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Abstract:  

In this study, a series of core units (glycerol, triethanolamine and triisopropanolamine 

derivatives) were investigated for their use in tri-armed phenolic antioxidants. The antioxidant 

ability of these tri-armed phenolic compounds featuring different core units were then 

evaluated in a hydrocarbon lubricant using differential scanning calorimetry (DSC) and 

compared to the commercially available antioxidants Irganox L135 and Irganox L57. An 

impressive oxidation induction time of ca. 9-12 minutes was observed for the glycerol based 

antioxidants when compared to the commercial antioxidants (ca. 4-6 minutes), whereas in 

contrast in the case of triethanolamine and triisopropanolamine derived antioxidants, a 

solubilising unit was incorporated in order to provide appropriate solubility within the 

hydrocarbon medium and revealed an excellent oxidation induction time of ca. 11-

12 minutes. 

Keywords: Glycerol, Triethanolamine, Triisopropanolamine, Tri-armed Phenolic 

Antioxidants, Oxidative Stability Studies 

1. Introduction 

The requirement for enhanced fuel efficiency and lower tailpipe CO2 emissions have led to 

the introduction of alternative fuels from renewable resources for the partial substitution of 

conventional petroleum-derived fuels. [1] Biodiesel, which consist of saturated and 

unsaturated long-chain fatty acid alkyl esters along with glycerol fractions are both products 

of trans-esterification reactions that can be manufactured from various oil feedstocks; for 

example, oils from rapeseed, sunflowers, soybean, canola and palm, waste cooking oils and 

sewage sludge. [2-5] Biodiesel has great potential as an alternative fuel for compression 

ignition engines because its chemical composition is comparable to diesel fuel but with an 
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easy to handle higher boiling point and lower carbonaceous emissions. [6-9] In the light of 

the increased demand for biodiesel, especially in Europe and the Americas, there is a 

potential for overproduction of the glycerol by-product. Biodiesel production generates about 

10% (w/w) of crude glycerol and, with the world biodiesel market continuously increasing, it 

has been predicted that by 2020 more than 4 billion litres of glycerol will be produced per 

annum. [10] This surplus has prompted the chemical industry to seek application of glycerol 

as a low-cost feedstock in areas such as fuels, chemicals, the automotive industry, 

pharmaceuticals and detergents. However, finding new uses for the excess glycerol from 

biodiesel production is still a major question that needs to be addressed. [11-13] Glycerol has 

also been used for a number of years as a monomer in the synthesis of dendritic 

macromolecules targeted for deployment in biological applications such as drug delivery 

systems and tissue engineering. [14-16] Only a few examples have been reported where 

glycerol is transformed into radical-trapping fuel additives. [17] Such an application is 

particularly attractive as it enables the glycerol by-product generated by plants grown for 

biodiesel production to be used to improve the resistance of this fuel stock to auto-oxidation. 

The oxidation process of biodiesel can be particularly detrimental because it leads to the 

formation of hydroperoxides which produces insoluble gums and sediments that can plug fuel 

filters or make deposits on the fuel injector leading to ineffective engine operation. [18] In 

addition, the final products of oxidation can also increase the viscosity of the fuel that in turn 

leads to poor fuel atomization. [18] Another notable class of dendritic macromolecules are 

poly(amidoamines) (PAMAM) dendrimers and were first reported by Tomalia and co-workers 

in the 1980s. [19] PAMAM dendrimers are particularly unique because they can be designed 

to mimic the structural architecture of globular proteins and hence a range of biomedical 

applications have been proposed for their use such as drug delivery, molecular encapsulation 

and gene therapy. [20-21] PAMAM dendrimers typically consist of an ethylenediamine core, 

however, the more flexible triethanolamine core has been recently reported. [22-23] Ottaviani 

and co-workers [24] reported a series of PAMAM dendrimers with a triethanolamine core 

which revealed interesting copper (II) binding characteristics. The transition metal binding 

ability of the triethanolamine core has been known for a number of years [25–27] and could 

be particularly relevant in the design of oxidation inhibitors as traces of transition metal ions 

play a significant role in the catalysis of the oxidation processes. [28] It is feasible that the 

oxidative stability of a material could be enhanced by introducing an antioxidant with both 

radical scavenging and metal chelation properties. In this paper, we report the synthesis of a 

series of tri-armed sterically hindered phenolic-based antioxidants whereby glycerol and 
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triethanolamine derivatives were utilised as the core unit. Triisopropanolamine was also used 

as a central core monomer as it was proposed that the methyl moieties of the core would 

provide additional solubility to the antioxidant. Solubilising alkyl chains were introduced to the 

core unit to improve dispersion within a hydrocarbon medium. Promisingly, in comparison to 

the industrial antioxidants Irganox L135 and Irganox L57, these new tri-armed materials 

exhibited enhanced stabilisation properties when blended into a lubricant base oil and 

subjected to accelerated oxidative conditions. 

