimatize to the facilities. They were provided with food (Lab rodent diet #5001, PMI feeds, St. Louis,
MO, USA) and tap water ad libitum, and kept in controlled light conditions (lights on from 7:00 to
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19:00) and temperature (24 ± 1 ◦C). After one week of habituation, animals were mated (1–2 females
per male) and divided into two groups: control group (C) (n = 3 females, 2 males) receiving a diet
with 20 ppm of Zn (Purina Mills, LLC/PMI Nutrition International Co., Richmond, IN, USA) and
deficient (D) group (n = 7 females, 4 males), which received a diet with 2 ppm of Zn (Purina Mills,
LLC/PMI Nutrition International Co., Richmond, IN, USA). This Zn content in the diet is known to be
sufficient to decreased serum Zn levels after 7 weeks [16]. Except for their Zn content, both diets were
the same regarding nutrient composition (19% proteins; 10% lipids; 61% carbohydrates); both groups
had ad libitum access to food and distilled water. The mating period lasted 10 days and pregnancy
was confirmed by identifying a 10% increase of the initial female body weight (b.w.). Pregnant dams
were individually housed throughout gestation and lactation periods and maintained under the same
C or D diet. After pregnancy completion, the body weight of the pups was registered at 2, 7, 14 and
21 days of age. At 21 days of age, weaned pups from C (n = 6) or D (n = 6) dams, were sacrificed
by decapitation. Brain and AH were rapidly removed and frozen at −70 ◦C. Blood was collected
and centrifuged at 3000 × g for 30 min at 4 ◦C. Serum was obtained, aliquoted and kept at −70 ◦C
until analysis.

2.2. TRH Content in Median Eminence (ME)

Medial basal hypothalamus (MBH) was hand-dissected from frozen brains using Paxinos and
Watson Rat Brain Atlas [22]. This region contains the median eminence (ME) (known to be outside the
blood brain barrier (BBB)). In order to obtain the MBH, a coronal slice was cut between the coordinates
−1.2 to −3.6 mm from bregma, then ME was removed with a scalpel in the ventral part of the slice.

TRH extraction from tissue and the following radioimmunoassay (RIA) were both performed as
previously described [23]. TRH content was determined using a previously characterized antibody [24].
The MEs of the pups were homogenized by sonication in 20% acetic acid and centrifuged at 12,000× g
for 15 min at 4 ◦C. A 30 µL aliquot of supernatant was kept for protein quantification. The supernatant
was obtained and then extracted with 100% methanol and evaporated. Pellets were diluted in RIA
buffer (50 mM NaPO4 buffer, pH 7.4, containing 0.25% bovine serum albumin (BSA) RIA grade
(Sigma-Aldrich, St. Louis, MO, USA), 150 mM NaCl and 0.02% sodium azide (Sigma-Aldrich, St. Louis,
MO, USA). Then, a TRH antibody (1:106 dilution) and 125I-TRH (5000 cpm) were added. After 36 h of
incubation, samples were precipitated with 100% ethanol and centrifuged at 12,000× g for 5 min at
4 ◦C). Supernatant was evaporated in a concentrator (Vacufuge Eppendorf, Brinkmann Instruments,
Westbury, NY, USA), and tubes read for 1 min in a radiation counter (LKB Wallace Minigamma Counter,
Mount Waverley, Victoria, Australia). A standard curve and an internal standard of hypothalamic
extract were included in every assay and parallelism with the curve was verified. Limit of detection
was 20 pg, inter and intra-assay variation was 4% and 8%, respectively. Results are expressed in ng
TRH/mg protein.

2.3. PPII Specific Activity

PPII activity in AH was measured as previously described [16]. Briefly, each AH was homogenized
by sonication in 200 µL of 50 mM NaPO4 buffer pH 7.5, and centrifuged at 2600× g for 15 min at 4 ◦C.
PPII activity was measured in supernatants by using 400 µM pGlu-His-Pro-β-naphtylamine (βNA)
(Bachem, Torrance, CA, USA) as substrate, an excess of dipeptidylaminopeptidase IV (EC 3.4.14.15)
(Sigma-Aldrich, St. Louis, MO, USA), 0.2 mM N-ethylmaleimide (Sigma, St. Louis, MO, USA),
an inhibitor of pyroglutamyl peptidase I (EC 3.4.19.3), and 0.2 mM bacitracin (Sigma-Aldrich, St. Louis,
MO, USA) an inhibitor of prolyl oligopeptidase (EC 3.4.21.26); in a total volume of 250 µL. Samples
were incubated at 37 ◦C, 50 µL were withdrawn every 60 min and the reaction stopped with 50 µL
100% methanol. Aliquots were diluted to 400 µL with 50% methanol in buffer, before detecting βNA
with a fluorometer (Perkin Elmer LS50, Waltham, MA, USA) (excitation 335 nm, emission 410 nm)
from a standard curve of βNA (Sigma-Aldrich, St. Louis, MO, USA). A 30 µL aliquot of supernatant
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was kept for protein quantification. The activity was linear with the time elapsed and referred to
supernatant protein content.

2.4. Protein Determination

Protein content in AH and ME was determined in 30 µL of homogenate, by digesting with 1 N
NaOH for 24 h at room temperature (RT) and protein concentration quantified by folin-phenol reagent
method [25].

2.5. Serum Hormones’ Determination

TSH determination was performed by RIA using the NIDDK (National Hormone and Pituitary
Program) protocol and materials. We used 50 µL of serum in duplicate, samples were diluted 1:3 in
RIA buffer (50 mM NaPO4, pH 7.5; 150 mM NaCl, 0.25% BSA, 50 mM EDTA), and antibody raised
in rabbit against TSH (1:375,000) was added. After 18–24 h incubation at RT, 125I-TSH was added
(10,000 cpm), followed by 18–24 h incubation at RT. The secondary antibody (goat anti rabbit IgG) was
added in 1:40 dilution in PBS (50 mM NaPO4, pH 7.5, 150 mM NaCl) plus 2% normal rabbit serum
and incubated for 2 h at RT. After adding polyethylene glycol (0.04 g PEG/mL RIA buffer), samples
were centrifuged at 5000× g for 30 min at 4 ◦C. Supernatant was aspirated and tubes read for 1 min in
a radiation counter (LKB Wallace Minigamma Counter, Mount Waverley, Victoria, Australia). Limit of
detection: 5 pg, 13% inter-assay, 6% intra-assay variability.

