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Abstract

CMO functions are completely multiplicative functions f for which
∑∞

n=1f(n)=0.

Such functions were first defined and studied by Kahane and Säıas [31]. We extend

these to multiplicative functions with the aim to investigate the theory of the extended

functions and we shall call them MO functions. We give some properties and find

examples of MO functions, as well as pointing out the connection between these

functions and the Riemann hypothesis at the end of Chapter 2.

Following this, we broaden our scope by generalising both CMO andMO functions

to Beurling prime systems with the aim to answer some of the questions which were

raised by Kahane and Säıas. We shall call these sets of functions CMOP and MOP

functions. Such generalisations allow us to look for new examples to extend our

knowledge. In particular, we explore how quickly the partial sum of these classes

of functions tends to zero with different Beurling generalised prime systems. The

findings of this study suggest that for all CMOP and MOP functions f over N with

abscissa 1, we have ∑
n ≤ x

n ∈ N

f(n) = Ω
( 1√

x

)
.
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Introduction

This work aims to study both multiplicative functions with zero sum and Beurling

prime systems. This thesis is organised as follows. The first chapter contains an

introduction to the theory surrounding both subjects. The purpose of this chapter is

to provide some tools which are required and used throughout the thesis to prove the

main results. We review some notions which describe the asymptotic behaviour of

a function and Riemann-Stieltjes Integral concept. We also introduce some concepts

such as arithmetical function, multiplicative and completely multiplicative functions

as well as surveying some results which show the connection between the Möbius

function and the Prime Number Theorem (PNT). This chapter also reviews a valuable

tool known as Dirichlet series which has a significant role in the field of number theory.

We also introduce essential theorems which show the link between the Euler product

and Dirichlet series of a multiplicative function. Additionally in Chapter 1 we give

the Mellin formula which allows one to transform this series into an integral as well

as giving Perron’s formula. Finally, we review specific relevant results from complex

analysis which we use in this work.

Chapter 2 introduces a class of functions which has been defined and studied by

Kahane and Säıas [31, 30], called CMO functions. These are completely multiplicative

f for which
∑∞

n=1 f(n) = 0. The main purpose of this chapter is to generalise

these functions to multiplicative functions and we shall call them MO functions.

More precisely, we define MO functions to be multiplicative functions for which∑∞
n=1 f(n) = 0 and

∑∞
k=0 f(pk) 6= 0 for all p ∈ P. The third condition is put in

order to avoid trivial examples. We investigate how much of the theory of CMO

functions can be generalised. Like CMO functions, MO functions are not so easy to

find since the series need to be conditionally convergent, motivating some examples

and a closer look at properties of these functions.

Chapter 3 is devoted to reviewing the mathematical background of Beurling prime

systems P which we utilise in the chapters that follow. We introduce this concept,
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giving some examples. In the following part, we introduce the Beurling analogue of

arithmetical functions and Dirichlet convolution of these functions. In the next three

sections, we address Abel’s Identity, the Mellin transform and its inverse, and Euler

products concepts over the Beurling generalised integers N . Recent progress with

Beurling’s Prime Number Theorem is also considered and surveyed in this chapter.

Finally, we quote some known relevant results which are required for this work.

In Chapter 4, we discuss the special functions of Liouville and Möbius over Beurling

prime systems (i.e. λP , µP respectively). We study the relationship between the

partial sums of such functions which play a vital role as examples in chapters 5 and 6.

We are also interested in the following question: how small can the partial sum of both

Liouville and Möbius functions not exceeding x over N be made for a system with

abscissa equal to 1? In particular, we investigate Beurling prime systems P for which

the counting functions ψP(x), NP(x) and MP(x) are asymptotically well-behaved, in

the sense that ψP(x) = x+O(xα+ε), NP(x) = ρx+O(xβ+ε) and

MP(x) =
∑
n ≤ x
n ∈ N

µP(n) = O(xγ+ε)

hold for all ε > 0, but for no ε < 0, where ρ > 0, α, β, γ < 1 respectively. We show

that it is impossible to have both β and γ less than 1
2

or both α and γ less than 1
2
.

We also conclude that out of the three numbers {α, β, γ}, the largest two must be

equal and at least 1
2
. Lastly, we also examine the behaviour of the sums

∑
n∈N

µP (n)
n

and
∑

n∈N
λP (n)
n

of Beurling prime systems under some conditions on P .

In Chapter 5, we investigate CMO functions on Beurling generalised prime systems

and find various examples and properties of these functions. In this chapter, we use

some concepts of Chapter 3 to generalise CMO functions, whereas earlier work by

Kahane and Säıas has depended on the usual primes. This chapter also addresses

and considers the questions that have been asked by Kahane and Säıas for CMO

functions. For example, we show how quickly partial sums of CMOP functions tend

to zero with different Beurling generalised prime systems.

In Chapter 6 we broaden our scope by considering MOP functions which is a

generalisation of CMOP functions. We define these functions over multiplicative

functions instead of completely multiplicative functions. Such a generalisation allows

us to look for new examples to extend our knowledge. In particular, we construct an

2



example which involves the function f(n) = aP (n)
nα

with a g-prime system satisfying

NP(x) = ρx+O(xβ)

for some ρ > 0 and β < 1, where aP(n) is 1− p0 if p0 divides n ∈ N and 1 if p0 does

not divide n ∈ N . We show that f(n) is an MOP function if and only if <α > β and

ζP(α) = 0. For all other examples detailed we find that
∑

n≤x f(n) = Ω
(

1

x
1
2 +ε

)
for all

ε > 0. Indeed, this may suggest that for all functions f which are multiplicative over

N , we have ∑
n ≤ x
n ∈ N

f(n) = Ω
( 1√

x

)
.

We notice as a consequence of the above conjecture that if P is a g-prime system

satisfying

NP(x) = ρx+O(xβ)

for some ρ > 0 and β < 1
2
, then ζP(s) 6= 0 in the strip {s ∈ C : β + 1

2
< <s < 1}; i.e.

a very strong form of Riemann Hypothesis holds.

3



Chapter 1

Preliminaries

In this chapter, we review some facts and results from real analysis which are

necessary of this work. We also give and review some essential mathematical concepts

in number theory which are required and used throughout the thesis. Finally, we offer

some results from complex analysis which are in order that we may prove some of the

main results later on.

1.1 Some facts and results regarding real analysis

In this section, we provide some definitions of special notations which describe the

asymptotic behavior of a function like Big oh, Little oh and Omega. Some of these

notations are commonly used in the Analytic Number Theory such as the Prime

Number Theorem and its equivalences. We also introduce the concept of bounded

variation to functions and Riemann-Stieltjes Integral.

1.1.1 Asymptotic Notations

The O (Big oh), o (little oh), Ω (Omega), asymptotic equivalence and order

of magnitude estimate notations are the convenient set of notations in asymptotic

analysis. We define them as follows: let f : [A,∞) −→ C and g : [A,∞) −→ (0,∞),

then

(i) we write f(x) � g(x) or f(x) = O(g(x)) to mean that there exist constants B

and constant y such that |f(x)| ≤ Bg(x) for all x ≥ y.
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(ii) we write f(x) = o(g(x)) to mean

lim
x→∞

f(x)

g(x)
= 0.

(iii) we write f(x) ∼ g(x) to mean

lim
x→∞

f(x)

g(x)
= 1.

(iv) we write f(x) � g(x) to mean that there exist positive constants b, B and y

such that bg(x) ≤ f(x) ≤ Bg(x) holds for x ≥ y; i.e. f(x) � g(x) means that

both \f(x)� g(x)” and \g(x)� f(x)”.

(v) we write f(x) = Ω(g(x)) if there exist xn −→ ∞ and positive constant B such

that |f(xn)| > Bg(xn) for all n; (i.e. f(x) 6= o(g(x)))

Remark 1.1. Let f, h : [A,∞) −→ C and g : [A,∞) −→ (0,∞). Then

(i) If we have h(x) = O(1), then this means that h(x) is bounded for sufficiently

large x. While if we have h(x) = o(1), then this means that h(x) −→ 0 as

x −→∞.

(ii) If we have h(x)=O(B), whereB >0 is a constant, this equivalent to h(x)=O(1).

(iii) An equation of the form g(x)=f(x)+O(E(x)) means that g(x)−f(x)=O(E(x)),

where O(E(x)) is an error term and g(x) is a main term. This equation is only

meaningful if f(x) is bigger order than E(x); (i.e. E(x) = o(f(x)).

(iv) If we have f(x) and g(x) are integrable and satisfy f(x) = O(g(x)) for x ≥ A,

then
∫ x
A
f(x)dx =

∫ x
A
O(g(x))dx. Furthermore,

∫ x
A
O(g(x))dx = O(

∫ x
A
g(x)dx).

(v) If we have f(x) = o(g(x)), then f(x) = O(g(x)).

(vi) If we have f(x) = o(g(x)), then
∫ x
A
f(t)dt = o(

∫ x
A
g(t)dt) if

∫ x
A
g(t)dt is divergent

as x −→∞.
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1.1.2 Function of Bounded Variation

The function denoted by α will be assumed to be complex valued function.

Definition 1.2. If [a, b] is a compact interval, a set of points P = {x0, x1, . . . , xn},
satisfying the inequalities a = x0 < x1 < . . . , xn−1 < xn = b, is called a partition of

[a, b]. The interval [xi, xi+1] is called the ith subinterval of P , so that
∑n−1

i=0 (xi+1−xi) =

b− a [1] page 128.

Definition 1.3. Let α be defined on [a, b] and let P as defined before. If there exists

a positive number C such that

n−1∑
i=0

|α(xi+1)− α(xi)| ≤ C

for all the partitions P = {x0, x1, . . . , xn} on [a, b], then α is said to be of bounded

variation on [a, b]. As such we can define the total variation of α defined on an

interval [a, b] via

V a
b (α) = sup

n−1∑
i=0

|α(xi+1)− α(xi)|,

where the supremum runs over the set of all partitions P of the given interval.

We say that α : [a,∞) −→ C is a function of locally bounded variation if it is

of bounded variation over all compact subintervals of [a,∞) [1] page 128.

1.1.3 Riemann-Stieltjes Integral

The functions denoted by f and α will be assumed to be (real or complex) valued

functions defined and bounded on the compact interval [a, b].

