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Abstract: PROTECT: Pervasive and useR fOcused biomeTrics bordEr projeCT is an EU project funded by the Horizon 2020
research and Innovation Programme. The main aim of PROTECT was to build an advanced biometric-based person identification
system that works robustly across a range of border crossing types and that has strong user-centric features. This work presents
the case study of the multibiometric verification system developed within PROTECT. The system has been developed to be suitable
for different borders such as air, sea, and land borders. The system covers two use cases: the walk-through scenario, in which
the traveller is on foot; the drive-through scenario, in which the traveller is in a vehicle. Each deployment includes a different set of
biometric traits and this paper illustrates how to evaluate such multibiometric system in accordance with international standards
and, in particular, how to overcome practical problems that may be encountered when dealing with multibiometric evaluation, such
as different score distributions and missing scores.

1 Introduction

Biometric systems make use of the physiological and/or behavioral
traits of individuals for recognition purposes [1]. The physiological
traits include, among others, the so called "ICAO biometrics" from
the International Civil Aviation Organization, which has defined the
biometric file formats and communication protocols to be used in
passports and selected the following biometric traits for this purpose:
facial recognition, fingerprint recognition, and iris recognition [2].
Other non-ICAO physiological biometric traits are hand-geometry,
retina, and ear. Among the behavioral biometric traits there are
gait, signature, and voice. Biometric systems that use a single trait
for recognition are referred to as single-modality or unimodal bio-
metric systems. Compared to an unimodal system, a multimodal
biometric system based on different traits is expected to be more
robust to noise, address the problem of non-universality, improve
the matching accuracy, and provide reasonable protection against
presentation attacks by consolidating the evidence obtained from
different sources [3].

PROTECT∗: Pervasive and UseR Focused BiomeTrics BordEr
ProjeCT is a H2020 security research project aimed at deliver-
ing to border authorities an enhanced biometric-based on-the-move
traveller identification system. The system can be deployed at a
wide range of Automated Border Control (ABC) areas – air, land,
and sea – supporting border guards to facilitate smooth and non-
intrusive rapid crossing by travellers. The ability for the system to
efficiently process low-risk travellers, combined with increased lev-
els of accuracy, security and privacy standards, are central ambitions
of the project. PROTECT project aims to introduce a less intrusive
approach to biometric data capture and verification with the use of
contactless biometrics. For the purposes of multimodal biometric ID

∗http://projectprotect.eu/

verification, project partners proposed to design and develop a Bio-
metric Capture Area (BCA), which would incorporate a number of
biometric sensors. Furthermore, an important feature of PROTECT
is that it aimed at exploring solutions for ABC beyond current leg-
islation, meaning that non-ICAO biometric traits and protocols have
been tested in the expectation that in the future they will be selected
for their use in ABC, possibly endorsed also by the results of this
project.

This paper presents the case study of the PROTECT multi-
modal biometric ABC solution. The evaluation aims at assessing the
performances of two deployments:

1. The walk-through system is a biometric capture area (BCA)
through which the traveller can pass on foot, eventually carrying
a luggage, rucksack, or bag, and get automatically authenticated
(ABC) on the move. The walk-through BCA was designed to be
accessible – i.e. to wheelchair users – with appropriate placement of
biometric sensors for this purpose. The biometric sensors used for
this scenario are all contactless, allowing the traveller to walk with-
out stopping. The system is located indoor in presence of artificial
and natural light. Fig. 1 illustrates the design of the walk-through
biometric corridor.
2. The drive-through system is a BCA through which the traveller
can pass in a vehicle. The variability here is given by the height of
the vehicle and the distance and angle between the traveller and the
sensors that change depending on where the vehicle stops. The bio-
metric sensors used for this scenario include contact and contactless
acquisition and allow the traveller to get authenticated from within
the vehicle. The system is located outdoor in presence of mainly
natural light during the day, and artificial light during night. Fig. 2
illustrates the design of the drive-through biometric corridor.

Data collection was performed in order to reflect the two scenar-
ios described above. Table 1 summarizes the biometric traits in the
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Fig. 1: Design of the Biometric Capture Area (BCA) for air/maritime borders (walk-through scenario). Section A is aimed at the capture of
anthropometrics. Sections B, C, and D contain each a sensor cluster for the capture of 2D, 3D face, and periocular.

PROTECT multimodal dataset v2 and indicates in which acquisi-
tion scenario they were collected. A more detailed description of the
dataset is provided in Section 2.

Our key contributions in this work are:

• We provide an insight on how to evaluate a multibiometric sys-
tems in accordance with international standards and, in particular, on
how to overcome practical problems that may be encountered when
dealing with multibiometric evaluation. This is performed on a non-
chimeric database acquired in environments simulating two real-case
scenarios. This is very different from performing experiments on
existing fully-controlled datasets.
• We describe the process and issues related to collecting a non-
chimeric multimodal biometric database including 10 different
modalities;
• We address practical problems, such as having different score dis-
tributions, with different size and shape, that arise from having a very
heterogeneous dataset;
• We provided detailed, thus reproducible, solutions for data aug-
mentation and missing score imputation in order to obtain a set of
scores of sufficient size to perform reliable performance assessment
according to the guidelines provided by international standards.

1.1 Technical performance testing of biometric systems
and devices

International standards were adopted for consistency and compara-
ble testing of the biometric traits. In particular, data collection and
evaluation were guided by the ISO/IEC 19795 [4] standard series.

Technical performance testing seeks to determine error and
throughput rates, with the goal of understanding and predicting the
real-world error and throughput performance of biometric systems.