Five µL of serum were used to determine corticosterone in duplicate (dilution 1:1000) considering
the mean as one determination using ICN Biomedicals kit (Aurora, OH, USA). Limits of sensitivity:
corticosterone: 20 ng/mL. Intra-assay variability: 7%, inter-assay variability: 8%.

T4 and T3 were determined in 100 and 25 µL of serum, respectively, using commercial RIA kits
(Coat-A-Count Solid-Phase 125I RIA. Total T3 DPC TKT31, Total T4 DPC TKT41, Los Angeles, CA, USA)
and following manufacturer’s instructions (analytical sensitivity: T3, 7 ng/dL and T4, 0.25 µg/dL;
inter-assay variability: T3, T4 < 15%, and intra-assay variability T3, T4 < 9%).

Leptin was determined in order to evaluate if our early-life diet manipulation influences energy
balance regulation and satiety. Leptin was measured colorimetrically with a commercially available kit
(Merck Rat Leptin ELISA kit, Life Science Merck, Darmstadt, Hesse, Germany using 25 µL of serum
diluted 1:4 with an assay buffer and following the manufacturer’s instructions (limit of detection:
4.76 pg/mL; inter-assay variability (8%), intra-assay variability (7%)).

2.6. Statistical Analysis

Body weight changes between control and Zn-deficient pups during lactation were analyzed
by repeated measures ANOVA. Kolmogorov-Smirnov tests for normality were used for each of the
biochemical variables (PPII specific activity in AH, TRH ME content, TSH, corticosterone, T3, T4 and
leptin serum levels) and then Mann-Whitney U tests were performed in order to identify the statistical
differences of these variables between groups. A p < 0.05 was considered as statistically significant.
A variable interdependence between TRH content and leptin serum levels was analyzed given the
positive effect of leptin on TRH synthesis and release [26,27]. A correlation coefficient with magnitude
≥0.8 was considered as strong correlation.

3. Results

3.1. Body Weight

Body weight at birth was similar between control and Zn-deficient animals; however from
post-natal day 7 and until post-natal day 21, the body weight of deficient pups was 30% lower on
average, when compared to control offspring (100%). Repeated measures ANOVA showed an effect of
treatment (F(1,30) = 26.548 p < 0.001); time (F(3,30) = 219.015 p < 0.0001) and interaction between variables
(F(3,30) = 22.509 p < 0.0001) (Figure 1).
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Figure 1. Body weight of control and zinc-deficient (Zn-deficient) pups during lactation period. 
Values are the mean ± standard error of mean (SEM) of grams of body weight, (n = 6/group). Fisher’s 
post-hoc test showed significant differences: * p < 0.01, ** p < 0.001 vs. control group. 

3.2. Biochemical Determinations 

Adenohypophyseal PPII specific activity of Zn-deficient pups showed a trend to decrease, but 
there was no statistically significant difference between groups (Zn-deficient = 472.5 ± 67 pmol of 
βNA min/mg of protein vs. controls = 631.2 ± 194 pmol of βNA/min/mg of protein). TRH content of 
ME in the Zn-malnourished group decreased to 4.7 ± 1.8 ng of TRH/mg protein, when compared to 
control values: 22.36 ± 6.2 ng of TRH/mg protein. Low accumulation of TRH in the synaptic 
terminals of hypothalamic paraventricular neurons (median eminence) is associated with a high 
release of the peptide into the portal blood, mainly because the antibody used is able to detect 
changes in TRH concentration only in the intracellular compartment. 

Increased TSH serum levels in Zn-deficient pups confirmed the enhanced release of TRH: the 
Zn-deficient group presented TSH levels of 2.32 ± 0.2 ng/dL, whereas those of the controls were: 1.66 
± 0.1 ng/dL. Mann-Whitney U-test for TRH showed a U = 42 equivalent to a Z = −2.6 with a p value < 
0.01 and that of TSH was U = 40 equivalent to a Z = −2.714 with a p value < 0.01 (Figure 2). 

 

Figure 2. Adenohypophyseal pyroglutamyl aminopeptidase II (PPII) specific activity, median 
eminence thyrotropin-releasing hormone (TRH) content and thyrotropin (TSH) serum levels of 
Zn-deficient and control pups at weaning. Control values for PPII specific activity: 631.2 ± 194 pmol 
βNA/min/mg prot; TRH: 22.36 ± 6.2 ngTRH/mg proteins; TSH: 1.66 ± 0.1 ng/dL. Values are the mean 
± SEM of percentage of control values (=100%), (n = 6/group).* p < 0.01 vs. controls. 

Figure 1. Body weight of control and zinc-deficient (Zn-deficient) pups during lactation period.
Values are the mean ± standard error of mean (SEM) of grams of body weight, (n = 6/group).
Fisher’s post-hoc test showed significant differences: * p < 0.01, ** p < 0.001 vs. control group.

3.2. Biochemical Determinations

Adenohypophyseal PPII specific activity of Zn-deficient pups showed a trend to decrease, but
there was no statistically significant difference between groups (Zn-deficient = 472.5 ± 67 pmol of
βNA min/mg of protein vs. controls = 631.2 ± 194 pmol of βNA/min/mg of protein). TRH content of
ME in the Zn-malnourished group decreased to 4.7 ± 1.8 ng of TRH/mg protein, when compared to
control values: 22.36 ± 6.2 ng of TRH/mg protein. Low accumulation of TRH in the synaptic terminals
of hypothalamic paraventricular neurons (median eminence) is associated with a high release of the
peptide into the portal blood, mainly because the antibody used is able to detect changes in TRH
concentration only in the intracellular compartment.