Definition 1.4. Let P = {x0, x1, x2, . . . , xn} be a partition of [a, b] and let ti be

a point in a subinterval [xi, xi+1]. A sum of the form

S(P, f, α) =
n−1∑
i=0

f(ti)(α(xi+1)− α(xi))

is called a Riemann-Stieltjes sum of f with respect to α. We say f is Riemann

integrable with respect to α on [a, b], and we write (f ∈ R(α) on [a, b]) if there

exists I ∈ R having the following property: for all ε > 0, there exists a partition

Pε of [a, b] such that for every partition P finer (i.e. containing extra points) than

6



Pε and every choice of the points ti in [xi, xi+1], we have |S(P, f, α) − I| < ε. Then

I =
∫ b
a
f(x)dα(x) is the Riemann-Stieltjes integral [1] page 141.

Theorem 1.5. If f ∈ R(α) on [a, b], then α ∈ R(f) on [a, b] and we have∫ b

a

f(x)dα(x) = f(b)α(b)− f(a)α(a)−
∫ b

a

α(x)df(x).

Proof. See Theorem 7.6 [1] page 144.

�

Theorem 1.6. Assume f ∈ R(α) on [a, b] and assume that α has a continuous

derivative α
′

on [a, b]. Then the Riemann integral
∫ b
a
f(x)α

′
(x)dx exists and we have

∫ b

a

f(x)dα(x) =

∫ b

a

f(x)α
′
(x)dx.

Proof. See Theorem 7.8 [1] page 146.

�

Theorem 1.7. (Abel’s summation formula) Let a : N −→ C be a arithmetic function

and let f be a differentiable function such that f
′

Riemann integrable on [1,∞) with

A(x) =
∑

1≤n≤x a(n). Then

∑
1≤n≤x

a(n)f(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt. (1.1)

Proof. The formula (1.1) can be deduced by integration by parts for the Riemann-

Stieltjes integral (using Theorems 1.5 and 1.6). Indeed, we have

∑
1≤n≤x

a(n)f(n) =

∫ x

1−
f(t)dA(t) =

[
A(t)f(t)

]x
1− −

∫ x

1

A(t)f ′(t)dt

= A(x)f(x)−
∫ x

1

A(t)f ′(t)dt,

where “1− ” means approaching 1 from below. �

We shall use the next theorem in the proof of Propositions 1.21, 3.26 and 3.27.

Theorem 1.8. Let a(n) > 0 be a sequence. Then product
∏∞

n=1

(
1+ |a(n)|

)
converges

if and only if the series
∑∞

n=1 |a(n)| converges.

Proof. See Theorem 8.52 of [1] pages 208-209. �
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1.2 Some concepts and results in number theory

In this section, we turn our attention to cover materials from number theory. We

introduce some concepts such as arithmetical function, multiplicative and completely

multiplicative functions with some examples. We also survey some results which

show the connection between Möbius and Liouville functions and the Prime Number

Theorem (PNT). We then introduce a fundamental number theoretic sum associated

with arithmetic functions called Dirichlet series as well as introducing its convergence

issues. Finally we review some results and techniques applicable to Dirichlet series

such as Euler products and Mellin transforms and the inverse Mellin transforms.

1.2.1 Arithmetical Functions

An arithmetical function f : N −→ C is called multiplicative if f(1) = 1 and

it satisfies f(mn) = f(m)f(n) whenever (m,n) = 1, where (m,n) is the greatest

common divisor of m,n ∈ N. Such an f is called completely multiplicative if

f(mn) = f(m)f(n) for all m,n ∈ N. Multiplicative functions are determined by their

values on prime powers; (i.e. once we know the values of f(pk), we know the values

of f(n) for any n ∈ N). However, completely multiplicative functions are determined

by their values on primes; (i.e. once we know the values of f(p), we know the values

of f(n) for any n ∈ N).

If a function χ(n) is completely multiplicative, periodic with period k > 1, and

vanishes when (n, k) > 1 then it is called a Dirichlet character modulo k. A

character is called principal if it has the following properties

χ(n) =

{
1 if (n, k) = 1,

0 if (n, k) > 1.

We introduce two significant arithmetic functions which play a crucial role in the

thesis. We define Möbius function to be the function given by

µ(n) =


1 if n = 1,

(−1)k if n = pi1pi2 · · · pik are distinct primes,

0 otherwise,

or equivalently, the multiplicative function defined by µ(p) = −1 and µ(pk) = 0 if

k > 1 for all primes p. We also define λ(n), also known as Liouville’s function,

8



to be the completely multiplicative function which is λ(p) = −1 for every prime

number p.

The following theorem will be of use in later chapters.

Theorem 1.9. If f(n) is multiplicative, and f(pk) −→ 0 as pk −→∞, then f(n) −→ 0

as n −→∞.

Proof. See Theorem 316 of [24]. �

1.2.2 Average order of Arithmetical Functions

In order to study the distribution of values of an arithmetical function, it is useful

to consider its average behaviour. To do this we need to know something about the

partial sums of the function in order to investigate such behaviour. As such, we can

define the partial sum of the arithmetical function f by F (x) =
∑

n≤x f(n).

The partial sum of µ(n) and λ(n) functions not exceeding x can be defined,

respectively, by

M(x) :=
∑
n≤x

µ(n)

and

L(x) :=
∑
n≤x

λ(n).

We use these notations throughout the thesis.

Definition 1.10. Let f and g be two arithmetic functions. Then the Dirichlet

convolution f ∗ g is the following arithmetic function:

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

The next theorem which is called Dirichlet’s hyperbola method is a useful elementary

technique of finding an asymptotic formula.

Theorem 1.11. Let f and g be arithmetic functions and write

F (x) =
∑
n≤x

f(n) and G(x) =
∑
n≤x

g(n).

9



Then, for any ab = x, where a and b are positive real numbers, we have∑
n≤x

(f ∗ g)(n) =
∑
qd≤x

f(d)g(q) =
∑
n≤a

f(n)G
(x
n

)
+
∑
n≤b

g(n)F
(x
n

)
− F (a)G(b).

Proof. See Theorem 3.17 of [2].

�

1.2.3 The Prime Number Theorem and Möbius function

The Prime Number Theorem (PNT) that describes the asymptotic distribution

of prime numbers was first proved nearly simultaneously by J. Hadamard and C. J.

de la Vallée Poussin in 1896 [20] [34]. They proved that

lim
x→∞

π(x) log x

x
= 1

by showing that the Riemann zeta function ζ(s) has no zeros for <s ≥ 1, where π(x)

is the number of primes not exceeding x. This relation can also be written by using

the asymptotic notation,

π(x) ∼ x

log x
,

or equivalently,

pn ∼ n log n,

where pn is the nth prime number. Several asymptotic formulas have been studied to

be equivalent to the PNT by some scholars (see for example [5], [13] , [44]). We review

some results which show the relationship between Möbius and Liouville functions and

PNT. H. von Mangoldt 1897 [56] proved that knowing the PNT, it is easy to obtain∑∞
n=1

µ(n)
n

= 0 with same elementary steps. However, E. Landau 1909 showed in

[37] the converse of von Mangoldt’s result also holds. Another equivalent of the PNT,

attributed to E. Landau [35], by M(x) = o(x). He also showed in [37] that the Möbius

function can be replaced by the Liouville function in the previous results. In 1912,

J. E. Littlewood showed in [41] that the Riemann hypothesis (RH) is equivalent to

the following evaluation

M(x) =
∑
n≤x

µ(n) = O(x
1
2

+ε) for all ε > 0. (1.2)

10



E. Landau 1924 [38] improved on this result, showing that the RH allows replacement

of the error term in (1.2) by

O
(
x

1
2 exp

(c log x log log log x

log log x

))
for some c > 0.

E.C. Titchmarsh 1927 [52] later improved this to

O
(
x

1
2 exp

( c1 log x

log log x

))
for some c1 > 0.

In 2009, the bound was improved by H. Maier and H. L. Montgomery [42] to

O
(
x

1
2 exp

(
b(log x)

39
61

))
for some b > 0,

and K. Soundararajan 2009 [49] to be

O
(
x

1
2 exp

(
(log x)

1
2 (log log x)14

))
. (1.3)

M. Balazard and A. de Roton [3] have slightly improved this bound by using a similar

approach as K. Soundararajan. They replaced 14 by 5
2

+ ε in (1.3). The best possible

bound was conjectured by S. M. Gonek (see N. Ng [46]) to be

M(x) = O
(
x

1
2 (log log log x)

5
4

)
.

That is, conjecturally, one cannot get M(x) to be o
(
x

1
2 (log log log x)

5
4

)
. Following

the above conjecture, Theorem 4.7 in Chapter 4 can be used to show that this would

imply L(x) is also

O
(
x

1
2 (log log log x)

5
4

)
.

It is also well-known that M(x) and L(x) are Ω(
√
x) since there are zeros of the

Riemann zeta function ζ on the line <s = 1
2

(see for example [54]).

1.2.4 Zeta Functions and L-functions; Dirichlet series

It is well-known that L. Euler in the 1737 determined the values of ζ(s) =
∑∞

n=1
1
ns

when s is an even integer bigger than 1. A fundamental connection between ζ(s) and

the prime numbers was established by Euler, known as the Euler product representation

11



of the zeta function, given by

ζ(s) =
∏
p∈P

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=
∏
p∈P

(
1− 1

ps

)−1

.

This infinite product is convergent for <s > 1. In 1859, B. Riemann [48] defined the

generalised version by viewing ζ(s) as a function of a complex number s instead of

a real number s; i.e.

ζ(s) =
∞∑
n=1

1

ns
for <s > 1.

This was later named the Riemann zeta function. This series is absolutely

convergent in the half plane <s > 1 and it has an analytic continuation to the

whole complex plane C except for a simple pole at s = 1 with residue 1. For this

continuation, we have the functional equation of the zeta function which relates

the values of ζ at s and 1− s as follows:

ζ(1− s) = 2(2π)−scos
(πs

2

)
Γ(s)ζ(s), for <s > 0,

where Γ(s) =
∫∞

0
e−tts−1dt is the Gamma function. The most interesting mystery

of zeta function occurs whenever 0 < <s < 1. This is not only called the critical

strip but also is central to the famous Riemann Hypothesis (RH) which states

that all zeros in the critical strip are located on the critical line <s = 1
2
.

