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Abstract

We propose a significance test to determine if data on a regular d–dimensional

grid can be assumed to be a realization of Gaussian process. By accounting for

the spatial dependence of the observations, we derive statistics analogous to sample

skewness and kurtosis. We show that the sum of squares of these two statistics

converges to a chi-square distribution with two degrees of freedom. This leads to

a readily applicable test. We examine two variants of the test, which are specified

by two ways the spatial dependence is estimated. We provide a careful theoreti-

cal analysis, which justifies the validity of the test for a broad class of stationary

random fields. A simulation study compares several implementations. While some

implementations perform slightly better than others, all of them exhibit very good

size control and high power, even in relatively small samples. An application to a

comprehensive data set of sea surface temperatures further illustrates the usefulness

of the test.

Keywords: Gaussian process, Lattice data, Significance test, Spatial statistics.
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1 Introduction

Nearly all modern spatial statistics applications involve Gaussian processes. While for

most large sample results it is not necessary to assume Gaussianity, it is often assumed to

improve finite-sample inference and effectively apply Bayesian methods. The same goes

for nearly all applications involving conditional and simultaneous autoregressive models

in discrete space, see the monographs of Cressie (1993), Stein (1999), Schabenberger &

Gotway (2005), Cressie & Wikle (2011) and Banerjee et al. (2014). A survey of Gaussian

modeling in spatial statistics is given by Gelfand & Schliep (2016), part III of Gelfand

et al. (2010) specifically focuses on methods for discrete spatial data which rely on the

Gaussian assumption, and then those that do not. Recent research has focused on apply-

ing spatial statistics methods based on the assumption of Gaussianity to large data sets

and advancing computational approaches, including parallel and distributed computing,

see e.g. Nychka et al. (2015), Paciorek et al. (2015), Katzfuss (2017) and Guhaniyogi

& Banerjee (2018). Methodology and theory for spatial Gaussian models continue to be

developed, the references are very numerous. We note the recent work of Stroud et al.

(2017), which is concerned with missing values, and of Chang et al. (2019) who study

signal identification within the model involving a Gaussian field on a grid.

Despite the prevalence of the assumption of Gaussianity, there appears to exist no

significance tests that could be used to assess if it is reasonable to assume that a given

spatial data set can be treated as a realization of a Gaussian random field. This is

a difficult problem because normality tests, and even exploratory tools like QQ-plots

or histograms, require a random sample (iid observations) from a distribution whose

Gaussianity is to be determined. For a general spatial data set, testing the joint normality

of all finite-dimensional distributions is practically impossible. We will show that it is

possible for data defined on a grid under the assumption of stationarity. When the original

data do not appear stationary, it is a common practice to attempt to transform them to

stationarity. For example, one can use the deformation approach pioneered by Sampson

& Guttorp (1992) and subsequently developed by Schmidt & O’Hogan (2003), Anderes

& Stein (2008) and Fouedjio et al. (2015), among others. A more common approach is

to consider regression models, e.g. Chapter 6 of Schabenberger & Gotway (2005), whose

errors are stationary, and are often assumed jointly normal. These procedures should also

be validated by suitable normality tests.

We illustrate an application of our methodology by considering a classical data set

of wheat yields studied in some detail in Section 4.5 of Cressie (1993), and many earlier

papers cited there. The data are shown in Figure 1. It is argued in Cressie (1993) that no

transformation of these data is needed to ensure stationarity. The question we want to

answer is if these data can be considered to be a realization of a Gaussian process, i.e. if

these values can be assumed to be a realization of a random field Xi,j, i, j ∈ Z, whose all

finite-dimesional distributions are multivariate normal. This question is difficult to answer
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Figure 1: Mercer and Hall wheat-yield data

because the pronounced spatial dependence of these data can “force” more large or small

values in a finite region than univariate normality might suggest. More fundamentally,

since these data are not a random sample, usual exploratory plots or tests cannot be relied

on. Our significance test shows that these data can be assumed to be a realization of a

Gaussian process. Depending on the implementation, the P–values are between 16% and

52%, details are shown in Section I of the online supplement. Our simulations shows that

most implementations have sufficient power to detect a departure from normality that

matters, even for the relatively small sample size (20×25 grid) of the data in Figure 1.

We hope that the test we propose will turn out to be a useful diagnostic tool, which

may lend confidence in the application of various methodologies based on the normality

assumption, or provide a caution on the validity of conclusions. An appealing feature of

our test is that the test statistics can be computed fairly easily using existing R or MATLAB

software, and the critical values are those of a chi-square distribution. The test has good

empirical size and power, and can be justified asymptotically using recent advances in the

asymptotic theory for random fields and new arguments related to the quantification of

spatial dependence.

The assumption of normality has underlain much of the development of statistics,

well beyond spatial statistics, and many tests have been proposed. Perhaps the best
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known is the Shapiro & Wilk (1965) test, which has been extended and improved in

many directions, Royston (1982, 1983, 1992). Tests based on the empirical distribution

function have also been extensively used, Anderson & Darling (1954), Stephens (1974),

Scholz & Stephens (1997). Great many other approaches have been proposed, Mardia

(1970, 1974), D’Agostino et al. (1990), Henze & Zirkler (1990), Doornik & Hansen (2008),

among many others. However, perhaps the most commonly used test is the Jarque and

Bera (1980, 1987) test. It checks if the first four moments of a distribution agree with

the those of a normal distribution. This is a general direction we take. Our test will not

detect very subtle departures from normality, which manifest themselves in discrepancy in

moments beyond the first four, but it will detect most commonly encountered deviations

from normality.

The paper is organized as follows. In Section 2 we develop the test. Its finite sample

performance is evaluated in Section 3 by means of a simulation study and an application

to a climate data set. There are many possible implementations of our general paradigm,

which must be evaluated and compared. The proofs of the mathematical results of Sec-

tion 2, needed to derive and justify the test, are presented in Section II of an online

supplement, which also contains additional details of the test procedure and additional

tables, which support our conclusions and recommendations.

2 Testing procedure and its large sample justification

We derive and formulate the testing procedure in Section 2.1, where we also specify the

most important assumptions for its validity. A fundamental ingredient of our approach

is the quantification and estimation of spatial dependence, this is treated in Section 2.2.

Asymptotic theory underlying both Sections 2.1 and 2.2 is developed in Section 2.3.

2.1 Assumptions and test derivation

Let Zd denote the set of d–dimensional vectors with integer coordinates. We assume that

the observations Xi follow the model

Xi = µ+ ei, i ∈ Zd,

where {ei} is a strictly stationary, zero mean spatial process. The mean µ is unknown.

We want to test

H0: the Xi are jointly normal,

against the alternative that H0 does not hold. The test is based on observations Xi,

i ∈ Γn ⊂ Zd. The domain Γn is indexed by positive integers n, which are not sam-

ple sizes, but sample indexes in increasing domain asymptotics. The sample size is de-

noted by nΓ, the cardinality of the set Γn, nΓ = |Γn|. If d = 2, and Γn = ΓN,M :=
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{(i, j), 1 ≤ i ≤ N, 1 ≤ j ≤M}, then nΓ = NM . Let ∂Γn denote the boundary of Γn and

|∂Γn| its cardinality. We assume that, as n→∞,

|∂Γn|
nΓ

→ 0. (2.1)

Condition (2.1) states that asymptotically there should be many more points in the inte-

rior of the domain than at its boundary. If d = 2, and Γn = ΓN,M , defined above, then

(2.1) holds if and only of min(N,M)→∞.

We assume that under the null hypothesis {ei} is a Gaussian spatial linear process,

i.e. it satisfies the following assumption.

Assumption 2.1 The ei are spatial moving averages,

ei =
∑
s∈Zd

asεi−s, i ∈ Zd, (2.2)

with independent, standard normal innovations εi, and the coefficients as satisfying∑
s∈Zd

|as| <∞. (2.3)

Assumption 2.1 implies that the field {Xi} is strictly stationary and Gaussian, with spatial

dependence quantified by conditions (2.2) and (2.3). Linearity in (2.2) is needed to ensure

normality of the observations. The summability condition in (2.3) cannot be relaxed

because the required CLT would not hold with standard rate, see Lahiri & Robinson

(2016). Under Assumption 2.1, the random variables

zi =
Xi − µ
σ

, with σ2 =
∑
s∈Zd

a2
s, (2.4)

are standard normal (but, in general, not independent). The zi must be approximated by

random variables that can be computed from the sample. For this purpose, define

S2
n =

1

nΓ

∑
i∈Γn

(Xi − X̄n)2, X̄n =
1

nΓ

∑
i∈Γn

Xi.

Our tests statistics are based on the standardized observations

xi = xi,n =
Xi − X̄n

Sn

, i ∈ Γn, (2.5)

which are sample counterparts of the standard normal zi defined above. Using the xi, we

define the sample skewness and kurtosis by

Sn =
1

n
1/2
Γ

∑
i∈Γn

x3
i and Kn =

1

n
1/2
Γ

∑
i∈Γn

(x4
i − 3). (2.6)
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As we will see in Section 2.3, the asymptotic variances of Sn and Kn are, respectively,

φ2
S =

∑
i∈Zd

E
[
(z3

0 − 3z0)(z3
i − 3zi)

]
(2.7)

and

φ2
K =

∑
i∈Zd

E
[
(z4

0 − 6z2
0 + 3)(z4

i − 6z2
i + 3)

]
. (2.8)

In particular,

φ2
K 6=

∑
i∈Zd

E
[
(z4

0 − 3)(z4
i − 3)

]
.

This motivates the introduction of modified sample skewness and kurtosis defined by

S?
n =

1

n
1/2
Γ

∑
i∈Γn

(x3
i − 3xi) and K?

n =
1

n
1/2
Γ

∑
i∈Γn

(x4
i − 6x2

i + 3).

Observe that S?
n = Sn because

∑
i∈Γn

xi = 0. The statistics S?
n and K?

n also have asymp-

totic variances, respectively, φ2
S and φ2

K, and are better matched to them in finite samples

because φ2
S and φ2

K are direct counterparts of spatial long-run variances of the sequences

{x3
i − 3xi} and {x4

i − 6x2
i + 3}.

Denoting by φ̂S and φ̂K consistent estimators of φS and φK, the test statistic is defined

as

J?
n =
S?2
n

φ̂2
S

+
K?2

n

φ̂2
K
.

It is the sum of squares of normalized skewness and kurtosis. As will be stated in Sec-

tion 2.3, J?
n is asymptotically chi-square with two degrees of freedom. The test thus

is:

Reject H0 at significance level α if J?
n > χ2

2(1−α), where χ2
2(1−α) is the (1−α)th quantile

of the chi-square distribution with two degrees of freedom.

Suitable estimators φ̂2
S and φ̂2

K are derived in Section 2.2, see formulas (2.12) and

(2.13).

The key to understanding the need for the modified kurtosis is the fact that

φ2
K 6=

∑
i∈Zd

E
[
(z4

0 − 3)(z4
i − 3)

]
.

Formula (2.8) must be used instead. Next notice that φ2
K given by (2.8) is the long-run

variance of the unobservable field {z4
i − 6z2

i + 3}. We replace the zi by the observable xi,

which approximate them with an asymptotically negligible effect. In particular, Var[K?
n] =

φ2
K, so K?2

n divided by an estimator of the variance of K?
n is a Wald statistic, which is

asymptotically χ2
1. (The population kurtosis is zero under the null hypothesis.) The same

argument applies the skewness. We show that these two components are asymptotically

independent, so their sum is asymptotically χ2
2.
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2.2 Estimation of the spatial long run variances

It is useful to consider a more general setting. Suppose
{
yi, i ∈ Zd

}
is a zero mean

strictly stationary scalar random field such that Ey2
0 <∞, whose covariances are γ(j) =

E[y0yj], j ∈ Zd. The objective is to estimate the long–run, or asymptotic, variance defined

by

σ2 =
∑
j∈Zd

γ(j) =
∑
j∈Zd

E[y0yj]. (2.9)

We assume throughout that ∑
j∈Zd

|γ(j)| <∞, (2.10)

so that σ2 can be defined. We observe yj ∈ Γn, which is a rectangle whose all dimensions

are increasing, as specified in the following assumption.

Assumption 2.2 The spatial domain Γn is given by

Γn = {1, 2, . . . , n1} × {1, 2, . . . , n2} × . . .× {1, 2, . . . , nd]

and n? := min1≤i≤d ni →∞.

The sample covariances are defined by

γ̂(j) = |Γn(j)|−1
∑

i∈Γn(j)

yiyi+j, where Γn(j) = {i ∈ Γn : i+ j ∈ Γn} .

To provide explicit formulas, in the following we use the notation j = (j1, . . . , jd). In this

setting, σ2 is estimated by the kernel estimator

σ̂2
n =

d∑
`=1

∑
|j`|≤n`

{
d∏

`=1

K

(
j`
h`

)}
γ̂(j1, . . . , jd), (2.11)

where K is a univariate kernel satisfying the following commonly used assumption.

