
Strengths and limitations of stretching for
least-squares problems with some dense
rows
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and
Tuma, M. (2020) Strengths and limitations of stretching for
least-squares problems with some dense rows. ACM
Transactions on Mathematical Software (TOMS), 47 (1). pp. 1-
25. ISSN 0098-3500 doi: https://doi.org/10.1145/3412559
Available at https://centaur.reading.ac.uk/91971/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1145/3412559

Publisher: ACM

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

1

Strengths and Limitations of Stretching for Least-squares

Problems with Some Dense Rows

JENNIFER SCOTT, STFC Rutherford Appleton Laboratory, UK and University of Reading, UK

MIROSLAV TŮMA, Charles University, Czech Republic

We recently introduced a sparse stretching strategy for handling dense rows that can arise in large-scale
linear least-squares problems and make such problems challenging to solve. Sparse stretching is designed to
limit the amount of fill within the stretched normal matrix and hence within the subsequent Cholesky fac-
torization. While preliminary results demonstrated that sparse stretching performs significantly better than
standard stretching, it has a number of limitations. In this article, we discuss and illustrate these limitations
and propose new strategies that are designed to overcome them. Numerical experiments on problems arising
from practical applications are used to demonstrate the effectiveness of these new ideas. We consider both
direct and preconditioned iterative solvers.

CCS Concepts: • Mathematics of computing → Mathematical analysis; Numerical analysis;

Additional Key Words and Phrases: Sparse matrices, linear least-squares problems, dense rows, matrix stretch-
ing, Cholesky factorization, normal matrix, Schur complement, direct solvers, iterative solvers

ACM Reference format:

Jennifer Scott and Miroslav Tůma. 2020. Strengths and Limitations of Stretching for Least-squares Problems
with Some Dense Rows. ACM Trans. Math. Softw. 47, 1, Article 1 (December 2020), 25 pages.
https://doi.org/10.1145/3412559

1 INTRODUCTION

Consider the linear least-squares (LS) problem

min
x
‖Ax − b‖2, (1)

where the system matrix A ∈ Rm×n (m ≥ n) and the right-hand side vector b ∈ Rm are given. The
solution x satisfies the n × n normal equations

Cx = ATb, C = ATA, (2)

where, provided A has full column rank, the normal matrix C is symmetric and positive definite.
Our focus is on the case where A is large and mainly sparse but has some rows that are “dense.”
Such rows may be fully dense (all entries are non zero) or may contain some zeros but neverthe-
less lead to unacceptable fill in C . A single dense row is sufficient to cause catastrophic fill in C .

Authors’ addresses: J. Scott, Scientific Computing Department, STFC Rutherford Appleton Laboraory, Harwell Campus,
Oxfordshire OX11 0QX, UK and Department of Mathematics and Statistics, The University of Reading, Whiteknights,
Reading, RG6 6AQ, UK; email: jennifer.scott@stfc.ac.uk; M. Tůma, Faculty of Mathematics and Physics, Charles University,
Sokolovská Sokolovská 49/83, 186 75 Praha 8; email: mirektuma@karlin.mff.cuni.cz.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).
0098-3500/2020/12-ART1
https://doi.org/10.1145/3412559

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

https://doi.org/10.1145/3412559
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3412559

1:2 J. Scott and M. Tůuma

Thus, for large-scale problems, a Cholesky or QR factorization of C is impractical. In particular,
the memory demands of a direct solver may be prohibitive (it may not even be possible to form
the normal matrix) while the expectation is that using an incomplete factorization of C as a pre-
conditioner for an iterative solver such as Conjugate Gradient method for Least Squares (CGLS)
[23], LSQR [36], or LSMR [12] applied to Equation (1) is likely to be ineffective because of the
large differences between the incomplete and exact factorizations. The presence of dense rows has
long been recognised as a fundamental difficulty in the solution of LS problems that are otherwise
sparse; see, for example, References [2, 5, 9, 13, 42, 43, 45–47]. The analogous problem occurs in
interior point methods where the interest is in handling dense columns inA and the normal matrix
is AAT ; see, for example, discussions in References [4, 15, 16, 31].

In recent years, we have looked at a number of ways to handle dense rows withinA. In particular,
we have considered the following:

• A block factorization approach [42] that processes the rows that are identified as dense
separately within an iterative solver, using an incomplete factorization preconditioner for
the sparse part combined with the factorization of a dense matrix of size equal to the number
of dense rows.

• A Schur complement approach [43] that also treats the sparse and dense rows as separate
blocks and exploits the block structure within the augmented system formulation of the LS
problem. A direct solver or a preconditioned iterative solver for sparse indefinite systems
is then employed.

• A sparse stretching strategy [44] that aims to overcome the problems that are observed
with standard matrix stretching, in particular, unacceptable amounts of fill in the stretched
normal matrix.

We assume the rows ofA that are to be treated as dense are permuted to the end. We also assume
conformal partitioning of the vector b so that (omitting the row permutation matrix for simplicity
of notation) we have

A =

(
As

Ad

)
, As ∈ Rms×n , Ad ∈ Rmd×n , b =

(
bs

bd

)
, bs ∈ Rms , bd ∈ Rmd , (3)

where ms and md denote the number of sparse and dense rows, respectively, with m =ms +md ,
ms ≥ n andmd ≥ 1 (in general, ms �md). The LS problem is then

min
x

�����

(
As

Ad

)
x −

(
bs

bd

)�����2

. (4)

We defineCs = AT
s As to be the reduced normal matrix. When considering the sparse and dense rows

within A separately, the block As of sparse rows may contain null columns andCs is then singular
with a corresponding number of null rows and columns. In References [42, 43], we addressed this
by either perturbing the diagonal entries of Cs or solving a number of related sparse LS problems
and combining their solutions to give the solution of the original problem. Both approaches can
incur overheads. For the former, an iterative method is needed even if a direct solver is employed
to factorize the regularized system, while for the latter, the need to solve more than one LS problem
adds an overhead and, for an iterative solver in particular, the increase in the total solution time
can be significant.

An advantage of stretching is that, providedA is of full rank, we are able to handle null columns
in the sparse part. However, stretching can result in unacceptable amounts of fill in the stretched
normal matrix and its factors. Our sparse stretching strategy [44] aims to limit the fill and our
preliminary results demonstrated the potential effectiveness of this idea. Unfortunately, stretching

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:3

can be costly (in terms of total solution time and the memory requirements) because of the growth
in the size of the stretched LS problem. The dimensions of the stretched system can grow rapidly
withmd so that the stretched LS problem can be considerably larger than the original one. Thus an
objective of this study is to propose a novel partial sparse stretching strategy that aims to stretch
sufficiently many rows to ensure the sparse row block of the resulting stretched matrix has no null
columns and then to employ a block factorization to solve this problem, from which the solution
of the original problem can be obtained.

The article is organised as follows. In Section 2, we describe the algorithm we use to identify
the rows of A that are to be treated as dense. Then, in Section 3, we consider block strategies
for solving Equation (4). In particular, we employ a signed block Cholesky factorization that, in
exact arithmetic, is mathematically equivalent to the Woodbury formula [49, 50] for the inverse
of a rankmd modification to the reduced normal matrix. We propose using the block approach to
obtain an incomplete factorization preconditioner for use with an iterative solver. We also recall the
augmented system and Schur complement approach that can be used in combination with a sparse
symmetric indefinite solver. In Section 4, we explain our recent sparse stretching strategy [44] and
discuss how it handles null columns inAs . In Section 5, we present numerical results for a range of
problems, using both direct solvers and a preconditioned iterative solver. Our findings demonstrate
that stretching can lead to the need to solve a LS problem that is much larger than the original one
and on which iterative solvers can struggle to converge. This motivates us, in Section 6, to propose
our partial stretching strategy. Numerical experiments illustrate the advantages that stretching
only a small number of rows offers. To try and enhance performance further, in Section 7, we
explore other ideas for combining stretching with the construction of incomplete factorization
preconditioners. In particular, we propose a variant of sparse stretching that drops small entries
from Ad before stretching is performed. We introduce the concept of weighted sparse stretching
that uses the numerical values as well as the pattern of the row blocks As and Ad . The possibility
of developing other preconditioners that exploit the structure of the stretched normal matrix are
also briefly discussed. Finally, in Section 8, we summarise our key findings.

1.1 Description of the Test Environment

Our test problems are taken from the SuiteSparse Matrix Collection (https://sparse.tamu.edu/) and
comprise a subset of those used by Gould and Scott in their study of numerical methods for solving
large-scale least-squares problems [17]. In each case, the matrix is “cleaned” (out-of-range entries
and explicit zeros are removed along with any null rows or columns). If necessary, the matrix is
transposed so that we have an overdetermined system (m > n). The md dense rows are identified
using Algorithm 1 that is described in Section 2 below. nds is the number of null columns in As

(if nds > 0 then the normal matrix Cs contains null rows and columns). In our experiments, we
prescaleA by normalizing each of its columns. That is, we replaceA byAD, whereD is the diagonal
matrix with entries Dii satisfying D2

ii = 1/‖Aei ‖2 (ei denotes the ith unit vector). The entries of
AD are at most one in absolute value. In our experiments, b is set to be the vector of 1’s.

The sparse Cholesky solver we employ is HSL_MA87 [24] from the HSL mathematical software
library [27]. It is used with default settings and is combined with a nested dissection ordering to
limit fill in the factors. For symmetric indefinite systems, we use the multifrontal solver HSL_MA97
[25, 26]) (again, with default settings and nested dissection ordering). Both solvers employ OpenMP
for parallelism and the latter uses threshold partial pivoting for numerical stability.

To perform incomplete Cholesky (IC) factorizations, we use the package HSL_MI35. This imple-
ments a limited memory IC algorithm; details are given in References [39, 40]. HSL_MI35 is chosen,
because the study [17] found that it generally performed well on a range of LS problems. It requires
the user to set parameters lsize and rsize that, respectively, control the number of entries in each

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

https://sparse.tamu.edu/

1:4 J. Scott and M. Tůuma

Table 1. Test Examples

Identifier m n md nds

aircraft 7,517 3,754 17 4
lp_fit2p 13,525 3,000 25 0
sc205-2r 62,423 35,213 8 1
scagr7-2r 46,679 32,847 7 1
scrs8-2r 27,691 14,364 22 7
scsd8-2r 60,550 8,650 50 5
sctap1-2b 33,858 15,390 34 0
south31 36,321 18,425 381 5
PDE1 271,792 270,595 1 0
12month1 872,622 12,471 286 3

m and n are the row and column dimensions of A, md

is the number of dense rows, and nds is the number of
null columns in As after the removal of the block Ad

of md dense rows from A.