In 1837, L. Dirichlet [18] introduced another Dirichlet series of the form

Lχ(s) =
∞∑
n=1

χ(n)

ns
,

which is known as a Dirichlet L-function in order to prove that there are infinitely

many primes in any arithmetic progression an + d, where a, d are any two positive

coprime integers and n is also a positive integer. These series are absolutely convergent

in the half plane <s > 1 and have an analytic continuation to the whole complex plane

C apart from a simple pole at s = 1 if χ(n) is a principal character. However, Lχ(s)

is holomorphic everywhere if χ(n) is a non-principal character. The Generalised

Riemann Hypothesis (GRH) asserts that for every Dirichlet character χ, all the

zeros in the critical strip lie along the line <s = 1
2
. The Riemann zeta function is

a special case of these functions when χ(n) = 1 for all n ∈ N.

The Riemann zeta function and Dirichlet L-functions are examples of the following

12



series

∞∑
n=1

a(n)

ns
, (1.4)

which is called an Ordinary Dirichlet series with coefficients a(n), where a(n)

is an arithmetical function. More generally, this series is a type of the General

Dirichlet series which have the form

∞∑
n=1

a(n)e−λns, (1.5)

where s is a complex number and λn is a strictly increasing sequence of non-negative

real numbers whose limit is infinity. Indeed, if λn = log n, then (1.5) gives (1.4).

However, if λn = n and the change of variable e−s = z gives the power series∑∞
n=1 a(n)zn. These series not only play a significant role in analytic number theory

but also have applications in other areas such that cryptography, physics and applied

statistics.

Convergence of Dirichlet Series

In this section, we are concerned with different convergence issues of Dirichlet

series. Namely, we introduce some fundamental theorems relating to Dirichlet series,

which explain the concept of abscissa of convergence and absolute convergence.

Theorem 1.12. (Abel’s theorem on Dirichlet series) If the Dirichlet series

D(s) :=
∞∑
n=1

a(n)e−λns, s = σ + it, λn > 0,

converges at the point s0 = σ0 + it0, then this series is convergent in the half plane

σ > σ0 and uniformly convergent inside any angle | arg(s− s0)| ≤ θ < π
2
.

Proof. See Abel’s theorem on Dirichlet series given in [23] page 3.

�

Theorem 1.13. If the series is convergent for s = s0 , and has the sum D(s0), then

D(σ + it) −→ D(σ0 + it0) as σ −→ σ+
0 along any path which lies entirely within the

region | arg(s− s0)| ≤ θ < π
2
.
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Proof. See Abel’s theorem on Dirichlet series given in [23] page 6.

�

Theorem 1.14. The series (1.5) may be convergent everywhere, or divergent every-

where, or there may exist a number σc such that the series converges for σ > σc and

diverges for σ < σc. Indeed this series converges uniformly throughout the region of

the half plane {s ∈ C : σ ≥ σc + δ for all δ > 0}.

Proof. See Theorem 3 and Theorem 4 of [23].

�

Theorem 1.15. There is a number σa such that the series (1.5) converges absolutely

if σ > σa but does not converge absolutely if σ < σa.

Proof. See Theorem 8 of [23].

�

Remark 1.16.

(i) The numbers σc and σa are called the abscissa of convergence and abscissa

of absolute convergence respectively.

(ii) The regions Hσc = {s ∈ C : σ > σc} and Hσa = {s ∈ C : σ > σa} are called the

half plane of convergence and half plane of absolute convergence.

(iii) The lines σ = σc and σ = σa are called the line of convergence and line of

absolute convergence respectively.

(iv) In general there might be a strip between the lines of convergence and absolute

convergence where the series (1.5) is conditionally convergent.

Theorem 1.17. For the series (1.5), we have

0 ≤ σa − σc ≤ lim sup
n−→∞

log n

λn
.

Proof. See Theorem 9 of [23].

�

If λn = log n, then (1.5) gives (1.4) and the maximum possible distance between

these two lines is 1.
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Theorem 1.18. Let f , g and h be arithmetic functions, with respective ordinary

Dirichlet series F (s) =
∑∞

n=1
f(n)
ns

, G(s) =
∑∞

n=1
g(n)
ns

and H(s) =
∑∞

n=1
h(n)
ns

. Assume

that h = f ∗ g the Dirichlet convolution of f and g; i.e.

h(n) =
∑
d|n

f(d)g
(n
d

)
.

Then the series H(s) converges in any domain where both series F (s) and G(s) are

absolutely convergent, and in such circumstances we have

H(s) = F (s)G(s).

Proof. See Theorem 1.2 of Chapter II.1. [51].

�

It is mentioned in the notes of Chapter II.1.[51] that the above theorem can be

extended in the following manner: If the series F (s) converges, and if the series G(s)

converges absolutely, then the series H(s) converges and we have H(s) = F (s)G(s).

1.2.5 Euler Products

In this section, we introduce the next important theorem which is due to a discovery

by Euler in the 1730s.

Theorem 1.19. Let f : N −→ C be a multiplicative function such that the series∑∞
n=1 f(n) is absolutely convergent. Then the sum of the series can be expressed as

an absolutely convergent infinite product,

∞∑
n=1

f(n) =
∏
p

{1 + f(p) + f(p2) + · · · }

extended over all primes. If f is completely multiplicative, the product simplifies and

we have

∞∑
n=1

f(n) =
∏
p

1

1− f(p)
.

Proof. See Theorem 11.6 of [2].

�
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Example 1.20. If f(n) = 1
ns

, then our series is ζ(s), the Riemann zeta function, and

we obtain

∞∑
n=1

1

ns
=
∏
p

1

1− 1
ps

= ζ(s) for <(s) > 1.

Furthermore, if f(n) = µ(n)
ns
, λ(n)
ns

and χ(n)
ns

, then we can get the following Euler

products:
∞∑
n=1

µ(n)

ns
=
∏
p

(1 + µ(p)p−s) =
1

ζ(s)
if <(s) > 1,

∞∑
n=1

λ(n)

ns
=
∏
p

(1− λ(p)p−s)−1 =
ζ(2s)

ζ(s)
if <(s) > 1,

∞∑
n=1

χ(n)

ns
=
∏
p

(1− χ(p)p−s)−1 = Lχ(s) if <(s) > 1.

We shall need the following result in Chapter 2.

Propostion 1.21. Let f be a multiplicative function. Then
∑∞

n=1 |f(n)| converges,

so that f is absolutely convergent, if and only if
∑

p

∑∞
k=1 |f(pk)| converges.

Proof. Trivially, the series
∑

p

∑∞
k=1 |f(pk)| converges if

∑∞
n=1 |f(n)| converges.

Now suppose
∑

p

∑∞
k=1 |f(pk)| converges. It is follows by Theorem 1.8 that

∏
p

(
1 +

∞∑
k=1

|f(pk)|
)

=
∏
p

( ∞∑
k=0

|f(pk)|
)

converges.

But the right hand side is at least
∏

p≤x

{∑∞
k=0 |f(pk)|

}
. Therefore, by the proof of

Theorem 11.6 of [2] for any x, we have

∏
p≤x

{ ∞∑
k=0

|f(pk)|
}

=
∑
n ∈ N

p|n & p ≤ x

|f(n)| ≥
∑
n≤x

|f(n)|.

Hence
∑∞

n=1 |f(n)| converges, so that f is absolutely convergent.

�
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1.2.6 Dirichlet Series as Mellin Transform; Perron’s formula

In this section, we provide the theorem which allows one to express the general

Dirichlet series as integrals. We also introduce Perron’s formula which allows one to

calculate the partial sum of an arithmetical function a(n) not exceeding x.

Theorem 1.22. Let F (s) =
∑∞

n=1 a(n)e−λns be a general Dirichlet series with finite

abscissa of convergence σc, and let A(x) =
∑

λn≤x a(n). Then we have

F (s) =
∞∑
n=1

a(n)e−λns = s

∫ ∞
eλ1

A(log y)

ys+1
dy for σ > max{0, σc}.

Proof. Applying Riemann-Stieltjes integration, we have

F (s) =
∞∑
n=1

a(n)e−λns =

∫ ∞
λ1−

e−tsdA(t) = lim
T→∞

∫ T

λ1−
e−tsdA(t)

= lim
T→∞

([
A(t)e−ts

]T
λ1−

+ s

∫ T

λ1

A(t)e−tsdt
)

= lim
T→∞

(A(T )

eTs
+ s

∫ T

λ1

A(t)e−tsdt
)
,

where “λ1 − ” means approaching λ1 from below.

Now if A(T ) converges, then A(T )
eTs
→ 0 whenever T →∞ and σ > 0, while if A(T )

diverges, then A(T ) = O(eT (σc+ε)) for all ε > 0 and hence A(T )
eTs
→ 0 whenever T →∞

and σ > σc. Therefore, for σ > max{0, σc}, we have

F (s) = s

∫ ∞
eλ1

A(log y)

ys+1
, dy where A(log y) =

∑
eλn≤y

a(n).

�

Lemma 1.23. If c > 0 we write
∫ c+i∞
c−i∞ to mean lim

T→∞

∫ c+iT
c−iT . Then, if x is a real

number, we have

1

2πi

∫ c+i∞

c−i∞

exs

s
ds =


1 if x > 0,
1
2

if x = 0,

0 if x < 0.
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Moreover, we have∣∣∣∣ 1

2πi

∫ c+i∞

c−i∞

exs

s
ds− 1

2πi

∫ c+iT

c−iT

exs

s
ds

∣∣∣∣ ≤
{

exc

πT |x| if x 6= 0,
c
πT

if x = 0.

Proof. See Lemma 3 of [23].

�

Theorem 1.24. (Perron’s formula) Let F (s) =
∑∞

n=1 a(n)e−λns be a general Dirichlet

series with finite abscissa of convergence σc, and let A(x) =
∑

λn≤x a(n). Then, for

x ∈ R, but x 6= λn for all n, we have

A(x) =
1

2πi

∫ c+i∞

c−i∞

F (s)

s
exs ds

for every c > max{0, σc}.

Proof. See Theorem 13 of [23].

�

1.3 Some relevant results from complex analysis

In this section, we quote some useful results from complex analysis which we

require for the later chapters.

Definition 1.25. We say that a holomorphic function f on a strip {s∈C : a ≤<s≤ b}
is of finite order on the strip if there exists A > 0 such that

f(σ + it) = O(|t|A) as |t| −→ ∞ (1.6)

for all σ in the strip [39] page 367. If for some σ no such A exists, we say f is of

infinite order for this range σ.