Assumption 2.3 The kernel K is a continuous function on the interval [−1, 1] satisfying

K(0) = 1. The bandwidths h` satisfy h? := max1≤`≤d h` →∞, as n→∞.

In our context, we use estimator (2.11) computed from yi = x3
i − 3xi and yi = x4

i −
6xi + 3. These yi do not form a strictly stationary random field. Due to the random

normalization in (2.5), they form a structure which could be called a spatial triangular

array. However, the zi defined by (2.4) do form a strictly stationary random field, so it

must be shown that replacing the xi by the zi introduces an asymptotically negligible
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effect into the estimation of φ2
S and φ2

K. This will be established in the proof of Theorem

2.2. We first introduce the required notation. Set

ySi = x3
i − 3xi, yKi = x4

i − 6xi + 3

and

ȳS =
1

nΓ

∑
i∈Γn

ySi , ȳK =
1

nΓ

∑
i∈Γn

yKi .

Next, we define the sample covariances

γ̂S(j) = |Γn(j)|−1
∑

i∈Γn(j)

(
ySi − ȳS

) (
ySi+j − ȳS

)
,

γ̂K(j) = |Γn(j)|−1
∑

i∈Γn(j)

(
yKi − ȳK

) (
yKi+j − ȳK

)
.

Using notation

∑
j∈J(h)

wh(j)g(j) =
d∑

`=1

∑
|j`|≤n`

{
d∏

`=1

K

(
j`
h`

)}
g(j1, . . . , jd),

which applies to any function g on Zd, we define the kernel estimators

φ̂2
S,kern =

∑
j∈J(h)

wh(j)γ̂S(j), φ̂2
K,kern =

∑
j∈J(h)

wh(j)γ̂K(j). (2.12)

The idea behind the kernel estimators is as follows. Focus on φ̂2
K,kern and consult

formula (2.8). We replace the model autocovariances E
[
(z4

0 − 6z2
0 + 3)(z4

j − 6z2
j + 3)

]
by

the sample autocovariances γ̂K(j). The latter are variable if the set Γn(j) is small, i.e.

if j is “spatially large”. For this reason, we put smaller weights on them. This idea has

been commonly used in time series analysis.

Another class of estimators can be derived as follows. Set ρi = E[z0zi]. Tedious

calculations, using the values of the moments of the standard normal distributions, show

that

φ2
S = 6

∑
i∈Zd

ρ3
i and φ2

K = 24
∑
i∈Zd

ρ4
i .

We estimate the ρi by the sample covariances of the xi, i.e. by (recall that x̄ = 0)

γ̂x(j) = |Γn(j)|−1
∑

i∈Γn(j)

xixi+j

and define the power estimators

φ̂2
S,pow = 6

∑
j∈J(h)

wh(j)γ̂3
x(j), φ̂2

K,pow = 24
∑

j∈J(h)

wh(j)γ̂4
x(j), (2.13)
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i.e.

φ̂2
S,pow = 6

d∑
`=1

∑
|j`|≤h`

{
d∏

`=1

K

(
j`
n`

)}
γ̂3
x(j1, . . . , jd),

φ̂2
K,pow = 24

d∑
`=1

∑
|j`|≤h`

{
d∏

`=1

K

(
j`
n`

)}
γ̂4
x(j1, . . . , jd).

The consistency of the above spatial long–run variance estimators is established in

Section 2.3. More explicit formulas for the commonly encountered case of a 2D rectangular

domain are given in Section III of the Supplement.

2.3 Asymptotic theory

This section contains asymptotic results, which justify the application of the test for a

large class of stationary fields. All proofs are given in Section II of the supplement. The

first result establishes the asymptotic distribution of the sample skewness Sn and kurtosis

Kn, and their modified versions S?
n and K?

n. Very little must be assumed about the shape

of the spatial domain Γn.

Theorem 2.1 Suppose condition (2.1) and Assumption 2.1 hold. Then the series (2.7)

and (2.8) defining, respectively, φ2
S and φ2

K are absolutely convergent, and the vectors

[Sn,Kn]> and [S?
n,K?

n]> both converge to the bivariate normal distribution with mean zero

and covariance matrix [
φ2
S 0

0 φ2
K

]
.

Based on Theorem 2.1, we consider the test statistics

Ĵn =
S2
n

φ̂2
S

+
K2

n

φ̂2
K

and J?
n =
S?2
n

φ̂2
S

+
K?2

n

φ̂2
K
.

The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.1 Suppose condition (2.1) and Assumption 2.1 hold, and

φ̂2
S

P→ φ2
S and φ̂2

K
P→ φ2

K. (2.14)

Then Ĵn
D→ χ2

2 and J?
n

D→ χ2
2, where χ2

2 is a chi-square random variable with two degrees

of freedom.

We now turn to the consistency of the estimators given by (2.12) and (2.13). For

these results more restrictive assumptions on the spatial domain are required. Recall that

n? := min1≤i≤d ni and h? = max1≤`≤d h`.
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Theorem 2.2 Suppose (2.1), Assumptions 2.1–2.3 hold, and h? = o(n?1/2). Then rela-

tions (2.14) hold for the estimators φ̂2
S,kern and φ̂2

K,kern given by (2.12) and the estimators

φ̂2
S,pow and φ̂2

K,pow given by (2.13).

Estimation of the spatial long-run variance σ2 given by (2.9) has been recently stud-

ied by Prause & Steland (2018) who established consistency assuming ϕ–mixing with a

suitable rate. If the errors εj are normal, even for d = 1, the moving average (2.2) is

ϕ–mixing if only finitely many coefficients as are not zero, see Ibragimov & Linnik (1971)

and Sidorov (2010). For this reason, we use a different, more direct, approach to prove

Theorem 2.2.

We now turn to the consistency of the test. We begin with an assumption which is

essentially Assumption 2.1, but without assuming normality.

Assumption 2.4 The ei are moving averages (2.2) with independent and identically dis-

tributed random variables εi, satisfying Eε` = 0, Eε2
` = 1, Eε8

` <∞, and the coefficients

as satisfying (2.3).

Under Assumption 2.4, we can establish limits in probability of n
−1/2
Γ S?

n and n
−1/2
Γ K?

n,

as stated in Theorem 2.3 below. Notice that under H0 these limits are zero.

Theorem 2.3 If (2.1) and Assumption 2.4 hold, then

n
−1/2
Γ S?

n
P→ Ez3

0 and n
−1/2
Γ K?

n
P→ Ez4

0 − 3,

where z0 is defined by (2.4). The limit of n
−1/2
Γ Kn is the same as the limit of n

−1/2
Γ K?

n.

Next we establish bounds on magnitudes of the estimators of the long-run variances.

Theorem 2.4 Suppose (2.1) and Assumptions 2.3 and 2.4 hold, and h? = o(n?1/2). Then

φ̂2
S,kern = OP (h?), φ̂2

K,kern = OP (h?)

and

φ̂2
S,pow = OP (1), φ̂2

K,pow = OP (1).

Using Theorems 2.3 and 2.4, we can prove the consistency of the test.

Corollary 2.2 If the conditions of Theorem 2.4 are satisfied and if Ez3
0 6= 0 and/or

Ez4
0 6= 3, then Ĵn

P→∞ and J?
n

P→∞.
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3 Finite sample performance and application to temperature

data

In Section 3.1, we explore the empirical size and power of several implementations of our

test. In Section 3.2, we check if the spatial fields of sea surface temperature anomalies

can be assumed to be Gaussian, and provide further insights into the behavior of the test.

3.1 A simulation study

In this section, we use Monte Carlo simulation to assess finite sample properties of the

test derived in Section 2.1. We focus on the case of d = 2, most commonly encountered

in applications. Explicit formulas in this case are given in Section III of the Supplement.

We consider data generating processes (DGPs) defined by three different spatial models

specified below, and by several grid sizes. We use 5,000 independent replications, and

record the count of rejections to calculate empirical size and power of the proposed test.

We generate realizations on a grid {1 ≤ i, j ≤ N} of the following spatial models:

Spatial IID: Xi,j = 2 +
√

2ξi,j.

Spatial Moving-average (MA): Xi,j = ξi,j + 0.5ξi,j−1.

Spatial Autoregressive(AR): Xi,j = 0.5Xi−1,j−1 + ξi,j.

Under H0, ξi,j ∼ i.i.d. N (0, 1). We consider two error distributions under HA: the

ξi,j are i.i.d. with either Student’s t -distribution with ν degrees of freedom or with the

skew-normal distribution. We set ν to values ranging from 5 to 20. If ν ≥ 30, the

univariate t -distribution is visually almost indistinguishable from the standard normal

distribution, and its quantiles are almost equal to the standard normal quantiles. Unlike

the t -distribution, the skew-normal distribution, treated in Azzalini (2014), has nonzero

skewness. Further details and power tables are presented in Section IV of the Supplement.

Both the kernel and power estimators, defined in Section 2.2 (and Section III of the

Supplement), need the specification of the kernel and the smoothing bandwidth. Three

kernel functions are compared.

The truncated kernel (TR): KTR (t) = I {|t| 6 1} .

The Bartlett kernel (BT): KBT (t) = (1− |t|) I {|t| 6 1} .

The flat-top kernel (FT):

KFT (t) =


1, 0 6 t < 0.5

2− |t| , 0.5 6 t < 1

0, 1 6 t.
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The bandwidth h for these kernels is selected as

hTR = b4(N/100)1/5c, hBT = b4(N/100)2/9c, hFT = b4(N/100)1/5c. (3.1)

The choice of the smoothing bandwidth has been well studied. For the truncated and

Bartlett kernels, Newey & West (1994) compared the performance of different plug-in

methods, while Andrews (1991) proposed a data-driven bandwidth selection technique.

Politis (2003) developed an adaptive bandwidth choice for the flat-top kernel. It turns

out that these choices work well for our purpose. We thus follow Newey & West (1994)

to select the bandwidth for the truncated and Bartlett kernels. Our simulations showed

that choosing the bandwidth of the flat-top kernel the same as for the truncated kernel

produces stable and satisfactory results.

Empirical size Table 1 reports the empirical sizes, the percentages of rejections under

H0. As can be seen, the empirical sizes are close to the theoretical levels, even for small

grid size, such as N = 100. Comparing the results for the kernel estimator and the power

estimator, it seems that there is no obvious pattern in the empirical sizes. The differences

arising from the application of different kernels are small and do not exhibit any clear

pattern either. We conclude that our test controls size very well, not matter which one

of the six considered implementations is used.

Empirical power Tables 2 and 3 present the empirical power of the test by 5% significance

level critical values with the spatial long run variance estimated, respectively, by the kernel

estimator and the power estimator. As expected, the power increases with the grid size N .

Comparing the results for the three DGPs, we find that the test has higher power under

the spatial IID than the two models with spatial dependence. This could be expected, as

both the MA and AR models lead to some averaging of the ξi,j, bringing the observations

Xi,j a bit closer to normality. There is no apparent difference when using different kernels

under the spatial IID, but the Bartlett kernel occasionally has marginally higher power

under the spatial MA and AR models. An important observation is that different results

are produced by using the two spatial long run variance estimators. When the power

estimator is used, the power is monotonously decreasing as the degrees of freedom ν of

the ξi,j grow. However, this pattern does not occur when the kernel estimator is employed.

To be specific for the kernel estimator, the expected power behavior is observed for ν > 8,

but not for ν 6 8. A reasonable explanation is that we use the 8th moment of the

Student’s t -distribution when estimating φ2
K. However, the k-th moment of a Student’s t

random variable is well-defined only for k < ν. For the power estimator, we only use the

4th moment of observations in the spatial models generated by the Student’s t random

variable. Comparing Tables 2 and 3, we can conclude that the power estimator has better

power properties than the kernel estimator. Additionally, the power estimator is more

broadly applicable as it requires fewer moments of the data. We note that the kernel
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estimator requires the existence of first eight moments of the distribution, but we are

still interested in the impact on power of the kernel estimator if some of the first eight

moments do not exist. Thus, we also report the power of the kernel estimator for ν = 8, 5

in Table 2. The empirical power when the skew-normal distribution is employed, has

similar behavior, except that we do not see nonmonotonic power for the kernel estimator;

both estimators produces comparable results. The test is very powerful even for small

departures of normality. Details are discussed in Section IV of the Supplement.

Broad conclusions Based on the simulations we performed, we recommend the implemen-

tation based on the power estimators (2.13) and any one of the three kernels listed in this

section, with bandwidths given by (3.1).

We conclude this section by presenting in Table 4 the empirical size of the standard

Jarque-Bera test. under independence, this standard test has correct size, as does our

test, but under spatial dependence it has overinflated size, while our test controls the size

very well. The distortion increases as the nominal size decreases, and exceeds 100% of

the nominal size at the 1 percent level.

