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Abstract An expected benefit of ensemble forecasts is that a sequence of consecutive forecasts valid for
the same time will be more consistent than an equivalent sequence of individual forecasts. Inconsistent
(jumpy) forecasts can cause users to lose confidence in the forecasting system. We present a first systematic,
objective evaluation of the consistency of the European Centre for Medium‐Range Weather Forecasts
(ECMWF) ensemble using a measure of forecast divergence that takes account of the full ensemble
distribution. Focusing on forecasts of the North Atlantic Oscillation and European Blocking regimes up to
2 weeks ahead, we identify occasional large inconsistency between successive runs, with the largest
jumps tending to occur at 7–9 days lead. However, care is needed in the interpretation of ensemble
jumpiness. An apparent clear flip‐flop in a single index may hide a more complex predictability issue which
may be better understood by examining the ensemble evolution in phase space.

Plain Language Summary Ensemble forecasts show the range of weather scenarios that can
occur, allowing users to make appropriate risk‐based decisions. An ensemble forecast made 2 weeks in
advance will show a range of possible outcomes. New observations included in subsequent forecasts will
eliminate some of these scenarios, and the forecast will become more certain. Occasionally, a new forecast
seems to contradict the previous forecast by introducing a new weather scenario that was not represented in
the earlier forecast. Such inconsistencies can cause users to lose confidence in the forecasting system. We
present a new method to assess the consistency of ensemble forecasts of large‐scale weather patterns over
Europe made by the European Centre for Medium‐Range Weather Forecasts. We show that a careful
analysis of each forecast is needed to understand how and why these jumps occur. Understanding and
reducing the occurrence of inconsistent ensemble forecasts will increase user confidence and improve
decision making.

1. Introduction

The chaotic nature of the atmosphere means that numerical weather prediction (NWP) forecasts are sensi-
tive to small changes in their initial conditions. Operational NWP centers address this by running a number
of forecasts from similar starting conditions. The resulting ensemble of forecasts shows the range of future
atmospheric states consistent with the known uncertainties in the initial conditions (Leutbecher &
Palmer, 2008; Swinbank et al., 2016). One of the expected benefits of ensemble forecasts is that a sequence
of consecutive forecasts valid for the same time will be more consistent than an equivalent sequence of indi-
vidual forecasts (Buizza, 2008; Zsoter et al., 2009). Inconsistent (or jumpy) forecasts are difficult to handle
and can cause users to lose confidence in the forecasting system (Hewson, 2020; Pappenberger et al., 2011).
However, this aspect of ensemble forecasts has received little attention in the literature.

The inconsistency between successive ensemble‐mean (EM) forecasts valid for the same time was inves-
tigated by Zsoter et al. (2009). They define an inconsistency index as the difference between two fields
over a given area, divided by their average standard deviation over the area. They consider cases of large
jumps (inconsistency greater than a chosen threshold) and focus on sequences of jumps of opposite sign
(flip‐flops). Using this methodology, they showed that EM forecasts are more consistent than the corre-
sponding ensemble control forecasts. Zsoter et al. (2009) conclude by noting that to further investigate
the benefit of ensemble forecasts compared to single forecast, an index for probabilistic forecasts will need
to be developed. Forecast consistency has also been considered in the context of model output statistics
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(Ruth et al., 2009), comparing automated with manual forecasts (Griffiths et al., 2019), comparing deter-
ministic rainfall forecasts from different models (Ehret, 2010) and in forecasts of river flow (Pappenberger
et al., 2011).

None of the above methods are directly applicable to assess the consistency of a sequence of ensemble fore-
casts taking account of the full ensemble distribution. In this work, for the first time, we investigate the con-
sistency of the European Centre for Medium‐Range Forecasts (ECMWF) ensemble (ENS) using ameasure of
forecast divergence that accounts for all aspects of the ensemble empirical distribution.

We focus on two key characteristics of the large‐scale flow over the European‐Atlantic region: the North
Atlantic Oscillation (NAO) and Scandinavian Blocking (BLO). Predicting transitions between such large‐
scale weather regimes 2 weeks or more ahead is a significant scientific challenge and at the frontier of
NWP (ECMWF, 2015). These transitions are associated with large‐scale changes in temperature and winds
over Europe (Ferranti et al., 2018; Yiou &Nogaj, 2004) and hence have significant societal impacts, for exam-
ple, on health (Charlton‐Perez et al., 2019) and on energy production (Grams et al., 2017). We consider the
full 15‐day forecast range of the operational ENS.