Table 2. Test Machine Characteristics

CPU Two Intel Core i7-7700 3.6-GHz Quad Core processors
Memory 16 GB
Compiler gfortran version 7.3.0 with options -O3 -fopenmp
BLAS Intel MKL

column of the IC factor and the memory required to compute it. Increasing either or both of these
parameters generally improves the quality of the preconditioner (so that the number of iterations
of the preconditioned iterative solver is reduced) but at the cost of more time and memory to com-
pute the factorization; increasing lsize also increases the cost of each preconditioner application.
In our experiments, we set lsize = rsize. We found that when stretching was used, results were
generally improved by setting the drop tolerances within HSL_MI35 to zero and so this is used in
our reported results.

The characteristics of the machine used to perform our numerical experiments that involve
timings are given in Table 2. Unless indicated otherwise, all software is written in Fortran and all
reported timings are elapsed times in seconds.

When using an iterative solver, the initial solution guess is taken to be x (0) = 0 and, following
Gould and Scott [17], we require the computed residual r = b −Ax to satisfy either ‖r ‖2 < δ1 or
‖AT r ‖2/‖r ‖2 < δ2 × ‖ATb‖2/‖b‖2. The convergence tolerances δ1 and δ2 are set to 10−8 and 10−6,
respectively.

2 IDENTIFICATION OF DENSE ROWS

How A is partitioned into the sparse part As and dense part Ad determines the efficiency of the
overall solution process. In some cases, it is very clear that rows should be treated as dense and
consequently a number of papers that recognise the need to handle dense rows do not propose
how to identify such rows (see, for example, References [2, 5, 22]). In Reference [42], we illustrated
the importance of identifying all the dense rows and moving them into Ad . Following Sun [45]
and Vanderbei [47], in Reference [43], we used the following simple definition for a dense row
of A: Given a sparsity threshold parameter ρ (0 < ρ ≤ 1), row i of A is defined to be dense if
the percentage of entries in row i is at least ρ. We reported on the effect of different choices of

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:5

ρ; the optimum value is problem dependent. While increasing ρ reduces the number md of rows
classified as dense, it can significantly increase the density of the reduced normal matrix Cs , leading
to a poorer quality incomplete factorization preconditioner. In some test cases, we found it was
necessary to choose ρ to be very small to ensure Cs was sufficiently sparse but this can result in
md being large so that the cost of processing the dense part can then dominate the total solution
time.

While the simple threshold approach is suitable when the dense and sparse rows are clearly
separated by their densities, it does not always work well when there is less distinction (that is, it
can fail to identify rows that if moved into Ad improves performance and md can be particularly
sensitive to the choice of ρ). An alternative approach is given by Meszaros [31] in his paper on
interior point methods for linear programmes using the normal equations approach. Meszaros
aims to detect rows that, if moved into Ad , will limit the fill in the reduced normal matrix Cs .
The method starts by removing from A rows that have more than a chosen number of entries
(Meszaros uses 350 in his tests, independent of the problem size); let the remaining matrix be Ā.
The algorithm then looks at the fill in the corresponding normal matrix caused by each row of Ā. It
computes the sparsity of the rows of ĀT Ā one-by-one, processing the rows of Ā in increasing order
of their number of entries (row counts) and for each computing how many fill entries it contributes
to ĀT Ā. When processing row k , if an entry of ĀT Ā is non zero from a row that has already been
processed, then it is not counted as a fill entry for row k (thus only the number of so-called new

fill entries for row k is counted). In the second part of the algorithm, Meszaros takes into account
the rows with a large number of entries that were initially discarded to compute the approximate
number of entries in each column of the normal matrix C . The rows that lead to significant fill in
C are added into Ad and the remaining rows form As .

We employ the following modified version of Meszaros’ approach. Here ri denotes the row count
for row i of A. The algorithm starts by permuting the rows of A into increasing order of their row
counts. Rows for which ri is at least ρ ∗ n are immediately flagged as dense and removed from A,
leaving a matrix Āwith m̄ rows. In our experiments, we use ρ = 0.05 or ρ = 0.1. Meszaros observes
that the sparsity structure of the rows of ĀT Ā is easy to build for a sequence S0 ⊂ S1 ⊂ ... ⊂ Sm̄ ,
where S0 = 0 and Sm̄ = {1, 2, . . . ,m̄}. He sets up a sequence S j and builds the sparsity structure of
the columns of ĀT

j Āj one-by-one (where Āj comprises the rows of Ā indexed by S j), while recording

ALGORITHM 1: Identification of dense rows.
Input: m × n matrix A; parameters ρ (0 < ρ ≤ 1), γ (0 < γ ≤ 1), δ > 0, mfill > 0 and small ≥ 0.

Output: A partitioned as

(
As

Ad

)
, with Ad comprising the dense rows.

1: Initialization. For i = 1, 2, . . . ,m compute the row count ri and set flag(i) = 0.
2: Permute the rows of A into increasing order of ri . Let the permutation vector be q and the permuted

matrix be QA.
3: For i = 1, 2, . . . ,m set flag(i) = 1 if ri ≥ ρ ∗ n.
4: Let m̄ be the number of rows for which flag(i) = 0. If m̄ = 0, then terminate with A = Ad ; otherwise,

remove the lastm − m̄ rows from QA and let the remaining m̄ × n matrix be Ā.
5: For i = 1, 2, . . . ,m̄ compute the number filli of new fill entries that row i contributes to ĀT Ā.
6: Set fill_max = max1≤k≤m̄ filli . If fill_max < mfill, go to step 9; otherwise, set count = 0.
7: For i = 1, 2, . . . ,m̄ if filli ≥ γ ∗ fill_max set flag(j) = 1 where j = q(i); otherwise, if filli > small increment

count = count + 1.
8: If count < δ , then for each i such that filli > small set flag(j) = 1 where j = q(i).
9: Move all rows i = 1, 2, . . . ,m of A such that flag(i) = 1 into Ad ; the remaining rows form As .

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

1:6 J. Scott and M. Tůuma

and setting up the fill (which for row i we denote by f illi). Specifically, Meszaros defines S j by
appending to S j−1 a row with minimal row count, i.e.,

S j = S j−1 ∪ k, k = arg min{rl : l ∈ {1, 2, . . . ,m̄} \ S j−1}.
This is done in step 5 of the algorithm (see Reference [31] for details). Having determined the fill
when the rows of Ā are processed in order of increasing row counts, we compute the maximum
fill (f ill_max) and use it to determine whether to flag additional rows as dense. If f ill_max is less
than some chosen amountmf ill (in our tests, we setmf ill = max(n/100, 100)), then the fill in ĀT Ā
is considered to be small, no further rows are flagged and the algorithm terminates. Otherwise,
row i of Ā is flagged as dense if f illi is within a factor γ of the maximum fill; in our experiments
we use γ = 0.8. The number of unflagged rows for which f illi exceeds some threshold small is
also counted. If the total number of such rows is less than δ , then we flag them all as dense. Our
motivation here is that if a small number count of rows contributes to most of the fill, then we
can treat all these rows as dense. In our tests, we set small = 10 and δ = 0.1 ∗m. Our choice of
parameter values is based on experimentation on practical problems.

3 BLOCK APPROACHES FOR HANDLING DENSE ROWS

Here we describe block strategies to solve the LS problem (4) and discuss how they can be applied
together with either a direct or an iterative solver. While in exact arithmetic some of the approaches
are equivalent, this is not the case when they are used as preconditioners: a small change can result
in very different behaviour (see, for example, the mathematically equivalent formulas from Lemma
2.3 and 2.4 in Reference [42] that numerically behave very differently).

3.1 A Block Signed Cholesky Factorization

Using the partitioning (3), the normal equations are given by

Cx =
(
Cs +A

T
dAd

)
x = c, c = AT

s bs +A
T
dbd . (5)

The solution of Equation (5) can be obtained from the equivalent (n +md) × (n +md) system,(
Cs AT

d
Ad −I

) (
x

Adx

)
=

(
c
0

)
. (6)

Provided As has full column rank, Cs is symmetric positive definite, and, if the partitioning (3) is
such that all the rows of As are sparse, then Cs is generally significantly sparser than the original
normal matrixC . LetCs = LsL

T
s be the Cholesky factorization ofCs . This yields a signed Cholesky

factorization (
Cs AT

d
Ad −I

)
=

(
Ls

Bd Ld

) (
I
−I

)
�
�

LT
s BT

d

LT
d

�
�
, (7)

where

LsB
T
d = AT

d (8)

and

Sd = I + BdB
T
d = LdL

T
d . (9)

Recall we are assumingmd is small so that the Cholesky factorization of the densemd ×md (neg-
ative) Schur complement Sd can be computed using dense linear algebra (and is trivial in the not
uncommon case md = 1). Algorithm 2 summarizes the steps to compute the LS solution using
Equation (6) once Ls , Bd , and Ld have been computed. Note that it is not necessary to compute
and store Bd explicitly; instead Equation (8) can be used in Steps 2 and 4 and in computing Sd . Note
also that Ad may represent a set of rows (which are not necessarily dense) that are appended to

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:7

ALGORITHM 2: Block factorization approach for solving sparse-dense LS problems.

Input: Bd , the Cholesky factors Ls and Ld , and c = AT
s bs +A

T
d
bd .

Output: LS solution x .

1: Solve Lsus = c .
2: Compute wd = Bdus .
3: Solve Ldud = wd and then LT

d
yd = ud .

4: Form ws = us − BT
d
yd .

5: Solve LT
s x = ws .

the original matrix A = As . In this case, the algorithm can be viewed as an updating procedure in
which the normal matrix factorization remains fixed, thereby limiting the additional work needed
to handle the added rows.