3.2 Normality of Sea Surface Temperature anomalies

Sea Surface Temperatures (SSTs) are closely linked with EI Niño/Southern Oscillation

(ENSO) events, which are related to pattern changes in rainfall, wind speeds, ocean

circulation, and general global weather patterns. The North Carolina Institute for Cli-

mate Studies (NCICS) provides monthly mean of daily Optimum Interpolation Sea Sur-

face Temperature (OISST) analysis using Advanced Very High Resolution Radiometer

(AVHRR) prepared for Observations for Model Intercomparisons Project by National

Centers for Environmental Information (NCEI). The global SSTs are on a 1440 × 720

grid (in every 1/4 longitude degree and 1/4 latitude degree) observed daily for over 30

years, with missing pixels over land. The specific data we used was downloaded from the

website https://esgf-node.llnl.gov/search/obs4mips. In the dataset, there are 400

monthly observations in the period of September 1981 to December 2014. Figure 2 shows

a snapshot of the SST data in the month of September 1981.

Denote the SST observations by Yi,j(t), where t is a month, i is longitude, and j is

latitude. These observations are available only for coordinates i, j which correspond to

sea, not to land. For any sufficiently large region, and any month t, the observations Yi,j(t)

cannot be considered as a realization of a stationary spatial field because of spatial trends

in water temperature due to latitude, ocean currents and the shape of neighboring land.

We must therefore transform these data to consider them as a realization of a stationary

random field whose normality can be tested. A transformation that is of primary interest,

see e.g. NASA (2019), is defined as follows. Compute the long term averages

Ai,j(T ) =
1

T

T∑
t=1

Yi,j(t)
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Table 1: The empirical sizes of spatial normality test

Panel A: Spatial IID

Kernel Estimator Power Estimator

Grid Size Kernel 10% 5% 1% 10% 5% 1%

N = 100

Truncated 10.12% 4.92% 1.10% 10.52% 4.96% 1.16%
Bartlett 9.52% 4.54% 1.08% 10.52% 4.96% 1.16%
Flat-top 9.54% 4.84% 1.10% 10.52% 4.96% 1.16%

N = 500

Truncated 9.66% 5.08% 0.84% 10.48% 5.46% 1.08%
Bartlett 9.66% 5.06% 0.84% 10.48% 5.46% 1.08%
Flat-top 9.66% 5.08% 0.86% 10.48% 5.46% 1.08%

N = 1000

Truncated 9.68% 4.90% 0.96% 10.26% 5.06% 0.98%
Bartlett 9.64% 4.86% 0.96% 10.26% 5.06% 0.98%
Flat-top 9.70% 4.88% 0.98% 10.26% 5.06% 0.98%

Panel B: Spatial Moving Average

Kernel Estimator Power Estimator

Grid Size Kernel 10% 5% 1% 10% 5% 1%

N = 100
Truncated 10.72% 5.44% 1.30% 10.00% 4.68% 0.78%
Bartlett 10.68% 5.70% 1.30% 10.42% 5.04% 0.86%
Flat-top 10.36% 5.44% 1.26% 10.00% 4.68% 0.78%

N = 500
Truncated 10.16% 4.82% 1.12% 9.96% 4.76% 1.02%
Bartlett 10.58% 5.10% 1.24% 10.46% 5.06% 1.12%
Flat-top 10.14% 4.72% 1.12% 9.96% 4.76% 1.02%

N = 1000

Truncated 10.44% 5.38% 1.18% 10.00% 4.94% 1.02%
Bartlett 10.84% 5.64% 1.24% 10.18% 5.12% 1.20%
Flat-top 10.54% 5.42% 1.16% 10.00% 4.94% 1.02%

Panel C: Spatial Autoregressive

Kernel Estimator Power Estimator

Grid Size Kernel 10% 5% 1% 10% 5% 1%

N = 100
Truncated 10.70% 5.82% 1.50% 9.34% 4.74% 0.96%
Bartlett 12.32% 6.60% 1.64% 11.56% 5.74% 1.40%
Flat-top 10.46% 5.42% 1.34% 9.36% 4.74% 0.96%

N = 500
Truncated 10.12% 5.06% 0.96% 9.94% 4.82% 1.00%
Bartlett 11.58% 6.12% 1.14% 11.74% 5.82% 1.28%
Flat-top 9.96% 5.02% 0.90% 9.98% 4.84% 1.02%

N = 1000

Truncated 10.00% 4.74% 1.00% 9.70% 4.66% 1.12%
Bartlett 11.50% 5.62% 1.20% 10.90% 5.64% 1.30%
Flat-top 10.00% 4.76% 1.00% 9.70% 4.66% 1.12%
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Table 2: Empirical power of the spatial normality test - kernel estimator

Panel A: Spatial IID

Grid Size Kernel ν = 20 ν = 9 ν = 8 ν = 5

N = 25

Truncated 18.86% 43.42% 47.82% 54.08%
Bartlett 9.18% 33.22% 38.92% 48.66%
Flat-top 11.52% 36.70% 41.62% 50.00%

N = 50

Truncated 54.86% 90.14% 88.12% 76.64%
Bartlett 53.52% 90.20% 88.10% 75.94%
Flat-top 54.36% 90.22% 88.18% 76.14%

N = 100

Truncated 99.50% 98.28% 97.94% 87.10%
Bartlett 99.50% 98.24% 97.94% 86.96%
Flat-top 99.50% 98.26% 97.96% 87.06%

Panel B: Spatial Moving Average

Grid Size Kernel ν = 20 ν = 9 ν = 8 ν = 5

N = 25

Truncated 12.50% 28.80% 32.20% 45.78%
Bartlett 6.68% 20.18% 23.22% 40.50%
Flat-top 7.34% 21.54% 24.64% 40.58%

N = 50

Truncated 28.34% 82.56% 84.18% 73.96%
Bartlett 27.62% 83.32% 84.78% 74.82%
Flat-top 26.86% 81.94% 83.78% 73.58%

N = 100

Truncated 93.04% 98.14% 97.60% 86.30%
Bartlett 93.48% 98.26% 97.76% 86.82%
Flat-top 93.06% 98.10% 97.56% 86.24%

Panel C: Spatial Autoregressive

Grid Size Kernel ν = 20 ν = 9 ν = 8 ν = 5

N = 25

Truncated 11.90% 22.80% 26.44% 41.64%
Bartlett 7.44% 17.50% 20.58% 38.70%
Flat-top 6.68% 16.38% 18.94% 35.84%

N = 50

Truncated 22.66% 75.30% 79.36% 74.06%
Bartlett 24.10% 78.76% 81.70% 75.84%
Flat-top 21.26% 75.16% 79.22% 73.48%

N = 100

Truncated 84.44% 97.70% 97.20% 86.32%
Bartlett 86.60% 98.10% 97.50% 87.52%
Flat-top 84.42% 97.76% 97.18% 86.16%
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Table 3: Empirical power of the spatial normality test - power estimator

Panel A: Spatial IID

Grid Size Kernel ν = 20 ν = 9 ν = 8 ν = 5

N = 25

Truncated 36.62% 87.62% 93.22% 99.84%
Bartlett 36.64% 87.62% 93.22% 99.84%
Flat-top 36.64% 87.62% 93.22% 99.84%

N = 50

Truncated 82.44% 100.00% 100.00% 100.00%
Bartlett 82.44% 100.00% 100.00% 100.00%
Flat-top 82.44% 100.00% 100.00% 100.00%

N = 100

Truncated 100.00% 100.00% 100.00% 100.00%
Bartlett 100.00% 100.00% 100.00% 100.00%
Flat-top 100.00% 100.00% 100.00% 100.00%

Panel B: Spatial Moving Average

Grid Size Kernel ν = 20 ν = 9 ν = 8 ν = 5

N = 25

Truncated 23.60% 67.98% 76.78% 98.02%
Bartlett 24.50% 68.76% 77.54% 98.14%
Flat-top 23.60% 68.00% 76.78% 98.02%

N = 50

Truncated 56.30% 99.36% 99.86% 100.00%
Bartlett 57.02% 99.42% 99.86% 100.00%
Flat-top 56.30% 99.36% 99.86% 100.00%

N = 100

Truncated 98.14% 100.00% 100.00% 100.00%
Bartlett 98.26% 100.00% 100.00% 100.00%
Flat-top 98.14% 100.00% 100.00% 100.00%

Panel C: Spatial Autoregressive

Grid Size Kernel ν = 20 ν = 9 ν = 8 ν = 5

N = 25

Truncated 19.66% 59.84% 68.24% 96.00%
Bartlett 22.60% 63.08% 71.02% 96.56%
Flat-top 19.82% 60.16% 68.48% 96.04%

N = 50

Truncated 44.26% 97.74% 99.32% 100.00%
Bartlett 47.40% 98.10% 99.42% 100.00%
Flat-top 44.62% 97.78% 99.32% 100.00%

N = 100

Truncated 93.34% 100.00% 100.00% 100.00%
Bartlett 94.10% 100.00% 100.00% 100.00%
Flat-top 93.34% 100.00% 100.00% 100.00%
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Table 4: The empirical sizes of Jarque-Bera test

Panel A: Spatial IID

Grid Size 10% 5% 1%

N = 100 9.62% 4.88% 1.02%
N = 500 10.48% 4.70% 0.98%
N = 1000 9.80% 5.18% 0.94%

Panel B: Spatial Moving Average

Grid Size 10% 5% 1%

N = 100 12.48% 6.66% 1.60%
N = 500 11.96% 6.74% 1.76%
N = 1000 12.84% 7.08% 1.68%

Panel C: Spatial Autoregressive

Grid Size 10% 5% 1%

N = 100 15.20% 8.68% 2.36%
N = 500 14.88% 8.44% 2.30%
N = 1000 14.80% 8.10% 2.22%

where T is number of the same calendar months in the sample period. For example, if

t corresponds to July, and we have T = 33 Julys in the sample period. The monthly

anomalies are defined as

Di,j(t) = Yi,j(t)− Ai,j(T ).

They are deviations in a given year from what is typical for a given month at location

(i, j). As quantified by French et al. (2019), among others, surface temperatures exhibit

complex spatial trends in their variability. These are more pronounced over continents

(temperatures over coastal regions are less variable that those in the interior), but one can

expect a similar, though smaller, effect over bodies of water. We therefore also consider

standardized anomalies defined by

Ui,j(t) =
Yi,j(t)− Ai,j(T )

SDi,j(T )
,

where

SD2
i,j(T ) =

1

T

T∑
t=1

(Yi,j(t)− Ai,j(T ))2.

As spatial domains, we selected four squared ocean regions with different characteris-

tics. Region 1 (longitude 60◦ to 90◦, latitude -30◦ to 0◦) lies in Indian Ocean and in the

southern hemisphere. Region 2 (longitude 170◦ to 200◦, latitude -15◦ to 15◦) is located in

the Pacific Ocean and it is symmetric by the equator. Region 3 (longitude 210◦ to 240◦,
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Figure 2: SST data snapshot in September 1981 and the four selected regions.

latitude -50◦ to -20◦) is also in the Pacific Ocean but it is in the southern hemisphere,

away from the equator. The last region, Region 4 (longitude 305◦ to 335◦, latitude 10◦ to

40◦) is in the Northern Atlantic. The data over these regions are on a 120 × 120 grid, due

to the fact that they all contains an area extending 30◦ of longitude and 30◦ of latitude.

The four selected regions are highlighted in the Figure 2.

Conclusions from the application of the normality test We applied the implementations

with both the kernel and the power estimator in order to see if the differences observed

in Section 3.1 manifest themselves for the temperature data. It turns out that the kernel

and the power estimators produce consistent results in the most cases, but not in all cases.

We only reports results for the flat-top kernel as other kernels produce similar results.