Increased TSH serum levels in Zn-deficient pups confirmed the enhanced release of TRH: the
Zn-deficient group presented TSH levels of 2.32 ± 0.2 ng/dL, whereas those of the controls were:
1.66 ± 0.1 ng/dL. Mann-Whitney U-test for TRH showed a U = 42 equivalent to a Z = −2.6 with
a p value < 0.01 and that of TSH was U = 40 equivalent to a Z = −2.714 with a p value < 0.01 (Figure 2).
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Figure 2. Adenohypophyseal pyroglutamyl aminopeptidase II (PPII) specific activity, median eminence
thyrotropin-releasing hormone (TRH) content and thyrotropin (TSH) serum levels of Zn-deficient and
control pups at weaning. Control values for PPII specific activity: 631.2 ± 194 pmol βNA/min/mg
prot; TRH: 22.36 ± 6.2 ngTRH/mg proteins; TSH: 1.66 ± 0.1 ng/dL. Values are the mean ± SEM of
percentage of control values (=100%), (n = 6/group).* p < 0.01 vs. controls.
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Zn deficiency did not affect T3, T4 or corticosterone serum levels.
In contrast, circulatory leptin levels decreased to 43.5 ± 7% compared to those of controls (100%);

Mann-Whitney U analysis for leptin showed a value for U = 15 that is equivalent to a Z = −2.021 with
a p value < 0.05 (Table 1). We observed a strong positive linear correlation between median eminence
TRH and leptin serum concentration (n = 8 rats; correlation coefficient = 0.825; Z = 2.62; p < 0.01).

Table 1. Hormones serum concentrations of Zn-deficient and control pups at weaning.

Group T3 (ng/dL) T4 (µg/dL) Leptin (ng/mL) Corticosterone (ng/mL)

Control 8.17 ± 0.15 8.5 ± 1 4.3 ± 0.8 149 ± 19
Zn-deficient 7.35 ± 0.49 8.86 ± 1.1 1.86 ± 0.2 * 99 ± 17

Values are the mean ± SEM (n = 4–6/group); * p < 0.05 vs. control group.

4. Discussion

In this study, TH levels of Zn-deficient rats were normal, thus intrauterine metal malnourishment
failed to induce primary hypothyroidism since weaning. This was in agreement with the unchanged
levels of T3 and T4 observed in adult rats subjected to Zn deficiency during the prenatal and postnatal
periods. Overall, these findings supported the conclusion that high TSH levels and the development
of subclinical hypothyroidism in adults [16] and weanling rats, are not a response to low T3, but to
other factors that we discuss below.

The weight loss at weaning observed in the offspring of dams eating a Zn-deficient diet could be
associated to the increase in TSH serum concentration, even when TH did not increase. TSH receptors
have been identified in adipocytes and its activation by TSH increases lipid degradation [28,29]. It is
well known that high levels of TSH have a down-regulatory effect on its receptors in the thyroid
cell [30,31], which may account for the thyroid’s lack of response to the TSH released, thus T3 and T4

serum concentration did not change in Zn-deficient pups.
Given that body weight of Zn-deficient animals was similar to that of controls at birth, it is likely

that dams in the malnourished group compensated Zn availability for the offspring by homeostatic
adjustments, at the expense of their own metal content in bone and muscle [32,33] and also, by
delivering small litters. The lower body weight in the first week of life seemed also to be a consequence
of the known anorexic effect of Zn deficiency [34]. Weanling pups from Zn-deficient dams have
a reduction of 40% milk intake on average [35]. We did not evaluate milk consumption since this is a
rather stressful procedure, but in our previous study, we describe a decreased food intake in prenatally
and postnatally Zn-deficient rats after weaning [16]. This anorexic effect along with the high TSH
concentration contributed to the weight loss of malnourished pups.

It was noteworthy that the evident low body weight of Zn-deficient pups was not able to reduce
HPT axis activity and to decrease TH levels as has been proposed [36,37]. In contrast, our data
supported that hypothalamic neurons are firstly responding to low nutrient availability and as a
consequence, metabolic rate is adjusted through HPT axis function modulation. For example, negative
energy balance decelerates HPT axis and lipids waste in adults, but in weanling rats such adaptation is
not successful [38]. Similarly, in this study, the low Zn intake seemed to activate TRH release from the
ME (discussed below) and to increase TSH serum levels, with no abatement of the metabolic rate.

The high TSH serum levels found in Zn-deficient weanling rats was coincident with that
previously found in prenatally or postnatally deficient adults [16]. TSH release is known to result from
a high release of its secretagogue TRH, or, by a low concentration of TH. In the first case, TRH by
activating its receptor (TRH-R1) expressed in thyrotrophs, leads to an enhanced TSH release [39,40].
In the second case, the low concentration of T3 favors the detachment of a nuclear thyrotropin receptor
(TR) from the TSH gene promoter, in such a way that the expression of the hormone is uninhibited [41].

In this study the effect of low TH concentration appears not to be responsible for the increase
in TSH serum levels of Zn-deficient animals. This result argues against the proposed primary



Nutrients 2017, 9, 1139 7 of 11

hypothyroidism and slow growth induced by low Zn dietary content [15] and, against the decreased
Zn concentrations in individuals with primary hypothyroidism [42].

Therefore, a more plausible explanation for the increased circulation of TSH was that the ME
nerve terminals of Zn-deficient pups maintained a high TRH concentration in the portal blood. Indeed,
pups showed low TRH levels in the tissue containing the nerve terminals from the hypothalamic
paraventricular nucleus (PVN) cells. That can be interpreted as a high release given that the titer of
the antibody used allows for the quantification of the peptide concentration only in the intracellular
compartment, which is greater than that of the extracellular one [43]. When TRH levels decay in the
ME along with a high concentration of TSH in serum, then an increased release of the peptide can
be assumed.

Trying to identify which factors might be involved in the higher release of hypophysiotropic
TRH, we analyzed leptin and corticosterone serum levels, which respectively decrease and increase in
a negative energy balance. Both are modulators of TRH synthesis in the hypothalamus [26]. Indeed we
found decreased leptin serum levels in Zn-deficient animals, which should be decreasing the function
of HPT axis as an advantageous adaptation to their low body weight and reduced energy reservoirs.
In contrast and as previously mentioned, a high release of TRH was observed along with increased
TSH serum levels that led to further energy utilization; thus we assumed that leptin signaling was
impaired in Zn-deficient group.

The shift between leptin/corticosterone levels during fasting elevates the activity of type-2
deiodinase, an enzyme residing in the ependymal cells of the third ventricle that is able to increase
T3 hypothalamic concentration, which in turn down-regulates TRH expression and release [44], and
also would decrease TSH serum levels. However, a Zn-deficient diet did not increase circulating
corticosterone in pups. Thus, it is unlikely that alterations found in HPT axis were stress mediated.
It is possible that an unchanged type-2 deiodinase activity was not able to reduce TRH expression,
avoiding the inhibitory effect of this enzyme on the metabolic rate. Association between high TRH
release with activation of its mRNA expression is assumed after observing the coordination of those
processes in PVN TRHergic neurons by stimuli, such as suction in lactating rats [45], cold [45,46] and
dehydration-induced anorexia [47].