2. Results and Discussion 

2.1. Synthesis  

Initial synthesis began by exhaustively coupling all three hydroxyl moieties of glycerol 1 with 

3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid 2, using N,N’-dicyclohexylcarbodiimide 

(DCC) mediated esterification [29-30] to generate the first generation triphenol 3 as a yellow 

oil in 70% yield (Scheme 1) (see ESI for the spectroscopic data of the compounds described 

herein). The difference in reactivity of the primary and secondary hydroxyl moieties of 1 was 

then exploited to introduce 2-ethylhexanoic acid 4 as a solubilising alkyl chain with the aim to 

improve dissolution within a hydrocarbon medium. To generate the racemic diphenol 5, the 

primary alcohol moieties of 1 were first reacted with two equivalents of 2 to generate diester 

6 with one free hydroxyl moiety, followed by another DCC mediated esterification of the 

hydroxyl moiety of 6 with acid 4 (Scheme 2).  

 

Scheme 1. Synthesis of the triphenol 3 from the reaction between glycerol 1 and 3-(3,5-di-

tert-butyl-4-hydroxyphenyl)propionic acid 2.  
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Scheme 2. Synthesis of the diester 6, followed by reaction of the remaining secondary 

hydroxyl to yield the diphenol 5. 

The final reaction (Scheme 3) of the glycerol series involved incorporation of two alkyl 

moieties onto the glycerol monomer 1. In this case, the primary hydroxyl moieties were first 

reacted with the acid 4 to yield the diester 7, followed by reaction of the remaining secondary 

hydroxyl moiety with 2 to yield the racemic monophenol 8 as a colourless oil in 75% yield.  

 

Scheme 3. Synthesis of the diester 7 followed by reaction of the remaining secondary 

hydroxyl moiety to yield the monophenol 8. 

The second series featuring different core units saw the use of triethanolamine 9 and 

triisopropanolamine 10 which provided a nitrogen at the core of the macromolecule. 

Triethanolamine 9 was first reacted with 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid 2 

in a DCC mediated esterification to afford the triphenol 11 as a waxy solid in 65% yield (Fig. 
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1, Scheme S1). Triisopropanolamine 10 was also used as the central core unit as it was 

proposed that the methyl moieties of the core would provide additional stability to both the 

ester functionalities and the nitrogen core in addition to improving the solubility of the final 

racemic triphenol 12. The desired tri-armed derivative was achieved successfully via the 

reaction of triisopropanolamine 10 with the 2 using a DCC mediated coupling reaction (Fig. 

1, Scheme S2).  

 

Figure 1. Structures of triphenol 11 and triphenol 12 synthesised using the methodology 

described in Scheme S1 and Scheme S2, respectively. 

Although the triethanolamine and triisopropanolamine derivatives 11 and 12 did exhibit 

excellent antioxidant capabilities, disappointingly their physical properties such as solubility 

in hydrocarbon media was not yet optimised. Hence, in an attempt to overcome the solubility 

issues encountered with 11 and 12, an alternative synthetic approach was targeted to allow 

incorporation of a solubilising alkyl chain. The synthesis was achieved by reacting 

diethanolamine 13 with 2-ethylhexyl bromide 14 to afford the diol 15. A DCC mediated 

esterification was then utilised to couple 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid 2 

to the core to yield the racemic diphenol 16 as a yellow oil in 73% yield (Fig. 2, Scheme S3). 

For comparison against 12, the synthesis of intermediate diol 18 was achieved by first 

reacting 1,1'-azanediylbis(propan-2-ol) 17 with 14 followed by functionalisation of 18 with a 

solubilising alkyl chain 2-ethylhexyl bromide 14 and 3-(3,5-di-tert-butyl-4-

hydroxyphenyl)propionic acid 2 to afford the racemic diphenol 19 as a yellow oil in 62% yield 

(Fig. 2, Scheme S4).  
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Figure 2. Structures of diisopropanolamine 16 and diphenol 19 synthesised using the 

methodology described in Scheme S3 and Scheme S4, respectively. 

 
2.2. Oxidative stability studies 

To assess the antioxidant potential, mono-, di- and tri-phenol glycerol derivatives 3, 5 and 8 

were blended into a synthetic lubricant base oil - Durasyn® 164 (a polyalphaolefin, 

hydrogenated hydrocarbon base oil composed of dec-1-ene trimers typically used in 

lubricating oils). Typical lubricant commercial antioxidants Irganox L135 (phenolic 

antioxidant) and Irganox L57 (aromatic amine antioxidant) were used as a direct comparison 

and samples were prepared by blending of 0.5% w/w of each antioxidant in 50 mL of the 

lubricant base oil. The blends were analysed using pressurised differential scanning 

calorimetry (PDSC) to monitor the heat effects associated with phase transitions and 

chemical reactions as a function of temperature. Oxidation induction time (OIT) and oxidation 

onset temperature (OOT) were used to investigate the effect of antioxidants on the stability 

of an oil sample. OIT revealed that the presence of glycerol derivatives 3, 5 and 8 in the base 

oil had resulted in a significant increase in the stability of the sample as shown in Fig. 3.   
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Figure 3. Average oxidation induction time analysis of the glycerol series 3, 5 and 8 

(tested in duplicate). 
 