The P–values for July in all years of the sample period for Di,j(t) and Ui,j(t) are

shown in Tables 5 and 6, respectively. The P–values for January, April, and October

are provided in the Supplement. The most general observation is that normality of these

spatial data cannot be assumed without further checks, so spatial statistics methods

which rely on the assumption of Gaussianity must be used with caution. It might be

best to use methods which do not assume Gaussianity. Comparing the results for the

two versions of monthly anomalies, Di,j(t) and Ui,j(t), they generally lead to the same

conclusion, but Ui,j(t) tends to produce more acceptances of normality, indicated by the

P–values greater than 5%. This effect is however not very large. By looking at the results

in different four regions, we see that Region 1, which is in the Indian Ocean and in the

southern hemisphere, is the one with the highest number of normality in the July monthly

anomalies for all years. In particular, the test on the second version of monthly anomalies,

Ui,j(t), using the power estimator for the long run variance suggests the normality in 21

out of 33 years. On the opposite side, Region 4, which is located in the Atlantic Ocean
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Table 5: P-values of the spatial normality test for Di,j(t) in July

Date
Kernel Estimator Power Estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Jul-1982 3.3% 0.0% 36.7% 0.0% 9.0% 0.0% 34.5% 0.0%
Jul-1983 47.4% 0.0% 0.0% 0.0% 46.4% 1.8% 1.6% 0.0%
Jul-1984 0.0% 0.1% 0.0% 0.0% 0.0% 1.4% 2.5% 0.0%
Jul-1985 0.0% 0.0% 0.1% 0.0% 0.4% 0.0% 0.0% 0.4%
Jul-1986 4.7% 0.0% 84.8% 0.0% 5.4% 0.2% 85.8% 0.0%
Jul-1987 27.0% 1.4% 71.4% 0.0% 45.5% 11.8% 73.5% 0.0%
Jul-1988 11.9% 0.0% 1.5% 3.6% 8.0% 0.0% 3.2% 16.0%
Jul-1989 0.5% 0.0% 0.3% 0.0% 0.3% 0.0% 8.0% 0.0%
Jul-1990 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 1.5% 0.0%
Jul-1991 0.3% 0.0% 0.0% 0.0% 6.6% 0.0% 0.0% 0.0%
Jul-1992 0.0% 50.1% 0.0% 0.0% 0.0% 57.6% 0.1% 0.0%
Jul-1993 11.5% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0%
Jul-1994 4.1% 0.0% 0.1% 0.0% 20.3% 0.0% 1.4% 0.0%
Jul-1995 0.0% 31.6% 1.9% 0.0% 0.1% 58.7% 1.8% 0.0%
Jul-1996 11.0% 0.0% 0.0% 0.0% 25.4% 0.0% 1.0% 0.1%
Jul-1997 0.8% 0.0% 74.2% 0.0% 10.2% 0.3% 52.5% 0.0%
Jul-1998 1.0% 0.0% 1.9% 15.6% 5.3% 0.0% 4.0% 33.7%
Jul-1999 0.1% 0.0% 0.0% 10.4% 3.3% 0.0% 0.0% 18.6%
Jul-2000 0.5% 0.0% 0.0% 0.0% 3.4% 0.0% 0.0% 0.0%
Jul-2001 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.1% 12.4%
Jul-2002 7.8% 0.0% 0.0% 0.0% 34.0% 0.0% 0.0% 0.0%
Jul-2003 0.0% 0.0% 57.8% 0.0% 0.0% 0.0% 49.6% 0.2%
Jul-2004 2.9% 18.5% 51.9% 0.0% 2.8% 26.5% 66.6% 0.1%
Jul-2005 1.5% 5.2% 0.0% 0.0% 0.0% 2.1% 0.1% 0.3%
Jul-2006 0.2% 23.8% 54.0% 0.0% 0.0% 40.3% 57.0% 0.0%
Jul-2007 0.0% 0.0% 8.9% 0.0% 0.0% 0.0% 0.9% 0.3%
Jul-2008 37.0% 0.0% 0.1% 0.0% 41.9% 0.0% 0.0% 0.0%
Jul-2009 34.3% 0.3% 48.9% 0.0% 45.6% 9.5% 56.8% 0.0%
Jul-2010 4.1% 9.7% 0.0% 0.0% 13.2% 21.5% 0.3% 0.0%
Jul-2011 0.0% 0.0% 0.6% 0.0% 0.3% 0.0% 13.8% 0.0%
Jul-2012 0.0% 0.0% 0.0% 0.1% 0.3% 0.0% 1.0% 2.5%
Jul-2013 0.0% 0.0% 12.1% 0.6% 0.1% 0.1% 4.0% 0.1%
Jul-2014 0.2% 0.0% 53.7% 0.8% 0.3% 0.0% 49.4% 2.0%
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Table 6: P-values of the spatial normality test for Ui,j(t) in July

Date
Kernel Estimator Power Estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Jul-1982 11.3% 0.0% 0.0% 0.0% 40.3% 0.0% 0.0% 0.0%
Jul-1983 1.3% 0.0% 0.1% 0.0% 13.1% 0.0% 0.7% 0.0%
Jul-1984 0.0% 6.8% 0.0% 0.0% 0.2% 29.3% 0.1% 0.0%
Jul-1985 0.0% 0.0% 1.2% 0.0% 0.1% 1.0% 3.2% 1.2%
Jul-1986 0.4% 0.0% 0.3% 0.0% 0.1% 0.0% 6.3% 0.0%
Jul-1987 3.9% 0.0% 77.7% 0.0% 5.9% 0.6% 83.5% 0.0%
Jul-1988 56.3% 0.0% 5.8% 0.0% 70.9% 0.1% 15.8% 0.0%
Jul-1989 19.4% 0.0% 0.0% 0.0% 40.4% 0.0% 0.1% 0.0%
Jul-1990 70.5% 0.1% 1.6% 0.1% 82.5% 0.3% 7.7% 0.4%
Jul-1991 0.0% 0.0% 0.0% 0.0% 0.3% 1.9% 0.0% 0.0%
Jul-1992 8.0% 0.1% 0.0% 0.0% 12.1% 0.1% 0.0% 0.3%
Jul-1993 38.6% 0.0% 0.0% 0.2% 63.6% 0.0% 1.7% 2.5%
Jul-1994 17.9% 0.0% 0.0% 0.0% 43.1% 0.0% 1.5% 0.0%
Jul-1995 0.3% 43.0% 5.8% 0.0% 6.6% 47.3% 9.7% 0.0%
Jul-1996 0.0% 1.4% 1.4% 0.0% 2.3% 14.4% 3.4% 0.1%
Jul-1997 0.0% 0.0% 59.1% 0.0% 0.3% 0.0% 66.8% 0.0%
Jul-1998 0.2% 0.1% 0.1% 0.0% 6.9% 4.4% 1.9% 0.0%
Jul-1999 0.7% 0.0% 0.0% 3.2% 12.0% 0.0% 0.0% 7.6%
Jul-2000 0.0% 0.0% 0.0% 0.0% 1.4% 0.0% 0.0% 0.0%
Jul-2001 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.3%
Jul-2002 1.2% 0.0% 0.0% 0.0% 16.1% 1.1% 0.0% 0.0%
Jul-2003 0.1% 0.0% 53.9% 0.0% 0.3% 0.0% 48.8% 2.6%
Jul-2004 11.0% 0.0% 0.0% 0.0% 21.1% 0.0% 0.8% 0.1%
Jul-2005 96.4% 45.2% 0.0% 0.0% 97.4% 48.6% 0.5% 0.0%
Jul-2006 3.1% 46.0% 0.0% 0.1% 2.4% 60.6% 2.5% 0.8%
Jul-2007 10.4% 0.0% 0.0% 0.0% 10.1% 0.0% 0.0% 0.1%
Jul-2008 0.4% 0.0% 13.6% 4.7% 5.4% 0.0% 0.3% 6.7%
Jul-2009 35.2% 0.4% 6.1% 0.0% 59.5% 8.8% 18.0% 0.0%
Jul-2010 0.1% 0.0% 30.9% 0.0% 4.1% 0.0% 54.4% 0.0%
Jul-2011 3.9% 0.0% 0.0% 0.0% 19.8% 0.0% 0.0% 0.0%
Jul-2012 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.6% 1.2%
Jul-2013 13.3% 0.0% 34.2% 76.3% 25.5% 0.0% 44.9% 81.3%
Jul-2014 9.1% 0.0% 0.0% 0.0% 28.2% 0.0% 1.5% 1.2%
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and in the northern hemisphere, has the lowest number of acceptances of normality of the

July monthly anomalies. Specifically, Ui,j(t) with the power estimator only suggests the

normality in 3 out of 33 years. These conclusions also hold for other months.
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Supplement

I Analysis of the Mercer and Hall wheat–yield data

We present in this section a more detailed analysis of the Mercer and Hall wheat–yield

data shown in Figure 1 of the main paper. The data were collected from wheat uniformity

trials carried out at Rothamsted Experimental Station in 1910. The yield data are on 20

× 25 grid with each slot in a size of approximately 3.30 meter (east-west) × 2.5 meter

(north-south), giving the total area of roughly one acre.

It is argued in Cressie (1993) that no transformation of these data is needed to ensure

stationarity. Our test is carried out based on the original scale of pounds (of grain). To

reveal the impact of different implementations of our test, we employ both the kernel es-

timators and the power estimators with three specification of the kernel. Table 7 presents

the test statistics J∗n and their P–values. Depending on the implementation, the P–values

are between 16% and 52%. Our significance test shows that these data can be assumed

to be a realization of a Gaussian process.

Table 7: Test Result of the Wheat-Yield Data

J∗n P-value

Kernel Estimator

Truncated 1.93 38.17%

Bartlett 3.61 16.45%

Flat-top 3.70 15.75%

Power Estimator

Truncated 1.24 53.90%

Bartlett 1.43 48.99%

Flat-top 1.31 51.84%

II Proofs of the results of Section 2

II.1 Proof of Theorem 2.1

The absolute convergence of series (2.7) and (2.8) defining, respectively, φ2
S and φ2

K follows

from Lemma II.1. This lemma holds under Assumption 2.4, which is more general than

Assumption 2.1. The remaining claims of Theorem 2.1 follow immediately from Lemmas

II.3, II.4, II.5 and part 2) of Lemma II.2. The main work is done in the proofs of Lemmas

II.3, II.4 and II.5, which show that approximating the spatial array elements xi = xi,n by

the unobservable zi has an asymptotically negligible effect.
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Lemma II.1 If Assumption 2.4 holds, then for all integers 1 ≤ p, q ≤ 8,∑
i∈Zd

|E[zp0z
q
i ]| <∞.

Proof: Without loss of generality, we can assume that zi =
∑

s asεi−s. We will display

the proof for p = 2 and q = 1, the idea is the same for any 1 ≤ p, q ≤ 8, the number of

indexes is larger and formulas more cumbersome. Observe that

E
[
z2

0zi
]

= E

(∑
t

atε−t

)2(∑
s

asεi−s

)
= E

[(∑
t

atε−t

)(∑
u

auε−u

)(∑
s

asεi−s

)]
.

Since Eεk = 0, using their independence and the fact that the ak are absolutely summable,

we see that E [z2
0zi] =

∑
s a

2
s−iasEε

3
0. It remains to notice that∑

i

|
∑
s

a2
s−ias| ≤

∑
s

|as|
∑
i

a2
s−i =

∑
s

|as|
∑
t

a2
t <∞.

Lemma II.2 1) If condition (2.1) and Assumption 2.4 hold, then the following sums are

of the order OP (n
1/2
Γ ):∑

i∈Γn

zi,
∑
i∈Γn

(z2
i − 1),

∑
i∈Γn

z3
i ,

∑
i∈Γn

(z4
i − 3).

2) If condition (2.1) and Assumption 2.1 hold, then the following convergence holds:

1

n
1/2
Γ

∑
i∈Γn

[
z3
i − 3zi

z4
i − 6z2

i + 6

]
D→ N2

([
0

0

]
,

[
φ2
S 0

0 φ2
K

])
.

Proof: Claim 1) is an immediate consequence of Proposition 2 of El Machkouri et al.

(2013). Claim 2) follows from Proposition 2 of El Machkouri et al. (2013) and the Cramér–

Wold device, see e.g. Billingsley (1968), p. 49, as we now explain.

Let λ1 and λ2 be two constants. Proposition 2 of El Machkouri et al. (2013) yields

that

1

n
1/2
Γ

∑
i∈Γn

[
λ1(z3

i − 3zi) + λ2(z4
i − 6z2

i + 3)
] D→ N(0, τ 2),

where

τ 2 =
∑
i∈Zd

E
{
E
[
λ1(z3

0 − 3z0) + λ2(z4
0 − 6z2

0 + 3)
] [
λ1(z3

i − 3zi) + λ2(z4
i − 6z2

i + 3)
]}
.

2



Using Assumption 2.1, one can check directly that for all i ∈ Zd,

E
[
(z3

0 − 3z0)(z4
i − 6z2

i + 3)
]

= 0, E
[
(z4

0 − 6z2
0 + 3)(z3

i − 3zi)
]

= 0.

Hence τ 2 = λ2
1φ

2
S + λ2

2φ
2
K, completing the verification of claim 2).

Lemma II.3 Under the assumptions of Theorem 2.1,

Sn =
1

n
1/2
Γ

∑
i∈Γn

(z3
i − 3zi) + oP (1).