Metrics:
• False match rate (FMR): proportion of zero-effort impostor
attempt samples falsely declared to match the compared non-self
template;
• False non-match rate (FNMR): proportion of genuine attempt
samples falsely declared not to match the template of the same
characteristic from the same user supplying the sample;
• Equal error rate (EER): value at which FMR = FNMR;
• FMR1000: the lowest FNMR for FMR <= 1/1000;
• ZeroFMR: the lowest FNMR for FMR = 0;
• Detection error trade-off (DET) curve: modified ROC curve
which plots error rates on both axes (false positives on the x-axis
and false negatives on the y-axis).

Fig. 2: Design of the Biometric Capture Area (BCA) for land
borders (drive-through scenario).

2 PROTECT multimodal dataset version 2

A first version of the PROTECT dataset was collected in 2017 and
the results of the experiments carried on it are reported in [5].

The target population for the PROTECT systems is the universe of
travellers crossing the different types of border controls. It should be
noted that, following the current laws that impose the users of eGates
to be over 18 years old – in the majority of the European Countries
– and due to the legal implications of collecting biometric data from
minors, the under 18s were excluded from the targeted population.
Considering that the target population is the universe of travellers,
the corpus should include subjects with a wide range of variety in
age, gender, ethnicity, and eye/skin types. The age of the subjects
spans a large interval from 22 to 72. The age distribution in 5-year
intervals can be observed in the graphic depicted in Fig. 3. Obtain-
ing an operationally representative distribution of males and females
was challenging as a result of the environment where the collection
was made which is predominantly composed of male staff. The final
distribution was 53% male, 44% female and 3% "prefer not to say"
as shown in Fig. 4. Concerning the variety of ethnicities, the set of
volunteers includes Caucasians, Asians, Africans, Indians, Middle-
easterners and others. Naturally the variety of ethnicities results in a
diversity of eye and skin types.

Data was recorded from 38 subjects. This collection was an
extremely complex event and required a significant effort from all
the partners involved. The collection events involved several logis-
tically complex issues since all sensors had to be transported and
installed in one place and the acquisition setup had to integrate all
different sensors for each volunteer. In the collection of the final ver-
sion of the PROTECT Multimodal DB dataset (v2) an effort was
made to follow the recommendations given in the ISO/IEC standard
documents regarding the multiplicity of sessions and other relevant
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Table 1 List of biometric traits in the PROTECT multimodal dataset v2.

Biometric trait Description Acquisition scenario

2D Face 2D videos of the face (VIS and NIR) Walk through, Drive through
3D Face 3D image of the face, composed by the 2D image plus the depth field information Walk through, Drive through
Thermal Face Body heat pattern of the face derived primarily from the pattern of superficial blood vessels under the skin Walk through, Drive through
Iris The coloured region of the eye enclosed between the pupil (dark region) and the sclera (white region) Drive through
Periocular Eye and surrounding area including eyelids, eyebrows (VIS and NIR) Walk through
Finger Veins The patterns of the human finger veins beneath the skin’s surface Drive through
Hand Veins The patterns of the human hand veins beneath the skin’s surface Drive through
Anthropometrics Skeleton joints positions Walk through

Fig. 3: Distribution of the age intervals of subjects in the corpus.

Fig. 4: Distribution of the gender of subjects in the corpus.

aspects (such as a sufficient number of samples in each session and
the repetition of the same sequence of collection across different
sessions, among others) to ensure operationally representative vari-
ability in the data to be used for the performance evaluation of the
recognition systems.

The collection spanned a period of one week and for some sub-
jects it was possible to collect data in 2 different sessions, as much
as possible one in the beginning of the week and another at the end.
Fig. 5 shows two photos from the data collection campaign held at
University of Reading in 2018. On the left, the data collection for
the walk-through scenario: A corridor was assembled according to
the design in Fig. 1. Clusters of sensors were attached to the cor-
ridor structure. In Fig. 5, on the right, the acquisition setup for the
drive through corridor is shown. The sensors were in turn positioned
alongside the front-seat window. The subjects also used sensors on
smartphones within the vehicle (e.g. for iris recognition).

In the following, the data collection as well as the verification
algorithms for each biometric modality used in PROTECT are briefly
described. More detailed descriptions of the methods can be found
in the referenced articles in each biometric modality section below.
A summary of the parameters used for the experiments in PROTECT
is provided in Table 2.

Fig. 5: Photos from the data collection event held at University of
Reading. Left: simulated walk-through corridor. Right: drive through
scenario data acquisition.

2.1 2D face

As indicated in Table 1, as part of the PROTECT multimodal dataset
v2, 2D face was captured in both ’walk-through’ and ’drive-through’
scenarios. In the walk-through corridor scenario, two visible-light
(VIS) digital cameras and one near infra-red (NIR) camera were used
for collecting 2D faces. The NIR camera was placed between the
two VIS cameras along the corridor. A video sequence was recorded
by each camera while the user walked through the corridor. The
user was instructed to perform multiple walks with three main types
of variations: walking normally, walking with and without glasses
on if the person has personal glasses, and pulling a wheeled travel
bag and/or carrying a backpack. Some other variations include users
holding a phone in front of the face, users making a phone call, and
avoiding looking to the direction of the camera while walking. The
variations aim to increase the range of challenges for face recogni-
tion such as non-straight head pose, partial occlusions, motion blur,
sunglasses, and reflections across the dataset. Some examples from
both VIS and NIR cameras are shown in Fig. 6.

Fig. 6: Example images of the 2D face extracted from the video
streams in walk-through scenario.