TRH release is modulated by glutamate, of which neurotransmission is altered by brain Zn
availability. Zn is able to directly and specifically inhibit responses of glutamate by altering the
NMDA receptors [48–50]. Thus, low Zn levels might be activating the glutamate receptors expressed
in TRHergic neurons [51] and stimulating the release of peptides, inducing different behavioral
outcomes [52,53], although this deserves further study.

The other direct effect that Zn deficiency could have to induce the greater actions of TRH on the
AH of weaned offspring was the down-regulation of PPII specific activity (the TRH-degrading enzyme)
that we have already observed in the MBH of malnourished pups [16]. Low PPII activity most likely
decreased TRH degradation and contributed to the greater TRH effect on AH and on TSH release of
Zn-deficient pups by enhancing the peptide content in the portal blood and its access to thyrotrophs.

Even when it is known that TH exerts a positive regulation of PPII, its decreased activity in the
MBH could not be attributed to T3 or T4 given that these hormones did not change, but instead it can be
attributed to the low Zn availability. This is supported by the Zn dependence of PPII activity that has
already proven to be modulated by dietary Zn in adults, as happens for other enzymes, such as alcohol
dehydrogenase of the liver [54], alkaline phosphatase [55] and angiotensin-converting enzyme [56–58].

In contrast to what we observed in the MBH (in pups and adults in our previous study) and
in AH (adults) [16], we did not find a down-regulation of PPII activity in the AH of Zn-deficient
weanling pups, which supports a tissue and age specific effect of metal availability on enzyme function.
The ontogeny of hypothalamic PPII activity reveals a maximum functionality at postnatal day 8 [59].
By this time, the BBB had already developed in a Zn-deficient environment, avoiding Zn entry through
its transporters present in this barrier [60] and affecting PPII activity in the MBH [16]. Moreover, PPII is
more active in the hypothalamus when compared to the AH [59], therefore a higher supply of Zn may
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be required in this brain region in order to assure enzyme activity. On the other hand, Zn-deficient
dams might still be able to provide sufficient Zn for PPII activity to function in the AH.

5. Conclusions

We conclude that the subclinical hypothyroidism associated with Zn deficiency in adults [12,13,61]
is developed at least after weaning; that this is not due to an early decrease in TH serum levels at
weaning; and thus, that the increased TSH concentration is not a response to a primary hypothyroidism.

Our data better support the conclusion that Zn deficiency has a direct effect on TRH release, along
with a decreased degrading activity of MBH PPII since weaning and later in the AH, which favored
TRH stimulation of its receptor in the thyrotrophs inducing a high release of TSH. These elevated TSH
levels may be responsible for the low body weight of Zn-deficient pups and may have long lasting
effects on animals’ health. For example, high TSH is a possible indicator of Zn deficiency and subclinical
hypothyroidism that have been associated to a risk of developing overt hypothyroidism [62,63].
Additionally, high circulating TSH levels are related to several comorbidities such as metabolic
syndrome, being overweight, insulin resistance, cardiovascular risk, and dyslipidemia, amongst
others [64–69].

Acknowledgments: We want to thank Q.F.B. Miguel Cisneros from the Instituto de Biotecnologia UNAM for
his technical assistance; also thanks to José Luis Calderón and Raúl Cardoso from the National Institute of
Psychiatry for their assistance with drawing work. This study was supported by CONACyT 128316 and 233918
(Patricia de Gortari).

Author Contributions: Viridiana Alcántara-Alonso, Elena Alvarez-Salas and Gilberto Matamoros-Trejo, took care
of animals and made the biochemical determinations. Viridiana Alcántara-Alonso, Elena Alvarez-Salas, helped
in the interpretation of results and in revising the manuscript. Patricia de Gortari designed the experiments,
interpreted the results and wrote the manuscript.

Conflicts of Interest: Authors declare that there is no conflict of interest that could be perceived as prejudicing
the impartiality of the reported research.

References

1. Duque, X.; Flores-Hernandez, S.; Flores-Huerta, S.; Mendez-Ramirez, I.; Munoz, S.; Turnbull, B.;
Martinez-Andrade, G.; Ramos, R.I.; Gonzalez-Unzaga, M.; Mendoza, M.E.; et al. Prevalence of anemia and
deficiency of iron, folic acid, and zinc in children younger than 2 years of age who use the health services
provided by the Mexican Social Security Institute. BMC Public Health 2007, 7, 345. [CrossRef] [PubMed]

2. Villalpando, S.; Garcia-Guerra, A.; Ramirez-Silva, C.I.; Mejia-Rodriguez, F.; Matute, G.; Shamah-Levy, T.;
Rivera, J.A. Iron, zinc and iodide status in Mexican children under 12 years and women 12–49 years of age.
A probabilistic national survey. Salud Publica Mex. 2003, 45, S520–S529. [CrossRef] [PubMed]

3. Caulfield, L.E.; Zavaleta, N.; Shankar, A.H.; Merialdi, M. Potential contribution of maternal zinc
supplementation during pregnancy to maternal and child survival. Am. J. Clin. Nutr. 1998, 68, 499S–508S.
[PubMed]

4. Shapira, N. Prenatal nutrition: A critical window of opportunity for mother and child. Womens Health 2008,
4, 639–656. [CrossRef] [PubMed]

5. Nuttall, J.R.; Supasai, S.; Kha, J.; Vaeth, B.M.; Mackenzie, G.G.; Adamo, A.M.; Oteiza, P.I. Gestational
marginal zinc deficiency impaired fetal neural progenitor cell proliferation by disrupting the ERK1/2
signaling pathway. J. Nutr. Biochem. 2015, 26, 1116–1123. [CrossRef] [PubMed]

6. Golub, M.S.; Gershwin, M.E.; Hurley, L.S.; Saito, W.Y.; Hendrickx, A.G. Studies of marginal zinc deprivation
in rhesus monkeys. IV. Growth of infants in the first year. Am. J. Clin. Nutr. 1984, 40, 1192–1202. [PubMed]

7. Kralik, A.; Eder, K.; Kirchgessner, M. Influence of zinc and selenium deficiency on parameters relating to
thyroid hormone metabolism. Horm. Metab. Res. 1996, 28, 223–226. [CrossRef] [PubMed]