Proof: Recall that Sn = n
−1/2
Γ

∑
i∈Γn

x3
i . Due to the scaling in the definition of the xi,

we can assume without loss of generality that µ = 0 and σ2 = 1. Set.

z̄ =
1

nΓ

∑
i∈Γn

zi, s2
z =

1

nΓ

∑
i∈Γn

(zi − z̄)2. (II.1)

Under the assumption µ = 0 and σ2 = 1, z̄ = x̄ and s2
z = S2. Elementary algebra gives

1

n
1/2
Γ

∑
i∈Γn

x3
i =

1

n
1/2
Γ s3

z

{∑
i∈Γn

z3
i − 3nΓz̄

}
− 3

n
1/2
Γ s3

z

z̄
∑
i∈Γn

(z2
i − 1) +

2

n
1/2
Γ s3

z

n
3/2
Γ z̄3. (II.2)

Next we verify that

s2
z

P→ 1. (II.3)

This follows from part 1) of Lemma II.2 because

s2
z =

1

nΓ

∑
i∈Γn

(zi − z̄)2 = 1 +
1

nΓ

∑
i∈Γn

(z2
i − 1)−

(
1

nΓ

∑
i∈Γn

zi

)2

. (II.4)

Using Lemma II.2 again, we thus obtain, for the last term,

1

n
1/2
Γ s3

z

n
3/2
Γ z̄3 =

1

s3
z

nΓ

(
1

nΓ

∑
i∈Γn

zi

)3

= nΓn
−3/2
Γ OP (1) = oP (1).

Similarly, for the second term,

3

n
1/2
Γ s3

z

z̄
∑
i∈Γn

(z2
i − 1) = OP (n

−1/2
Γ ) = oP (1).

For the first term, setting Dn = n
−1/2
Γ

∑
i∈Γn

(z3
i − 3zi), we get

1

n
1/2
Γ s3

z

{∑
i∈Γn

z3
i − 3nΓz̄

}
=
Dn

s3
z

= Dn +Dn

(
1

s3
z

− 1

)
.

By Lemma II.2, Dn = OP (1) , so the second term is oP (1), and the claim follows.

Lemma II.4 Under the assumptions of Theorem 2.1,

Kn =
1

n
1/2
Γ

∑
i∈Γn

(z4
i − 6z2

i + 3) + oP (1).
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Proof: It is easy to show that

s4
z − 1 =

1

n2
Γ


(∑

i∈Γn

(zi − z̄)2

)2

− n2
Γ


=

1

n2
Γ

{(∑
i∈Γn

(zi − z̄)2 − nΓ

)(∑
i∈Γn

(zi − z̄)2 + nΓ

)}
.

By (II.4), ∑
i∈Γn

(zi − z̄)2 = nΓ +
∑
i∈Γn

(z2
i − 1)−

(
n
−1/2
Γ

∑
i∈Γn

zi

)2

.

Hence

s4
z − 1 =

1

n2
Γ

∑
i∈Γn

(z2
i − 1)−

(
n
−1/2
Γ

∑
i∈Γn

zi

)2
(2nΓ +OP (n

1/2
Γ )
)

=
2

nΓ

∑
i∈Γn

(z2
i − 1) + n

−1/2
Γ

∑
i∈Γn

(z2
i − 1)OP (n−1

Γ ) +OP (n−1
Γ )

=
2

nΓ

∑
i∈Γn

(z2
i − 1) +OP (n−1

Γ ).

Thus, we get

1

n
1/2
Γ

∑
i∈Γn

(x4
i − 3) =

1

n
1/2
Γ s4

z

∑
i∈Γn

[
(zi − z̄)4 − 3s4

z

]
=

1

n
1/2
Γ s4

z

{∑
i∈Γn

z4
i − 4z̄

∑
i∈Γn

z3
i + 6z̄2

∑
i∈Γn

z2
i − 4z̄3

∑
i∈Γn

zi − 3nΓs
4
z

}

=
1

n
1/2
Γ s4

z

{∑
i∈Γn

z4
i − 3nΓ − 6

∑
i∈Γn

(z2
i − 1) +OP (1)

}

=
1

n
1/2
Γ s4

z

∑
i∈Γn

(
z4
i − 6z2

i + 3
)

+OP (n
−1/2
Γ )

=
1

n
1/2
Γ

∑
i∈Γn

(
z4
i − 6z2

i + 3
)

+OP (n
−1/2
Γ )

+

(
1

s4
z

− 1

){
1

n
1/2
Γ

∑
i∈Γn

(z4
i − 3)− 3

n
1/2
Γ

∑
i∈Γn

(z2
i − 1)

}
.

By (II.3) and part 1) of Lemma II.2, the last term is oP (1), completing the proof of

Lemma II.4.
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Lemma II.5 Under the assumptions of Theorem 2.1,

K?
n =

1

n
1/2
Γ

∑
i∈Γn

(z4
i − 6z2

i + 3) + oP (1).

Proof: Recall that

K?
n =

1

n
1/2
Γ

∑
i∈Γn

(x4
i − 6x2

i + 3), Kn =
1

n
1/2
Γ

∑
i∈Γn

(x4
i − 3).

The leading terms in Lemmas II.4 and II.5 are the same, so it is enough to verify that

n
−1/2
Γ

∑
i∈Γn

(x2
i − 1) = oP (1). Assuming again µ = 0, σ2 = 1, we must thus show

1

n
1/2
Γ s2

z

∑
i∈Γn

[
(zi − z̄)2 − s2

z

]
= oP (1).

Expanding the square and noticing that n
1/2
Γ z̄2 = OP (n

−1/2
Γ ), this reduces to showing that

1

n
1/2
Γ s2

z

∑
i∈Γn

[
z2
i − s2

z

]
= oP (1)

A direct calculation shows that
∑

i∈Γn
[z2

i − s2
z] = nz̄2 = OP (1), completing the proof.

II.2 Proofs of Theorem 2.2

The general plan of the proof is to first establish the convergence of the estimators based

on the unobservable zi given by (2.4) and then show that replacing them by the xi given

by (2.5) is asymptotically negligible. Lemmas II.6-II.8 establish results needed to prove

the consistency of the kernel estimators (2.12). In Lemmas II.6 and II.7, Γ is any finite

subset of Zd.

Lemma II.6 Under Assumption 2.1, for any k ∈ Zd, and any integers r ≥ 1 and q ≥ 1,

E

∣∣∣∣∣∑
i∈Γ

(
eri e

q
i+k − E[er0e

q
k]
)∣∣∣∣∣ ≤ C(r, q)|Γ|1/2.

Proof: We will work with the coupled random variables e∗i defined in Section 2 of El

Machkouri et al. (2013). In the setting of Assumption 2.1, these are defined by e∗i =∑
s∈Zd asε

∗
i−s, where ε∗j = εj for j 6= 0 and ε∗0 = ε′0, and where

{
ε′j
}

is and independent

copy of the field
{
ε′j
}

. This means that in the moving average (2.2), εi−s is replaced

by ε′i−s. The idea of the proof is to show that the field
{
eri e

q
i+k − E[er0e

q
k]
}

satisfies the

assumptions of Proposition 1 of El Machkouri et al. (2013) and to use this proposition.
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By the triangle inequality,∣∣eri eqi+k − e
∗r
i e
∗q
i+k

∣∣ ≤ ∣∣eri (eqi+k − e
∗q
i+k

)∣∣+
∣∣e∗qi+k (eri − e∗ri )

∣∣
≤ q|ei|r|ei+k − e∗i+k|

(
|ei+k|q−1 + |e∗i+k|q−1

)
+ r|e∗i+k|q|ei − e∗i |

(
|ei|r−1 + |e∗i |r−1

)
.

Hence, by Minkowski’s inequality, for any p ≥ 1,(
E
∣∣eri eqi+k − e

∗r
i e
∗q
i+k

∣∣p)1/p ≤ q
{
E
[
|ei|r|ei+k − e∗i+k|

(
|ei+k|q−1 + |e∗i+k|q−1

)]p}1/p

+ r
{
E
[
|e∗i+k|q|ei − e∗i |

(
|ei|r−1 + |e∗i |r−1

)]p}1/p
.

Applying the Cauchy–Schwarz inequality to each term on the right–hand side, we get(
E
∣∣eri eqi+k − e

∗r
i e
∗q
i+k

∣∣p)1/p

≤ q
{
E
[
|ei|2rp

(
|ei+k|q−1 + |e∗i+k|q−1

)2p
]}1/(2p) {

E|ei+k − e∗i+k|2p
}1/(2p)

+ r
{
E
[
|e∗i+k|2qp

(
|ei|r−1 + |e∗i |r−1

)2p
]}1/(2p) {

E|ei − e∗i |2p
}1/(2p)

.

Since the ei and the e∗i have all moments and are elements of stationary fields, we conclude

that (
E
∣∣eri eqi+k − e

∗r
i e
∗q
i+k

∣∣p)1/p ≤ C1(r, q, p)
{
E|e0 − e∗0|2p

}1/(2p)
.

We established that for all k the process eri e
q
i+k is decomposable in the sense of El Machk-

ouri et al. (2013). The claim thus follows from their Proposition 1.

The estimators based on the zi estimate the spatial long–run variances of the fields

defined by

fS(zi) = z3
i − 3zi and fK(zi) = z4

i − 6z2
i + 3.

Observe that fS and fK are polynomials such that EfS(z0) = 0 and EfK(z0) = 0. This

motivates the following lemma, which follows from Lemma II.6 by bounding all cross–

terms.

Lemma II.7 For the zi defined by (2.4) set yi = f(zi), where f is a polynomial such that

Ey0 = 0. If Assumption 2.1 holds, then

E

∣∣∣∣∣∑
i∈Γ

(yiyi+k − E[y0yk])

∣∣∣∣∣ ≤ C(f)|Γ|1/2.

The next lemma established the consistency of the estimators based on the zi.

Lemma II.8 Consider the estimator σ̂2
n defined by (2.11) and the long–run variance σ2

given by (2.9), both computed from yi = f(zi), where f is a polynomial such that Ey0 = 0.

If Assumption 2.1 holds and h? = o(n?1/2), then σ̂2
n

P→ σ2.
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Proof: We will denote by C a positive constant, which may change from line to line.

By Lemma II.7,

E

∣∣∣∣∣∣
∑

j∈J(h)

wh(j) (γ̂(j)− γ(j))

∣∣∣∣∣∣ ≤
∑

j∈J(h)

|wh(j)|E

∣∣∣∣∣∣|Γn(j)|−1
∑

i∈Γn(j)

yiyi+j − γ(j)

∣∣∣∣∣∣
=
∑

j∈J(h)

|wh(j)| 1

|Γn(j)|
E

∣∣∣∣∣∣
∑

i∈Γn(j)

[yiyi+j − γ(j)]

∣∣∣∣∣∣
≤ C

∑
j∈J(h)

|wh(j)| 1

|Γn(j)|1/2
.

For the estimator (2.11),

∑
j∈J(h)

|wh(j)| 1

|Γn(j)|1/2
≤ C

∑
|j1|≤h1

. . .
∑
|jd|≤md

1

(n1 . . . nd)1/2
≤ C

d∏
`=1

(
h`

n
1/2
`

)d

.

Recall that h? = max1≤`≤d h` and n? = min1≤`≤d n`. Thus the condition h? = o(n?1/2)

implies that for each 1 ≤ ` ≤ d, h`/n
1/2
` → 0, so we conclude that

E

∣∣∣∣∣∣σ̂2
n −

∑
j∈J(h)

wh(j)γ(j)

∣∣∣∣∣∣ = E

∣∣∣∣∣∣
∑

j∈J(h)

wh(j) (γ̂(j)− γ(j))

∣∣∣∣∣∣→ 0.

It thus remains to check that
∑

j∈J(h) wh(j)γ(j)→ σ2, which reduces to
∑

j /∈J(h) γ(j)→ 0,

which follows from (2.10), and
∑

j∈J(h)(1 − wh(j))γ(j) → 0. The last relation can be

explicitely written as

d∑
`=1

∑
|j`|≤n`

d∏
`=1

{
1−K

(
j`
n`

)}
γ(j1, . . . , jd)→ 0. (II.5)

By Assumption 2.3, at least one h` tends to infinity, and for this `, j`/h` → 0, for any j`.

Hence, for fixed j1, . . . , jd, the product in (II.5) tends to 0. Relation (II.5) thus follows

from Assumption 2.3, the summability condition (2.10), and dominated convergence.

Proof of Theorem 2.2: We will verify only the convergence φ̂2
S,kern

P→ φ2
S . The

arguments for the second convergence are very similar; there are just more remainder

terms. To lighten the notation, we will drop the S, and use the subscripts x and z to

indicate quatities computed, respectively, from the xi and the zi.
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Recall the definitions of the sample mean z̄ and variance s2
z given in (II.1), and observe

that

yx,i := x3
i − 3xi =

(
zi − z̄
sz

)3

− 3
zi − z̄
sz

(II.6)

=
1

s3
z

{
z3
i − 3z2

i z̄ + 3ziz̄
2 − z̄3

}
− 3

sz
zi +

3

sz
z̄,

which gives

m̄x =
1

nΓ

∑
i∈Γn

yx,i =
1

s3
z

1

nΓ

∑
i∈Γn

z3
i −

3

s3
z

z̄
1

nΓ

∑
i∈Γn

z2
i +

2

s3
z

z̄3.