A function f defined by Dirichlet series has finite order in the half plane of

convergence if (1.6) holds for σ > σc. As such, we can define the Lindelöf function

µf (σ) to be the infimum of all real numbers A such that |f(σ + it)| = O(|t|A);

(i.e. |f(σ + it)| = O(|t|µf (σ)+ε) for all ε > 0 but no ε < 0). It is also well-known that

µf (σ) is non-negative, decreasing and convex and for σ > σa, µf (σ) = 0 for σ

sufficiently large (see for example [53], [54]).
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If f = ζ, then µ(σ) = 0 for σ ≥ 1 and µ(σ) = 1
2
− σ for σ ≤ 0 by the functional

equation. But µ(σ) is not known for any other 0 < σ < 1.

E. L. Lindelöf [40] conjectured (Lindelöf’s Hypothesis) that one has

µ(σ) =

{
1
2
− σ if σ < 1

2
,

0 if σ ≥ 1
2
,

or equivalently,

|ζ(1
2

+ it)| = O(|t|ε) (1.7)

for all ε > 0 as |t| −→ ∞. He showed that the upper bound for the left hand side

of (1.7) is O(|t| 14 ) which has been improved by many researchers since then. The

current best bound of |ζ(1
2

+ it)| which was recently estimated by J. Bourgain [7]

is O(|t| 13
84

+ε) for all ε > 0. It is also known that Lindelöf Hypothesis follows from the

Riemann hypothesis which has been mentioned earlier (see for instance [19]).

Theorem 1.26. (Borel-Carathéodory Theorem) Let f(z) be a holomorphic function

on a closed disc of radius R centered at the origin. Then, for 0 < r < R,

max
|z|≤r
|f(z)| ≤ 2r

R− r
sup
|z|≤R
<f(z) +

R + r

R− r
|f(0)|.

Proof. See Theorem 5.5 of [53].

�

Theorem 1.27. (Hadamard Three-Circles Theorem) Let f(z) be a holomorphic

function in the region r1 ≤ |z| ≤ r3. Let r1 < r2 < r3, and let M1,M2,M3 be the

maxima of |f(z)| on the three circles |z| = r1, r2, r3 respectively. Then

M
log(

r3
r1

)

2 ≤M
log(

r3
r2

)

1 M
log(

r2
r1

)

3 ,

or equivalently,

M2 ≤M1−κ
1 Mκ

3 , where κ =
log
(
r2
r1

)
log
(
r3
r1

) .
Proof. See Theorem 5.3 of [53].

�
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Theorem 1.28. Let f be a holomorphic on an open set U , and let a be any point of

U . Then, for every n ≥ 0, we have

f (n)(a) =
n!

2πi

∫
γ

f(z)

(z − a)n+1
dz,

where γ is any oriented circular path with centre at a.

Proof. See Theorem 16.20 of [2]. �

Theorem 1.29. Let f be continuous on an open set U , and suppose that g is analytic

in U and g
′

= f . Let α, β be two points of U , and let γ be a path in U joining α to

β. Then ∫
γ

f = g(β)− g(α).

Proof. See Theorem 2.1 of [39].

�
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Chapter 2

Multiplicative functions with Sum

Zero

This chapter is organised as follows. In the first section, we review CMO functions

which are completely multiplicative functions with sum zero. In the second section, we

generalise these to multiplicative functions and shall denote them by MO functions.

Furthermore, we give some examples of such functions as well as studying their

properties.

2.1 CMO functions

A function f : N −→ C is called a CMO function if it satisfies the two following

conditions:

f is a completely multiplicative function and
∞∑
n=1

f(n) = 0.

Such functions were first introduced by J.-P. Kahane and E. Säıas [31]. One

motivation for them is to gain further insight into the zeros of Dirichlet series with

completely multiplicative coefficients. Namely, the Generalised Riemann Hypothesis

as discussed below. One of their aims was to find and give necessary and/or sufficient

conditions on f(p) for f being a CMO function. They also gave some properties and

examples of such functions. For instance, they discussed various examples of CMO

functions including f(n) = λ(n)
n

, where λ(n) is the Liouville function and f(n) = χ(n)
nα

,

where χ is a non-principal Dirichlet character and α is a zero of Lχ with <α > 0.
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This study led them to consider the question of how quickly
∑

n≤x f(n) can tend to

zero. They suggested that it is always Ω( 1√
x
) and the Generalised Riemann Hypothesis

- Riemann Hypothesis (GRH-RH) would follow if their proposition is true. This is

because if GRH-RH is false then there is α which is a zero of Lχ with <α > 1
2

which

means
∑

n≤x
χ(n)
nα

is not Ω( 1√
x
) (see [31]). This suggestion is incredibly difficult to

prove, but it might be easier to disprove; i.e., to find examples such that

∑
n≤x

f(n) = O
( 1

xc

)
for some c >

1

2
.

To date no such counter examples have been found. One approach to consider this

counter example question is to consider examples of generalised CMO functions.

2.2 MO functions

In this section, we introduce new functions which are a natural generalisation

of CMO functions. We extend the notion of CMO to multiplicative functions and

shall call them MO functions. We would like to see how much the theory of CMO

functions can be generalised here. To help motivate our enquiries we consider examples

of such functions and properties thereof. For example, let f be a MO function and g

a multiplicative function “close” to f . We shall show that g is also an MO function

under some extra condition on f . We can also ask a similar question of Kahane

and Säıas how quickly the partial sum of MO functions up to and including x;

(i.e.
∑

n≤x f(n)) can tend to zero. We define these functions as follows:

Definition 2.1. An arithmetical function f : N −→ C is called an MO function if it

is multiplicative and satisfies

(i)
∞∑
n=1

f(n) = 0 and (ii)
∞∑
k=0

f(pk) 6= 0 for all p ∈ P.

The extra condition (ii) says the series converges but not to zero. This is needed

to avoid trivial examples. For instance, let f(1) = 1, f(2) = −1 and f(n) = 0 for all

n > 2. Then
∑∞

n=1 f(n) = 0 but
∑∞

k=1 f(2k) = f(1) + f(2) + f(4) + · · · = 0, and so

does not satisfy the extra condition.

22



2.2.1 Examples

Like CMO functions which have been studied by Kahane and Säıas [31], MO

functions are not so easy to find since these need to be conditionally convergent (as

we shall see in Proposition 2.6). To help the readers understanding we give three

examples of MO functions. The first is based on the Möbius function, the second on

the Dirichlet eta function, which corresponds to the case k = 2 in the third example.

Example 2.2. The function µ(n)
n

is an MO function since:

(i) it is clear that µ(n)
n

is a multiplicative function;

(ii) it is well-known that
∑∞

n=1
µ(n)
n

= 0 (see for example [2] page 97);

(iii)
∑∞

k=0
µ(pk)
pk

= 1− 1
p
6= 0 for all p ∈ P.

Example 2.3. Consider (−1)n−1

nα
which is multiplicative. For which values of α ∈ C

with <α > 0 is this an MO function?

(i) The series
∑∞

n=1
(−1)n−1

nα
converges for <α > 0 sinceA(x) :=

∑
n≤x(−1)n−1 = O(1).

Therefore, 0 ≤ A(x) ≤ 1 and using Abel summation (see Theorem 1.7), we have

∑
n≤x

(−1)n−1

nα
=
A(x)

xα
+ α

∫ x

1

A(t)

tα+1
dt

= O
( 1

x<α

)
+ α

∫ ∞
1

A(t)

tα+1
dt− α

∫ ∞
x

O(1)

tα+1
dt = Cα +O

( 1

x<α

)
,

where Cα is a constant, since∣∣∣∣ ∫ ∞
x

O(1)

tα+1
dt

∣∣∣∣ = O

(∫ ∞
x

1

t<α+1
dt

)
= O

( 1

x<α

)
.

Hence, for <α > 0, ∑
n≤x

(−1)n−1

nα
= Cα +O

( 1

x<α

)
.

In particular,
∑∞

n=1
(−1)n−1

nα
converges. Now, for <α > 0, we have

∞∑
n=1

(−1)n−1

nα
= (1− 21−α)ζ(α). (2.1)
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This is zero if and only if 2α = 2 or ζ(α) = 0 (for α = 1, the sum on the left

of (2.1) is not zero).

(ii) It remains to establish for which values of α that
∑∞

k=0
(−1)p

k−1

pαk
6= 0 for all p ∈ P.

If p = 2, then
∞∑
k=0

(−1)2k−1

2kα
= 1−

∞∑
k=1

1

2αk
=

2α − 2

2α − 1
.

This is non-zero if and only if 2α 6= 2; (i.e. For (−1)n−1

nα
to be MO we therefore

need 2α 6= 2). Now if p ≥ 3, then

∞∑
k=0

(−1)p
k−1

pkα
=
∞∑
k=0

1

pαk
=

1

1− 1
pα

.

This is non-zero for any α with <α > 0.

We see that (−1)n−1

nα
is not an MO function if 2α = 2 since (ii) does not hold.

Therefore we conclude that (−1)n−1

nα
is an MO function if and only if <α > 0 and

ζ(α) = 0 since (i) and (ii) hold.

Furthermore, if ζ(α) = 0 with <α > 0, then

∑
n≤x

(−1)n−1

nα
= O

( 1

x<α

)
.

This example can be generalised as follows:

Example 2.4. Define gk(n) as follows:

gk(n) :=

{
1− k if k divides n,

1 if k does not divide n.

We ask for which positive integer k > 1 and α with <α > 0 is the function gk(n)
nα

MO ?

When k = 2 we get Example 2.3.

(i) We wish to find all k for which gk(n) is a multiplicative function as follows: If

m = n = 1, then gk(m)gk(n) = gk(mn). Now if k divides mn, then we have four

cases as follows: Assume (m,n) = 1.
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(a) If k divides both n and m, then (m,n) 6= 1. Hence we cannot have k

dividing both m,n since we need (m,n) = 1.

(b) If k does not divide n and k divides m, then gk(m)gk(n) = (1 − k)(1) =

1− k = gk(mn).

or vice versa

(c) If k does not divide m and k divides n, then gk(m)gk(n) = (1)(1 − k) =

1− k = gk(mn).

(d) If k does not divide both n and m, then we have two cases:

i. If k is not a prime power; (i.e. k = pa1
1 · pa2

2 · · · p
ai
i , where i ≥ 2 and

ai ≥ 1). Then, with m = pa1
1 and n = pa2

2 · · · p
ai
i such that (m,n) = 1,

we have gk(m)gk(n) = (1)(1) 6= (1− k) = gk(mn).

ii. If k is a prime power; (i.e. k = pr). Then at least one of m or n is

not a multiple of p while the other is (i.e. p does not divide m, then pr

divides n or p does not divide n, then pr divides m) and gk(m)gk(n) =

(1)(1− k) = (1− k) = gk(mn) or gk(m)gk(n) = (1− k)(1) = (1− k) =

gk(mn).