The data and indices used are introduced in section 2. Methods, including the definition of the forecast diver-
gence, are described in section 3. We then evaluate the inconsistency of the ENS forecasts for NAO and BLO
and compare the jumpiness of the ENS with that of the EM and control forecasts in section 4. We present
concluding remarks and avenues for future work in section 5.

2. Data

We study the time evolution of the NAO and BLO patterns that are associated with high‐impact temperature
anomalies over Europe (Ferranti et al., 2018). Following the approach of Ferranti et al. (2018), we use a two‐
dimensional phase space based on the two leading Empirical Orthogonal Functions (EOFs) of mid‐tropo-
spheric flow computed over the Euro‐Atlantic region. The EOFs are computed using daily geopotential
height at 500 hPa computed for the Euro‐Atlantic region (30°N to 88.5°N, 80°W to 40°E) from 29 years of
extended winter periods (October to March) of ECMWF ERA‐Interim data (Berrisford et al., 2011; Dee
et al., 2011). For the EOF computation, a 5‐day running mean was used, and the mean seasonal cycle was
removed. The first EOF represents the positive phase of the NAO (NAO+): a negative anomaly over
Iceland and positive anomaly to the south (Cassou, 2008). The second EOF has a positive anomaly (high
pressure) over Scandinavia, and a low to the east over the Atlantic, representing the flow pattern associated
with blocking events over northern Europe (Ferranti et al., 2015). We refer to Ferranti et al. (2018) for
further details.

We study the consistency of the operational ECMWF ensemble forecasts (ENS; Ben Bouallègue et al., 2019;
Buizza & Richardson, 2017) of the large‐scale flow over the North Atlantic Europe region for DJF 2016–2019,
that is, 1 December 2015 to 28 February 2019, a total of 361 cases. All forecasts verifying at 00 UTC between 1
December and 28/29 February are included in the evaluation. The ENS comprises 50 perturbed members
and one control member. The forecasts are valid for lead times of 1 to 15 days (at 24‐hr intervals). The
500 hPa fields of each ENS forecast are extracted on a 1 × 1 degree grid and projected onto the two EOFs.
The projections describe the magnitude of the NAO and BLO in each forecast, calculated relative to the cli-
matological standard deviation. Following Ferranti et al. (2018), cases with projections greater than one
standard deviation are considered large amplitude events.

3. Methods

We consider a sequence of ensemble forecasts valid for the same time tv and started from initial conditions
between 1 and L days before, f(tv, i),i= 1,… L. Each ensemble consists of Mmembers, fm(tv, i),m= 1,…M. We
consider NAO and BLO separately, so fm are univariate and real‐valued.

To measure the difference between two ensembles f and g with M and Nmembers, respectively, we use the
divergence function given by

10.1029/2020GL087934Geophysical Research Letters

RICHARDSON ET AL. 2 of 8



d f ; gð Þ ¼ 1
MN

∑
M

i¼1
∑
N

j¼1
f i − gj

��� ��� − 1
2M2 ∑

M

i¼1
∑
M

j¼1
f i − f j

��� ��� − 1
2N2 ∑

N

i¼1
∑
N

j¼1
gi − gj

��� ���:

d is the divergence function associated with the Continuous Ranked Probability Score (CRPS), which is
widely used to measure of the quality of ensemble forecasts (Gneiting & Raftery, 2007). If either M or N is
equal to one, then d reduces to the CRPS, while if both are one, d is simply the absolute distance |f − g|.
This means that d can also be used to measure the difference between two EM or control forecasts. d shares
the important property of propriety with CRPS (Gneiting & Raftery, 2007), and as shown by Thorarinsdottir
et al. (2013), these properties make d a particularly suitable choice.

The difference between two ensemble forecasts initialized on consecutive days and valid for the same time is

D tv; ið Þ ¼ d f tv; ið Þ; f tv; i − 1ð Þð Þ; i ¼ 1; …; L;

where f(tv, 0) is the set of initial perturbed ensemble members at time tv.

To measure the overall divergence (or inconsistency) between the sequence of forecasts valid for a given
time, we sum the divergence between successive pairs of forecasts. To focus on the jumpiness within the
sequence rather than a general trend across lead times (or a single large jump representing a one‐time
change in predictability), we subtract the difference between the first and last forecast of the sequence
and define the divergence index (DI) for a given case as

DI tvð Þ ¼ 1
L − 1

∑
L

l¼1
D tv; lð Þ

� �
− d f tv;Lð Þ; f tv; 0ð Þð Þ

� �
:

The DI is calculated for the ENS and also for the ensemble control forecast (CTRL) and the EM. We refer to
DI (ENS), DI (CTRL), and DI (EM), respectively. In this study, all ensemble forecasts haveM = 50 members
(control not included), and we consider forecasts up to lead time of L = 15 days.