Since yz,i := z3
i − 3zi, we obtain m̄z = n−1

Γ

∑
i∈Γn

z3
i − 3z̄.

We will work with the decomposition

(yx,i − m̄x) (yx,i+j − m̄x) = (yz,i − m̄z) (yz,i+j − m̄z) +Rn(i, j),

where

Rn(i, j) = ((yx,i − yz,i)− (m̄x − m̄z)) (yx,i+j − m̄x)

+ (yz,i − m̄z) (yx,i+j − yz,i+j − (m̄x − m̄z)) .

By Lemma II.8,∑
j∈J(h)

wh(j)|Γn(j)|−1
∑

i∈Γn(j)

(yz,i − m̄z) (yz,i+j − m̄z)
P→ σ2

z = φ2
S ,

so to complete the proof we must show that∑
j∈J(h)

wh(j)|Γn(j)|−1
∑

i∈Γn(j)

Rn(i, j)
P→ 0. (II.7)

By (II.6), all quantities in Rn(i, j) can be expressed in terms of the zi. Then repeated

applications of Lemma II.2 and convergence (II.3) establish (II.7). This completes the

proof for the kernel estimators.

Turning to the power estimators, we only display the proof of φ̂2
S,pow

P→ φ2
S . Observe

that

γ̂x(j) =
1

s2
z

1

|Γn(j)|
∑

i∈Γn(j)

(zi − z̄)(zi+j − z̄)

=
1

s2
z

1

|Γn(j)|

 ∑
i∈Γn(j)

zizi+j − z̄
∑

i∈Γn(j)

zi − z̄
∑

i∈Γn(j)

zi+j + |Γn(j)|z̄2

 .
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Proposition 1 of El Machkouri et al. (2013) implies that there is a constant C such that

E

 ∑
i∈Γn(j)

(zizi+j − E[zizi+j])


2

≤ C|Γn(j)|, (II.8)

and

E

 ∑
i∈Γn(j)

zi


2

≤ C|Γn(j)|, E

 ∑
i∈Γn(j)

zi+j


2

≤ C|Γn(j)|. (II.9)

Since |γ̂x(j)| ≤ 1 and ρj ≤ 1,
∣∣γ̂3

x(j)− ρ3
j

∣∣ ≤ 3 |γ̂x(j)− ρj| and therefore∣∣∣∣∣∣
∑

j∈J(h)

wh(j)[γ̂3
x(j)− ρ3

j ]

∣∣∣∣∣∣ ≤ 3
∑

j∈J(h)

|wh(j)| |γ̂x(j)− ρj|

≤ 3
∑

j∈J(h)

|wh(j)|

∣∣∣∣∣∣ 1

s2
z

1

|Γn(j)|
∑

i∈Γn(j)

zizi+j − ρj

∣∣∣∣∣∣
+

3

s2
z

OP

(
|Γn(j)|−3/2

) ∑
j∈J(h)

Tn,j,

with

Tn,j = |wh(j)|

∣∣∣∣∣∣
∑

i∈Γn(j)

zi

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

i∈Γn(j)

zi+j

∣∣∣∣∣∣+
1

|Γn(j)|1/2

 .
By (II.9),

E
∑

j∈J(h)

Tn,j = O

 ∑
j∈J(h)

|wh(j)|
|Γn(j)|

 = O

(
h?

n?

)
= o(1).

To use (II.8) for the first term, we must separate the effect of s2
z. Observe that

∑
j∈J(h)

|wh(j)|

∣∣∣∣∣∣ 1

s2
z

1

|Γn(j)|
∑

i∈Γn(j)

zizi+j − ρj

∣∣∣∣∣∣
≤ 1

s2
z

∑
j∈J(h)

|wh(j)| 1

|Γn(j)|

∣∣∣∣∣∣
∑

i∈Γn(j)

[zizi+j − ρj]

∣∣∣∣∣∣
+

∣∣∣∣ 1

s2
z

− 1

∣∣∣∣ ∑
j∈J(h)

|wh(j)||ρj|

and ∑
j∈J(h)

|wh(j)| 1

|Γn(j)|

∣∣∣∣∣∣
∑

i∈Γn(j)

[zizi+j − ρj]

∣∣∣∣∣∣ ≤
∑

j∈J(h)

|wh(j)| |Γn(j)|1/2

|Γn(j)|
= o

(
h?

n?1/2

)
,
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by Assumption 2.3. Thus we get by Markov’s inequality

φ̂2
S,pow = 6

∑
j∈J(h)

wh(j)ρ3
j + oP (1).

By the assumption on the weights wh(j), the dominated convergence theorem yields∑
j∈J(h) wh(j)ρ3

j →
∑

j∈Zd ρ3
j , completing the proof of the claim for the power estima-

tors.

II.3 Proofs of Theorems 2.3, 2.4 and Corollary 2.2

Proof of Theorem 2.3: We will show that n
−1/2
Γ Sn − Ez3

0 = oP (1). Verifications of

the claims for Kn and K∗n is similar, but longer because more terms are involved. They

use relations derived in the proofs of Lemma II.4 and II.5 rather than relation (II.2) in

the proof of Lemma II.3. Recall that Part 1) of Lemma II.2 holds under Asssumption 2.4

and it implies, in particular, (II.3), i.e. s2
z

P→ 1, with the same justification.

We begin by rewriting relation (II.2), as

Sn =
1

n
1/2
Γ s3

z

∑
i∈Γn

(z3
i − 3zi)−

3

n
1/2
Γ s3

z

z̄
∑
i∈Γn

(z2
i − 1) +

2

n
1/2
Γ s3

z

n
3/2
Γ z̄3.

Using the above stated bounds, we see that

1

n
1/2
Γ s3

z

z̄
∑
i∈Γn

(z2
i − 1) = OP (n

−1/2
Γ )

and
1

n
1/2
Γ s3

z

n
3/2
Γ z̄3 = OP (n

−1/2
Γ ).

Therefore,

Sn =
1

n
1/2
Γ s3

z

∑
i∈Γn

(z3
i − 3zi) +OP (n

−1/2
Γ ).

Next, observe that

Sn − n1/2
Γ Ez3

0 =
1

n
1/2
Γ s3

z

∑
i∈Γn

(z3
i − 3zi)− n1/2

Γ Ez3
0 +OP (n

−1/2
Γ )

=
1

n
1/2
Γ s3

z

∑
i∈Γn

(z3
i − 3zi − Ez3

0) + n
1/2
Γ (1− s3

z)
1

s3
z

Ez3
0 +OP (n

−1/2
Γ ).

We must show that n
−1/2
Γ (Sn − n1/2

Γ Ez3
0) = oP (1). By Theorem 1 of El Machkouri et al.

(2013), n
−1/2
Γ

∑
i∈Γn

(z3
i −3zi−Ez3

0) is asymptotically normal with mean zero. Using (II.3),

we see that

n
−1/2
Γ (Sn − n1/2

Γ Ez3
0) = OP (n

−1/2
Γ ) + oP (1) +OP (n−1

Γ ),
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completing the proof.

Proof of Theorem 2.4: To prove the claims for the kernel estimators, one must follow

the proof of Theorem 2.2. However, since the Zi might not be normally distributed, we

must replace the bound
∑

i∈Γn
z3
i = Op(n

1/2
Γ ) with

∑
i∈Γn

z3
i = Op(nΓ). Hence (II.7) will

be replaced with ∑
j∈J(h)

wh(j)|Γn(j)|−1
∑

i∈Γn(j)

Rn(i, j)oP (h?).

To establish the claim for the power estimator, we also follow the corresponding part of the

proof of Theorem 2.2. Inequalities (II.8) and (II.9) continue to hold under Assumption 2.4,

and following the remaining steps we see that φ̂2
S,pow

P→ 6
∑

i∈Zd ρ3
i , establishing the claim

for the skewness. The claims for the kurtosis can be verified in a similar manner, and so

are omitted.

Proof of Corollary 2.2: We consider first the statistics based on the kernel es-

timators, for which the argument is a bit longer. Suppose Ez3
0 6= 0 and consider the

factorization
S2
n

φ̂2
S,kern

=

(
Sn
n

1/2
Γ

)2
(

h?

φ̂2
S,kern

)
nΓ

h?
. (II.10)

According to Theorem 2.3, the first factor converges to Ez3
0 . By the first part of The-

orem 2.4, for all δ > 0, there are M and n0 such that P{φ̂S,kern/h
? ≤ M} ≥ 1 − δ if

nΓ ≥ n0, i.e.

P

{
h?

φ̂2
S,kern

≥ 1

M

}
≥ 1− δ, if nΓ ≥ n0.

The assumption h? = o(n?1/2) implies that nΓ/h
? → ∞. We thus conclude that (II.10)

diverges to infinity in probability. Basically the same argument shows that if Ez4
0 6= 3,

then K2
n/φ̂

2
K,kern diverges. For the power estimators, we must replace h? in (II.10) by 1,

and argue in the same way.

III Explicit formulas for a 2D domain

We observe a realization {Xi,j, 1 ≤ i ≤ N, 1 ≤ j ≤ N} of a stationary random field on

Z× Z. We want to test if the field is Gaussian. We work with studentized observations

xi,j =
Xi,j − X̄

S
, (III.1)

where

X̄ =
1

NM

N∑
i=1

M∑
j=1

Xi,j, S2 =
1

NM

N∑
i=1

M∑
j=1

(
Xi,j − X̄

)2
.
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The modified sample skewness and kurtosis are defined by

S? =
1√
NM

N∑
i=1

M∑
j=1

(
x3
i,j − 3xi,j

)
and K? =

1√
NM

N∑
i=1

M∑
j=1

(
x4
i,j − 6x2

i,j + 3
)

and the test statistic by

J? :=
S?2

φ̂2
S

+
K?2

φ̂2
K
,

where φ̂2
S and φ̂2

K are consistent estimators of the spatial long-run variances φ2
S and φ2

K,

which we now specify.

Kernel estimators These are the estimators given by (2.12). Set

y
(S)
i,j = x3

i,j − 3xi,j and y
(K)
i,j = x4

i,j − 6x2
i,j + 3.

For generic observations yi,j define the sample mean

ȳ =
1

NM

N∑
i=1

M∑
j=1

yi,j

and the sample covariances

γ̂(u, v) =
1

|D(u, v)|
∑

i,j∈D(u,v)

(yi,j − ȳ) (yi+u,j+v − ȳ) , (III.2)

where D(u, v) is the subset of the grid such that 1 ≤ i, i+ u ≤ N and 1 ≤ j, j + v ≤ M ,

and and |D(u, v)| is its cardinality. Then φ2
S and φ2

K are computed as

σ̂2
kern =

∑
|u|≤N

∑
|v|≤M

K
(u
h

)
K
(v
h

)
γ̂(u, v),

with yi,j = y
(S)
i,j or yi,j = y

(K)
i,j .

Power estimators These are the estimators given by (2.13). The sample covariances

γ̂x(u, v) are computed from the xi,j given by (III.1) using formula (III.2) with yi,j replaced

by xi,j. Then

φ̂2
S = 6

∑
|u|≤N

∑
|v|≤N

K
(u
h

)(v
h

)
γ̂3
x(u, v), φ̂2

K = 24
∑
|u|≤N

∑
|v|≤N

K
(u
h

)
K
(v
h

)
γ̂4
x(u, v).

IV Empirical power under skew-normal distribution

This section presents the simulation results of empirical power when the three DGPs in

Section 3.1 are generated by ξi,j with i.i.d. skew-normal distribution.

12



Treated in Azzalini (2014), the skew-normal distribution is denoted as SN (η, ω2, α),

where η is the location parameter, ω is the scale parameter, and α is shape parameter. The

skew-normal distribution has the property that an increasing value of its shape parameter,

α, induces a larger skewness. Thus, we vary the numerical value of α from 1 to 3 in order to

examine the sensitivity of our test. To mitigate the impact from the other two parameters,

the scale parameter ω is always chosen to be 1 and the location parameter η is set to be

the value that ensure the mean of the distribution is zero, i.e. η = −ω α√
1 + α2

√
2

π
. Table

8 shows the theoretical skewness and kurtosis for the chosen sets of the parameters. As

can be seen, the skew-normal skewness of the distribution is small when α = 1, and the

distribution becomes moderately skewed when α = 3.