8. Amani, R.; Saeidi, S.; Nazari, Z.; Nematpour, S. Correlation between dietary zinc intakes and its serum
levels with depression scales in young female students. Biol. Trace Elem. Res. 2010, 137, 150–158. [CrossRef]
[PubMed]

http://dx.doi.org/10.1186/1471-2458-7-345
http://www.ncbi.nlm.nih.gov/pubmed/18053140
http://dx.doi.org/10.1590/S0036-36342003001000008
http://www.ncbi.nlm.nih.gov/pubmed/14746046
http://www.ncbi.nlm.nih.gov/pubmed/9701168
http://dx.doi.org/10.2217/17455057.4.6.639
http://www.ncbi.nlm.nih.gov/pubmed/19072465
http://dx.doi.org/10.1016/j.jnutbio.2015.05.007
http://www.ncbi.nlm.nih.gov/pubmed/26153680
http://www.ncbi.nlm.nih.gov/pubmed/6507341
http://dx.doi.org/10.1055/s-2007-979169
http://www.ncbi.nlm.nih.gov/pubmed/8738110
http://dx.doi.org/10.1007/s12011-009-8572-x
http://www.ncbi.nlm.nih.gov/pubmed/20013161


Nutrients 2017, 9, 1139 9 of 11

9. Russo, A.J. Decreased zinc and increased copper in individuals with anxiety. Nutr. Metab. Insights 2011,
4, 1–5. [CrossRef] [PubMed]

10. Hagmeyer, S.; Haderspeck, J.C.; Grabrucker, A.M. Behavioral impairments in animal models for zinc
deficiency. Front. Behav. Neurosci. 2014, 8, 443. [CrossRef] [PubMed]

11. Seven, M.; Basaran, S.Y.; Cengiz, M.; Unal, S.; Yuksel, A. Deficiency of selenium and zinc as a causative factor
for idiopathic intractable epilepsy. Epilepsy Res. 2013, 104, 35–39. [CrossRef] [PubMed]

12. Napolitano, G.; Palka, G.; Lio, S.; Bucci, I.; De, R.P.; Stuppia, L.; Monaco, F. Is zinc deficiency a cause of
subclinical hypothyroidism in Down syndrome? Ann. Genet. 1990, 33, 9–15. [PubMed]

13. Bucci, I.; Napolitano, G.; Giuliani, C.; Lio, S.; Minnucci, A.; Di, G.F.; Calabrese, G.; Sabatino, G.; Palka, G.;
Monaco, F. Zinc sulfate supplementation improves thyroid function in hypozincemic Down children.
Biol. Trace Elem. Res. 1999, 67, 257–268. [CrossRef] [PubMed]

14. Baltaci, A.K.; Mogulkoc, R.; Bediz, C.S.; Kul, A.; Ugur, A. Pinealectomy and zinc deficiency have opposite
effects on thyroid hormones in rats. Endocr. Res. 2003, 29, 473–481. [CrossRef] [PubMed]

15. Jing, M.Y.; Sun, J.Y.; Wang, J.F. The effect of peripheral administration of zinc on food intake in rats fed
Zn-adequate or Zn-deficient diets. Biol. Trace Elem. Res. 2008, 124, 144–156. [CrossRef] [PubMed]

16. Alvarez-Salas, E.; Alcantara-Alonso, V.; Matamoros-Trejo, G.; Vargas, M.A.; Morales-Mulia, M.; de Gortari, P.
Mediobasal hypothalamic and adenohypophyseal TRH-degrading enzyme (PPII) is down-regulated by zinc
deficiency. Int. J. Dev. Neurosci. 2015, 46, 115–124. [CrossRef] [PubMed]

17. Czekay, G.; Bauer, K. Identification of the thyrotropin-releasing-hormone-degrading ectoenzyme as
a metallopeptidase. Biochem. J. 1993, 290, 921–926. [CrossRef] [PubMed]

18. O’Connor, B.; O’Cuinn, G. Localization of a narrow-specificity thyroliberin hydrolyzing pyroglutamate
aminopeptidase in synaptosomal membranes of guinea-pig brain. Eur. J. Biochem. 1984, 144, 271–278.
[CrossRef] [PubMed]

19. Garat, B.; Miranda, J.; Charli, J.L.; Joseph-Bravo, P. Presence of a membrane bound pyroglutamyl amino
peptidase degrading thyrotropin releasing hormone in rat brain. Neuropeptides 1985, 6, 27–40. [CrossRef]

20. Friedman, T.C.; Wilk, S. Delineation of a particulate thyrotropin-releasing hormone-degrading enzyme in
rat brain by the use of specific inhibitors of prolyl endopeptidase and pyroglutamyl peptide hydrolase.
J. Neurochem. 1986, 46, 1231–1239. [CrossRef] [PubMed]

21. Ponce, G.; Charli, J.L.; Pasten, J.A.; Aceves, C.; Joseph-Bravo, P. Tissue-specific regulation of pyroglutamate
aminopeptidase II activity by thyroid hormones. Neuroendocrinology 1988, 48, 211–213. [CrossRef] [PubMed]

22. Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 5th ed.; Elsevier Academic Press: Burlington,
MA, USA, 2005.

23. de Gortari, P.; Fernandez-Guardiola, A.; Martinez, A.; Cisneros, M.; Joseph-Bravo, P. Changes in TRH and its
degrading enzyme pyroglutamyl peptidase II, during the development of amygdaloid kindling. Brain Res.
1995, 679, 144–150. [CrossRef]

24. Joseph-Bravo, P.; Charli, J.L.; Palacios, J.M.; Kordon, C. Effect of neurotransmitters on the in vitro release of
immunoreactive thyrotropin-releasing hormone from rat mediobasal hypothalamus. Endocrinology 1979,
104, 801–806. [CrossRef] [PubMed]

25. Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. Protein measurement with the Folin phenol reagent.
J. Biol. Chem. 1951, 193, 265–275. [PubMed]

26. Coppola, A.; Meli, R.; Diano, S. Inverse shift in circulating corticosterone and leptin levels elevates
hypothalamic deiodinase type 2 in fasted rats. Endocrinology 2005, 146, 2827–2833. [CrossRef] [PubMed]

27. Pekary, A.E.; Sattin, A.; Blood, J. Rapid modulation of TRH and TRH-like peptide release in rat brain and
peripheral tissues by leptin. Brain Res. 2010, 1345, 9–18. [CrossRef] [PubMed]