As noted above, for a single forecast such as CTRL and EM, the divergence is equal to the absolute difference.
For these forecasts, DI is similar (though not identical) to the flip‐flop index of Griffiths et al. (2019).

4. Results

Figure 1 (upper panel) shows the DI (ENS) for NAO (solid) and BLO (dashed) for each day of the last four
winters (December–February 2015–2016 to 2018–2019; the vertical dotted lines indicate the start of each sea-
son). Positive values indicate higher inconsistency. There is similar variability in DI for both regimes (stan-
dard deviation of 0.027 for NAO and 0.028 for BLO). However, the peaks of high/low consistency occur at
different times. Winter 2018–2019 was more inconsistent than usual for blocking, while forecasts for NAO
were not unusually inconsistent in this season. Overall, there is no strong correlation between inconsistency
in forecasts of blocking and NAO (correlation = −0.1 over the full set of cases).

To illustrate the different levels of consistency associated with the high and low DI, three example cases are
shown in the lower panel (labeled A, B, and C on top panel). B (center) shows an example of a case with very
good consistency in forecasting the BLO regime. The plot shows the amplitude of blocking for 14 December
2017 predicted by forecasts initialized between 30 November and 13 December. The 15‐day ENS forecast has
a broad distribution (large spread), similar to the climate distribution. Subsequent forecasts show smaller
spread and a consistent shift of the ENS towards negative BLO.

C (right) shows a contrasting case with poor consistency in forecasting blocking. The plot shows the ampli-
tude of blocking for 14 December 2018 predicted by forecasts initialized on 30 November to 13 December.
The longest range forecasts are similar to the climate distribution; there is a trend over the following days
showing an increasing probability for blocking. However, there is then an abrupt change in the forecast to
a strong signal for neutral conditions, followed by an equally abrupt change back to blocking. This is the
most inconsistent BLO case of this whole period.

A (left) is a case of large inconsistency for the NAO. This occurs at the end of an extended period of strong
NAO− (and associated cold weather over NW Europe). The forecasting challenge in this case is to identify
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when this cold event will end. The longest range forecasts show large uncertainty but with probability of
around 50% for a return to near‐normal conditions (NAO magnitude <1). The forecasts from 11 January
onwards show much higher probability for the end of the NAO− event, with the exception of the forecast
from 13 January which again gives a higher probability for the cold spell to continue beyond 21 January.

These cases of large inconsistency illustrate the challenge for users—in both, there is an apparent increase in
certainty for a change in weather type (regime). But this is thrown into doubt by a large change in a subse-
quent forecast. The following jump back is also difficult for the user to manage—can it be trusted, or will the
following forecast jump again?While such cases are uncommon in the ENS (Figure 1, top), they nevertheless
can cause a loss of confidence in the forecasts and merit further investigation.

The consistency of ENS is compared with that of the control forecast and of the EM in Figure 2 for NAO
(results for BLO are similar). Overall, DI is much larger for the EM (mean DI 0.14) and especially CTRL
(0.42) than for ENS (0.01), reflecting how the full ENS distribution does mitigate the jumpiness seen in
the deterministic forecasts. The cases with large DI (ENS) also tend to have large DI (EM), and vice versa.
The examples of inconsistent ENS forecasts in Figure 1 are typical—there is a substantial shift of the whole
ENS distribution, which is reflected in both DI (EM) and DI (ENS). For more consistent cases, the correla-
tion is less strong. When the whole ENS distribution is very consistent, the EM must also be consistent.
However, when the EM is consistent, there may still be variation in the ENS distribution as a whole
(for example, changes in spread) that can lead to larger DI (ENS).

There is much less correlation betweenDI (ENS) andDI (CTRL). Themost inconsistent cases for ENS tend to
be associated with a substantial shift in the whole ENS distribution, and the control also shows large incon-
sistency as expected. However, there are also cases with large DI (CTRL) but small DI (ENS)—large jumps in
CTRL are not reflected in the ENS as awhole, as seen in the examples. This is an important result that demon-
strates that jumpiness in the ENS is not simply a consequence of a corresponding jumpiness in the CTRL.