3.2 Relationship with Woodbury Formula

A standard tool for combining the inverse of Cs with an update based on Ad is the Woodbury
formula (see References [20, 49, 50] and the discussion in the review paper of Hager [21]). This
formula (which is also sometimes referred to as the Sherman-Morrison-Woodbury formula) allows
the inverse of the normal matrix to be written in the form

C−1 =
(
Cs +A

T
dAd

)−1
= C−1

s −C−1
s AT

d

(
I +AdC

−1
s AT

d

)−1
AdC

−1
s . (10)

The LS solution may then be explicitly expressed as

x = xs +C
−1
s AT

d

(
I +AdC

−1
s AT

d

)−1
(bd −Adxs) with xs = C

−1
s AT

s bs . (11)

It is straightforward to show that Algorithm 2 is mathematically equivalent (that is, in exact arith-
metic) to the Woodbury formula. From Algorithm 2,

LT
s x = ws

= us − BT
dyd

= us − BT
d

(
LdL

T
d

)−1
wd

= us − BT
d

(
LdL

T
d

)−1
Bdus .

Thus, using Cs = LsL
T
s and Equations (8) and (9),

Csx = Lsus − LsB
T
d

(
LdL

T
d

)−1
Bdus

= c −AT
d

(
I + BdB

T
d

)−1
AdL

−T
s us

= c −AT
d

(
I + BdB

T
d

)−1
AdC

−1
s c

= c −AT
d

(
I +AdL

−T
s L−1

s AT
d

)−1
AdC

−1
s c .

Recall c = AT
s bs +A

T
d
bd = Csxs +A

T
d
bd . Hence

x = xs +C
−1
s AT

dbd −AT
d

(
I +AdC

−1
s AT

d

)−1
AdC

−1
s

(
Csxs +A

T
dbd

)
= xs +C

−1
s AT

d

(
I +AdC

−1
s AT

d

)−1 ((
I +AdC

−1
s AT

d

)
bd −Ad

(
xs +C

−1
s AT

dbd

))
= xs +C

−1
s AT

d

(
I +AdC

−1
s AT

d

)−1
(bd −Adxs),

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

1:8 J. Scott and M. Tůuma

which is the LS solution (11). Thus Algorithm 2 provides a practical implementation of the Wood-
bury formula.

3.3 Block Approach to Compute a Preconditioner

The block approach can be employed to obtain a preconditioner for use with an iterative solver
applied to sparse-dense LS problems. It is straightforward to verify that the following relationships
hold:

Cs +A
T
dAd = (I 0)

(
Cs AT

d
Ad −I

) (
I
Ad

)

and

(Cs +A
T
dAd)−1 = (I 0)

(
Cs AT

d
Ad −I

)−1 (
I
0

)
. (12)

If we compute an incomplete Cholesky factorizationCs ≈ L̃s L̃
T
s , then we can obtain an incomplete

version of Equation (7), that is,(
Cs AT

d
Ad −I

)
≈

(
L̃s

B̃d L̃d

) (
I
−I

)
�
�

L̃T
s B̃T

d

L̃T
d

�
�
, (13)

with
L̃s B̃

T
d = AT

d and S̃d = I + B̃d B̃
T
d = L̃d L̃

T
d .

Combined with Equation (12), the factorization (13) can be used to obtain a symmetric positive
definite preconditioner M for use with an iterative solver such as CGLS, LSQR, or LSMR for Equa-
tion (4). Observe from Equation (12) that y = (Cs +A

T
d
Ad)−1z can be computed from the solution

of the system (
Cs AT

d
Ad −I

) (
y
ŷ

)
=

(
z
0

)
. (14)

Setting M to be the signed incomplete factorization (13) and using Equation (14), the steps needed
to apply the preconditioner are as in Algorithm 2 with Ls is replaced L̃s .

ALGORITHM 3: Application of the block incomplete factorization preconditioner.

Input: L̃s , L̃d , Ad , and the vector z.
Output: y = M−1z.

1: Solve L̃sus = z.
2: Compute wd = Ad L̃

−T
s us .

3: Solve L̃dud = wd and then L̃T
d
ŷ = ud .

4: Form ws = us − L̃−1
s AT

d
ŷ.

5: Solve L̃T
s y = ws .

3.4 Relationship with Our Earlier Block Approach

In Reference [42], we proposed processing dense rows separately within a conjugate gradient
method. Specifically, we employed CGLS with an incomplete factorization preconditioner, which
we denote here by MCG . Let r denote the residual r = b −Ax . At each CGLS iteration, the precon-
ditioner is applied to the transformed residual vector z = AT r = AT

s rs +A
T
d
rd , where rs = bs −Asx

and rd = bd −Adx . From Algorithm 2.7 of Reference [42], in the Cholesky mode the application
of the preconditioner y = M−1

CGz is given by

y = L̃−T
s L̃−1

s

(
AT

s rs −AT
d S̃
−1
d

(
Ad L̃

−T
s L̃−1

s AT
s rs − rd

))
. (15)

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:9

Similarly, in Algorithm 3 above, y = M−1z is given by

y = L̃−T
s L̃−1

s

(
z −AT

d S̃
−1
d Ad L̃

−T
s L̃−1

s z
)
. (16)

Recalling Equations (8) and (9) and using the identity

S̃−1
d Ad L̃

−T
s L̃−1

s AT
d = S̃−1

d BdB
T
d = I − S̃d ,

we obtain
S̃−1

d Ad L̃
−T
s L̃−1

s

(
AT

s rs +A
T
d rd

)
= rd + S̃

−1
d

(
Ad L̃

−T
s L̃−1

s AT
s rs − rd

)
. (17)

Setting z = AT
s rs +A

T
d
rd in Equation (16) and employing Equation (17) yields Equation (15). Thus

the preconditioner in Algorithm 3 and in Reference [42] are mathematically equivalent. In practice,
their application may differ, because the equivalence is in the case of exact arithmetic, which we
generally do not have.

3.5 Augmented System and Schur Complement Approaches

Solving Equation (4) is equivalent to solving the (m + n) × (m + n) augmented system

K ��
�

rs

rd

x

��
�
=
��
�

bs

bd

0

��
�
, K = ��

�

I As

I Ad

AT
s AT

d
0

��
�
, (18)

where

r =

(
rs

rd

)
=

(
bs

bd

)
−

(
As

Ad

)
x

is the residual vector. The matrix K is symmetric and indefinite. Equation (18) can be solved using
a general-purpose sparse direct solver that ignores the block form and employs numerical pivot-
ing to ensure stability. However, obtaining robust incomplete factorizations preconditioners for
such systems (and symmetric indefinite matrices generally) is challenging (see, for example, Ref-
erence [8]). It has been considered recently [19, 33, 41] (again, ignoring the existence of the dense
rows in Ad) but with much less success than the positive definite case.

A modification is to eliminate rs and reduce the problem to a smaller 2-block system,

Kr

(
x
rd

)
=

(
−AT

s bs

bd

)
, Kr =

(
−Cs AT

d
Ad I

)
. (19)

We refer to the (n +md) × (n +md) system (Equation (19)) as the reduced augmented system. The
reduced augmented matrixKr is symmetric quasi-definite. Again, this system can be solved using a
symmetric indefinite solver. This is able to handle the case whereCs is rank deficient (and not only
the case where it has null rows and columns). Alternatively, a block factorization ofKr can be com-
puted that treats the sparse and dense blocks separately; this is the Schur complement approach
[43] (see also References [14, 30, 38]). Using the notation of Section 3.1, the block factorization of
Kr is

Kr =

(
Ls

Bd Ld

) (
−I

I

)
�
�

LT
s BT

d

LT
d

�
�
, (20)

where Cs = LsL
T
s , Bd is given by Equation (8), and Ld is the Cholesky factor of the (negative)

Schur complement Sd given by Equation (9). If the Cholesky factorization of Cs is replaced by
an IC factorization, then we obtain an indefinite preconditioner MS . Writing the preconditioning
operation as

y =

(
ys

yd

)
= M−1

S

(
zs

zd

)
,

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

1:10 J. Scott and M. Tůuma

we have (with the same notation as in Section 3.3 for the incomplete factors)

ys = −L̃−T
s L̃−1

s

(
zs +A

T
dyd

)
and yd = S̃−1

d

(
zd −Ad L̃

−T
s L̃−1

s zs

)
.

That is,

ys = −L̃−T
s L̃−1

s

(
zs −AT

d S̃
−1
d

(
Ad L̃

−T
s L̃−1

s zs − zd

))
.

Comparing this with Equation (15), we see that computing ys involves the same operations as
applying the preconditioner MCG . As MS is indefinite, it is used with a general non symmetric
iterative method such as GMRES. Alternatively, we can obtain a positive-definite preconditioner
for use with MINRES [35] by replacing MS by

|MS | =
(
L̃s

B̃d L̃d

) (
L̃T

s B̃T
d

L̃T
d

)
, (21)

see, for example, Reference [37]. Our experience has been that, for our LS problems, MINRES is
not competitive with GMRES in terms of iteration counts and times, although it does offer the
advantage of requiring less storage [43].

4 A BRIEF INTRODUCTION TO MATRIX STRETCHING FOR LS PROBLEMS

Stretching offers a very different approach to handling dense rows. It aims to split the rows of
Ad into a number of sparser rows and to formulate a (larger) modified problem from which the
solution to the original problem can be derived. The idea was proposed by Grcar [18] and was
subsequently used for solving linear systems by Alvarado [3], Ferris and Horn [11], Aykanat et al.
[6], and Duff and Scott [10]. For LS problems, assume initially that Ad represents a single dense
row, which (following the notation used by Adlers and Björck [2]) we denote by f T . The stretching
procedure has two steps. In the first, a larger problem is constructed by splitting the dense row
f T into two parts f T = (f T

a f T
b

) such that fa and fb contain the same number of non zeros and
introducing a linking variable s ∈ R. Let us split the sparse block As and the solution vector x as
As = (Asa Asb), x = (xT

a xT
b

)T to conform with the splitting of f T . It is straightforward to observe
[2] that the component x of the solution of the extended LS problem

min
(xT s)T

��������

���
�

Asa Asb 0
f T
a f T

b
0

f T
a −f T

b

√
2

���
�

��
�

xa

xb

s

��
�
− ��
�

bs

bd

0

��
�

��������2

(22)

is the same as the solution x of the original problem (1). The second step applies an orthogonal
transformation to the extended system matrix in Equation (22) to replace f T

b
in the second block

row and f T
a in the third block row by zeros (see Reference [2] for details). Orthogonal invariance

of the norm leads to the equivalent stretched problem

min
z
‖Az − b̂‖2

with

A =
���
�

Asa Asb 0√
2 f T

a 0 1
0

√
2 f T

b
−1

���
�
, z = ��

�

xa

xb

s

��
�
, b̂ =

���
�

bs

bd/
√

2
bd/
√

2

���
�
.