One of the main objectives in PROTECT was to investigate the
integration of biometric solutions across platforms. In particular, for
2D face, the verification needed to be implemented on both PCs and
smartphones. Visage SDK is a mature product and optimised to sup-
port all major platforms including smartphone operating systems.
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As the task for 2D face was not a research topic, the implemen-
tation of 2D face verification was to use this mature commercial
software. Also, in PROTECT, 2D face was not only used for biomet-
ric verification but also for face tracking, thus requiring real-time
face detection and recognition. This could not have been achieved
with less mature open-source solutions such as OpenFace. Open-
Face was instead used for 3D face verification (see Section 2.2) as
the slow processing of light-field images with the current available
libraries had already prevented the use of this modality in real time.
The images selected for the evaluation were extracted automatically
using the Feature Quality provided by Visage Technologies’ soft-
ware∗ for captured VIS video sequences, and manually confirmed
to be of high quality. A minimum of 10 images per walk-through
were extracted from across the two VIS cameras, with variations
arising from quality of the overall sequence. Face verification was
performed using the Visage face verification tool on each extracted
face. The final score for a walk-through was the average of the scores
against the gallery image. The setup for NIR face verification was
similar to the VIS setup as described above. The selection of images
was the same as for the VIS cameras as well as the method used in
the calculation of the final scores per walk-through.

In the drive-through scenario, a modified Google Nexus 5X smart-
phone frontal camera was used for capturing selfie facial images
while the user was sitting inside a vehicle. The NIR cut-off filter
from the frontal camera was removed and the sensor refocused to
enable NIR sensitivity imaging, with a custom attachable external
NIR light, allowing the camera to capture NIR imagery. Fig. 7 shows
some example images - the top row are examples of better quality
images, and the bottom row contains examples of some of the possi-
ble challenges such as additional people in the background, glasses
and closed eyes. Face verification on the acquired images was also
achieved by using the Visage face verification tool.

Fig. 7: Example images of the 2D face captured on a smartphone in
the drive-through scenario.

2.2 3D face

In the PROTECT multimodal dataset v2, the 3D face dataset con-
tains face images captured with light-field technology, using a Lytro
ILLUM plenoptic camera. Light-field imaging records not only the
intensity of light, but also the intensity of light rays for any direction
in space. This information allows to estimate the scene depth map
and to reconstruct a 3D model of the observed objects.

∗https://visagetechnologies.com/

Face images were acquired in the two scenarios that were simu-
lated for the data collection. For the walk-through corridor, volun-
teers were acquired while walking in the corridor and approaching
the 3D face capture area. The volunteers were asked to walk through
the corridor 5 times per variation (with and without eyeglasses) and
4 pictures at different distances subject-camera were acquired each
time (see Fig. 8). For the drive-through scenario, volunteers were
acquired while they were sitting in a stationary car. Four test images
per face variation, including neutral, wearing glasses, smile, sad,
angry, surprise, and eyes closed, were acquired (see Fig. 9). For
both scenarios, 4 enrolment pictures in more controlled conditions
(uniform background, frontal face pose) were collected.

Fig. 8: Example images of the 3D face PROTECT dataset. Images
collected in the walk-through scenario.

Fig. 9: Example images of the 3D face PROTECT dataset. Images
collected in the drive-through scenario.

Fig. 10: Illustrated representation of the 3D face verification
algorithm. OpenFace features are extracted from 5 face images
selected from the multi-view representation. When two subjects are
compared, cross comparison of the two set of features is performed.

The 3D face verification algorithm was developed within PRO-
TECT. It exploits one of the light-field image representations,
namely the multi-view or sub-aperture image (see Fig. 10). An array
of 5× 5 views has been extracted with regular angular sampling in
the perspective range [−0.5, 0.5]. The tool used for processing the
light-images, namely the Lytro power tools beta, allows sampling in
the range [−1.0, 1.0] but large perspective changes can result in arti-
facts. Five views, those with highest disparity between each other:
corner images and central images, are selected and preprocessed sep-
arately. The face is located, aligned, and cropped with a pretrained
model based on Histogram of Oriented Gradients (HOG) features
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available in the open source library DLIB∗. OpenFace [6] features
are then extracted from each view. When two faces are compared,
cross distances among all views of the two light-field images are
computed. The minimum distance is then selected as final compari-
son score. The reader is referred to [7] for a more detailed description
of the technique and to [8] for a survey on light fields for face
analysis.

2.3 Thermal face

A thermal infrared image of the human face has its unique heat-
signature which can be used as a pattern for recognition. Thermal
face verification does not require specific illumination and is robust
to uneven lighting. This makes this modality particularly suitable
for low-light acquisition. However, the use of infrared images for
automatic face verification is not free of challenges. Thermal face
imaging is sensitive to the emotional, physical and health condition
of the subject. Moreover, the thermal features of the face depend
on temperature of body, environment, and occlusions present on
the face such as scarfs, hairs, facial hairs, glasses, or any disguise
accessories that alter the emitted heat pattern.

Thermal face images were acquired in the drive-through scenario
from volunteers sitting in a stationary car. The pictures feature dif-
ferent expressions to map the intra-class variability of the face. The
collected dataset contains 28 subjects with 8 face images per sub-
ject. In case of a subject wearing eyeglasses, two sets of 8 images
each (glasses/no glasses) have been collected for them. Examples
of thermal face images are shown in Fig. 11. The resolution of the
images is 640× 512 pixels with a thermal resolution of 50 mK. The
set of 8 images includes only images with frontal pose. Three images
are with neutral facial expression, 4 images include emotions: smile,
sad, angry and surprise; one picture with eyes closed. Several par-
ticipants took part in a second image acquisition sessions following
again the same protocol as described above.

Fig. 11: Examples thermal face images acquired in the drive-
through scenario.

The verification algorithm relies on Support Vector Machine
(SVM) and binary features. Face detection is performed using cus-
tomized FasterRCNN algorithm. It is the Region Proposal Network
(RPN) that shares full-image convolutional features with the detec-
tion network [9]. For face alignment Supervised Descent Method
(SDM) with SIFT features [10] have been applied. SDM has been
used for minimizing a Non-linear Least Squares (NLS) function
and facial landmarks detection. The workflow of the thermal face
verification system is illustrated in Fig. 12.