Figure 3 shows the distribution of magnitude of the individual jumps (|D(tv, i)|, absolute value of difference
between forecasts started 1 day apart) at each lead time for both ENS and CTRL. The two inconsistent cases

(a) (b) (c)

Figure 1. Consistency in ENS forecasts of the NAO and BLO regimes. Upper panel: time series of overall consistency DI
(ENS) of 1–15 day forecasts verifying during winters (December–February) 2015–2019. Positive values indicate lower
consistency. Lower panels show examples of both consistent and inconsistent cases for each regime. Each example shows
the distribution of ENS forecasts verifying for a given date with lead time of 1 to 15 days; box and whiskers show min,
max, and 25, 50, and 75 percentiles of the ENS distribution (50 perturbed members); red line shows the ENS control.
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A and C from Figure 1 are highlighted. As well as having large overall DI (ENS), both cases have some of the
largest individual ENS jumps between consecutive forecasts at any lead time. As for DI, the magnitude of the
individual jumps is much larger for CTRL than for ENS.

Figure 2. Comparison of consistency of ENS, CTRL, and EM for NAO. Each panel shows a scatter plot of DI (ENS) on
the x‐axis against (a) DI (EM) and (b) DI (CTRL); 361 cases verifying during winters (December–February) 2015–2019.

Figure 3. Distribution of jumps (|D(tv, i)|) at each forecast lead time (i days) for CTRL (top) and ENS (bottom) for the
NAO (left) and BLO (right) regimes. Box and whiskers show 25, 50, and 75 percentiles of the ENS distribution, with
outliers shown by open circles; thick blue lines show the mean value. The values for the sequence of forecasts verifying
on 22 January 2016 for NAO (cyan) and 14 December 2018 (magenta) correspond to the two examples of inconsistent
forecasts shown in Figure 1.
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Figure 3 highlights another important difference between the jumpiness of the ENS and CTRL. For CTRL,
|D(tv, i)| increases with lead time, with the mean jump approaching 1 by day 15. However, for ENS, the
largest mean value and most extreme jumps tend to occur at around 7–9 days lead. At longer lead times,
as memory of the initial conditions is lost, the limit of predictability is reached and each forecast behaves
like a random draw from the climate distribution. This means that at long lead, the difference between
two control forecasts will be on average the same as the difference between two randomly selected states
from the climate (see Text S1 in the supporting information for details). In contrast, at this range, two ENS
forecasts will represent two statistically indistinguishable samples from the same climate distribution. Any
difference between them will only be due to sampling, and for a sufficiently large ensemble, D(tv, i) will
be small.

We have seen that DI can identify cases of high inconsistency in the ENS. A more detailed investigation
of such cases is merited to understand what aspects of the ensemble forecast configuration lead to such
behavior. The high‐DI cases, A and C (Figure 1) both occur in situations of transitions between large‐
scale regimes. A compact way to visualize these transitions is in a phase‐space plot which can be used
to examine how the magnitude of both BLO and NAO evolve through the forecast for each ensemble
member (Ferranti et al., 2018). Following this approach for high‐DI cases also brings some new insight
into the jumpiness itself.

To illustrate this, we consider the BLO case of 14 December 2018 (C in Figure 1) and examine the
phase‐space trajectories of the relevant forecasts. We compare the forecasts started on 5 and 9
December (which both predict a positive BLO pattern) with the contrasting forecast from 7 December
which has largest probability for a negative BLO to occur (Figure 4a). Figure 4b (and Figure S1) shows
the phase‐space evolution of the forecasts from 5, 7, and 9 December 2018. The forecast from 9
December follows the observed trajectory with only a few members moving too quickly away from
the block. The forecast from 7 December also follows the observed trajectory for the first 4–5 days of
the forecast, but then most members fail to maintain the blocking and evolve too quickly towards
the more mobile NAO+ pattern, leading to the poor 7‐day forecast for BLO (Figure 4a, cyan). The fore-
cast from 5 December does not follow the observed trajectory so well from 9 December onwards: most
ENS members move too quickly into a strong blocking and NAO−. Although this forecast gives a strong
indication of blocking for 14 December (day 9 forecast, Figure 4a, blue), the evolution leading to this is
clearly inconsistent with the observed development. While Figure 4a suggests that the forecast from 7
December has lost the signal that was present in earlier forecasts, the analysis of the phase‐space trajec-
tories shows that the situation was more complex. In fact, the forecast from 7 December better captured