However, if k does not divide mn, then k does not divide both m and n, and

gk(m)gk(n) = (1)(1) = 1 = gk(mn).

Thus gk(n) is multiplicative function if and only if k is a prime power.

(ii) The series
∑∞

n=1
gk(n)
nα

converges for <α > 0 since

A(x) :=
∑
n≤x

gk(n) =
N∑
m=1

mk∑
n=(m−1)k+1

gk(n) +
x∑

n=Nk+1

gk(n) = 0 +
x∑

n=Nk+1

gk(n)

= gk(Nk + 1) + gk(Nk + 2) + · · ·+ gk(x), where N =
⌊x
k

⌋
≤ k − 1 = O(1).

Thus 0 ≤ A(x) ≤ k − 1 and using Abel summation, we have

∑
n≤x

gk(n)

nα
=
A(x)

xα
+ α

∫ x

1

A(t)

tα+1
dt

= O
( 1

x<α

)
+ α

∫ ∞
1

A(t)

tα+1
dt− α

∫ ∞
x

O(1)

tα+1
dt

= Cα +O
( 1

x<α

)
,
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where Cα is a constant, as in Example 2.3. In particular, for <α > 0,
∑∞

n=1
gk(n)
nα

converges.

Now, for <α > 1, we have

∞∑
n=1

gk(n)

nα
=
∞∑
n=1

1

nα
−
∞∑
n=1

k

(kn)α
= (1− k1−α)ζ(α).

Thus
∞∑
n=1

gk(n)

nα
= Cα = (1− k1−α)ζ(α) for <α > 0 by analytic continuation.

Also,
∞∑
n=1

gk(n)

nα
= 0 if and only if kα = k or ζ(α) = 0.

(iii) It remains to get all k and α for which
∑∞

m=0
gk(pm)
pmα

6= 0 for all p ∈ P. Let

k = pr0, p0 a prime number.

If p0 6= p, then gk(p
m) = 1 for all m ≥ 0. Hence

∞∑
m=0

gk(p
m)

pmα
=

∞∑
m=0

1

pαm
=

1

1− 1
pα

.

This is non-zero for any α with<α > 0. Now if p0 = p, then

∞∑
m=0

gk(p
m)

pmα
=

r−1∑
m=0

gk(p
m)

pαm
+
∞∑
m=r

gk(p
m)

pαm
=

r−1∑
m=0

1

pαm
+ (1− k)

∞∑
m=r

1

pαm

= 1 +
1

pα
+

1

p2α
+ · · ·+ 1

p(r−2)α
+

1

p(r−1)α
+ (1− k)

∞∑
m=1

1

p(m+r−1)α

= 1 +
1

pα
+

1

p2α
+ · · ·+ 1

p(r−2)α
+

1

p(r−1)α
+

(1− k)

p(r−1)α
· 1

pα − 1

=
(p(r−1)α + p(r−2)α + · · ·+ p2α + pα + 1)(pα − 1) + (1− k)

p(r−1)α(pα − 1)

=
prα + p(r−1)α + · · ·+ pα − p(r−1)α − p(r−2)α − · · · − pα − 1 + 1− k

p(r−1)α(pα − 1)

=
prα − k

p(r−1)α(pα − 1)
=

kα − k
kα(1− p−α)

.

This is non-zero if and only if kα 6= k; (i.e., For gk(n)
nα

to be MO we therefore

need kα 6= k).

We see that gk(n)
nα

is not an MO function if kα = k since (iii) fails. Therefore, we
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conclude that gk(n)
nα

is an MO function if and only if k is a prime power, <α > 0 and

ζ(α) = 0 since (i), (ii) and (iii) hold.

Furthermore, if ζ(α) = 0 with <α > 0, then

∑
n≤x

gk(n)

nα
= O

( 1

x<α

)
.

2.2.2 Some properties of MO functions

In this section, we establish some preliminary properties of MO functions.

Propostion 2.5. If f is a CMO function, then f is an MO function; (i.e CMO ⊂
MO).

Proof. It is clear that f is multiplicative and
∑∞

n=1 f(n) = 0. It remains to show

that
∑∞

k=0 f(pk) 6= 0 for all p ∈ P. Now since f is completely multiplicative, then

f(pk) = f(p)k. Therefore

∞∑
k=0

f(pk) =
∞∑
k=0

f(p)k =
1

1− f(p)
6= 0.

This series converges since |f(p)| < 1.

Hence, by Definition 2.1, f is an MO function.

�

Propostion 2.6. Let f be an MO function. Then
∑∞

n=1 |f(n)| diverges. Indeed∑
p

∑∞
k=1 |f(pk)| diverges.

Proof. Let us assume that the statement is false, so that

∞∑
n=1

|f(n)| converges.

Then, by multiplicative property,

∞∑
n=1

f(n) =
∏
p

∞∑
k=0

f(pk) 6= 0 since
∞∑
k=0

f(pk) 6= 0.
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Yielding a contradiction since f is an MO function and hence

∞∑
n=1

|f(n)| diverges.

Furthermore, Proposition 1.21 gives
∑

p

∑∞
k=1 |f(pk)| diverges, as required.

�

2.2.3 Partial sums of MO functions

We know that the partial sum of an MO function not exceeding x tends to zero

when x tends to infinity. A question raised by Kahane and Säıas [31] regarding CMO

functions is: can one show, given g(x), that there exist a CMO function f with

∑
n≤x

f(n) = Ω(g(x))?

We are not considering this question, but we are interested in a related question which

is: how small can we make g(x), so that the above is true for all MO functions f?

This question motivates the following propositions:

Propostion 2.7. If f is an MO function, then

∑
n≤x

f(n) = Ω
( 1

x log x

)
.

Proof. Let us assume that the statement is false, so that

∑
n≤x

f(n) = O
( 1

x log x

)
.

We know that for n ∈ N,

f(n) =
∑
m≤n

f(m)−
∑
m<n

f(m) = O
( 1

n log n

)
.

Hence

f(pk) = O
( 1

pk log pk

)
.
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Now it follows that
∑

p

∑∞
k=1 |f(pk)| converges since

∑
p

∞∑
k=1

1

pk log pk
≤
∑
p

∞∑
k=1

1

pk log p
(since log pk ≥ log p)

=
∑
p

1

log p

∞∑
k=1

1

pk

=
∑
p

1

(p− 1) log p
converges (since pn log pn ∼ n(log n)2).

Thus

∑
p

∞∑
k=1

1

pk log pk
converges.

Hence, by Proposition 1.21,
∑∞

n=1 |f(n)| converges. However, by Proposition 2.6,

we have a contradiction, and so it follows that

∑
n≤x

f(n) = Ω
( 1

x log x

)
.

�

Remark 2.8. Similarly, if f is an MO function, then

∑
n≤x

f(n) = Ω
( 1

x(log x)ε
)

for all ε > 0.

We can improve Proposition 2.7 using the fact that
∑

p
1

p(log log p)2 converges.

Propostion 2.9. If f is an MO function, then

∑
n≤x

f(n) = Ω
( 1

x(log log x)2

)
.

Proof. Let us assume that the statement is false, so that

∑
n≤x

f(n) = O
( 1

x(log log x)2

)
.
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We know that for n ∈ N,

f(n) =
∑
m≤n

f(m)−
∑
m<n

f(m) = O
( 1

n(log log n)2

)
.

Hence

f(pk) = O
( 1

pk(log log pk)2

)
.

Now it follows that
∑

p

∑∞
k=1 |f(pk)| converges since

∑
p≥3

∞∑
k=1

1

pk(log log pk)2
≤
∑
p≥3

∞∑
k=1

1

pk(log log p)2
(since (log log pk)2 ≥ (log log p)2)

=
∑
p≥3

1

(log log p)2

∞∑
k=1

1

pk

=
∑
p≥3

1

(p− 1)(log log p)2
converges (since (log log pn)2∼(log log n)2).

For p = 2,

∞∑
k=1

1

2k(log log 2k)2
≤ 1

2(log log 2)2
+

1

(log log 4)2

∑
k≥2

1

2k
converges.

Thus

∑
p

∞∑
k=1

1

pk(log log pk)2
converges.

Hence, by Proposition 1.21,
∑∞

n=1 |f(n)| converges. However, by Proposition 2.6,

we have a contradiction, and so it follows that

∑
n≤x

f(n) = Ω
( 1

x(log log x)2

)
.

�

Remark 2.10. Similarly, if f is an MO function, then

∑
n≤x

f(n) = Ω
( 1

x(log log x)1+ε

)
for all ε > 0. (2.2)
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Kahane and Säıas [31] have shown that if f is a CMO function, then

∑
n≤x

f(n) = Ω
(1

x

)
by using a deep result of D. Koukoulopoulos in [33]. We attempted to improve (2.2)

to Ω( 1
x
) as with the work of Kahane and Säıas [31], but the question is still open.

2.2.4 Closeness relation between two multiplicative functions

LetM := {f : N −→ C multiplicative}, and let us define an (extended) metric

on M to be the distance function

D(f, g) :=
∑
p

∞∑
k=0

|g(pk)− f(pk)|.

Then M is an extended metric space since D(f, g) can attain the value ∞. It is

straightforward to check for all f, g, h ∈M

(i) D(f, g) = 0 if and only if f = g,

(ii) D(f, g) = D(g, f),

(iii) D(f, h) ≤ D(f, g) +D(g, h),

hold. We aim to extend Theorem 3 of Kahane and Säıas in [31] by showing that if

f is an MO function and g is a multiplicative function “close” to f , (i.e. g has finite

distance from f), then g is also an MO function. We can do this under an extra

condition on f , as the following theorem shows.

Theorem 2.11. Let f be an MO function for which

∣∣∣ ∞∑
k=0

f(pk)

pks

∣∣∣ ≥ a for some a > 0, for all p and all <s ≥ 0, (2.3)

and let g be a multiplicative function such that D(f, g) is finite and

∞∑
k=0

g(pk) 6= 0 for all p. (2.4)

Then g is an MO function.
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Proof. Let F (s) :=
∑∞

n=1
f(n)
ns

and G(s) :=
∑∞

n=1
g(n)
ns

. Then the series for F (s) is

absolutely convergent for <s > 1 and it is convergent for <s > 0 and s = 0 since∑∞
n=1 f(n) = 0. We note that the assumption D(f, g) is finite and the fact that f is

an MO function imply |g(pk)| −→ 0 as pk −→∞. Then, by Theorem 1.9, g(n) −→ 0

as n −→ ∞. Therefore the series for G(s) converges for <s > 1 since g is bounded.