Since one of the biggest challenges for thermal face recognition
systems is to reduce the fluctuations of temperature of the sub-
ject’s face and environment, it is required to process the image to
remove the fluctuations of pixel intensity. The Difference of Gaus-
sians (DoG) filtering [11] has been applied, which is a common
technique to remove illumination variations for visible face recog-
nition. It is a band-pass filter that involves the subtraction of two
Gaussians. As feature descriptor, multi-block local binary pattern
(MB-LBP) was used [12]. MB-LBP achieved encouraging perfor-
mance and due to modifications introduced to the original LBP

∗http://dlib.net/

method can capture large scale structures that may be the dominant
features of images. The adopted DML scheme compares feature vec-
tors using distance metrics. The extracted MB LBP feature vectors
are classified using distance metrics to finally perform pairwise iden-
tity verification. The pairwise identity verification is proposed as a
binary classification task performed with SVM. SVM, as a model
employing kernel trick is well fitted for datasets with limited vol-
umes. To provide a consistent distance learning comparison, binary
SVM classifier was trained on values of Euclidean metrics between
feature vectors.

Fig. 12: Workflow of the thermal face verification system.

2.4 Periocular

Identifying people using the region around their eyes, known as
periocular verification, has become an active research topic in bio-
metrics. Background research has been conducted to prove the
importance and strength of using the periocular region for biometric
identification tasks [13], in particular for situations where the facial
region is largely covered or occluded, and long-distance iris capture
fails. For these reasons, as a novel biometric trait, periocular has pri-
marily been considered for combination with face [14][15] and iris
recognition [16][17] to enhance overall recognition accuracy.

Fig. 13: Example images of the periocular region extracted from the
face frames in the walk-through scenario.

To obtain the periocular images, processing is first done on the
face images. Thus, the same data collected in the walk-though sce-
nario are used as for 2D face (see section 2.1). For each face image,
cropping is implemented to get the two periocular regions: left eye
and right eye regions. Fig. 13 shows a few example images from
both VIS and NIR cameras of the extracted periocular regions, the
top row showing better quality examples, and the bottom row show-
ing more challenging cases where the image quality is affected by
motion blur, relfection, eyewear and closed eye. Local Binary Pat-
terns (LBP) [18] have been widely applied in biometric recognition.
The literature describes variations of LBP used for face recognition,
presentation attack detection, and iris recognition, due to their dis-
criminative power for finding fine details on human skin, and their
computational efficiency. Thus, LBP is chosen in this work to create
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Table 2 List of algorithm parameters used in PROTECT evaluation.

Biometric trait Algorithm parameters

2D Face Version of the software: Visage SDK v8.6b1.

3D Face

Light-field image processing: Lytro power tools Beta;
View extraction: array of 5x5 views extracted with regular angular sampling in the perspective range [-0.5, 0.5];
Number of views: 5 (corner images and central image);
Face detection: DLIB (with DLIB’s shape predictor with 68 face landmarks);
Feature extraction: OpenFace (with DLIB’s face recognition ResNet model v1);
Distance: Euclidean;
Verification threshold: 0.6.

Thermal Face

Histograms of Multi-Block LBP:
Size of patch: 20;
Number of blocks: 9;
Scale: 3;
Normalization: L2;
Kernel in x and y directions for computing the gradient: 1.

Difference of Gaussian:
Standard deviation of the smaller Gaussian: 1;
Standard deviation of the larger Gaussian: 2;
Normalization: truncation of histograms ends; normalization to the 8-bit interval.

Iris Software: IrisSDK by IriTech.

Periocular

Preprocessing:
CLAHE: ClipLimit = 3.0.

LBP parameters:
NumNeighbours = 16;
Radius = 2.

Finger & hand veins

F1, F2, F3:
Preprocessing: Zhao09 (D0 =0.01, a = 0.5, b = 0.8, n = 2.0), CLAHE (ClipLimit = 0.001), Zhang09 (GaborBandwidth = 1.14, GaborSigma = 7),
Resize (ResizeFactor = 0.5);
Feature Extraction: MaximumCurvature (Sigma = 2.5);
Comparison: MiuraMatcher (cr = 6, ch = 30, cw = 80).

F4:
Preprocessing: CLAHE (ClipLimit = 0.01), Zhang09 (GaborBandwidth = 1.12, GaborSigma = 3);
Feature Extraction: MaximumCurvature (Sigma = 4);
Comparison: MiuraMatcher (cr = 3, ch = 30, cw = 80).

G2, G7, G8:
Preprocessing: Resize (ResizeFactor = 0.5);
Feature Extraction: MaximumCurvature (Sigma = 3.5);
Comparison: MiuraMatcher (cr = 15, ch = 30, cw = 45).

G1, G3, G4, G5, G6:
Preprocessing: Zhao09 (D0 = 0.01, a = 0.5, b = 0.8, n = 2.0), Zhang09 (GaborBandwidth = 1.14, GaborSigma = 7), Resize (ResizeFactor = 0.5);
Feature Extraction: SIFT (WindowSize = 2, EdgeThresh = 10, Levels = 3, FilterWidth = 15, MinNumberFeatures = 150);
Comparison: SIFT (ScoreCalculation = Ratio, RatioThreshold = 2.0).

All parameters and methods are according to the PLUS OpenVein Toolkit (http://wavelab.at/sources/OpenVein-Toolkit/), see reference:
Kauba and Uhl (2020) [19].

The mapping for the finger vein sensor is:
F1: Trans-illumination LASER, palmar;
F2: Trans-illumination LASER, dorsal;
F3: Trans-illumination LED, palmar;
F4: Trans-illumination LED, dorsal.