Figure 4. Phase‐space trajectories of ENS forecasts initialized on 5, 7, and 9 December 2018. (a) Amplitude of blocking
for 14 December 2018 predicted by forecasts from different initial times up to 15 days ahead with forecasts from 5, 7,
and 9 December highlighted; box and whiskers show min, max, and 25, 50, and 75 percentiles of the ENS distribution,
with outliers shown by open circles; red line shows the ENS control. (b) Phase‐space trajectories of ENS forecasts
initialized on 5, 7, and 9 December 2018 (blue, cyan, and magenta, respectively) and verifying analysis trajectory (black).
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the observed evolution up to 11 December, with significantly smaller ENS spread. Neither the 5
December nor the 7 December forecast captured the observed trajectory after this time. It was only
the later forecasts, from 9 December onwards that correctly predicted the observed evolution.

This shows us that care is needed in the interpretation of the ensemble jumpiness. An apparent clear flip‐
flop in a single index may hide a more complex predictability issue. When investigating the cause of a case
of high DI, it is important to frame the analysis in the right context, as shown by Figure 4. From a diagnos-
tic point of view, Figure 4a raises the question: why do the forecasts from 7 December lose the signal that
was present in the earlier forecast from 5 December? In contrast, looking at the wider context of Figure 4b
raises the question: what mechanism caused the two successive changes in predictability, first to avoid the
too strong NAO−/BLO (5 December forecast) and second to maintain the block and not move too quickly
to NAO+ (7 December forecast). Error tracking (Grams et al., 2018; Magnusson, 2017) shows that both
these errors can be traced back to the initial mishandling of developing trough‐ridge patterns over eastern
North America (Figures S2 and S3).

5. Conclusions

Predicting transitions between large‐scale weather regimes 2 weeks ahead is a significant forecasting chal-
lenge. Occasionally, successive ensemble forecasts can give contradictory indications about the probability
for a change in weather type. Such jumpiness or “flip‐flopping” is difficult for users to manage since the fore-
cast does not give a consistent message for decision making. While such cases are uncommon (Figure 1),
they nevertheless can cause a loss of confidence in the forecasts and merit further investigation.

For the first time, we have carried out a systematic, objective evaluation of the consistency of ECMWF
ensemble forecasts that takes account of the full ensemble distribution. This extends the earlier work of
Zsoter et al., 2009 who focused specifically on flip‐flops of the EM.

We investigated the ENS consistency for two key flow patterns for Europe, NAO and blocking. We used a
measure of the divergence between two ensembles started at different times but valid for the same time.
This allowed us to quantify both individual jumps and the overall consistency of a sequence of ENS forecasts
valid for a given time. Our main conclusions are the following:

• In general, the peaks of high and low consistency occur at different times for NAO and BLO; there is no
strong correlation between inconsistency for NAO and BLO (Figure 1).

• DI for the ENS is on average much lower than for EM and especially for CTRL (Figure 2) demonstrating
benefit of the ensemble in mitigating the jumpiness of the deterministic forecasts by representing the
range of possible scenarios.

• The largest individual jumps for ENS tend to be days 7–9, while for the CTRL the magnitude of individual
jumps continues to increase throughout the forecast (Figure 3). This is associated with the different
asymptotic behavior of the (deterministic) CTRL forecast and the ENS at long forecast lead.

• Care is needed in the interpretation of the ensemble jumpiness. What looks at first sight to be a clear case
of flip‐flopping in a single index (BLO or NAO) may be a more complex predictability issue. This may be
better understood by examining the phase‐space evolution of both components together (Figure 4).

In this work, we assessed the consistency of the univariate forecast of NAO and BLO separately. However,
we also showed how it is important to consider the ensemble trajectories in the two‐dimensional phase to
properly understand the reason for apparent jumpiness. It will therefore be valuable to extend the diver-
gence and DImethodology to the multivariate situation so that the consistency of NAO and BLO can be eval-
uated together. This will also enable investigation of the consistency of other aspects of ensemble
performance such as for tropical cyclone tracks.

The DI allows us to identify important cases of high ensemble forecast inconsistency and to routinely moni-
tor the occurrence of such cases. Careful diagnosis of these cases will help to identify the causes of the incon-
sistency and hence to address the relevant aspects of ensemble configuration and modeling. Reducing the
occurrence of inconsistent (or jumpy) ensemble forecasts will increase user confidence and improve
decision making.
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