Table 8: Theoretical skewness and kurtosis of the skew-normal distribution

(η, ω2, α) (-0.564, 1, 1) (-0.714, 1, 2) (-0.757, 1, 3)

skewness ≈ 0.137 0.454 0.667
kurtosis ≈ 3.062 3.305 3.510

Tables 9 and 10 present the empirical power of the test for DGPs with skew-normal

distribution by 5% significance level critical values with the long-run variance estimator

choice of the kernel estimator and the power estimator, respectively. We have several

observations in the following. Firstly, the power increase with a larger grid size N , as

we expected. Secondly, the power increase with the growth in the value of the shape

parameter α. Although the skewness is small when α = 1, the test can achieve high

empirical power when the grid size N = 100. The power is almost 100% if the shape

parameter α is larger, such as 2 and 3. Thirdly, there is no obvious difference in the

empirical power when use the kernel estimator or the power estimator for the long-run

variance. Lastly, comparing different kernel functions, the Bartlett kernel occasionally

produces a marginally higher power, but this may due to the slight inflation in its sizes

which can be observed in Table 1.

V P–values for January, April, and October anomalies

Tables 11 to 16 present the P–values of the normality tests applied to monthly SST

anomalies in the months of January, April and October in all years of the sample period,

which is between September 1981 to December 2014. Definitions of the anomalies Di,j(t)

and Ui,j(t), together with other details, are given in Section 3.2.
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Table 9: Empirical power of the DGPs with skew-normal distribution - kernel estimator

Panel A: Spatial IID

Grid Size Kernel α = 1 α = 2 α = 3

N = 25

Truncated 29.42% 97.16% 99.84%
Bartlett 20.44% 98.06% 99.96%
Flat-top 22.78% 97.80% 100.00%

N = 50

Truncated 69.86% 100.00% 100.00%
Bartlett 68.98% 100.00% 100.00%
Flat-top 69.18% 100.00% 100.00%

N = 100

Truncated 99.94% 100.00% 100.00%
Bartlett 99.94% 100.00% 100.00%
Flat-top 99.92% 100.00% 100.00%

Panel B: Spatial Moving Average

Grid Size Kernel α = 1 α = 2 α = 3

N = 25

Truncated 22.52% 85.14% 99.08%
Bartlett 15.26% 86.42% 99.72%
Flat-top 16.08% 85.06% 99.32%

N = 50

Truncated 46.32% 100.00% 100.00%
Bartlett 46.14% 100.00% 100.00%
Flat-top 44.74% 100.00% 100.00%

N = 100

Truncated 96.96% 100.00% 100.00%
Bartlett 97.18% 100.00% 100.00%
Flat-top 97.00% 100.00% 100.00%

Panel C: Spatial Autoregressive

Grid Size Kernel α = 1 α = 2 α = 3

N = 25

Truncated 18.50% 76.62% 96.72%
Bartlett 15.02% 80.64% 99.06%
Flat-top 13.36% 75.08% 97.94%

N = 50

Truncated 36.32% 100.00% 100.00%
Bartlett 40.36% 100.00% 100.00%
Flat-top 35.42% 100.00% 100.00%

N = 100

Truncated 91.34% 100.00% 100.00%
Bartlett 93.04% 100.00% 100.00%
Flat-top 91.48% 100.00% 100.00%
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Table 10: Empirical power of the DGPs with skew-normal distribution - power estimator

Panel A: Spatial IID

Grid Size Kernel α = 1 α = 2 α = 3

N = 25

Truncated 22.00% 98.38% 100.00%
Bartlett 22.02% 98.40% 100.00%
Flat-top 22.02% 98.40% 100.00%

N = 50

Truncated 70.28% 100.00% 100.00%
Bartlett 70.28% 100.00% 100.00%
Flat-top 70.28% 100.00% 100.00%

N = 100

Truncated 99.94% 100.00% 100.00%
Bartlett 99.94% 100.00% 100.00%
Flat-top 99.94% 100.00% 100.00%

Panel B: Spatial Moving Average

Grid Size Kernel α = 1 α = 2 α = 3

N = 25

Truncated 14.04% 87.32% 99.74%
Bartlett 15.44% 89.04% 99.80%
Flat-top 13.98% 87.26% 99.74%

N = 50

Truncated 46.28% 100.00% 100.00%
Bartlett 48.06% 100.00% 100.00%
Flat-top 46.28% 100.00% 100.00%

N = 100

Truncated 96.98% 100.00% 100.00%
Bartlett 97.26% 100.00% 100.00%
Flat-top 96.98% 100.00% 100.00%

Panel C: Spatial Autoregressive

Grid Size Kernel α = 1 α = 2 α = 3

N = 25

Truncated 11.20% 73.30% 98.58%
Bartlett 15.08% 79.62% 99.30%
Flat-top 11.62% 73.82% 98.66%

N = 50

Truncated 35.52% 99.96% 100.00%
Bartlett 41.58% 99.98% 100.00%
Flat-top 36.48% 99.98% 100.00%

N = 100

Truncated 91.48% 100.00% 100.00%
Bartlett 93.72% 100.00% 100.00%
Flat-top 91.52% 100.00% 100.00%
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Table 11: P-values of the spatial normality test for Di,j(t) in January.

Date
Kernel Estimator Power Estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Jan-1982 0.4% 0.0% 0.0% 0.1% 0.3% 0.2% 0.1% 0.0%
Jan-1983 0.0% 0.0% 0.0% 1.3% 0.0% 0.0% 0.8% 0.5%
Jan-1984 0.7% 0.0% 0.0% 43.4% 13.1% 0.0% 0.2% 0.0%
Jan-1985 0.0% 0.0% 0.2% 0.0% 1.0% 0.0% 5.8% 0.0%
Jan-1986 0.6% 0.0% 0.0% 0.0% 5.5% 0.0% 0.7% 0.0%
Jan-1987 15.1% 0.0% 0.0% 0.1% 39.1% 0.0% 0.0% 0.0%
Jan-1988 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0%
Jan-1989 86.1% 0.0% 0.0% 45.3% 87.2% 0.0% 0.0% 45.0%
Jan-1990 0.0% 46.9% 70.5% 0.0% 0.0% 60.1% 77.2% 0.0%
Jan-1991 75.1% 0.0% 0.0% 6.7% 82.4% 0.0% 0.0% 0.0%
Jan-1992 0.0% 0.0% 0.0% 11.2% 0.0% 0.0% 0.3% 14.7%
Jan-1993 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0%
Jan-1994 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%
Jan-1995 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 0.3% 0.0%
Jan-1996 54.9% 0.0% 2.4% 0.0% 53.9% 0.0% 12.1% 0.0%
Jan-1997 26.5% 7.8% 0.0% 0.0% 55.1% 30.1% 0.0% 0.0%
Jan-1998 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0%
Jan-1999 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0%
Jan-2000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.8% 0.0%
Jan-2001 15.6% 0.2% 0.0% 86.1% 44.8% 6.5% 0.9% 0.2%
Jan-2002 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0%
Jan-2003 0.0% 0.0% 0.1% 17.2% 0.0% 0.0% 0.3% 4.3%
Jan-2004 0.3% 0.0% 0.0% 0.0% 8.4% 0.4% 3.1% 0.0%
Jan-2005 2.1% 21.2% 2.8% 6.5% 14.3% 34.3% 20.7% 6.8%
Jan-2006 6.6% 0.0% 0.0% 0.0% 18.3% 0.0% 0.0% 1.6%
Jan-2007 6.1% 19.3% 0.0% 7.5% 13.8% 51.5% 0.0% 0.0%
Jan-2008 0.1% 0.0% 0.0% 17.7% 3.6% 0.0% 0.0% 0.0%
Jan-2009 0.0% 0.0% 0.0% 41.5% 0.0% 0.0% 2.0% 0.0%
Jan-2010 32.3% 0.0% 0.0% 0.0% 9.9% 0.0% 0.0% 0.0%
Jan-2011 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Jan-2012 0.0% 0.0% 0.8% 1.9% 0.0% 1.4% 12.9% 0.1%
Jan-2013 0.0% 19.0% 0.0% 0.0% 0.0% 28.7% 0.1% 0.0%
Jan-2014 0.0% 0.0% 1.0% 0.1% 0.0% 0.0% 15.2% 0.0%
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Table 12: P-values of the spatial normality test for Di,j(t) in April.

Date
Kernel Estimator Power Estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Apr-1982 0.0% 0.0% 52.6% 0.6% 0.0% 0.0% 44.3% 0.0%
Apr-1983 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%
Apr-1984 0.2% 1.4% 0.0% 0.2% 0.1% 11.2% 0.0% 0.0%
Apr-1985 0.0% 0.0% 0.0% 5.5% 0.0% 0.0% 0.0% 11.4%
Apr-1986 8.5% 0.1% 0.2% 0.0% 10.6% 4.7% 5.7% 0.0%
Apr-1987 2.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Apr-1988 35.8% 0.0% 0.0% 0.0% 38.5% 0.0% 0.7% 0.0%
Apr-1989 4.2% 0.0% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0%
Apr-1990 5.9% 0.0% 43.7% 47.6% 0.2% 0.0% 37.0% 33.8%
Apr-1991 11.9% 1.9% 0.0% 7.9% 31.4% 0.0% 0.0% 0.0%
Apr-1992 11.0% 0.0% 0.0% 0.0% 16.5% 0.0% 0.0% 0.0%
Apr-1993 1.3% 0.0% 72.6% 5.3% 0.0% 1.5% 82.9% 0.0%
Apr-1994 0.0% 0.0% 0.0% 0.0% 3.3% 0.1% 0.0% 0.0%
Apr-1995 0.1% 0.0% 38.1% 0.0% 0.0% 0.1% 57.9% 0.0%
Apr-1996 1.2% 0.0% 0.7% 66.6% 14.2% 3.3% 0.7% 82.4%
Apr-1997 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 1.3% 0.4%
Apr-1998 0.0% 0.0% 0.0% 0.0% 0.1% 0.6% 0.0% 0.0%
Apr-1999 7.6% 0.0% 0.0% 0.1% 7.4% 0.0% 0.0% 3.9%
Apr-2000 0.0% 0.0% 0.1% 0.0% 0.7% 0.0% 5.2% 0.0%
Apr-2001 2.4% 0.0% 0.0% 0.0% 3.3% 0.8% 0.0% 1.8%
Apr-2002 55.3% 9.1% 0.4% 10.2% 57.6% 1.6% 3.2% 11.4%
Apr-2003 0.0% 0.8% 0.2% 0.9% 0.0% 8.1% 1.4% 8.1%
Apr-2004 0.5% 77.9% 0.0% 51.3% 4.6% 83.8% 0.0% 5.0%
Apr-2005 2.3% 12.3% 5.2% 0.0% 0.0% 28.6% 17.6% 0.0%
Apr-2006 0.0% 0.7% 36.6% 11.1% 0.0% 3.5% 59.4% 0.0%
Apr-2007 0.0% 1.6% 0.0% 0.0% 0.0% 6.0% 0.6% 0.0%
Apr-2008 0.0% 0.0% 0.0% 19.8% 0.0% 2.0% 0.6% 0.0%
Apr-2009 0.0% 3.7% 0.0% 13.3% 0.0% 11.7% 0.3% 0.0%
Apr-2010 0.0% 0.0% 3.5% 0.0% 0.0% 0.1% 24.8% 0.0%
Apr-2011 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 2.1%
Apr-2012 3.8% 10.4% 0.0% 4.6% 14.9% 23.3% 0.0% 7.1%
Apr-2013 0.1% 4.1% 24.6% 0.0% 0.2% 6.4% 30.5% 0.0%
Apr-2014 0.0% 3.7% 0.0% 0.0% 0.0% 15.4% 1.0% 0.0%
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Table 13: P-values of the spatial normality test for Di,j(t) in October.