Therefore F (s) and G(s) can be written as follows:

F (s) =
∏
p

∞∑
k=0

f(pk)

pks
and G(s) =

∏
p

∞∑
k=0

g(pk)

pks
<s > 1.

Now

H(s) :=
∏
p

(∑∞
k=0

g(pk)
pks∑∞

k=0
f(pk)
pks

)
=
∏
p

(
1 +

∑∞
k=0

g(pk)−f(pk)
pks∑∞

k=0
f(pk)
pks

)

converges absolutely for <s ≥ 0 if and only if

∑
p

∣∣∑∞
k=0

g(pk)−f(pk)
pks

∣∣∣∣∑∞
k=0

f(pk)
pks

∣∣ (2.5)

converges for <s ≥ 0. But

∑
p

∣∣∑∞
k=0

g(pk)−f(pk)
pks

∣∣∣∣∑∞
k=0

f(pk)
pks

∣∣ ≤ 1

a

∑
p

∞∑
k=0

|g(pk)− f(pk)|

by (2.3) so, since D(f, g) is finite, (2.5) converges for <s ≥ 0 and H(s) converges

absolutely to holomorphic function for <s > 0. However, H(s) = (G/F )(s) for

<s > 1 then G(s) = F (s)H(s), where the series for F (s) converges for <s > 0 and

s = 0 since f is an MO function, and H(s) converges absolutely for <s ≥ 0. Therefore

G(s) converges for <s > 0 and s = 0 using the extension of Theorem 1.18. Thus we

have G(0) = F (0)H(0) = 0. Hence, by assumption (2.4) and G(0) = 0, g is an MO

function.

�

The proof of Theorem 2.11 also gives the following result.

Corollary 2.12. Let f and g both be multiplicative functions such that D(f, g) is
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finite and satisfies

∣∣∣ ∞∑
k=0

f(pk)

pks

∣∣∣ ≥ a for some a > 0 and all <s ≥ 0,

∣∣∣ ∞∑
k=0

g(pk)

pks

∣∣∣ ≥ b for some b > 0 and all <s ≥ 0.

Then the following two assertions are equivalent:

∞∑
n=1

f(n) = 0 and
∞∑
n=1

g(n) = 0.

2.2.5 Open problems

(i) Let f be an MO function. Can we show that

∑
n≤x

f(n) = Ω
(1

x

)
?

(ii) As pointed out earlier Kahane and Säıas suggested that for all CMO functions,

one has
∑

n≤x f(n) = Ω
(

1√
x

)
. As also mentioned, GRH-RH (Generalised

Riemann Hypothesis-Riemann Hypothesis) would follow if their suggestion is

correct.

In Example 2.2, it is known that
∑

n≤x µ(n) = Ω(
√
x) since there are zeros

of the Riemann zeta function ζ on the line <s = 1
2

(see [54]). Thus, by Abel

summation, ∑
n≤x

µ(n)

n
= Ω

( 1√
x

)
.

However, for
∑

n≤x
(−1)n−1

nα
and

∑
n≤x

gk(n)
nα

to converge to zero in Examples 2.3

and 2.4, it is necessary that α be a zero of
∑∞

n=1
(−1)n−1

ns
and

∑∞
n=1

gk(n)
ns

with

<α > 0; (i.e. ζ(α) = 0). Suppose this is the case. We then have

∑
n≤x

(−1)n−1

nα
= O

( 1

x<α

)
and

∑
n≤x

gk(n)

nα
= O

( 1

x<α

)
,
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and ∑
n≤x

(−1)n−1

nα
= Ω

( 1

x<α

)
and

∑
n≤x

gk(n)

nα
= Ω

( 1

x<α

)
.

In our results, we have not found any examples with
∑

n≤x f(n) = O
(

1
xc

)
for c > 1

2
.

This may suggest the following conjecture.

Conjecture 2.13. For all multiplicative function f (MO functions), we have

∑
n≤x

f(n) = Ω
( 1√

x

)
.

Furthermore, the RH would follow if Conjecture 2.13 were true since if RH is false

then there is α which is a zero of ζ with <α > 1
2

which means
∑

n≤x
(−1)n−1

nα
and∑

n≤x
gk(n)
nα

is not Ω( 1√
x
).
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Chapter 3

Beurling generalised prime systems

In this chapter, we turn our attention to introduce Beurling generalised prime

systems, along with Beurling’s Prime Number Theorem in relation to these systems.

We also give some relevant known results about these systems which we use in this

work.

3.1 g-prime systems

The concept of generalised primes and generalised integers was introduced

by A. Beurling in the 1930s and has been studied by many researchers since then

(see for instance [4], [15], [21], [25] , [58]). The structure of this system is defined to

be a sequence of real positive numbers P = {p1, p2, p3, . . .} which need not be actual

primes (or even integers) satisfying

1 < p1 ≤ p2 ≤ · · · ≤ pi ≤ · · ·

and for which pi −→∞ as i −→∞. With this sequence we can form a new increasing

sequence

1 < n1 ≤ n2 ≤ · · · ≤ ni ≤ · · ·

of real numbers which represent all possible products
∏k

i=1 p
ai
i , where k ∈ N and

a1, a2, . . . , ak ∈ N0 = N ∪ {0}. These new elements are called generalised integers

associated to P and denoted by N ; (i.e. N = {ni}i≥1). Attached to these systems

we have the usual counting functions πP(x) and NP(x) which are the sum over

all the g-primes and g-integers not exceeding the positive real number x, counting
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multiplicities, respectively; that is

πP(x) =
∑
pi ≤ x
i ∈ N

1 and NP(x) =
∑
ni ≤ x
i ∈ N

1,

which can be written equivalently in the more standard notation in many books and

papers:

πP(x) =
∑
p ≤ x
p ∈ P

1 and NP(x) =
∑
n ≤ x
n ∈ N

1.

These type of systems are discrete systems, where π and N are step functions with

integer jumps. There is also a concept of continuous g-prime systems [12] [26], but

they shall not concern us here. The generalised zeta function, the associated zeta

function, is formally defined by

ζP(s) =
∞∏
i=1

1

1− p−si
=
∏
p∈P

1

1− p−s

=
∞∑
i=0

1

nsi
=
∑
n∈N

1

ns
. (3.1)

We say that a g-prime system P has an abscissa of convergence σc if and

only if (3.1) converges for <s > σc and diverges for <s < σc. The product is called

the Euler product of the Beurling zeta function. The sum of (3.1) represents the

generalised Dirichlet series which will be generated by multiplying out this product

in the same way as the standard Euler product, defined in Chapter 1.

Remark 3.1.

(i) Beurling prime systems generalise the concept of the primes and natural numbers

which are obtained from the original prime numbers by taking all possible

products of these.

(ii) Note that P and N are in general multi-sets and N is the semi-group generated

by P under multiplication.

(iii) We write g-primes, g-integers and g-zeta (i.e. P , N and ζP) to mean Beurling

(or generalised) prime systems, integers and zeta function respectively.

(iv) The abscissa of convergence of the series
∑

n∈N
1
ns

and
∑

p∈P
1
ps

is the same.
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(v) If abscissa of P is σ (0 < σ < ∞), then P ′ := Pσ = {pσ : p ∈ P} has abscissa

1 and as such N ′
= N σ = {nσ : n ∈ N}. At the outset we are only interested

in those systems for which the abscissa of convergence of the Dirichlet series for

ζP is 1.

3.1.1 Examples

We provide some examples that describe systems P which have different abscissa

of convergence as follows:

Example 3.2. If P1 = { 3, 5, 7, 11, · · · } = P \ {2}; i.e. pn = nth odd prime. Then

N1 = {1, 3, 5, 7, 9, · · · } which is the set of odd numbers. The counting functions πP1(x)

and NP1(x) are:

πP1(x) =
∑
p ≤ x
p ∈ P1

1 = π(x)− 1 for x ≥ 2

=
x

log x
(1 + o(1)) by PNT,

and

NP1(x) =
∑
n ≤ x
n ∈ N1

1 =
∑

2k − 1 ≤ x
k ∈ N

1 =
x

2
+O(1).

The abscissa of convergence of the Dirichlet series of P1 is 1 since

∑
n∈N

1

ns
=

∑
n = 2k − 1

k ∈ N

1

ns
converges <s > 1 and diverges <s ≤ 1.

Example 3.3. If P2 = {2, 2, 3, 3, 5, 5, 7, 7, · · · } (every prime appears twice), then

N2 = {1, 2, 2, 3, 3, 4 = 2·2, 4 = 2·2, 4 = 2·2, 5, 5, 6 = 2·3, 6 = 2·3, 6 = 2·3, 6 = 2·3, · · · }
with multiplicity d(n) (every integer appears d(n) times) since

ζP(s) =
∏
p∈P

(
1− 1

ps

)−1

=

(∏
p∈P

(
1− 1

ps

)−1
)(∏

p∈P

(
1− 1

ps

)−1
)

= ζ2(s)

=

( ∞∑
n=1

1

ns

)2

=
∞∑
n=1

(1 ∗ 1)(n)

ns
=
∞∑
n=1

d(n)

ns
,

where d(n) is the divisor counting function. The counting functions πP2(x) and NP2(x)
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are:

πP2(x) =
∑
p ≤ x
p ∈ P2

1 = 2
∑
p≤x

1 = 2π(x) =
2x

log x
(1 + o(1)) by PNT,

and

NP2(x) =
∑
n ≤ x
n ∈ N2

1 =
∑
n ≤ x
n ∈ N

d(n) ∼ x log x as x −→∞,

by the proof of Theorem 3.3 of [2]. This system has abscissa of convergence 1 since

∑
n∈N

1

ns
=
∞∑
n=1

d(n)

ns
converges <s > 1 and diverges <s ≤ 1,

by the Theorem 291 of [24].

Example 3.4. If P3 = {4, 9, 16, 25, · · · }, where pn = (n+1)2 for n ∈ N. Then we find

N3 = {1, 4, 9, 16, 16, 25, 36, 36, · · · } with all elements (n+ 1)2. The counting function

πP3(x) is:

πP3(x) =
∑
p ≤ x
p ∈ P3

1 =
∑

(n+1)2≤x

1 =
∑

n≤
√
x−1

1 =
√
x+O(1).