The mapping for the hand vein sensor is:
G1: Trans-illumination, palmar;
G2: Trans-illumination, dorsal;
G3: Reflected Light 850 nm, palmar;
G4: Reflected Light 850 nm, dorsal;
G5: Reflected Light 950 nm, palmar;
G6: Reflected Light 950 nm, dorsal;
G7: Mobile Hand Vein AddOn (Nexus 5), palmar;
G8: Mobile Hand Vein AddOn (Nexus 5), dorsal.

Anthropometrics

Software: ITTI’s anthropometric verification system;
Classifier: Artificial Neural Network;
Number of cameras: 3;
Distance between cameras: 2.5 meters.

a descriptor of the 2D periocular image. The same approach is used
for both VIS and NIR periocular verification.

2.5 Iris

Iris images were captured for the drive-through scenario using an
IriShieldTMMK212OU device, which is a commercially available
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ultra-compact auto-capture iris scanner. The device is connected to
a smartphone using a micro-USB cable, and is operated via a ded-
icated app on the phone. The sensor works at an optimal distance
of 5cm from the image sensor and has a focal depth of 6mm, and
includes a built-in NIR LED illuminator allowing it to work both
in- and outdoors. The image format is 640 x 480 pixels in 8-bit
grayscale, and is compliant to the ISO Standard 19794-6 (2005 &
2011). The iris images captured for the dataset were collected out-
door while the users were sitting in a vehicle, under a variety of
conditions. Fig. 14 presents a few example iris images captured
using the device. The top row demonstrates examples of good quality
captures, whereas the bottom row contains more challenging factors
such as contact lenses, partial occlusion, out-of-focus, and glasses
with reflection. As for 2D face, in PROTECT iris verification was
not a research topic. The selected software for iris verification was
a commercial solution, namely the IrisSDK by IriTech∗. However,
iris was dropped from the evaluation after a biometric selection
was performed to retain only the most suitable traits for the final
demonstrators.

Fig. 14: Example iris images captured using the handheld device in
the drive-through scenario.

2.6 Vascular Biometrics

Vascular pattern based biometric systems, commonly denoted as
vein biometrics, offer several advantages over other well-established
biometric recognition systems. In particular, hand and finger vein
systems have become a serious alternative to fingerprint based ones
for several applications. Vein based systems use the structure of the
blood vessels inside the human body, which becomes visible under
near-infrared (NIR) light. As the vein structure is located inside the
human body, it is resistant to abrasion and external influences on the
skin. Furthermore, a lifeness detection to detect presentation attacks
can be performed easily [20].

In the course of the data acquisition, hand and finger veins were
acquired using custom built capturing devices in the drive-through
scenario. Finger veins have been acquired using the LED and laser
version of the sensor presented in [21], hand veins using a stationary
capturing device and a mobile phone, respectively. The stationary
hand vein sensor [22] provides three different illumination scenarios:
reflected light using 850nm and 950nm LEDs and a 16x16 NIR LED
panel for transillumination. The mobile phone in use is a modified
Nexus 5 smart phone where the NIR blocking filter was removed.
For sufficient NIR light, a custom build illumination add-on [23] was
added to the phone. Both, hand and finger veins, have been acquired
from the palmar and dorsal view.

The acquisition was done in two timely separated sessions: (1)
An outdoor session where the volunteers sit in a stationary car and
(2) an indoor acquisition under controlled illumination conditions.
The first session should simulate the drive-through scenario under
real-world acquisition conditions, while the second one serves as a
reference data set. In both sessions, all subjects have been acquired
using all sensors and illumination scenarios. Both, hand and finger
veins, have been acquired from the palmar and dorsal view. For each

∗https://www.iritech.com/products/software/irissdk-eye-recognition-

software

modality/sensor variation 5 samples have been taken. This sums up
to 20 finger vein images (2 sensors x 2 perspectives x 5 samples)
and 40 hand vein images (4 sensors x 2 perspectives x 5 samples)
per subject per session.

The recognition tool-chain for evaluating the acquired vein
images consists of the following components: (1a) For finger region
detection and finger alignment an implementation that is based on
[24] is used. (1b) The ROI extraction for hand vein images is done
manually by fitting a rectangular ROI is fit inside the hand area. The
ROI images have a size of 512x512 pixels. (2) To improve the visi-
bility of the vein pattern High Frequency Emphasis Filtering (HFE)
[25], Circular Gabor Filter (CGF) [26] and simple CLAHE (local
histogram equalisation) [27] are used during pre-processing. (3a)
For the simple vein pattern based feature methods, MC and PC, the
binary feature images are compared using a correlation measure, cal-
culated between the input images and in x- and y-direction shifted
and rotated versions of the reference image as described in [28]. and
(3b) the SIFT based approach as described in [29], respectively.

2.7 Anthropometrics

Anthropometry refers to the measurement of the human individual
and involves the systematic measurement of the physical proper-
ties of the human body, primarily dimensional descriptors of body
size and shape. Anthropometrics is one of the novel biometric traits
investigated in PROTECT and consists in the measurement of the
human body as well as the analysis of human gait. Of course,
anthropometrics is very suitable for the walk-through scenario.

For anthropometric verification, the system developed by ITTI∗

was adopted. The method consists in collecting gait and anthro-
pometric information by using a set of Microsoft Kinect devices.
The Kinect SDK provides functionality for accurate person tracking
from about 1.5m to up to 4.5m. Gait collected from 3m is vulner-
able to random noise and presentation attacks. In order to extend
the collection distance, several Kinects (3 for this collection) with
preprocessing platforms have been used to construct a network of
sensors that is able to cover the entire Biometric Capture Area.

The anthropometric verification system uses an artificial neural
network as a classifier. The network can assess similarity between
two recorded patterns (templates, feature vectors). As a first step of
the training process, the collected data have been transformed into
feature vectors (one vector for each subject and for each sample).
Subsequently, the acquired feature vectors were paired with each
other in order to produce training batches. The resulting dataset
was divided into test and validation sets. The test dataset included
about 60% of all subjects while the validation dataset contained the
remaining 40%. The neural network model has been trained and
validated based on these two datasets.