Date
Kernel Estimator Power Estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Oct-1981 0.8% 0.5% 42.6% 0.0% 2.7% 0.0% 57.9% 0.1%
Oct-1982 3.9% 0.0% 3.7% 0.0% 2.9% 0.0% 8.0% 0.0%
Oct-1983 0.1% 0.0% 0.0% 22.7% 5.4% 0.0% 0.0% 14.5%
Oct-1984 20.8% 6.5% 2.8% 2.7% 4.8% 22.0% 11.3% 18.7%
Oct-1985 0.0% 8.0% 0.3% 0.0% 0.0% 23.3% 0.1% 0.0%
Oct-1986 0.0% 0.1% 11.7% 0.0% 3.6% 4.8% 3.4% 0.0%
Oct-1987 21.3% 0.0% 0.0% 0.0% 45.9% 0.1% 1.0% 0.0%
Oct-1988 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Oct-1989 38.5% 0.0% 2.0% 15.4% 45.2% 0.0% 16.1% 19.5%
Oct-1990 5.8% 0.1% 0.2% 5.2% 16.9% 1.9% 0.5% 12.7%
Oct-1991 0.0% 0.0% 0.0% 2.4% 0.0% 1.1% 0.0% 2.4%
Oct-1992 1.4% 0.0% 0.0% 0.0% 1.2% 0.0% 0.2% 0.0%
Oct-1993 2.0% 0.0% 0.0% 5.2% 2.2% 0.0% 1.1% 0.4%
Oct-1994 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.7% 0.0%
Oct-1995 0.1% 0.0% 30.5% 0.0% 0.0% 0.0% 38.2% 0.0%
Oct-1996 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0%
Oct-1997 2.1% 0.0% 4.4% 0.0% 0.0% 0.0% 23.8% 0.0%
Oct-1998 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0%
Oct-1999 28.1% 0.0% 0.0% 0.0% 27.9% 0.0% 0.0% 0.0%
Oct-2000 23.8% 0.0% 3.0% 0.0% 3.0% 0.2% 3.1% 0.0%
Oct-2001 69.1% 17.0% 0.1% 17.6% 80.8% 44.4% 2.2% 5.7%
Oct-2002 8.2% 0.0% 0.0% 0.0% 13.8% 0.0% 1.7% 0.0%
Oct-2003 0.1% 28.1% 2.2% 0.0% 4.1% 26.1% 0.0% 0.0%
Oct-2004 0.2% 0.0% 0.0% 0.0% 0.0% 3.0% 0.0% 0.0%
Oct-2005 0.1% 0.3% 0.0% 20.5% 0.0% 5.2% 0.0% 25.6%
Oct-2006 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0%
Oct-2007 0.2% 1.0% 0.0% 16.2% 0.7% 3.2% 0.0% 0.0%
Oct-2008 0.0% 0.0% 19.0% 0.0% 0.5% 0.0% 30.7% 0.1%
Oct-2009 42.2% 0.0% 1.5% 0.0% 49.7% 0.3% 15.0% 0.0%
Oct-2010 0.2% 0.0% 0.2% 12.5% 0.8% 0.0% 0.6% 0.0%
Oct-2011 25.6% 0.0% 0.7% 0.5% 24.7% 0.0% 0.3% 0.0%
Oct-2012 34.8% 0.0% 0.0% 0.0% 38.0% 0.3% 0.0% 0.0%
Oct-2013 0.9% 0.1% 0.0% 0.0% 0.3% 0.1% 0.0% 0.0%
Oct-2014 22.8% 0.0% 58.4% 0.1% 45.5% 0.3% 71.0% 0.0%
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Table 14: P-values of the spatial normality test for Ui,j(t) in January.

Date
Kernel Estimator Power Estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Jan-1982 1.6% 1.2% 0.0% 5.1% 2.1% 12.6% 0.1% 9.0%
Jan-1983 0.0% 0.0% 0.0% 2.7% 0.0% 0.0% 0.1% 6.6%
Jan-1984 0.0% 0.0% 0.0% 15.2% 0.1% 0.0% 0.1% 14.5%
Jan-1985 0.1% 0.0% 60.6% 0.0% 3.3% 0.0% 74.9% 0.0%
Jan-1986 0.0% 0.4% 0.0% 0.0% 0.0% 7.8% 1.4% 0.0%
Jan-1987 3.3% 0.0% 0.0% 0.2% 8.7% 0.1% 0.0% 0.0%
Jan-1988 0.0% 0.0% 3.3% 0.0% 0.0% 0.0% 21.6% 0.0%
Jan-1989 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7%
Jan-1990 0.0% 2.0% 5.9% 3.3% 2.6% 13.1% 18.1% 4.2%
Jan-1991 0.1% 0.4% 0.0% 2.8% 2.3% 0.0% 2.1% 1.1%
Jan-1992 0.1% 0.0% 0.0% 0.0% 5.5% 2.2% 1.6% 0.0%
Jan-1993 0.0% 0.0% 0.0% 2.7% 0.0% 0.0% 0.0% 9.3%
Jan-1994 0.0% 0.4% 0.0% 0.0% 0.0% 9.9% 0.0% 0.0%
Jan-1995 3.1% 0.0% 0.0% 0.0% 23.1% 0.0% 0.0% 0.0%
Jan-1996 0.0% 0.0% 20.6% 0.0% 0.0% 0.1% 39.8% 0.0%
Jan-1997 0.0% 50.5% 0.0% 0.0% 0.0% 65.1% 0.2% 0.0%
Jan-1998 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 2.1% 0.0%
Jan-1999 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%
Jan-2000 0.0% 0.4% 0.2% 0.0% 0.1% 2.1% 6.9% 0.0%
Jan-2001 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%
Jan-2002 0.0% 0.0% 1.8% 0.0% 0.0% 0.9% 2.1% 0.0%
Jan-2003 0.0% 0.0% 41.8% 0.0% 0.0% 2.0% 64.6% 0.1%
Jan-2004 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0%
Jan-2005 14.3% 36.3% 6.9% 0.0% 14.3% 27.4% 32.2% 0.0%
Jan-2006 31.3% 0.0% 0.0% 0.0% 51.4% 0.0% 0.0% 0.0%
Jan-2007 11.6% 7.0% 0.0% 0.0% 22.3% 10.9% 0.1% 0.0%
Jan-2008 0.0% 0.0% 0.0% 53.8% 1.8% 0.0% 0.0% 11.1%
Jan-2009 0.0% 0.0% 0.0% 55.0% 0.0% 0.0% 0.0% 60.7%
Jan-2010 46.3% 2.2% 0.0% 0.0% 58.8% 1.5% 0.0% 0.0%
Jan-2011 0.0% 0.0% 0.0% 0.0% 0.5% 0.0% 0.1% 0.0%
Jan-2012 62.3% 0.0% 0.0% 1.6% 76.0% 0.0% 0.4% 5.5%
Jan-2013 10.4% 0.0% 0.0% 1.4% 0.6% 0.0% 0.1% 4.3%
Jan-2014 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.2% 0.0%
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Table 15: P-values of the spatial normality test for Ui,j(t) in April.

Date
Kernel Estimator Power Estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Apr-1982 0.0% 0.0% 7.5% 1.2% 0.2% 0.0% 26.5% 0.0%
Apr-1983 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.4%
Apr-1984 0.0% 0.0% 0.0% 9.2% 0.1% 0.0% 0.0% 16.8%
Apr-1985 15.3% 95.0% 0.0% 0.0% 40.8% 95.0% 0.6% 0.0%
Apr-1986 13.0% 0.0% 0.1% 0.0% 32.5% 0.0% 1.3% 0.0%
Apr-1987 5.7% 0.0% 0.0% 0.0% 0.9% 0.0% 0.2% 0.0%
Apr-1988 92.7% 0.0% 0.0% 0.0% 95.7% 0.0% 0.3% 0.0%
Apr-1989 32.2% 0.0% 0.0% 0.0% 23.8% 0.0% 0.0% 0.0%
Apr-1990 25.3% 0.0% 15.9% 0.0% 35.3% 0.0% 28.2% 0.0%
Apr-1991 5.6% 7.4% 0.0% 0.0% 6.1% 10.4% 0.0% 0.0%
Apr-1992 1.2% 0.0% 0.0% 0.0% 1.8% 0.3% 0.0% 0.0%
Apr-1993 4.9% 0.0% 21.1% 7.0% 17.7% 0.0% 43.0% 0.0%
Apr-1994 0.0% 1.0% 0.0% 0.0% 0.1% 17.4% 2.7% 0.0%
Apr-1995 44.6% 0.0% 0.0% 0.0% 35.2% 1.4% 1.9% 0.0%
Apr-1996 0.0% 0.0% 45.7% 10.6% 3.5% 0.0% 69.7% 16.6%
Apr-1997 0.0% 0.0% 0.0% 0.0% 1.6% 0.0% 0.1% 0.0%
Apr-1998 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Apr-1999 4.0% 0.0% 0.0% 0.0% 22.9% 0.0% 0.0% 0.0%
Apr-2000 0.0% 0.0% 0.0% 0.0% 1.7% 0.0% 4.4% 0.0%
Apr-2001 33.1% 0.0% 0.0% 0.0% 36.3% 0.0% 1.0% 0.1%
Apr-2002 1.4% 0.0% 0.0% 0.0% 14.8% 0.0% 0.2% 5.7%
Apr-2003 0.0% 0.0% 5.3% 0.0% 0.0% 0.4% 2.9% 0.6%
Apr-2004 0.0% 0.0% 0.0% 3.6% 0.2% 0.0% 0.0% 6.8%
Apr-2005 0.0% 9.2% 0.0% 0.0% 0.0% 6.2% 0.2% 0.0%
Apr-2006 0.0% 0.0% 23.5% 1.8% 0.3% 0.0% 45.7% 0.0%
Apr-2007 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0%
Apr-2008 0.0% 0.0% 0.0% 31.3% 0.0% 0.0% 0.0% 0.0%
Apr-2009 0.0% 1.1% 0.0% 82.2% 0.0% 10.6% 0.2% 79.5%
Apr-2010 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0%
Apr-2011 0.0% 0.0% 0.0% 0.0% 0.9% 0.0% 0.0% 0.0%
Apr-2012 38.5% 0.0% 0.0% 0.0% 53.8% 0.1% 0.0% 0.7%
Apr-2013 20.0% 0.0% 0.2% 0.0% 31.9% 3.7% 0.4% 0.2%
Apr-2014 0.0% 14.8% 0.0% 0.0% 0.0% 45.7% 0.1% 0.0%
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Table 16: P-values of the spatial normality test for Ui,j(t) in October.

Date
Kernel Estimator Power Estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Oct-1981 0.0% 0.8% 20.7% 14.2% 1.6% 0.0% 28.3% 42.3%
Oct-1982 67.5% 0.0% 0.0% 0.0% 74.1% 0.4% 0.0% 0.0%
Oct-1983 0.0% 0.0% 0.0% 63.3% 0.2% 0.0% 0.0% 72.5%
Oct-1984 51.1% 0.0% 0.0% 0.0% 51.7% 0.0% 1.8% 0.0%
Oct-1985 14.1% 0.1% 51.3% 0.1% 30.3% 0.0% 53.1% 5.7%
Oct-1986 0.0% 0.0% 48.2% 6.3% 0.5% 0.0% 49.5% 20.9%
Oct-1987 11.4% 0.0% 8.7% 0.0% 33.3% 0.0% 18.4% 0.0%
Oct-1988 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.7% 0.0%
Oct-1989 5.7% 2.0% 0.0% 1.1% 2.4% 8.8% 0.0% 9.5%
Oct-1990 0.0% 1.6% 0.0% 0.0% 0.3% 20.3% 0.0% 0.3%
Oct-1991 11.3% 0.0% 0.0% 0.0% 11.1% 0.0% 0.0% 2.2%
Oct-1992 13.9% 0.0% 0.0% 29.6% 42.3% 0.1% 0.5% 2.6%
Oct-1993 0.6% 0.0% 0.0% 0.5% 3.6% 0.0% 1.7% 0.4%
Oct-1994 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Oct-1995 0.0% 0.0% 11.4% 0.0% 0.0% 0.0% 36.2% 0.0%
Oct-1996 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Oct-1997 0.0% 1.3% 32.5% 0.0% 0.0% 14.0% 42.7% 0.0%
Oct-1998 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%
Oct-1999 1.5% 0.0% 0.0% 0.0% 2.3% 0.3% 0.0% 0.7%
Oct-2000 35.9% 0.0% 5.7% 0.0% 59.5% 0.3% 12.2% 0.0%
Oct-2001 26.4% 0.0% 0.0% 1.0% 55.5% 0.0% 0.8% 11.0%
Oct-2002 6.0% 0.0% 0.0% 0.0% 9.3% 0.1% 0.3% 0.0%
Oct-2003 0.0% 5.9% 1.6% 0.0% 0.0% 0.0% 0.2% 0.0%
Oct-2004 50.4% 2.6% 0.0% 0.0% 57.0% 1.7% 0.0% 0.0%
Oct-2005 0.3% 0.0% 1.0% 0.1% 0.0% 0.0% 4.6% 3.4%
Oct-2006 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%
Oct-2007 0.4% 0.0% 3.1% 32.3% 2.9% 0.0% 3.8% 0.0%
Oct-2008 0.0% 0.0% 0.5% 0.0% 2.6% 0.0% 5.9% 0.4%
Oct-2009 0.5% 0.0% 0.0% 0.0% 7.7% 0.0% 0.6% 0.0%
Oct-2010 63.7% 0.0% 0.0% 0.1% 68.8% 0.0% 0.1% 0.1%
Oct-2011 0.6% 0.0% 50.8% 2.2% 4.2% 0.0% 54.0% 0.0%
Oct-2012 0.0% 0.0% 0.0% 0.0% 0.0% 1.1% 0.0% 0.0%
Oct-2013 3.1% 0.8% 32.5% 0.1% 21.5% 0.0% 50.7% 0.0%
Oct-2014 4.5% 0.0% 0.0% 0.0% 11.3% 0.1% 0.8% 0.0%
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