Extending this to splitting f T into k ≥ 2 parts (with each part containing essentially the same
number of non zeros) gives

A =
(
As

FT S

)
, Ad = f T =

1
√
k
eT FT , FT ∈ Rk×n , z =

(
x
s

)
, b̂ =

(
bs

bde/
√
k

)
, (23)

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:11

where e ∈ Rk is the vector of ones, s ∈ Rk−1, and the linking matrix S ∈ Rk×(k−1) is given by

S =

����������
�

1
−1 1

−1
. . .

. . . 1
−1

����������
�

. (24)

Stretching can be generalised to more than one dense row by stretching one row at a time.
A theoretical analysis, accompanied by numerical results for some small sparse problems with a
small number of dense rows appended, was given by Adlers and Björck [1, 2].

Standard stretching splits the row indices of the non zero entries in the dense rows into sets
of (almost) equal contiguous segments and then bases the stretching on these sets (but see also
a dynamic approach to splitting dense columns in Reference [16]). Unfortunately, this can result
in significant fill in the stretched normal matrix and, in particular, in its factor. Simply increasing
the number of parts into which the dense rows are split does not necessarily alleviate the problem
and can adversely effect the conditioning of the stretched normal matrix. This prompted us to
introduce a new sparse stretching strategy that aims to limit the fill in the stretched normal matrix
[44]. To motivate this strategy, consider the stretched normal matrix

C = ATA =
(
AT

s F
ST

) (
As

FT S

)
=

(
AT

s As + FF
T FS

ST FT ST S

)
. (25)

It is clear that the fill in the principal leading blockAT
s As + FF

T of C resulting from the dense rows
is a minimum if the structure of FFT is contained within that of AT

s As , that is, if

Struct (FFT) ⊆ Struct (AT
s As), (26)

where for a matrix X , Struct (X) denotes the set of positions (i, j) of the non zero entries of X .
A simple example is given in Figure 1. Here the last row f T is considered to be dense and the
union of the sparsity patterns of rows aT

j and aT
k

covers that of f T . If f T is split into two rows

FT = (f T
a f T

b
) as shown, then condition (26) is satisfied,

Fig. 1. Matrix with a dense row f T ; the remaining rows comprise As (left). The rows aT
j and aT

k
in As struc-

turally cover f T . Sparse stretching creates the block FT = (f T
a f T

b
) such that Struct (FFT) ⊆ Struct (AT

s As)

(right).

The idea behind sparse stretching is to find a splitting of the sparsity pattern Struct (f) into k
disjoint non empty index sets t1, . . . , tk and to construct FT so that its ith row contains the |ti |
entries of Struct (f) corresponding to the ith part of the splitting. Any such splitting that satisfies
Equation (26) is said to define a correct stretching of row f T . Sparse stretching constructs a correct
stretching by seeking a (small) set of rows within the sparse part As such that the union of their

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

1:12 J. Scott and M. Tůuma

Table 3. The Dimensions and Condition Number
Estimate for the Stretched Problem sctap1-2b as the

Number of Dense Rows Increases

md mstr nstr cond (C)
0 33,858 15,375 1.7×107

1 34,339 15,904 7.3×1013

5 36,399 17,260 4.2×1014

10 38,974 20,530 3.7×1015

15 40,260 21,818 1.4×1016

20 41,550 23,096 1.4×1016

30 44,136 25,672 2.2×1016

34 45,172 26,704 2.3×1016

m_str and n_str are the row and column dimensions of the
stretched system, and cond (C) denotes the condition number
estimate for the stretched normal matrix C.

patterns covers that of the dense row. The number of rows in this set is then the number of parts
f T is stretched into and f T is stretched using the patterns of the rows in this set.

When there is more than one dense row (md > 1), each such row is stretched separately and the
size of the stretched system is thus dependent on the patterns of the dense and sparse rows and
on the number of dense rows. If a dense row contains η > 0 non zero entries with column indices
that do not occur in any of the rows of As , then we simply split the row and put the entries that
match the zero columns inAs into a separate set. This set is small, because it is easily observed that
η ≤ md and md is assumed to be small. This slightly generalizes the concept of sparse stretching
that we introduced in Reference [44].

Results presented in Reference [44] for some simple test examples demonstrated that sparse
stretching can find a suitable number of parts for the splitting that leads to a significant reduc-
tion in the fill in both the stretched normal matrix and its Cholesky factor compared to stan-
dard stretching. A key objective of this article is to explore more generally the effectiveness of
sparse stretching for LS problems when used with a direct method and with a preconditioned it-
erative solver and to propose new ideas and research directions for tackling challenging practical
applications.

5 NUMERICAL EXPERIMENTS

Having introduced block methods and sparse stretching for LS problems, in this section we present
numerical results that illustrate the effectiveness of the methods.

5.1 Preliminary Stretching Results

We start by considering problem sctap1-2b, which hasmd = 34 dense rows. In this experiment, we
remove all the dense rows and solve the modified problem and then solve a sequence of problems
with md = 1, 2, . . . , 34 dense rows added back in. In Table 3, we show how the dimensions of the
stretched problem grow as the number of dense rows increases. We also report the effect stretching
has on the conditioning of this problem. The condition number estimate of the stretched normal
matrix cond (C) is computed using the MATLAB function condest. We see that the size of the
stretched system grows quickly and that stretching just one row results in a significant increase in
cond (C) (note that MATLAB may return an overestimate). Experiments with other examples also
found that the condition number of the stretched normal matrix is much larger than that of the

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:13

Table 4. A Comparison of No Stretching (“None”) and the Standard and Sparse Stretching Strategies
When Combined with the Sparse Cholesky Solver HSL_MA87

Identifier m n Strategy mds m_str n_str nnz nnz (L) nflops

aircraft 7,517 3,754 none 0 7,517 3,754 1.421×106 1.421×106 7.141×108

standard 17 20,267 16,504 5.474×104 4.911×10
5 1.759×10

7

sparse 17 20,267 16,504 5.474×104 4.911×10
5 1.759×10

7

lp_fit2p 13,525 3,000 none 0 13,525 3,000 4.501×106 4.501×106 9.004×109

standard 25 20,284 39,759 1.500×105 1.903×10
6 1.203×10

8

sparse 25 20,284 39,759 1.500×105 1.903×10
6 1.203×10

8

sc205-2r 62,423 35,213 none 0 62,423 35,213 6.510×106 8.446×107 2.314×1011

standard 8 75,230 48,020 1.408×105 1.853×106 8.168×107

sparse 8 75,230 48,020 1.408×105 1.863×106 8.232×107

scagr7-2r 46,679 32,847 none 0 46,679 32,847 2.215×107 9.653×107 4.067×1011

standard 7 59,639 45,807 1.979×106 9.876×106 1.531×1010

sparse 7 59,639 45,807 1.841×105 1.559×106 9.489×107

scrs8-2r 27,691 14,364 none 0 27,691 14,364 6.217×106 1.647×107 2.901×1010

standard 22 40,507 27,180 8.013×105 2.983×106 1.828×109

sparse 22 40,507 27,180 8.968×104 1.238×106 7.336×107

scsd8-2r 60,550 8,650 none 0 60,550 8,650 1.957×106 1.178×107 1.894×1010

standard 50 82,190 30,290 6.287×105 5.182×106 3.540×109

sparse 50 82,190 30,290 1.794×105 1.978×10
6 1.882×10

8

sctap1-2b 33,858 15,390 none 0 33,858 15,390 2.638×106 1.359×107 1.645×1010

standard 34 45,172 26,704 5.389×105 4.705×106 2.210×109

sparse 34 45,172 26,704 1.205×105 1.544×10
6 1.126×10

8

south31 36,321 18,425 none 0 36,321 18,425 1.536×108 1.581×108 1.848×1012

standard 381 112,398 94,502 3.224×105 4.366×106 2.546×108

sparse 381 112,398 94,502 3.224×105 4.260×106 2.319×108

PDE1 271,792 270,595 none 0 271,792 270,595 NS NS NS

standard 1 362,388 361,191 2.332×106 4.295×107 2.143×1010

sparse 1 362,388 361,191 2.332×106 3.836×107 1.181×1010

m and n are the row and column dimensions of A, mds is the number of dense rows that are stretched, and m_str

and n_str are the row and column dimensions of the stretched system. For strategy “none,” nnz is the number of
entries in the normal matrix C = AT A and for strategies “standard” and “sparse” it denotes the number of entries
in the normal matrix for the stretched system C given by Equation (25) (lower triangle). nnz (L) and nflops denote,
respectively, the number of entries in the computed Cholesky factor and the flops used to compute it. NS indicates not
solved because C requires too much memory. For each problem, the smallest nnz (L) and nf lops across this table
and Table 5 are in bold.

original normal matrix; this is consistent with the upper bound on the condition number of the
stretched system presented by Adlers and Björck [2] (see also Reference [44]).