3 Multibiometric evaluation

In order to perform an evaluation able to correctly model the inter-
class and intra-class variability, a data augmentation technique is
tested and reported in this Section. The number of comparisons on
which each biometric modality is tested can vary considerably (e.g.
128160 for 3D face in the walk-through scenario versus 7440 com-
parisons for hand veins). This is due to various factors, including the
complexity of acquiring certain biometric traits compared to others,
and the necessity of including more variations for certain biometric
traits (e.g. face has a large intra-class variability that must be mod-
elled). For multimodal evaluation, two problems had to be addressed:
(i) different number of comparisons per modality; and (ii) missing
scores.

Regarding (i), let s1 and s2 be two subjects to be compared. For
both subjects, Eh = 4 and Th = 4 hand vein samples and Ef = 4
and Tf = 20 face samples were collected, where E and T indi-
cate the enrolment and test samples, respectively. For hand veins,
there will be Eh × Th = 4× 4 = 16 comparisons, while for face

∗https://www.itti.com.pl/en/home/
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Fig. 15: Illustrated example of data augmentation.

Ef × Tf = 4× 20 = 80 comparisons. To perform multibiometric
evaluation, the 16 comparison scores from hand veins would be
matched with only 16 comparison scores from face and the 64
remaining scores would not be used. Also, the total amount of
comparisons would be limited by the lower bound defined by the bio-
metric modality with less comparison scores, leading to less reliable
results. Thus, it has been decided to overcome problem (i) by artifi-
cially creating independent observations for the multimodal system
by randomly selecting comparison scores from the available pool of
scores from the different single modalities. Thus: for each compar-
ison of si with sj , where i = 1, 2, . . . , I is the number of enrolled
subjects, and j = 1, 2, . . . , J is the number of test subjects, the list of
comparison scores Lk = comparison(si, sj) from each biometric
modality k is obtained. To create a multimodal observation, that is a
tuple composed by the scores coming from the different modalities,
a score is randomly selected from each single-modality list to repre-
sent the output of that modality. In this way, it is possible to obtain
any number of multimodal observations. An illustrated simplified
example is provided in Fig. 15.

However, for some comparisons of si with sj , the list of compar-
ison scores from one or more modalities may be empty. In this case
we run into problem (ii) of missing scores. Problem (ii) is solved
by using a technique for missing score estimation from nearest
neighbours. This is discussed in Section 3.2.

Minmax normalization followed by simple sum of scores has been
observed to result in reasonable improvement in matching accuracy
of a multimodal biometric system [64]. This scheme is tested along
with weighted sum. The reason why it has been decided not to use a
training phase to learn the fusion weights is that the data are already
limited in size (only 38 different subjects) and splitting the database
in training, development, and test sets, would have led to poorly
reliable performances.

Some of the biometric traits listed in Table 1 (e.g. iris, thermal
face in the walking-through scenario) were not included in the fol-
lowing tests as, after data collection, a biometric selection was per-
formed and only the most suitable traits for the final demonstrators
were kept.

3.1 Data augmentation

In this section, the performances obtained from data augmentation
are first compared to the original non-augmented single-modality
performances to demonstrate the reliability of the technique. The
augmented distance matrices are then used for multimodal evalu-
ation. The distance matrices are obtained by simulating a system
with 10 enrolment samples and 40 test samples per subject, for a
total of (10× 38)× (40× 38) = 380× 1520 = 577600 compar-
isons. As can be seen from the values reported in Tables 3 and 5, the
performances obtained on the augmented comparison lists are very
similar to those obtained on the original number of comparisons.
More details regarding the results are given in deliverable D7.4 of
PROTECT∗. Also, from Table 5 it can be noted that for finger and
hand veins, two values are reported for the original comparison lists.
This is due by the fact that left and right hand were evaluated sep-
arately. While computing the augmented comparison list for finger
and hand veins, the scores were randomly selected from both left and
right hand lists. The performance values obtained on the augmented
list, as expected, are in the range defined by the two original score
sets.

∗http://projectprotect.eu/

Table 3 Walk-through scenario: Comparison of the results obtained on the
original data with the results obtained on the augmented comparison list.

3D face, walk-through scenario

Original Augmented data
EER 0.0074 0.0075
FMR1000 0.0299 0.0353
ZeroFMR 0.1003 0.1102

Anthropometrics

Original Augmented data
EER 0.0298 0.0247
FMR1000 0.1159 0.1037
ZeroFMR 0.3514 0.3375

2D face VIS

Original Augmented data
EER 0.0179 0.0219
FMR1000 0.0518 0.0513
ZeroFMR 0.0956 0.0963

2D face NIR

Original Augmented data
EER 0.0705 0.0752
FMR1000 N/A N/A
ZeroFMR N/A N/A

Periocular VIS

Original Augmented data
EER 0.4828 0.5450
FMR1000 N/A N/A
ZeroFMR N/A N/A

Periocular NIR

Original Augmented data
EER 0.3837 0.5613
FMR1000 N/A N/A
ZeroFMR N/A N/A

Since this technique implies random selection, for all the exper-
iments employing data augmentation, performance assessment is
carried out on 5 augmented matrices per modality and the results
are then averaged.

3.1.1 Walk-through scenario performances: In this Section,
the results obtained by multimodal fusion on the augmented data
(577600 comparisons) are reported. For the walk-through scenario,
the biometric traits involved are 2D face VIS, 2D face NIR, 3D
face, periocular VIS, periocular NIR, and anthropometrics. For these
tests, when a score is missing for one biometric trait, the entire tuple
is removed from the score matrix, meaning that the correspond-
ing (si, sj) comparison is removed. In this case, no scores were
missing from the anthropometric system. After removing the tuples
corresponding to the other traits missing scores, the final number of
comparisons is 302400.