28. Endo, T.; Ohta, K.; Haraguchi, K.; Onaya, T. Cloning and functional expression of a thyrotropin receptor
cDNA from rat fat cells. J. Biol. Chem. 1995, 270, 10833–10837. [CrossRef] [PubMed]

29. Endo, T.; Kobayashi, T. Expression of functional TSH receptor in white adipose tissues of hyt/hyt mice
induces lipolysis in vivo. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1569–E1575. [CrossRef] [PubMed]

30. Denereaz, N.; Lemarchand-Beraud, T. Severe but not mild alterations of thyroid function modulate the
density of thyroid-stimulating hormone receptors in the rat thyroid gland. Endocrinology 1995, 136, 1694–1700.
[CrossRef] [PubMed]

31. Singh, S.P.; McDonald, D.; Hope, T.J.; Prabhakar, B.S. Upon thyrotropin binding the thyrotropin receptor is
internalized and localized to endosome. Endocrinology 2004, 145, 1003–1010. [CrossRef] [PubMed]

http://dx.doi.org/10.4137/NMI.S6349
http://www.ncbi.nlm.nih.gov/pubmed/23946656
http://dx.doi.org/10.3389/fnbeh.2014.00443
http://www.ncbi.nlm.nih.gov/pubmed/25610379
http://dx.doi.org/10.1016/j.eplepsyres.2012.09.013
http://www.ncbi.nlm.nih.gov/pubmed/23103062
http://www.ncbi.nlm.nih.gov/pubmed/2142391
http://dx.doi.org/10.1007/BF02784425
http://www.ncbi.nlm.nih.gov/pubmed/10201332
http://dx.doi.org/10.1081/ERC-120026953
http://www.ncbi.nlm.nih.gov/pubmed/14682476
http://dx.doi.org/10.1007/s12011-008-8132-9
http://www.ncbi.nlm.nih.gov/pubmed/18425433
http://dx.doi.org/10.1016/j.ijdevneu.2015.08.001
http://www.ncbi.nlm.nih.gov/pubmed/26315400
http://dx.doi.org/10.1042/bj2900921
http://www.ncbi.nlm.nih.gov/pubmed/8096131
http://dx.doi.org/10.1111/j.1432-1033.1984.tb08460.x
http://www.ncbi.nlm.nih.gov/pubmed/6149121
http://dx.doi.org/10.1016/0143-4179(85)90128-3
http://dx.doi.org/10.1111/j.1471-4159.1986.tb00643.x
http://www.ncbi.nlm.nih.gov/pubmed/2869108
http://dx.doi.org/10.1159/000125011
http://www.ncbi.nlm.nih.gov/pubmed/2906116
http://dx.doi.org/10.1016/0006-8993(95)00237-K
http://dx.doi.org/10.1210/endo-104-3-801
http://www.ncbi.nlm.nih.gov/pubmed/35337
http://www.ncbi.nlm.nih.gov/pubmed/14907713
http://dx.doi.org/10.1210/en.2004-1361
http://www.ncbi.nlm.nih.gov/pubmed/15746256
http://dx.doi.org/10.1016/j.brainres.2010.05.039
http://www.ncbi.nlm.nih.gov/pubmed/20546704
http://dx.doi.org/10.1074/jbc.270.18.10833
http://www.ncbi.nlm.nih.gov/pubmed/7738021
http://dx.doi.org/10.1152/ajpendo.00572.2011
http://www.ncbi.nlm.nih.gov/pubmed/22496347
http://dx.doi.org/10.1210/endo.136.4.7895680
http://www.ncbi.nlm.nih.gov/pubmed/7895680
http://dx.doi.org/10.1210/en.2003-1217
http://www.ncbi.nlm.nih.gov/pubmed/14576174


Nutrients 2017, 9, 1139 10 of 11

32. Donangelo, C.M.; King, J.C. Maternal zinc intakes and homeostatic adjustments during pregnancy and
lactation. Nutrients 2012, 4, 782–798. [CrossRef] [PubMed]

33. Masters, D.G.; Keen, C.L.; Lonnerdal, B.; Hurley, L.S. Release of zinc from maternal tissues during zinc
deficiency or simultaneous zinc and calcium deficiency in the pregnant rat. J. Nutr. 1986, 116, 2148–2154.
[PubMed]

34. Levenson, C.W. Zinc regulation of food intake: New insights on the role of neuropeptide Y. Nutr. Rev. 2003,
61, 247–249. [PubMed]

35. Chowanadisai, W.; Kelleher, S.L.; Lonnerdal, B. Maternal zinc deficiency raises plasma prolactin levels in
lactating rats. J. Nutr. 2004, 134, 1314–1319. [PubMed]

36. Blake, N.G.; Eckland, D.J.; Foster, O.J.; Lightman, S.L. Inhibition of hypothalamic thyrotropin-releasing
hormone messenger ribonucleic acid during food deprivation. Endocrinology 1991, 129, 2714–2718. [CrossRef]
[PubMed]

37. Van Haasteren, G.A.; Linkels, E.; van, T.H.; Klootwijk, W.; Kaptein, E.; de Jong, F.H.; Reymond, M.J.;
Visser, T.J.; de Greef, W.J. Effects of long-term food reduction on the hypothalamus-pituitary-thyroid axis in
male and female rats. J. Endocrinol. 1996, 150, 169–178. [CrossRef] [PubMed]

38. de Gortari, P.; Gonzalez-Alzati, M.E.; Cisneros, M.; Joseph-Bravo, P. Effect of fasting on the content of
thyrotropin-releasing hormone and its RNAm in the central nervous system and pyroglutamyl peptidase II
activity in the anterior pituitary of post-weaned and adult rats. Nutr. Neurosci. 2000, 3, 255–265. [CrossRef]

39. Geras, E.J.; Gershengorn, M.C. Evidence that TRH stimulates secretion of TSH by two calcium-mediated
mechanisms. Am. J. Physiol. 1982, 242, E109–E114. [PubMed]

40. Nillni, E.A. Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and
peripheral inputs. Front. Neuroendocrinol. 2010, 31, 134–156. [CrossRef] [PubMed]

41. Dyess, E.M.; Segerson, T.P.; Liposits, Z.; Paull, W.K.; Kaplan, M.M.; Wu, P.; Jackson, I.M.; Lechan, R.M.
Triiodothyronine exerts direct cell-specific regulation of thyrotropin-releasing hormone gene expression in
the hypothalamic paraventricular nucleus. Endocrinology 1988, 123, 2291–2297. [CrossRef] [PubMed]