5.2 Results with a Direct Solver

The stretched normal matrix C (25) is symmetric positive definite and so a sparse Cholesky solver
may be employed; the effectiveness of this is illustrated in Table 4. Here we compare standard and
sparse stretching (for the former, the number of parts the dense rows are stretched into is taken to
be the same as for sparse stretching so that the stretched matrices have the same dimensions for
both approaches); all rows identified as dense using Algorithm 1 are stretched. For completeness,
we include results for solving with no stretching (that is, the Cholesky solver is applied to then × n

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

1:14 J. Scott and M. Tůuma

Table 5. Results for the Sparse Indefinite Solver HSL_MA97 Applied to the Augmented System (18) (K)
and Reduced Augmented System (19) (Kr)

Identifier
K Kr

m n nnz (L) nflops nnz nnz (L) nflops

aircraft 7,517 3,754 4.903×106 9.353×109 1.653×104 1.434×106 7.245×108

lp_fit2p 13,525 3,000 4.345×106 7.879×109 3.981×104 4.116×106 7.868×108

sc205-2r 62,423 35,213 8.815×105 9.398×106 1.024×105 3.441×10
5 3.597×10

6

scagr7-2r 46,679 32,847 8.008×105 9.889×106 1.288×105 3.819×10
5 5.077×10

6

scrs8-2r 27,691 14,364 6.415×105 6.456×107 4.924×104 4.038×10
5 6.114×10

7

scsd8-2r 60,550 8,650 1.289×106 5.204×107 5.628×105 3.616×106 2.749×109

sctap1-2b 33,858 15,390 1.864×106 1.355×109 8.054×104 1.557×106 1.292×109

south31 36,321 18,425 3.525×105 2.498×106 9.526×104 1.092×10
5 7.671×10

5

PDE1 271,792 270,595 3.593×107 1.627×1010 1.970×106 1.250×10
7 2.650×10

9

12month1 872,622 12,471 NS NS 5.140×107 7.300×10
7 5.688×10

11

m and n are the row and column dimensions of A; nnz is the number of entries in Kr (lower triangle); and nnz (L)
and nflops denote, respectively, the number of entries in the L factor of K (and Kr) and the flops used to compute
it. NS indicates not solved because of insufficient memory for HSL_MA97. For each problem, the smallest nnz (L) and
nflops across this table and Table 4 are in bold.

normal equations (2) for the original problem). Despite the increase in the problem dimensions,
standard and sparse stretching perform considerably better than simply ignoring the existence of
the dense rows. We also observe that for some problems (such as scagr7-2r and scrs8-2r) sparse
stretching gives much better results than standard stretching. Note that problem PDE1 has a single
dense row but even in this case, sparse stretching is clearly advantageous compared to standard
stretching. For problems aircraft and lp_fit2p, the sparse part As is diagonal and so if the dense
row j has nzj entries, it is stretched into nzj parts (and both standard and sparse stretching are the
same for these examples). We were unable to solve problem 12month1, because, with and without
stretching, the Cholesky factorization broke down (a negative pivot was encountered), suggesting
the matrix is rank deficient.

We reiterate that when nds > 1 (see Table 1), null rows and columns in Cs lead to the break
down of its Cholesky factorization and the block factorization approach of Section 3.1 cannot
be used. However, we can employ a sparse indefinite solver to solve the augmented system (18)
(or the reduced system (19)); results are presented in Table 5. We see that, in most cases, using
the reduced system significantly reduces the size of the factors and the flop count compared to
using the augmented system. Problem 12month1 illustrates that the augmented system can lead to
the indefinite solver requiring more memory than is available. A key issue with Equation (18)
is that the pivot sequence chosen on the basis of the sparsity pattern of K generally requires
significant modification during the factorization to maintain numerical stability and this leads
to greater fill in the factors and a higher flop count than is predicted on the basis of the sparsity
pattern alone. Comparing Tables 4 and 5, there are some problems (such as aircraft and scsd8-2r)
for which sparse stretching leads to sparser factors and lower flop counts than using the reduced
augmented system but for others (including south31, PDE1, and 12month1) the converse is true.
This illustrates the importance of having more than one approach available. Note also that the
indefinite solver HSL_MA97 incorporates pivoting for numerical stability. This inhibits the use of
parallelism compared with the Cholesky solver HSL_MA87 and thus a comparison of sparsity and
flop counts does not give a complete picture of how the solvers behave in practice, which will be
dependent on the computing architecture.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:15

5.2.1 Results with a Preconditioned Iterative Solver. Having shown that using stretching with a
direct solver can lead to significant benefits, we now consider its use combined with a precondi-
tioned iterative solver. A number of freely available implementations of preconditioned LSQR and
LSMR1 are limited to using split preconditioning, that is, they require the preconditioner to be in
the factorized form M = PT P , where P is a square non singular matrix that is chosen by the user
so that AP−1 has more favourable spectral properties than A. The (approximate) inverse operator
of Section 3.3 obtained from the block incomplete Cholesky factorization is symmetric positive
definite but it cannot be expressed as a product PT P . A discussion on how to use non split pre-
conditioning within this type of iterative solver has been recently given by Orban and Arioli [34]
(see also Orban [32] and Benbow [7]). In particular, the preconditioning of LSQR and LSMR can
be described as running the Golub-Kahan bidiagonalization in the M inner product, because if M
is positive definite, then M−1ATA is self-adjoint for the M inner product. With this replacement of
the Euclidean inner product, the ith step of the bidiagonalization becomes

w = Avi − αiui ; βi+1 = ‖w ‖; ui+1 = w/βi+1

w = M−1ATui+1 − βi+1vi ; αi+1 = ((w,w)M)1/2; vi+1 = w/αi+1.

Introducing a new vector, p = Mvi+1, this can be rewritten as

w = Avi − αiui ; βi+1 = ‖w ‖; ui+1 = w/βi+1

p = ATui+1 − βi+1p
w = M−1p; αi+1 = (w,p)1/2; vi+1 = w/αi+1; p = p/αi+1.

Our reported numerical experiments employ modified LSMR software that incorporates the use
of M inner products.

Results for preconditioned LSMR applied to the stretched normal system (25) are presented in
Table 6. Here none indicates no stretching is performed: an IC factorization of the normal matrix
C (2) is computed using HSL_MI35 and used to precondition LSMR applied to the original problem.
When stretching is used, the total time (TT otal) includes the time to perform the stretching as well
as the time to compute the IC factorization preconditioner and to run LSMR. In these tests, when
applying HSL_MI35 to the original n × n normal matrix C we set the parameter lsize (the max-
imum number of entries in each column of its IC factor) to 10. When HSL_MI35 is applied to the
stretched normal matrix C, we experimented with other settings, because we found that for some
examples a larger value of lsize was needed to obtain a preconditioner that gave convergence in a
reasonable number of iterations. We see that while sparse stretching outperforms standard stretch-
ing, stretching generally results in more entries in the preconditioner (because the stretched sys-
tem and lsize are larger) and often leads to higher iteration counts and a slower total solution time
compared to solving the system without stretching. Problem lp_fit2p is omitted, because, with val-
ues of lsize up to 150, we failed to obtain convergence (with no stretching and lsize set to 10, we
needed 2,913 iterations). For problem sc205-2r, stretching works well, with a very small iteration
count; the slower total solution time is because of the overheads involved in identifying the dense
rows and performing the stretching (note that our Fortran code to do the stretching is non trivial
and optimising its performance to improve efficiency and reduce the total solution time is outside
the scope of our current study). Our results suggest that sparse stretching is much less effective
when used with an IC preconditioned iterative solver than it is when used with a direct solver.

6 PARTIAL STRETCHING

As already observed, a key issue with sparse stretching is that the stretched system can be much
larger than the original system while the block signed Cholesky factorization (Section 3.1) breaks

1e.g., http://web.stanford.edu/group/SOL/software/.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

http://web.stanford.edu/group/SOL/software/

1:16 J. Scott and M. Tůuma

Table 6. A Comparison of the Different Stretching Strategies When
Combined with Preconditioned LSMR

Identifier Strategy lsize nnz (L̃) iters TIC TT otal

aircraft none 10 4.124×104 18 0.07 0.12
standard 50 3.948×105 158 0.19 0.39

sparse 50 3.948×105 158 0.19 0.39
sc205-2r none 10 3.873×105 54 0.06 0.35

standard 10 5.281×105 5 0.04 0.79
sparse 10 5.280×105 7 0.04 0.75

scagr7-2r none 10 3.613×105 198 0.17 2.94
standard 120 5.535×105 NC NC NC

sparse 120 4.558×105 5 2.43 3.05
scsd8-2r none 10 9.130×104 116 0.05 0.35

standard 100 3.053×106 805 1.42 8.94
sparse 30 9.381×105 99 0.72 2.06

scrs8-2r none 10 1.579×105 368 0.05 0.80
standard 50 2.989×105 NC NC NC

sparse 50 2.989×105 27 0.06 0.45
sctap1-2b none 10 1.692×105 496 0.03 0.77

standard 50 1.359×106 NC NC NC
sparse 50 1.356×106 4 0.29 0.31

south31 none 10 2.020×105 151 1.37 8.70
standard 50 4.800×106 1005 2.51 18.5

sparse 50 4.812×106 935 2.49 17.7
PDE1 none 10 NS NS NS NS

standard 100 2.635×106 61 2.78 4.16
sparse 100 2.650×106 53 3.32 4.52

12month1 none 10 1.367×105 205 15.7 33.1
standard 100 2.187×106 321 34.1 50.3

sparse 100 2.024×106 926 22.7 69.5

None indicates no stretching is performed. nnz (L̃) denotes the number of entries in
the IC factor, and iter s is the number of LSMR iterations. NC indicates not solved,
since the number of iterations exceeded 2,000; NS indicates not solved because of
insufficient memory. TIC and TT ot al are, respectively, the time (in seconds) to com-
pute the IC factorization and the total solution time.

down if the reduced normal matrix Cs contains one or more null rows and columns. To address
both problems, we propose a new stretching strategy that we refer to as partial stretching; it is
outlined as Algorithm 4. The idea is to select a small subset of the rows of Ad that cause As to
have null columns and to stretch just these rows, adding them to an enlarged sparse row block
and moving the remaining dense rows to a block that has fewer rows than Ad . The result is a
partially stretched matrix that is smaller than would result from stretching all the dense rows and,
as it retains a number of dense rows, it can be solved using a block signed Cholesky factorization.