But, the asymptotic behaviour of NP3(x) may not clear. The abscissa of convergence

of the Dirichlet series of P3 is 1
2

since

∑
p∈P

1

ps
=
∞∑
n=1

1

(n+ 1)2s
converges <s > 1

2
and diverges <s ≤ 1

2
.

Example 3.5. Let P4 = {2, 4, 8, 16, · · · , 2n, · · · }, where pn = 2n for n ∈ N. Then we

findN4 = {1, 2, 4, 4, 8, 8, 8, 16, 16, 16, 16, 16, · · · } which made from 2n with multiplicity

p(n), where p(n) is the number of partitions of n. The counting functions πP4(x) and

NP4(x) are:

πP4(x) =
∑
p ≤ x
p ∈ P4

1 =
∑
2n≤x

1 =
∑

n≤ log x
log 2

1 =
log x

log 2
+O(1),

and

NP4(x) =
∑
n ≤ x
n ∈ N4

1 =
∑

2n ≤ x
n ≥ 0

p(n) =
∑

0≤n≤ log x
log 2

p(n) = e
(c+o(1))

√
log x
log 2
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since p(n) = e(c+o(1))
√
n, where c = π

√
2
3
. A more detailed asymptotic formula was

independently discovered by G. H. Hardy and S. Ramanujan [22] and Y. V. Uspensky

[55]. This system has abscissa of convergence 0 since

∑
p∈P

1

ps
=
( 1

2s

)n
converges <s > 0 and diverges <s ≤ 0.

Example 3.6. If P5 = {2, 2 + log 2, 2 + log 3, 2 + log 4, · · · }, where pn = 2 + log n and

n ∈ N, then N5 = {1, 2, 2 + log 2, · · · , 2 + log 100, 4, 2 + log 101, · · · }. The counting

function πP5(x) can be found as follows:

πP5(x) =
∑
p ≤ x
n ∈ P5

1 =
∑

(2+logn)≤x

1 =
∑

n≤ex−2

1 = ex−2 +O(1).

However, the asymptotic behaviour of NP5(x) is less clear. The abscissa of convergence

of the Dirichlet series of P5 is ∞ since

∑
p∈P

1

ps
=
∞∑
n=1

1

(2 + log n)s
diverges for all s.

3.2 Arithmetical functions over N

This section introduces the concept of divisibility that will be necessary for this

thesis to define the greatest common divisor of two integers over Beurling generalised

integers. It also provides a definition of functions that are defined over P and N such

as arithmetic, multiplicative and completely multiplicative with some examples like

Liouville and Möbius functions. This section also introduces Dirichlet convolution of

arithmetical functions over N .

Definition 3.7. Let m,n ∈ N , say m = pa1
1 · · · p

ak
k and n = pb11 · · · p

bk
k , where pi ∈ P

are distinct, k ∈ N and a1, . . . , ak, b1, . . . , bk ∈ N0. As such, we say m divides n if

ai ≤ bi for all i, or equivalently, n = rm for some r ∈ N . In all other cases, we say m

does not divide n.

E. M. Horadam [28] only defined this in the case where the ni are distinct;

(i.e. the multiplicities all 1). We use the same but now the ni do not have to be

distinct. We could here have m = n ∈ N numerically the same but m does not divide

n; (i.e. if they are made from different g-primes).
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Definition 3.8. With m and n as in Definition 3.7, the greatest common divisor

(m,n) of any m,n ∈ N , is defined as the largest g-integer that divides both m and

n; (i.e.with m and n as above, (m,n) = pc11 · · · p
ck
k ∈ N , where each ci = min{ai, bi}

and i = 1, . . . , k) (see [28]).

Definition 3.9. An arithmetical function with domainN is a function f : N→C
which is defined on the multi-set of Beurling integers N .

Remark 3.10. Note that we are abusing the notion of function in case of multiplicities.

This is done for clarity of notation. In much of our work, we are not interested in the

arithmetic function f : N −→ C itself, but in the partial sum of the function f(n) up

to and including x; i.e. ∑
n ≤ x
n ∈ N

f(n),

which is a function because it counts all the possible elements of N up to x.

3.2.1 Some special functions

In this section, we define the functions µP(n), ΛP(n), and λP(n) which generalise

the standard functions µ(n), Λ(n), and λ(n).

Example 3.11. (Möbius’s function) We define generalised Möbius function on

N to be µP(1) = 1, µP(pi1 · · · pik) = (−1)k for distinct g-primes; (i.e. i1, . . . , ik are

distinct) and zero otherwise.

Example 3.12. (Mangoldt’s function) We define generalised Mangoldt function

for n ∈ N as follows:

ΛP(n) =

{
log p if n = pk for some g-prime p ∈ P and integer k ≥ 1,

0 otherwise.

Example 3.13. (Liouville’s function) We define generalised Liouville function

on N to be λP(1) = 1 and λP(n) = (−1)a1+···+ak for n = pa1
1 · · · p

ak
k ∈ N , where k ∈ N

and a1, . . . , ak ∈ N0.

Remark 3.14. As mentioned these examples may not necessarily be functions if

a g-integer can be made from different g-primes. We could have two g-integers n1 and

n2 ∈ N that are numerically the same but n1 does not divide n2. From Example 3.3,

for N2, we have here 4=4 but 4 = 2 · 2 does not divide 4 = 2 · 2; (i.e. 2 · 26 | 2 · 2).
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Moreover, we notice that µP(2 · 2) = (−1)2 = 1 and µP(2 · 2) = µP(2 · 2) = 0 while

λP(2 · 2) = λP(2 · 2) = λP(2 · 2) = (−1)2 = 1.

We also note that∑
d|(n = 2 · 2)

d ∈ N2

λP(d) = λP(1) + λP(2) + λP(2 · 2) = 1− 1 + 1 = 1,

whereas
∑

d|(n = 2 · 2)

d ∈ N2

λP(d) = λP(1) + λP(2) + λP(2) + λP(2 · 2) = 1− 1− 1 + 1 = 0.

3.2.2 Multiplicative functions on N

In this section, we present the definition of multiplicative and completely

multiplicative functions. We also introduce the function ψP(n) which generalises the

standard function ψ(n).

Definition 3.15. A function f : N −→ C is said to be multiplicative on N if

f(1) = 1 and it satisfies

f(mn) = f(m)f(n) whenever (m,n) = 1.

Such an f is said to be completely multiplicative [57] if we also have

f(mn) = f(m)f(n) for all values of m,n ∈ N .

The functions µP(n) and λP(n) are examples of multiplicative and completely

multiplicative functions.

As for classical multiplicative functions, if f and g are multiplicative functions and

f(pk) = g(pk) for all g-primes p ∈ P and k ∈ N0, then f = g.

Definition 3.16. (Chebyshev’s ψ-function) We define the generalised Chebyshev

function over N with the sum extending over all g-prime numbers p ∈ P that are

less than or equal to x as follows:

ψP(x) =
∑
pk ≤ x
p ∈ P
k ∈ N

log p =
∑
n ≤ x
n ∈ N

ΛP(n).
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As in classical prime number theory, we introduce the g-prime counting function

ΠP(x) =
∞∑
n=1

πP(x
1
n )

n
.

It is related to ψP(x) via

ψP(x) =

∫ x

p1

log t dΠP(t).

We can also define the functions MP , LP , mP and lP which represent the following

partial sums:

MP(x) :=
∑
ni ≤ x
i ∈ N

µP(ni) =
∑
n ≤ x
n ∈ N

µP(n),

LP(x) :=
∑
ni ≤ x
i ∈ N

λP(ni) =
∑
n ≤ x
n ∈ N

λP(n),

mP(x) :=
∑
ni ≤ x
i ∈ N

µP(ni)

ni
=

∑
n ≤ x
n ∈ N

µP(n)

n
,

and

lP(x) :=
∑
ni ≤ x
i ∈ N

λP(ni)

ni
=

∑
n ≤ x
n ∈ N

λP(n)

n
.

We will use these throughout the rest of this thesis.

3.2.3 Dirichlet convolution of arithmetical functions over N

In this section, we provide the definition of the Dirichlet convolution of

arithmetical functions f ∗ g which is multiplicative if f and g are multiplicative over

Beurling integers N .

Definition 3.17. The convolution of arithmetical functions f and g over N was

defined by E. M. Horadam [29] as follows:

(f ∗ g)(n) =
∑
d|n
d ∈ N

f(d) g
(n
d

)
.

E. M. Horadam only defined this in the case where the ni are distinct as previously

mentioned. We use the same but now the ni do not have to be distinct. Again this
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need not be a function in the sense that we described earlier (a g-integer can be made

from different g-primes).

Theorem 3.18. Let f, g : N −→ C both be multiplicative functions. Then their

Dirichlet convolution f ∗ g is also multiplicative.

Proof. Let h = f ∗ g and let (m,n) = 1, where m,n ∈ N . Then

h(mn) =
∑
d|mn
d ∈ N

f(d) g
(mn
d

)
.

Now every divisor d of mn can be written uniquely as d = xy, where x |m and y |n.

In addition, (x, y) = 1 and (m
x
, n
y
) = 1. Hence

h(mn) =
∑
x|m
y|n

f(xy) g
(mn
xy

)
=
∑
x|m
y|n

f(x)f(y) g
(m
x

)
g
(n
y

)

=
∑
x|m
x ∈ N

f(x) g
(m
x

) ∑
y|n
y ∈ N

f(y) g
(n
y

)
= h(m)h(n)

�

3.3 Abel’s Identity overN

Abel summation (see Theorem 1.7) can be extended to series over N . The basic

theorem allows one to express the partial sum of the form

∑
ni ≤ x
i ∈ N

a(ni)f(ni) =
∑
n ≤ x
n ∈ N

a(n)f(n),

where a : N −→ C is an arithmetic function over N in terms of

A(x) =
∑
ni ≤ x
i ∈ N

a(ni) =
∑
n ≤ x
n ∈ N

a(n),

where f(n) is a continuous differentiable function.
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Theorem 3.19. Let a : N −→C be a function, and let the function f be a continuously

differentiable function on [1,∞) with A(x) as above. Then

∑
n ≤ x
n ∈ N

a(n)f(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt.

Proof. The formula can be deduced by integration by parts for the Riemann-Stieltjes

integral (using Theorems 1.5 and 1.6). Indeed, we have

∑
n ≤ x
n ∈ N

a(n)f(n) =

∫ x

1−
f(t)dA(t) =

[
A(t)f(t)

]x
1− −

∫ x

1

A(t)f ′(t)dt

= A(x)f(x)−
∫ x

1

A(t)f ′(t)dt.