42. Baltaci, A.K.; Mogulkoc, R. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and
Hyperthyroidism: The Relation to Zinc. Biochem. Genet. 2017, 55, 223–233. [CrossRef] [PubMed]

43. Mendez, M.; Joseph-Bravo, P.; Cisneros, M.; Vargas, M.A.; Charli, J.L. Regional distribution of in vitro release
of thyrotropin releasing hormone in rat brain. Peptides 1987, 8, 291–298. [CrossRef]

44. Diano, S.; Naftolin, F.; Goglia, F.; Horvath, T.L. Fasting-induced increase in type II iodothyronine deiodinase
activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus.
Endocrinology 1998, 139, 2879–2884. [CrossRef] [PubMed]

45. Uribe, R.M.; Redondo, J.L.; Charli, J.L.; Joseph-Bravo, P. Suckling and cold stress rapidly and transiently
increase TRH mRNA in the paraventricular nucleus. Neuroendocrinology 1993, 58, 140–145. [CrossRef]
[PubMed]

46. Zoeller, R.T.; Rudeen, P.K. Ethanol blocks the cold-induced increase in thyrotropin-releasing hormone mRNA
in paraventricular nuclei but not the cold-induced increase in thyrotropin. Brain Res. Mol. Brain Res. 1992,
13, 321–330. [CrossRef]

47. Jaimes-Hoy, L.; Joseph-Bravo, P.; de Gortari, P. Differential response of TRHergic neurons of the hypothalamic
paraventricular nucleus (PVN) in female animals submitted to food-restriction or dehydration-induced
anorexia and cold exposure. Horm. Behav. 2008, 53, 366–377. [CrossRef] [PubMed]

48. Peters, S.; Koh, J.; Choi, D.W. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons.
Science 1987, 236, 589–593. [CrossRef] [PubMed]

49. Mayer, M.L.; Vyklicky, L., Jr. The action of zinc on synaptic transmission and neuronal excitability in cultures
of mouse hippocampus. J. Physiol. 1989, 415, 351–365. [CrossRef] [PubMed]

50. Amico-Ruvio, S.A.; Murthy, S.E.; Smith, T.P.; Popescu, G.K. Zinc effects on NMDA receptor gating kinetics.
Biophys. J. 2011, 100, 1910–1918. [CrossRef] [PubMed]

51. Wittmann, G.; Lechan, R.M.; Liposits, Z.; Fekete, C. Glutamatergic innervation of corticotropin-releasing
hormone- and thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular
nucleus of the rat. Brain Res. 2005, 1039, 53–62. [CrossRef] [PubMed]

52. Takeda, A.; Itoh, H.; Yamada, K.; Tamano, H.; Oku, N. Enhancement of hippocampal mossy fiber activity in
zinc deficiency and its influence on behavior. Biometals 2008, 21, 545–552. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/nu4070782
http://www.ncbi.nlm.nih.gov/pubmed/22852063
http://www.ncbi.nlm.nih.gov/pubmed/3794823
http://www.ncbi.nlm.nih.gov/pubmed/12918877
http://www.ncbi.nlm.nih.gov/pubmed/15173390
http://dx.doi.org/10.1210/endo-129-5-2714
http://www.ncbi.nlm.nih.gov/pubmed/1935800
http://dx.doi.org/10.1677/joe.0.1500169
http://www.ncbi.nlm.nih.gov/pubmed/8869583
http://dx.doi.org/10.1080/1028415X.2000.11747323
http://www.ncbi.nlm.nih.gov/pubmed/6801992
http://dx.doi.org/10.1016/j.yfrne.2010.01.001
http://www.ncbi.nlm.nih.gov/pubmed/20074584
http://dx.doi.org/10.1210/endo-123-5-2291
http://www.ncbi.nlm.nih.gov/pubmed/3139393
http://dx.doi.org/10.1007/s10528-017-9791-z
http://www.ncbi.nlm.nih.gov/pubmed/28097455
http://dx.doi.org/10.1016/0196-9781(87)90104-5
http://dx.doi.org/10.1210/endo.139.6.6062
http://www.ncbi.nlm.nih.gov/pubmed/9607797
http://dx.doi.org/10.1159/000126523
http://www.ncbi.nlm.nih.gov/pubmed/8264848
http://dx.doi.org/10.1016/0169-328X(92)90215-W
http://dx.doi.org/10.1016/j.yhbeh.2007.11.003
http://www.ncbi.nlm.nih.gov/pubmed/18191132
http://dx.doi.org/10.1126/science.2883728
http://www.ncbi.nlm.nih.gov/pubmed/2883728
http://dx.doi.org/10.1113/jphysiol.1989.sp017725
http://www.ncbi.nlm.nih.gov/pubmed/2561789
http://dx.doi.org/10.1016/j.bpj.2011.02.042
http://www.ncbi.nlm.nih.gov/pubmed/21504727
http://dx.doi.org/10.1016/j.brainres.2005.01.090
http://www.ncbi.nlm.nih.gov/pubmed/15781046
http://dx.doi.org/10.1007/s10534-008-9140-0
http://www.ncbi.nlm.nih.gov/pubmed/18368499


Nutrients 2017, 9, 1139 11 of 11

53. Doboszewska, U.; Szewczyk, B.; Sowa-Kucma, M.; Noworyta-Sokolowska, K.; Misztak, P.; Golebiowska, J.;
Mlyniec, K.; Ostachowicz, B.; Krosniak, M.; Wojtanowska-Krosniak, A.; et al. Alterations of Bio-elements,
Oxidative, and Inflammatory Status in the Zinc Deficiency Model in Rats. Neurotox. Res. 2016, 29, 143–154.
[CrossRef] [PubMed]

54. Kawashima, Y.; Someya, Y.; Sato, S.; Shirato, K.; Jinde, M.; Ishida, S.; Akimoto, S.; Kobayashi, K.;
Sakakibara, Y.; Suzuki, Y.; et al. Dietary zinc-deficiency and its recovery responses in rat liver cytosolic
alcohol dehydrogenase activities. J. Toxicol. Sci. 2011, 36, 101–108. [CrossRef] [PubMed]

55. Cho, Y.E.; Lomeda, R.A.; Ryu, S.H.; Sohn, H.Y.; Shin, H.I.; Beattie, J.H.; Kwun, I.S. Zinc deficiency negatively
affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutr. Res. Pract. 2007, 1, 113–119.
[CrossRef] [PubMed]