In the non trivial casemd > 1, there are clearly a number of ways to choose the subset of rows
in Step 2 of this algorithm. For example, a simple greedy procedure can be employed, in which the
first dense row that has an entry in the first null column of As is selected first, and the process
continues, selecting one dense row at a time, until coverage of all the null columns ofAs is achieved.
In our experiments, we employ an alternative approach in which we perform an LU factorization

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:17

Table 7. Results for Partial Stretching Combined with the Block Approach
and the Sparse Cholesky Solver HSL_MA87

Identifier m n md mds m_str n_str nnz (C) nnz (L) nflops

aircraft 7,517 3,754 17 4 10,517 6,754 1.575×104 9.984×104 2.552×106

sc205-2r 62,423 35,213 8 1 64,023 36,813 9.602×104 9.084×105 2.875×107

scagr7-2r 46,679 32,847 7 1 50,999 37,167 1.443×105 8.531×105 2.572×107

scrs8-2r 27,691 14,364 22 7 32,820 19,493 6.698×104 6.716×105 2.797×107

scsd8-2r 60,550 8,650 50 5 62,710 10,810 5.895×104 NS NS
south31 36,321 18,425 381 5 36,426 18,530 1.884×104 2.306×104 1.565×105

m and n are the row and column dimensions of A; md and mds are, respectively, the numbers of dense rows and the
number that are stretched; m_str and n_str are the row and column dimensions of the partially stretched system; nnz

denotes the number of entries in the normal matrix for the stretched system (lower triangle); and nnz (L) and nflops denote,
respectively, the number of entries in its Cholesky factor and the flops used to compute it. NS indicates not solved because
the Cholesky factorization broke down.

Fig. 2. An example of a matrix with full column rank that becomes rank deficient when the last row is
removed (the final two columns become identical). This last row is not stretched in the partial stretching
LU-based strategy described above.

ALGORITHM 4: Partial sparse stretching for a LS problem with dense rows.

Input: A ∈ Rm×n with m ≥ n split into row blocks As and Ad where As ∈ Rms×n has one or more null
columns and Ad ∈ Rmd×n .

Output: Partially stretched matrixA ∈ Rm_str×n_str withm_str ≥ n_str split into row blocksAs andAd

where As has no null columns and the number of rows in Ad is less thanmd .

1: Identify the null columns j1, . . . , jnds
in As .

2: Find a small subset of at most nds rows of Ad such that the block Ads comprising these rows has at least
one entry in each column j1, . . . , jnds

.
3: Apply sparse stretching to each row of Ads .

with partial pivoting ofAd and terminate it afternds steps, wherends is the number of null columns
in As . The column ordering used in this LU factorization is such that columns corresponding to
the null columns in As are chosen first. The pivotal rows form the chosen subset. In Table 7, we
present results for partial stretching when used with the block approach (Section 3.1). Comparing
these with those given in Table 4, we see that, as expected, the dimensions of the partially stretched
system are significantly smaller and this, in turn, leads to far fewer entries in the Cholesky factor
and a lower flop count. We note however, that it is still possible for the Cholesky factorization of
Cs to break down (and this happens for problem scsd8-2r). This is because, although the sparse
block As of the partially stretched matrix has no null columns, it can still be rank deficient. For
example, consider the matrix in Figure 2. It has full column rank, the last three rows comprise Ad

and the first two columns of the sparse partAs are null columns (nds = 2). If we perform two steps

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

1:18 J. Scott and M. Tůuma

Table 8. Results for Partial Stretching Combined with the
Block Approach and Preconditioned LSMR

Partial stretching Block approach
with block approach without stretching

Identifier nnz (L̃) iters nnz (L̃) iters
aircraft 1.875×104 1 3.754 × 103 1
sc205-2r 1.344×105 1 9.602 × 104 2
scagr7-2r 4.086×105 7 1.472 × 105 3
scrs8-2r 2.141×105 12 3.434 × 104 3
scsd8-2r 1.189×105 26 7.432 × 104 2
south31 1.884×104 1 1.842 × 104 3

Results are also given for the block approach and preconditioned
LSMR with no stretching. nnz (L̃) denotes the number of entries in
the incomplete Cholesky factor of the normal matrix for the stretched
system (lsize = 10). iter s is the number of LSMR iterations.

of an LU factorization with partial pivoting of Ad , then the first two rows of Ad are selected and
stretched. The resulting partially stretched sparse matrixAs still does not have full column rank.
In such cases, a simple remedy is to stretch an additional row of Ad and repeat as necessary until
As is not rank deficient. Alternatively, an indefinite solver that can handle singular systems (such
as HSL_MA97) could be employed. In this case, a factorization of the form Cs = PsLsDsLT

s PT
s is

computed for some permutation Ps , with Ls lower triangular and Ds block diagonal with blocks
of size 1 and 2 on the diagonal. The factorization (7) and Algorithm 2 can be modified for this case.
Disadvantages of using an indefinite solver are that the pivoting required by such a solver restricts
the use of parallelism and pivoting can result in denser factors and higher flop counts.

Results for partial stretching combined with preconditioned LSMR are presented in Table 8. An
IC factorization of the partially stretched normal matrix Cs = AT

s As is computed and used within
the block approach of Section 3.3. We also include results for the same approach applied to the
original system (no stretching), that is, an IC factorization of the reduced normal matrixCs = AT

s As

is computed and used within the block approach. The IC algorithm implemented within HSL_MI35
avoids break down (which can occur even if the normal matrix is of full rank) by adding a (small)
multiple of the identity matrix if a zero pivot is encountered; thus, it computes and uses the IC
factors of Cs + αI for some shift α > 0 and it can therefore handle null rows and columns in Cs .
We see that partial stretching gives a significant reduction in the iteration count and factor size
compared to the standard and sparse stretching results reported in Table 6, but this performs less
well than using the block approach with no stretching. To see why this may happen, consider the
partially stretched matrix

A = ��
�

As 0
FT S
Ad1 Ad2

��
�
=

(
As

Ad

)
,

where Ad1 comprises the dense rows of A that are not stretched. The matrix for which an IC
factorization computed is then

Cs = AT
s As =

(
Cs + FF

T FS
ST FT ST S

)
.

The number of entries in each column of the IC factor is at most lsize thus, since Cs contains the
smaller matrixCs , its IC factor will generally have more entries than the IC factor ofCs , but more
entries will also be dropped, which we may anticipate will lead to a poorer quality preconditioner.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:19

The poorer conditioning of the stretched system is also likely to adversely affect the iterative solver.
A possible remedy could be to develop an IC factorization strategy that uses different dropping for
entries in Cs + FF

T and ST FT and is a possible future direction of study.

7 OTHER POSSIBLE STRETCHING APPROACHES

In this section, we propose other variants of sparse stretching with the aim of constructing more
effective preconditioners.

7.1 Incomplete Sparse Stretching

We first consider a sparse stretching strategy that is based on dropping small entries from the
dense block before applying stretching. The idea is to use only the largest entries in computing an
incomplete factorization. Here we use the notation of Section 4.

Lemma 7.1. LetA = (AT
s AT

d
)T have one dense rowAd = f T . Let f̃ denote the vector that is obtained

by dropping entries fs1 , . . . , fsp
(p ≥ 1) of f . Apply stretching to (AT

s f̃)T , with f̃ T split into k ≥ 2
parts. Denote the stretched matrix by

Ã =
(
As

F̃T S

)
,

where S is the linking matrix. Then a stretched LS problem that is equivalent to the original LS problem

is obtained by adding the scaled dropped entries
√
k fs1 , . . . ,

√
k fsp

into the rows of F̃T in an arbitrary

way.

Proof. Struct (f − f̃) is disjoint from Struct (f̃). Thus, when f̃ T is stretched, there are no en-
tries in F̃T with row indices s1, . . . , sp (the indices of the entries that are dropped from f). The k

rows (F̃T)q∗ (1 ≤ q ≤ k) are such that Struct ((F̃T)i∗) is disjoint from Struct ((F̃T)j∗) (i � j). If the

dropped entries are added into the rows of F̃T in an arbitrary way, then the modified Struct ((F̃T)i∗)
will remain disjoint from the modified Struct ((F̃T)j∗) and, provided the dropped entries are scaled

in the same way as the entries of f̃ T are scaled during stretching, the result will be a correct
scaling. �

The process of sparsification and matrix stretching is illustrated (without showing the scaling)
using the following simple example. Here large entries of f T are denoted by b and small entries
by s ,

�����
�

∗ ∗ ∗ ∗
∗
∗ ∗

b b b s b s

�����
�

→
�����
�

∗ ∗ ∗ ∗
∗
∗ ∗

b b b b

�����
�

→
�������
�

∗ ∗ ∗ ∗
∗
∗ ∗

b b 1

b b −1

�������
�

→
�������
�

∗ ∗ ∗ ∗
∗
∗ ∗

b b 1

b s b b −1

�������
�

.

The first matrix is the original matrix with one dense row and the second is after the small entries
have been dropped from the dense row. The third matrix in the sequence is used to compute the
preconditioner. The final matrix is a correct stretching of the original matrix (and it is to this matrix
that the iterative method is applied).

It is clear that Lemma 7.1 can be generalised tomd > 1. The approach, which we term incomplete

sparse stretching, is described as Algorithm 5.
We illustrate the incomplete sparse stretching approach using test example lp_fit2p (which has

25 dense rows). Recall from Section 5.2.1 that this is a tough problem for iterative solvers: using

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

1:20 J. Scott and M. Tůuma

Table 9. Results for Problem lp_fit2p

drops
md = 3 md = 5 md = 10

iters m_str n_str nnz (L̃) iters m_str nm_str nnz (L̃) iters m_str n_str nnz (L̃)

0.0 2 22,421 11,918 56,580 12 26,926 16,241 98,507 NC 36,114 25,604 153,603

0.01 17 21,699 11,166 52,818 263 25,830 15,325 91,930 NC 35,018 24,508 147,027

0.02 23 20,802 10,299 48,499 429 24,645 14,140 84,820 NC 32,767 22,257 133,521

0.1 NC 17,721 7,218 32,787 NC 20,376 9,871 59,094 NC 36,114 15,822 153,603

0.6 1,386 16,570 6,067 32,429 NC 18,927 8,422 49,610 NC 22,581 12,071 72,410

0.7 906 16,522 6,019 33,036 151 18,912 8,407 49,884 NC 22,564 12,054 72,308

0.8 118 16,508 6,005 19,678 44 18,908 8,403 31,233 561 22,560 12,050 70,910

0.9 34 16,504 6,001 15,403 19 18,906 8,401 30,482 32 22,558 12,048 70,149

1.0 13 16,502 5,999 14,995 19 18,906 8,401 30,482 32 22,558 12,048 70,149

Incomplete sparse stretching is applied to md = 3, 5, and 10 of dense rows with increasing values of the parameter drops .
The row and column dimensions of the stretched matrix are denoted by m_str and n_str . iter s is the iteration count
and size nnz (L̃) is the number of entries in the incomplete Cholesky factor of the stretched normal matrix (lsize = 5).
NC indicates the limit of 2,000 iterations is exceeded.