Fig. 16 reports the DET curves obtained from the different tests
carried out and Table 4 reports the corresponding performance val-
ues. The first test consists in the fusion of all biometric traits
("ALL" in the figure). Among all the biometric traits in this scenario,
periocular reported the worst performances in both visible and near-
infrared illumination (as reported in Table 3). Thus, the walk-through
system is further tested after removing periocular from multimodal
fusion and the achieved performances are very good ("ANT, 3DF,
2DF VIS, 2DF NIR" in Table 4).

Then, all the combinations of three biometric traits are tested. The
one achieving best performance is composed by ANT, 3DF, and 2DF
VIS.

Finally, the combination of the two modules achieving best
single-modality performances (ANT and 3DF), is tested by fusing
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the two systems via weighted sum. Three DET curves correspond-
ing to the three weighted combinations achieving best performance
are showed in Fig. 16. Several weight combinations were tested, with
w1 = 0.1, 0.2, 0.3, ..., 0.9 and w2 = 1− w1.

Table 4 Multimodal fusion for the walk-through system: the results of different
combinations of barometric traits are reported in terms of EER, FMR1000, and
ZeroFMR.

EER FMR1000 ZeroFMR

ALL 0.0372 0.5069 0.9093
ANT, 3DF, 2DF VIS, 2DF NIR 0.0118 0.0248 0.0863
ANT, 2DF VIS, 2DF NIR 0.0151 0.0429 0.1676
3DF, 2DF VIS, 2DF NIR 0.0217 0.1195 0.2790
ANT, 3DF, 2DF NIR 0.0095 0.1079 0.4197
ANT, 3DF, 2DF VIS 0.0088 0.0224 0.0339
ANT*0.7 + 3DF*0.3 0.0076 0.0117 0.0932
ANT*0.9 + 3DF*0.1 0.0163 0.0204 0.0612
ANT*0.2 + 3DF*0.8 0.0063 0.0284 0.1127

Table 5 Drive-through scenario: Comparison of the results obtained on the
original data with the results obtained on the augmented comparison list.

3D face, drive-through scenario

Original Augmented data
EER 0.0328 0.0216
FMR1000 0.0384 0.0251
ZeroFMR 0.5830 0.5746

Thermal face

Original Augmented data
EER 0.1052 0.0828
FMR1000 0.4752 0.3398
ZeroFMR 0.5555 0.4177

Finger veins

Original Augmented data
EER [0.0005, 0] 0.0003
FMR1000 [0.0042, 0] 0
ZeroFMR [0.0085, 0] 0.0051

Hand veins

Original Augmented data
EER [0.1385, 0.1746] 0.1580

FMR1000 [0.2277,
0.3571] 0.2827

ZeroFMR [0.2768, 0.4866] 0.5436

3.1.2 Drive-through scenario performances: In this Section,
the results obtained by multimodal fusion on the augmented data
(577600 comparisons) are reported. For the drive-through scenario,
the biometric traits involved are 3D face, finger veins, hand veins,
and thermal face. Also for these tests, when a score is missing for
one biometric trait, the entire tuple is removed from the score matrix.
In this case, many scores were missing, in particular form finger and
hand veins. This is due to the fact that part of the samples were col-
lected outdoor in natural light and were then found to be not suitable
for verification. In fact, the sunlight had a negative influence on the
capturing device, leading to overexposed areas at outside regions of
the image, where the index and ring finger are located (see Fig. 17 for
a comparison between indoors and outdoors acquired images). The
other problem was the unnatural and uncomfortable position which
the data subjects had to hold during the capturing process. The back
window of the car was situated rather high, so especially smaller
people had to bend their arm and hand in order to reach the captur-
ing device which was located outside the car window. This caused

Fig. 16: DET curves for the walk-through system.

Fig. 17: Comparison of indoors (left) and outdoors (right) acquired
finger vein images.

Fig. 18: Comparison of indoors (left) and outdoors (right) acquired
hand vein images.

the hand not to lie flat on the sensor surface but tilted, which espe-
cially puts the index and ring finger in an unfavourable position for
acquisition. Thus, the best performance as presented in Table 5 is
given for both middle fingers only.

Regarding hand veins, the main cause of the missing scores is
again the combined evaluation of the outdoor and indoor session.
Same as for the finger vein sensor, the unfavourable position and
pose the data subjects had to maintain during the acquisition process
leads to all kinds of pose variations rather than hands that are posi-
tioned flat on the sensor surface (see Fig. 18 for a comparison of an
indoor and outdoor sample).

After removing the tuples corresponding to missing scores, the
final number of comparisons is 75600. The DET curves obtained by
fusing the four modalities using Minmax normalization and simple
sum are illustrated in Fig. 19.

In this multibiometric system, finger veins have way better per-
formances compared to the other biometric traits, thus the best
performance are obtained by giving weighs equal to zero to all other
biometric traits. For this reason, the case in which the answer from
the finger vein module is missing is analysed in more detail. Fig. 19
reports the DET curve obtained by the fusion of hand veins (HV),
3D face (3DF), and thermal face (THF). The biometric trait obtain-
ing best performance out of the three is further removed to assess the
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Fig. 19: DET curves for the drive-through system.

Table 6 Multimodal fusion for the drive-through system: the results of different
combinations of barometric traits are reported in terms of EER, FMR1000, and
ZeroFMR.

EER FMR1000 ZeroFMR

ALL 0.0030 0.0102 0.0227
HV, 3DF, THF 0.0248 0.0596 0.1268
HV*0.5 + THF*0.5 0.0705 0.1378 0.1792
HV*0.6 + THF*0.4 0.0728 0.1357 0.1768

performance of the system when the answer from the 3D face mod-
ule is missing too. The corresponding DET curves are showed in Fig.
19. The two DET curves corresponding to the two weighted combi-
nations achieving best performance are showed in the figure. Several
weight combinations were tested, with w1 = 0.1, 0.2, 0.3, ..., 0.9
and w2 = 1− w1.