56. Dahlheim, H.; White, C.L.; Rothemund, J.; von Lutterotti, N.; Jacob, I.C.; Rosenthal, J. Effect of zinc depletion
on angiotensin I-converting enzyme in arterial walls and plasma of the rat. Miner. Electrolyte Metab. 1989,
15, 125–129. [PubMed]

57. White, C.L.; Pschorr, J.; Jacob, I.C.; von Lutterotti, N.; Dahlheim, H. The effect of zinc in vivo and in vitro
on the activities of angiotensin converting enzyme and kininase-I in the plasma of rats. Biochem. Pharmacol.
1986, 35, 2489–2493. [CrossRef]

58. Reeves, P.G.; O’Dell, B.L. An experimental study of the effect of zinc on the activity of angiotensin converting
enzyme in serum. Clin. Chem. 1985, 31, 581–584. [PubMed]

59. Vargas, M.A.; Herrera, J.; Uribe, R.M.; Charli, J.L.; Joseph-Bravo, P. Ontogenesis of pyroglutamyl peptidase II
activity in rat brain, adenohypophysis and pancreas. Dev. Brain Res. 1992, 66, 251–256. [CrossRef]

60. Takeda, A. Zinc homeostasis and functions of zinc in the brain. Biometals 2001, 14, 343–351. [CrossRef]
[PubMed]

61. Licastro, F.; Mocchegiani, E.; Zannotti, M.; Arena, G.; Masi, M.; Fabris, N. Zinc affects the metabolism of
thyroid hormones in children with Down’s syndrome: Normalization of thyroid stimulating hormone and of
reversal triiodothyronine plasmic levels by dietary zinc supplementation. Int. J. Neurosci. 1992, 65, 259–268.
[CrossRef] [PubMed]

62. Franklyn, J.A. The thyroid—Too much and too little across the ages. The consequences of subclinical thyroid
dysfunction. Clin. Endocrinol. 2013, 78, 1–8. [CrossRef] [PubMed]

63. Parle, J.V.; Franklyn, J.A.; Cross, K.W.; Jones, S.C.; Sheppard, M.C. Prevalence and follow-up of abnormal
thyrotrophin (TSH) concentrations in the elderly in the United Kingdom. Clin. Endocrinol. 1991, 34, 77–83.

64. Mueller, A.; Schofl, C.; Dittrich, R.; Cupisti, S.; Oppelt, P.G.; Schild, R.L.; Beckmann, M.W.; Haberle, L.
Thyroid-stimulating hormone is associated with insulin resistance independently of body mass index and
age in women with polycystic ovary syndrome. Hum. Reprod. 2009, 24, 2924–2930. [CrossRef] [PubMed]

65. Yu, Q.; Wang, J.B. Subclinical Hypothyroidism in PCOS: Impact on Presentation, Insulin Resistance, and
Cardiovascular Risk. Biomed. Res. Int. 2016, 2016, 2067087. [CrossRef] [PubMed]

66. Unal, E.; Akin, A.; Yildirim, R.; Demir, V.; Yildiz, I.; Haspolat, Y.K. Association of Subclinical Hypothyroidism
with Dyslipidemia and Increased Carotid Intima-Media Thickness in Children. J. Clin. Res. Pediatr. Endocrinol.
2017, 9, 144–149. [CrossRef] [PubMed]

67. Decandia, F. Risk factors for cardiovascular disease in subclinical hypothyroidism. Ir. J. Med. Sci. 2017.
[CrossRef] [PubMed]

68. Zhou, J.B.; Li, H.B.; Zhu, X.R.; Song, H.L.; Zhao, Y.Y.; Yang, J.K. Subclinical hypothyroidism and the risk of
chronic kidney disease in T2D subjects: A case-control and dose-response analysis. Medicine 2017, 96, e6519.
[CrossRef] [PubMed]

69. Rahbar, A.R.; Kalantarhormozi, M.; Izadi, F.; Arkia, E.; Rashidi, M.; Pourbehi, F.; Daneshifard, F.;
Rahbar, A. Relationship between Body Mass Index, Waist-to-Hip Ratio, and Serum Lipid Concentrations
and Thyroid-Stimulating Hormone in the Euthyroid Adult Population. Iran. J. Med. Sci. 2017, 42, 301–305.
[PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12640-015-9571-7
http://www.ncbi.nlm.nih.gov/pubmed/26581375
http://dx.doi.org/10.2131/jts.36.101
http://www.ncbi.nlm.nih.gov/pubmed/21297347
http://dx.doi.org/10.4162/nrp.2007.1.2.113
http://www.ncbi.nlm.nih.gov/pubmed/20535396
http://www.ncbi.nlm.nih.gov/pubmed/2542744
http://dx.doi.org/10.1016/0006-2952(86)90044-4
http://www.ncbi.nlm.nih.gov/pubmed/2983906
http://dx.doi.org/10.1016/0165-3806(92)90087-D
http://dx.doi.org/10.1023/A:1012982123386
http://www.ncbi.nlm.nih.gov/pubmed/11831464
http://dx.doi.org/10.3109/00207459209003299
http://www.ncbi.nlm.nih.gov/pubmed/1341688
http://dx.doi.org/10.1111/cen.12011
http://www.ncbi.nlm.nih.gov/pubmed/22891671
http://dx.doi.org/10.1093/humrep/dep285
http://www.ncbi.nlm.nih.gov/pubmed/19654109
http://dx.doi.org/10.1155/2016/2067087
http://www.ncbi.nlm.nih.gov/pubmed/27478827
http://dx.doi.org/10.4274/jcrpe.3719
http://www.ncbi.nlm.nih.gov/pubmed/28008862
http://dx.doi.org/10.1007/s11845-017-1617-9
http://www.ncbi.nlm.nih.gov/pubmed/28493136
http://dx.doi.org/10.1097/MD.0000000000006519
http://www.ncbi.nlm.nih.gov/pubmed/28403083
http://www.ncbi.nlm.nih.gov/pubmed/28533579
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animals and Diets 
	TRH Content in Median Eminence (ME) 
	PPII Specific Activity 
	Protein Determination 
	Serum Hormones’ Determination 
	Statistical Analysis 

	Results 
	Body Weight 
	Biochemical Determinations 

	Discussion 
	Conclusions 