ALGORITHM 5: Incomplete sparse stretching to solve a LS problem with dense rows

Input: A ∈ Rm×n withm > n split into row blocks As and Ad , with As ∈ Rms×n and Ad ∈ Rmd×n .
Output: The solution x of the LS problem.

1: Sparsify the dense row block Ad by dropping small entries. Let the result be Ãd .
2: Apply stretching to (AT

s ÃT
d

)T . Let the stretched matrix be A.

3: Form C = ATA and compute its incomplete Cholesky factorization.
4: Add the dropped entries into the stretched matrix AT (as in Lemma 7.1).
5: Compute the LS solution by solving the stretched problemusing an iterative method with the incomplete

Cholesky factorization as the preconditioner.

stretching and then employing preconditioned LSMR, we failed to achieve convergence. In our
experiments, we take the sparse block As and takemd < 25 of its dense rows as the block Ad (the
remaining dense rows are discarded thus we are using a modified problem in our tests). Row i of
Ãd is computed by dropping entries in row i of Ad that have absolute value less than

drops ×max
j
|Ad (i, j) |.

Sparse stretching is applied to the resulting sparsified rows. In Table 9, we report on a range of
values for the parameter drops . Setting drops = 0 corresponds to sparse stretching while drops = 1
implies only the largest entries in each dense row are retained (aggressive dropping). We see that
if there is a small number of dense rows (md = 3 or 5), then sparse stretching (drops = 0.0) works
well, but we struggle once the number of dense rows becomes larger and the problem becomes
tougher to solve. However, aggressive dropping allows us to compute the solution using a only
modest number of iterations and a sparse preconditioner.

7.2 Weighted Sparse Stretching

As discussed in Section 4, computing a stretching involves finding index sets so that the sparsity
structure of each row of the stretched dense block FT is covered by the sparsity structures of one or
more rows ofAs . This is closely related to the problem of minimizing a set cover. In Reference [44],
we used a standard greedy approach to obtain such a cover. To motivate our proposed weighted

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:21

sparse stretching, consider a simple 6 × 5 matrix with full column rank and one dense row

A =

(
As

Ad

)
=

����������
�

1 1 1 1 0
0 0 0 0 1
1 1 0 0 0
5 6 0 0 0
0 0 7 8 9

3/
√

2 3/
√

2 3/
√

2 3/
√

2 3/
√

2

����������
�

. (27)

The matrix on the left of Equation (28) depicts the result of using the greedy approach to the set
cover problem to split the last row. An alternative splitting is given on the right.

(
As

FT

)
=

������������
�

1 1 1 1 0
0 0 0 0 1
1 1 0 0 0
5 6 0 0 0
0 0 7 8 9
3 3 3 3 0
0 0 0 0 3

������������
�

or

������������
�

1 1 1 1 0
0 0 0 0 1
1 1 0 0 0
5 6 0 0 0
0 0 7 8 9
3 3 0 0 0
0 0 3 3 3

������������
�

. (28)

For these two splittings, the matrix block AT
s As + FF

T from Equation (25) is as follows:

AT
s As + FF

T =

�������
�

36 41 10 10 0
41 47 10 10 0
10 10 59 66 63
10 10 66 64 72
0 0 63 72 91

�������
�

or

�������
�

36 41 1 1 0
41 47 1 1 0
1 1 59 66 72
1 1 66 74 81
0 0 72 81 91

�������
�

.

The right-hand splitting leads to blocks on the diagonal that dominate the off-diagonal blocks and
this is likely to lead to higher quality incomplete factorization preconditioners.

Subsets of Struct (f) such that each row of FT is dominated by rows of As can be found using
the bipartite row intersection graph of As and f T , which is defined as follows.

Definition 7.2. Denote the ith row of As by (As)i∗ (1 ≤ i ≤ ms) and let Struct (f) = {j1, . . . , jr }
where r = |Struct (f) |. The bipartite graph G = (R,B,E) with vertex sets R = {1, . . . ,ms } and B =
{j1, . . . , jr } and edges given by

(i, j) ∈ E ⇐⇒ j ∈ Struct ((As)i∗).

Thus a standard set cover problem needs to be solved. Once solved, the sets that represent rows
of FT are made disjoint (see Reference [44]). Based on our observation regarding the potential
importance of the magnitudes of the entries, we propose the following approximate algorithm
that represents one possible way to solve the weighted set cover problem (see Reference [48]);
using the weighted minimum set cover results in our weighted sparse stretching approach.

To illustrate the potential benefits of weighted sparse stretching, we consider the test example
lp_agg (m = 615, n = 488) to which we append up to 35 dense rows with n entries in each of these
rows (this small example is one that we chose to explore in some detail in our original study of
sparse stretching [44]). Each appended row is stretched using the weighted and non weighted
(i.e., greedy) set cover algorithms. In Figure 3, iteration counts are given for the stretched problem
with the HSL_MI35 parameter lsize that controls the number of entries in each column of the IC
factor set to 50 and to 60. As the number of dense rows increases, the problem becomes harder to
solve. However, the number of iterations is significantly reduced if the weighted set cover is used,
with the relative savings in the iteration counts increasing with the number of stretched rows.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

1:22 J. Scott and M. Tůuma

Fig. 3. Iteration counts for problem lp_agg as the number of appended dense rows increases. Results are for
sparse stretching using the weighted and non weighted vertex set cover with lsize = 50 (left) and lsize =
60 (right).

ALGORITHM 6: Finding an approximate weighted minimum set cover

Input: A = {A(i, j)} ∈ Rm×n withm ≥ n split into row blocksAs andAd , whereAs ∈ Rms×n andAd ≡ f T ∈
R1×n .

Output: k and an approximate weighted minimum set cover of Struct (f) characterized by the rows
r1, r2, . . . , rk of As such that Struct (f) =

⋃
1≤i≤k Struct (ri).

1: Construct the bipartite row intersection graph G = (R,B,E) of As and f T .
2: Initialise the row weights w (r) =

∑
j ∈B |A(r , j) |, r ∈ R.

3: Set i = 0.
4: while there exists ri ∈ R that maximises w (l) > 0, l ∈ R do

5: Set i = i + 1.
6: for k ∈ Struct (ri) do

7: for r ∈ R such that k ∈ Struct (r) do

8: Update w (r) = w (r) − |A(r ,k) |
9: end do

10: end do

11: end do

12: Set k = i .

Furthermore, increasing the number of entries in the incomplete factorization (that is, increasing
lsize) can lead to significantly faster convergence.

7.3 Other Possible Preconditioners

Another approach to developing preconditioners for LS problems with some dense rows is to ex-
plicitly exploit the saddle-point block structure of the stretched normal matrix C; see, for example,
the block and constraint preconditioners presented in References [28, 29], as well as the survey
in Reference [8]. A detailed study is beyond the scope of this article; instead, we briefly introduce
one possible preconditioner and illustrate that it can give improved performance (in terms of the
size of the preconditioner and/or the number of iterations of the preconditioned iterative solver
required for convergence). This preconditioner results from computing an IC factorization of the

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

Strengths and Limitations of Stretching for Least-squares Problems 1:23

Fig. 4. Iteration counts (left) and preconditioner size (right) for P0 and P1 applied to problem lp_agg as the
number appended dense rows increases. Here lsize = 5.

following matrix:

P1 =

(
diaд(Cs) FS
ST FT ST S

)
.

If we compare this with the stretched system (25), then we see that the term FFT has been dropped
from the (1, 1) block. To illustrate the potential of P1, we again use problem lp_agg to which we
append up to 50 dense rows, each with density of 10%. We compare the performance of P1 with that
of P0, where P0 is the preconditioner obtained by computing an IC factorization of the stretched
normal matrix C given in Equation (25). In Figure 4, we plot the iteration counts and preconditioner
size as the number of dense rows increases. We see that while P0 requires (slightly) fewer iterations,
it is denser than P1, particularly when the number of dense rows is small.

8 CONCLUDING REMARKS AND FUTURE DIRECTIONS

It is well known that the presence of one or more dense rows makes solving a LS problem much
harder. In an earlier paper [44], we proposed a new matrix stretching strategy (sparse stretching)
as a means of sparsifying the dense rows, at the cost of increasing both the row and column di-
mensions of the LS system. Encouraging preliminary results motivated us to explore further the
effectiveness of stretching when used with either a sparse direct solver or a preconditioned it-
erative solver to efficiently tackle large-scale LS problems that include a small number of dense
rows.

Our experiments have shown that sparse stretching can be used with a sparse Cholesky pack-
age to significantly reduce the size of the Cholesky factor and the flop count needed to compute
it. However, as the number of dense rows (and/or the density of these rows) increases, the growth
in the dimensions of the LS problem are substantial and, for very large problems, the memory
requirements of the direct solver will ultimately limit the size of the original system that can be
solved using sparse stretching. This suggests either limiting the increase in the problem dimen-
sions or employing a preconditioned iterative scheme. To achieve the former, we proposed partial
stretching, which only stretches a small number of rows so as to avoid null columns in As .

With regards to using an iterative solver, our numerical results suggest that our incomplete
factorization preconditioner is not always as effective as we would like for the stretched normal
equations. This led us to propose other stretching strategies, namely a so-called incomplete
stretching strategy and weighted sparse stretching, both of which take into account not only

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

1:24 J. Scott and M. Tůuma

the sparsity patterns of the row block As and Ad but also the numerical values. Initial experi-
ments illustrate that these approaches may be beneficial and can lead to either higher quality
preconditioners and/or sparser preconditioners. Nevertheless, we feel there is scope to improve
performance further and thus an area of future research is the development of other precondition-
ers to be employed in conjunction with sparse stretching strategies. In particular, we are interested
in studying preconditioners that aim to exploit the block structure of the stretched normal matrix.
Access to a wider range of large-scale practical problems would be beneficial for this.