The performance values corresponding to the DET curves in Fig.
19 are reported in Table 6.

3.2 Missing score imputation

As mentioned before, for some biometric traits in the PROTECT
multimodal dataset v2 and for some comparisons of si with sj , the
score may be missing. Various factors can result in incomplete score
vectors in multibiometric systems: (a) failure of a matcher to gen-
erate a score; (b) absence of a trait during acquisition; (c) sensor
malfunction; or (d) during enrolment, all necessary biometric traits
may not be available. In this section, the results obtained by using a
technique for missing score replacement are reported. The technique
is presented by Ding and Ross in [30]. Several techniques are tested
by the authors of [30] on a multimodal database, but the one achiev-
ing best performance is the K nearest neighbour (KNN) imputation
scheme. The idea is to predict the missing scores of a multimodal
system from the k most similar (nearest) tuples. Let D be the score
matrix:

D =


x1
x2
...
xn

 =


x1,1 x1,2 · · · x1,p
x2,1 x2,2 · · · x2,p

...
...

. . .
...

xn,1 xn,2 · · · xn,p


Where xi,j denotes the comparison score from the jth modality

of the ith user. Euclidean distance d is considered to find the KNN:

d(xi, xj) =
∑

h∈Oi∩Oj

(xi,h + xj,h)
2

Where Oi = {h| the hth variable of the ith observation is
observed }. In other words, only the mutually observed variables are

Fig. 20: Illustrated example of missing score imputation.

Fig. 21: Original score distributions for the modalities in the walk-
through scenario.

used to calculate the distance between observations. The KNN impu-
tation scheme is described as follows: (i) For each observation xi,
apply the distance function d to find the k nearest neighbour vectors
in D; (ii) The missing variables xmiss

i are imputed by the average
of the corresponding variables from those k-nearest neighbours. An
illustrated simplified example is provided in Fig. 20.

KNN imputation does not require the creation of a predictive
model for each variable, and so it can easily treat instances with
multiple missing values. This is the case for the score matrices used
for these experiments, for some instances, multiple values may be
missing. The value of k is set to 5 as suggested in [30]. The choice
of a small k may produce a deterioration in the performance of the
classifier due to overemphasis in a few dominant instances in the
estimation process of missing values. On the other hand, a neigh-
bourhood of large size would include instances that are significantly
different from the instance containing the missing values [30].

KKN imputation is then used to replace missing values in the
data-augmented score matrices. Thus, all the following results are
obtained on 577600 comparisons. Biometric fusion for both scenar-
ios is performed using Minmax normalization and simple sum of the
comparison scores.

3.2.1 Walk-through scenario performances: Two tests were
carried out. The first test uses the original score distribution of the
systems. As can be seen from Fig. 21, even if the six distributions are
normalized in the range [0, 1], the anthropometric scores are con-
centrated near 0. The performance obtained by fusing the original
distributions is reported in Table 7.

An improvement in performance is obtained by the second test
where the scores from each system are multiplied by a value m to
make the distributions having mean equal to 0.5:

m =
0.5

µi

Where µi is the mean of the ith score distribution and i =
1, 2, 3, · · · , I , where I is the number of biometric modalities, 6 in
this case. The improved performance values are reported in Table 7.
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Fig. 22: DET curves for the walk-through scenario after missing
score imputation.

Table 7 Multimodal fusion for the walk-through system: the results are
obtained after applying missing score imputation and for two cases: (i) original
score distributions; (ii) all distributions have the same mean.

EER FMR1000 ZeroFMR

Original distributions 0.0678 0.5516 0.9651
Corrected mean 0.0433 0.4217 0.9148

Fig. 23: Original score distribution for the modalities in the drive-
through scenario.

3.2.2 Drive-through scenario performances: The same tests
are repeated for the drive-through scenario. The first test uses the
original score distribution of the finger vein, hand vein, 3D face, and
thermal face systems. Fig. 23 shows the original score distributions.
For the second tests all distributions are multiplied for the value m,
computed as showed before, so that all distributions have mean equal
to 0.5.

Fig. 24 shows the DET curves for the two tests. The correspond-
ing performance values are reported in Table 8.

Compared to the performances obtained in Section 3.1.2 on the
augmented comparison list after removing the missing scores, the
results obtained after missing score imputation are much worse. This
is probably due to the fact that the percentage of missing scores in
this case is too high to reliably use this technique.

Fig. 24: DET curves for the drive-through scenario after missing
score imputation.

Table 8 Multimodal fusion for the drive-through system: the results are
obtained after applying missing score imputation and for two cases: (i) original
score distributions; (ii) all distributions have the same mean.

EER FMR1000 ZeroFMR

Original distributions 0.0171 0.0664 0.4882
Corrected mean 0.0158 0.0664 0.5387

4 Conclusions

In this paper the case study of the PROTECT multibiometric sys-
tem has been presented. Apart from presenting the system and its
performance results, this article is intended to show what problems
may be encountered when evaluating a multimodal system, from
data collection to performance assessment, and how to face them.
The issues addressed in PROTECT include (i) the collection of a
non-chimeric multimodal biometric database including 10 different
modalities (please note that for example 2D face in VIS and NIR
light are considered as two different modalities); (ii) the problem of
having different score distributions, with different size and shape,
to be fused in a multibiometric system; and (iii) the problem of
missing scores. The presented case study shows how to overcome
these problems using techniques for data augmentation and missing
score imputations. This is done in order to obtain a set of scores
of sufficient size to perform performance assessment according to
the guidelines provided by international standards. In particular, the
technique used for data augmentation resulted in helping achieving
more reliable performance assessment.
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