The induction time was increased from < 3 minutes for the unblended base oil to ca. 10-

12 minutes for the blended samples. In addition, the glycerol derivatives 3, 5 and 8 exhibited 

superior performance to both commercial antioxidants, Irganox L135 and Irganox L57. The 

OOT results for each oil blend are presented in Fig. 4 where again, a significant increase in 

temperature was observed when 3, 5 and 8 were incorporated into the blend when compared 

to the base oil in isolation (ca. 245-249 C).  

 
Figure 4. Average oxidation onset temperature analysis of the glycerol series 3, 5 and 8 

(tested in duplicate). 
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The structure-activity relationships were also investigated by comparing the triphenol 3 and 

the diphenol 5. It was expected that the triphenol 3 would provide the greatest oxidative 

stability to the lubricant base oil in comparison to the diphenol 5 as a result of the extra active 

phenolic functionality. This, however, was not observed and instead the diphenol 5 provided 

excellent stability with an oxidation induction time of ca. 12 minutes in comparison to ca. 10 

minutes for the triphenol 3. This induction time was also much greater than both of the 

commercially available antioxidants Irganox L135 and L57 and it was proposed that the 

diphenol 5 had the most effective balance between active functionalities and solubility. 

Oxidative stability analysis of triethanolamine and triisopropanolamine derivatives 11 and 12 

proved more challenging as the solubility in the lubricant base oil remained an issue and a 

longer heating time (ca. 2 hours compared to 30 minutes) and higher temperature (ca. 70 C 

compared to 50 C) was required in order to produce the blend. However, unexpectedly 

excellent OIT of ca. 11-14 minutes and OOT of ca. 245-251 C were observed for 11 and 12 

revealing enhanced oxidative stability in comparison to Irganox L135 and Irganox L57 (Fig. 

5).  

 

Figure 5. Average oxidation induction time analysis of triphenols 11 and 12 (tested in 

duplicate).  
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The above results revealed that these compounds did have very promising antioxidant 

capabilities but disappointingly solubility was an issue. To further refine the structure of 

triethanolamine and triisopropanolamine derivatives 11 and 12, an additional alkyl chain was 

incorporated for enhanced solubility. Oxidative stability analysis of 16 and 19 were then 

carried out that revealed an oxidation induction time of ca. 11-12 minutes and oxidation onset 

temperature of ca. 245-249 C (Fig. 6), performing in the same region as triethanolamine 

(11), triisopropanolamine (12) and glycerol (3, 5 and 8) derivatives.  

 

Figure 6. Average oxidation induction time analysis of diphenols 16 and 19 (tested in 

duplicate). 

These results highlight the importance of balancing functionality with solubility where 

replacement of one active phenolic moiety for a single solubilising alkyl chain had little to no 

effect on the OIT and OOT parameters. In addition, whilst the core monomers themselves do 

not necessarily contribute to the antioxidant capabilities of these compounds, they do afford 

higher molecular weight additives which possess a larger number of antioxidant units that are 

in turn are less volatile (cf. commercially available antioxidants) and thus residence times 

within the hydrocarbon lubricant matrix are enhanced. 

3. Conclusion 

In summary, a series of alternative core units (glycerol, triethanolamine and 

triisopropanolamine derivatives) were investigated for their use in the synthesis of tri-armed 
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phenolic antioxidants. Oxidation induction time (OIT) revealed that the presence of glycerol 

based derivatives 3, 5 and 8 in the base oil resulted in a significant increase in the stability of 

the sample from < 3 minutes for the unblended base oil to ca. 9-12 minutes for the blended 

samples. In addition, 3, 5 and 8 showed superior performance to both commercial 

antioxidants, Irganox L135 and Irganox L57. A series of nitrogen core units were also 

investigated and the triethanolamine and triisopropanolamine derivatives 11 and 12 revealed 

excellent oxidation induction times of ca. 11-14 minutes, however, solubility in the lubricious 

base oil proved to be an issue. As an alternative, 16 and 19 were synthesised that 

incorporated a solubilising alkyl chain and revealed oxidation times in the region of ca. 11-12 

minutes. These results confirmed that the central core unit does not necessarily contribute to 

the antioxidant capabilities and the solubility of an additive is just as important as antioxidant 

functionality when considering the design of new tri-armed antioxidants. 
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