Our longer-term objective is the development of robust and efficient software for solving large-
scale linear LS problems, incorporating direct and iterative methods, that automatically detects
and handles dense rows and addresses other issues such as rank deficiency that can make solving
these systems difficult. Our study of stretching techniques is one step towards realising this goal.

ACKNOWLEDGMENTS

We thank two anonymous reviewers for their careful reading of our manuscript and for their
constructive comments that led to important improvements in the presentation of this article.

REFERENCES

[1] M. Adlers. 2000. Topics in Sparse Least Squares Problems. Ph.D. Dissertation. Department of Mathematics, Linköpings
Universitet, SE-581 83 Linköping, Sweden.

[2] M. Adlers and Å. Björck. 2000. Matrix stretching for sparse least squares problems. Numer. Lin. Algebr. Appl. 7, 2
(2000), 51–65.

[3] F. L. Alvarado. 1997. Matrix enlarging methods and their application. BIT Numer. Math. 37, 3 (1997), 473–505.
[4] K. D. Andersen. 1996. A modified Schur complement method for handling dense columns in interior point methods

for linear programming. ACM Trans. Math. Softw. 22, 3 (1996), 348–356.
[5] H. Avron, E. Ng, and S. Toledo. 2009. Using perturbed QR factorizations to solve linear least-squares problems. SIAM

J. Matrix Anal. Appl. 31, 2 (2009), 674–693.
[6] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek. 2002. Permuting Sparse Rectangular Matrices into Singly-bordered Block-

diagonal form for Parallel Solution of LP Problems. Technical Report BU-CE-0203. Computer Engineering Department,
Bilkent Univeristy, Ankara, Turkey.

[7] S. J. Benbow. 1999. Solving generalized least-squares problems with LSQR. SIAM J. Matrix Anal. Appl. 21, 1 (1999),
166–177.

[8] M. Benzi, G. H. Golub, and J. Liesen. 2005. Numerical solution of saddle point problems. Acta Numer. 14 (2005), 1–137.
[9] Å. Björck. 1996. Numerical Methods for Least Squares Problems. SIAM, Philadelphia.

[10] I. S. Duff and J. A. Scott. 2005. Stabilized bordered block diagonal forms for parallel sparse solvers. Parallel Comput.

31, 3–4 (2005), 275–289.
[11] M. C. Ferris and J. D. Horn. 1998. Partitioning mathematical programs for parallel solution. Math. Program. 80, 1, Ser.

A (1998), 35–62.
[12] D. C.-L. Fong and M. A. Saunders. 2011. LSMR: An iterative algorithm for sparse least-squares problems. SIAM J. Sci.

Comput. 33, 5 (2011), 2950–2971.
[13] A. George and M. T. Heath. 1980. Solution of sparse linear least squares problems using Givens rotations. Lin. Algebr.

Appl. 34 (1980), 69–83.
[14] P. E. Gill, W. Murray, D. B. Ponceleon, and M. A. Saunders. 1991. Solving Reduced KKT Systems in Barrier Methods

for Linear and Quadratic Programming. Technical Report SOL 91-7. Department of Operations Research, Stanford
University.

[15] D. Goldfarb and K. Scheinberg. 2004. A product-form Cholesky factorization method for handling dense columns in
interior point methods for linear programming. Math. Program. Ser. A 99, 1 (2004), 1–34.

[16] J. Gondzio. 1992. Splitting dense columns of constraint matrix in interior point methods for large scale linear pro-
gramming. Optimization 24, 3–4 (1992), 285–297.

[17] N. I. M. Gould and J. A. Scott. 2017. The state-of-the-art of preconditioners for sparse linear least squares problems.
ACM Trans. Math. Softw. 43, 4 (2017), 36:1–35.

[18] J. F. Grcar. 1990. Matrix Stretching for Linear Equations. Technical Report SAND90-8723. Sandia National Laboratories.
[19] C. Greif, S. He, and P. Liu. 2013. SYM-ILDL: C++ package for incomplete factorizations of symmetric indefinite ma-

trices. Retrieved from https://github.com/inutard/matrix-factor.
[20] L. Guttman. 1946. Enlargement methods for computing the inverse matrix. Ann. Math. Stat. 17, 3 (1946), 336–343.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

https://github.com/inutard/matrix-factor

Strengths and Limitations of Stretching for Least-squares Problems 1:25

[21] W. W. Hager. 1989. Updating the inverse of a matrix. SIAM Rev. 31, 2 (1989), 221–239.
[22] M. T. Heath. 1982. Some extensions of an algorithm for sparse linear least squares problems. SIAM J. Sci. Stat. Comput.

3, 2 (1982), 223–237.
[23] M. R. Hestenes and E. Stiefel. 1952. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand.

49, 6 (1952), 409–435.
[24] J. D. Hogg, J. K. Reid, and J. A. Scott. 2010. Design of a multicore sparse Cholesky factorization using DAGs. SIAM J.

Sci. Comput. 32, 6 (2010), 3627–3649.
[25] J. D. Hogg and J. A. Scott. 2011. HSL_MA97: A Bit-compatible Multifrontal Code for Sparse Symmetric Systems. Technical

Report RAL-TR-2011-024. Rutherford Appleton Laboratory.
[26] J. D. Hogg and J. A. Scott. 2013. New parallel sparse direct solvers for multicore architectures. Algorithms 6, 4 (2013),

702–725. Special issue: Algorithms for Multi Core Parallel Computation.
[27] HSL 2018. HSL. A collection of Fortran codes for large-scale scientific computation. Retrieved from http://www.hsl.

rl.ac.uk.
[28] C. Keller, N. I. M. Gould, and A. J. Wathen. 2000. Constraint preconditioning for indefinite linear systems. SIAM J.

Matrix Anal. Appl. 21, 4 (2000), 1300–1317. DOI:https://doi.org/10.1137/S0895479899351805
[29] L. Lukšan and J. Vlček. 1998. Computational experience with globally convergent descent methods for large sparse

systems of nonlinear equations. Optim. Methods Softw. 8, 3–4 (1998), 201–223.
[30] A. Marxen. 1989. Primal Barrier Methods for Linear Programming. Technical Report SOL 89-6. Department of Opera-

tions Research, Stanford University.
[31] C. Meszaros. 2007. Detecting dense columns in interior point methods for linear programs. Comput. Optim. Appl. 36,

2–3 (2007), 309–320.
[32] D. Orban. 2014. The Projected Golub-Kahan Process for Constrained Least-squares. GERAD Technical Report G-2014-15.
[33] D. Orban. 2015. Limited-memory LDL� factorization of symmetric quasi-definite matrices with application to con-

strained optimization. Num. Algor. 70, 1 (2015), 9–41. DOI:https://doi.org/10.1007/s11075-014-9933-x
[34] D. Orban and M. Arioli. 2017. Iterative Solution of Symmetric Quasi-definite Linear Systems. SIAM Spotlights, Vol. 3.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
[35] C. C. Paige and M. A. Saunders. 1975. Solution of sparse indefinite systems of linear equations. SIAM J. Num. Anal.

12, 4 (1975), 617–629.
[36] C. C. Paige and M. A. Saunders. 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM

Trans. Math. Softw. 8, 1 (1982), 43–71.
[37] W. Ren and J. Zhao. 1999. Iterative methods with preconditioners for indefinite systems. J. Comput. Math. 17, 1 (1999),

89–96.
[38] M. A. Saunders. 1995. Cholesky-based Methods for Sparse Least Squares: The Benefits of Regularization. Technical Report

SOL 95-1. Department of Operations Research, Stanford University. In Linear and Nonlinear Conjugate Gradient-

Related Methods, L. Adams and J. L. Nazareth (eds.). SIAM, Philadelphia, 92–100 (1996).
[39] J. A. Scott and M. Tuma. 2014. HSL_MI28: An efficient and robust limited-memory incomplete Cholesky factorization

code. ACM Trans. Math. Softw. 40, 4 (2014), 24:1–19.
[40] J. A. Scott and M. Tuma. 2014. On positive semidefinite modification schemes for incomplete Cholesky factorization.

SIAM J. Sci. Comput. 36, 2 (2014), A609–A633.
[41] J. A. Scott and M. Tuma. 2014. On signed incomplete Cholesky factorization preconditioners for saddle-point systems.

SIAM J. Sci. Comput. 36, 6 (2014), A2984–A3010. DOI:https://doi.org/10.1137/140956671
[42] J. A. Scott and M. Tuma. 2017. Solving mixed sparse-dense linear least-squares problems by preconditioned iterative

methods. SIAM J. Sci. Comput. 39, 6 (2017), A2422–A2437.
[43] J. A. Scott and M. Tuma. 2018. A Schur complement approach to preconditioning sparse least-squares problems with

some dense rows. Numer. Algorithms 79, 4 (2018), 1147–1168. DOI:10.1007/s11075-018-0478-2
[44] J. A. Scott and M. Tuma. 2019. Sparse stretching for solving sparse-dense linear least-squares problems. SIAM J. Sci.

Comput. 41, 3 (2019), A1604—A1625.
[45] C. Sun. 1995. Dealing with Dense Rows in the Solution of Sparse Linear Least Squares Problems. Research Report

CTC95TR227. Advanced Computing Research Institute, Cornell Theory Center, Cornell University.
[46] C. Sun. 1997. Parallel solution of sparse linear least squares problems on distributed-memory multiprocessors. Parallel

Comput. 23, 13 (1997), 2075–2093.
[47] R. J. Vanderbei. 1991. Splitting dense columns in sparse linear systems. Lin. Algebr. Appl. 152 (1991), 107–117.
[48] V. V. Vazirani. 2001. Approximation Algorithms. Springer-Verlag, Berlin.
[49] M. A. Woodbury. 1949. The Stability of Out-Input Matrices. Chicago, IL.
[50] M. A. Woodbury. 1950. Inverting Modified Matrices. Princeton University, Princeton, NJ.

Received April 2019; revised July 2020; accepted July 2020

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 1. Publication date: December 2020.

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
https://doi.org/10.1137/S0895479899351805
https://doi.org/10.1007/s11075-014-9933-x
https://doi.org/10.1137/140956671
https://doi.org/10.1007/s11075-018-0478-2