�

For example, letting B(x) =
∑

n≤x
a(n)
n

, we have the relations

B(x) =
A(x)

x
+

∫ x

1

A(t)

t2
dt (3.2)

and

A(x) = B(x)x−
∫ x

1

B(t)dt. (3.3)

We are interested in estimating lower bound of the partial sums of µP(n), λP(n),
µP (n)
n

and λP (n)
n

not exceeding x in Chapters 5 and 6. To estimate such bound we need

the following:

Propostion 3.20. Let A(x) and B(x) as defined above, if

(i) A(x) = o
(√

x
)
, then B(x) = C + o

(
1√
x

)
for some constant C.

(ii) B(x) = o
(

1√
x

)
, then A(x) = o

(√
x
)
.
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Proof. (i) By (3.2), we have

B(x) =
A(x)

x
+

∫ x

1

A(t)

t2
dt =

o
(√

x
)

x
+

∫ x

1

A(t)

t2
dt

= o

(
1√
x

)
+

∫ ∞
1

A(t)

t2
dt−

∫ ∞
x

A(t)

t2
dt = o

(
1√
x

)
+

∫ ∞
1

A(t)

t2
dt−

∫ ∞
x

o
(√

t
)

t2
dt

= o

(
1√
x

)
+ C +

∫ ∞
x

o
(
t−

3
2

)
dt = C + o

(
1√
x

)
, where C is constant.

(ii) By (3.3), we have

A(x) = B(x)x−
∫ x

1

B(t)dt

= o

(
1√
x

)
x+

∫ x

1

o

(
1√
t

)
dt = o

(
x√
x

)
+ o

(∫ x

1

t−
1
2dt

)
= o(

√
x ) + o

([
2t

1
2

]x
1

)
= o(
√
x ) + o

(
2
[√
x
]
− 2
[√

1
])

= o(
√
x ).

�

As a result, we also have (i) and (ii) below, which we shall use in later chapters.

(i) if B(x) = C + Ω
(

1√
x

)
for some constant C, then A(x) = Ω

(√
x
)
.

(ii) if A(x) = Ω
(√

x
)
, then B(x) = Ω

(
1√
x

)
.

3.4 The Mellin transform and its inverse over N

In this section, we apply Theorems 1.22 and 1.24 to give the Mellin transform

and Perron’s formula for Beurling’s numbers N as follows: If λi = log(ni), then, for

<s > σc, we have

(i) Theorem 1.22 gives

F (s) =
∑
n∈N

a(n)

ns
= s

∫ ∞
n1

A(y)

ys+1
dy, where A(y) =

∑
n ≤ y
n ∈ N

a(n).
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(ii) Theorem 1.24 (Perron’s formula) gives for y /∈ N ,

A(y) =
∑
n ≤ y
n ∈ N

a(n) =
1

2πi

∫ c+i∞

c−i∞

F (s)

s
ys ds, where F (s) =

∑
n∈N

a(n)

ns
.

If y ∈ N , an extra term appears as in the usual case.

Example 3.21. Taking a(ni) = 1, µ(ni), λ(ni), Λ(ni), respectively for the Dirichlet

series, we get the usual Mellin transforms:

ζP(s) =
∑
n∈N

1

ns
= s

∫ ∞
1

NP(x)

xs+1
dx,

UP(s) :=
1

ζP(s)
=
∑
n∈N

µP(n)

ns
= s

∫ ∞
1

MP(x)

xs+1
dx,

ZP(s) :=
ζP(2s)

ζP(s)
=
∑
n∈N

λP(n)

ns
= s

∫ ∞
1

LP(x)

xs+1
dx,

VP(s) := −ζ
′
P(s)

ζP(s)
=
∑
n∈N

ΛP(n)

ns
= s

∫ ∞
1

ψP(x)

xs+1
dx.

If the abscissa is 1, then all these hold for at least <s > 1.

We can also get the usual inverse Mellin transforms (Perron’s formula) of the above

Dirichlet series for x > 0, but x /∈ N :

NP(x) =
1

2πi

∫ c+i∞

c−i∞

ζP(s)

s(s+ 1)
xs+1 ds,

MP(x) =
1

2πi

∫ c+i∞

c−i∞

UP(s)

s
xs ds,

LP(x) =
1

2πi

∫ c+i∞

c−i∞

ZP(s)

s
xs ds,

ψP(x) =
1

2πi

∫ c+i∞

c−i∞

VP(s)

s
xs ds.

These all hold with c > max{0, σc}, where σc is the abscissa of convergence of the

Dirichlet series for ζP as mentioned earlier.
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3.5 Euler products over N

The significance of multiplicativity underpins the next theorem which is an

extension of Theorem 1.19 over N . This theorem in its original form is sometimes

referred to as the analytic version of unique-prime-factorization.

Theorem 3.22. Let f : N −→ C be a multiplicative function, and let
∑

n∈N f(n) be

an absolutely convergent series. Then∑
n∈N

f(n) =
∏
p∈P

{1 + f(p) + f(p2) + · · · }, (3.4)

where the infinite product ranges over all g-primes. If f is completely multiplicative,

then the right hand side of (3.4) simplifies to be

∑
n∈N

f(n) =
∏
p∈P

1

1− f(p)
.

Proof. For every x, let

W (x) :=
∏
p ≤ x
p ∈ P

{1 + f(p) + f(p2) + · · · }.

Every n ∈ N can be uniquely written in the form pa1
1 · · · p

ak
k , where the pi ∈ P and

ai > 0 and by multiplicativity of f we have f(pa1
1 ) · · · f(pakk ) = f(pa1

1 · · · p
ak
k ) = f(n).

Hence the result of multiplying out the series is precisely the following

W (x) =
∑
n∈A

f(n),

where A is the set of all those g-integers whose g-prime factors are at most x. Hence∣∣∣∑
n∈N

f(n)−W (x)
∣∣∣ = |

∑
n6∈A

f(n)| ≤
∑
n > x

n ∈ N

|f(n)|.

Since n 6∈ A implies at least one g-prime factor of n is > x, so n > x. As x −→ ∞,

the sum on the right tends to 0 since
∑

n∈N f(n) is absolutely convergent and the

result follows.

Note that by the same argument with f(pk) replaced by |f(pk)|, the product can be
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seen to be absolutely convergent. Finally, we have f(pk) = f(p)k when f is completely

multiplicative and

∑
n∈N

f(n) =
∏
p∈P

{1 + f(p) + f(p)2 + · · · } =
∏
p∈P

1

1− f(p)

as we will see later.

�

Corollary 3.23. Assume
∑

n∈N f(n)n−sconverges absolutely for σ > σa. If f : N−→C
is multiplicative we have

∑
n∈N

f(n)

ns
=
∏
p∈P

{
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

}
if σ > σa, (3.5)

and if f is completely multiplicative we have

∑
n∈N

f(n)

ns
=
∏
p∈P

1

1− f(p)
ps

if σ > σa. (3.6)

Proof. Equations (3.5) and (3.6) can be obtained by applying Theorem 3.22 to an

absolutely convergent Dirichlet series.

�

Example 3.24. Suppose P has abscissa 1 and let f(n) = 1, µP(n), λP(n), respectively

for the Dirichlet series, then we get the following Euler products over P :

∑
n∈N

1

ns
=
∏
p∈P

1

1− 1
ps

= ζP(s),

UP(s) =
∑
n∈N

µP(n)

ns
=
∏
p∈P

(
1 +

µP(p)

ps

)
=
∏
p∈P

(
1− 1

ps
)

=
1

ζP(s)
,

ZP(s) =
∑
n∈N

λP(n)

ns
=
∏
p∈P

1

1− λP (p)
ps

=
∏
p∈P

1

1 + 1
ps

=
∏
p∈P

1− 1
ps

1− 1
p2s

=
ζP(2s)

ζP(s)
.

These all hold for at least <s > 1. They may converge for <s = 1. For example, if∑
n∈N

1
n

converges.

The following propositions concerns multiplicative functions over P and N .

Propostion 3.25. Let f be a completely multiplicative function over N and assume∑
n∈N f(n) converges. Then supp∈P |f(p)| < 1 for all p ∈ P.
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Proof. Since
∑

n∈N f(n) converges, then f(n) −→ 0 as n −→ ∞. This also means

that f(p) −→ 0 as p −→∞, so |f(p)| < 1
2

for some p > p0 ∈ P .

Now if |f(p)| ≥ 1, then |f(pk)| = |f(p)|k ≥ 1 for all k since f is completely

multiplicative function and f(pk) does not tend to zero as k −→ ∞. Thus give a

contradiction. Thus |f(p)| < 1 for all p ∈ P . Since |f(p)| < 1
2

for some p > p0 ∈ P ,

it follows that |f(p)| ≤ c < 1 for all p ∈ P .

�

Propostion 3.26. Let f be a completely multiplicative function over N . Then∑
n∈N |f(n)| converges if and only if

∑
p∈P |f(p)| converges and supp∈P |f(p)| < 1

for all p ∈ P.

Proof. Using Proposition 3.25, the series
∑

p∈P |f(p)| converges and supp∈P |f(p)| < 1

for all p ∈ P if
∑

n∈N |f(n)| converges.

Now suppose
∑

p∈P |f(p)| converges and |f(p)| < 1 for all p ∈ P . We want to

prove
∑

n∈N |f(n)| converges.

From above, c = supp∈P |f(p)| < 1. Therefore
∏

p∈P
1

1−|f(p)| converges since

1 ≤
∏
p∈P

1

1− |f(p)|
=
∏
p∈P

(
1 +

|f(p)|
1− |f(p)|

)
≤
∏
p∈P

(
1 +

1

1− c
|f(p)|

)
,

where |f(p)| < c where we have used Theorem 1.8. Now

∏
p≤x

1

1− |f(p)|
=

∑
n ∈ N

p|n & p ≤ x

|f(n)| converges (by Theorem 1.8)

≥
∑
n≤x

|f(n)|.

Hence
∑

n∈N |f(n)| converges.

�

Propostion 3.27. Let f be a multiplicative function over N . Then
∑

n∈N |f(n)|
converges if and only if

∑
p∈P

∑
k∈N |f(pk)| converges.

Proof. Trivially, the series
∑

p∈P
∑

k∈N |f(pk)| converges if
∑

n∈N |f(n)| converges.

Now suppose
∑

p∈P
∑

k∈N |f(pk)| converges. We wish to show that
∑

n∈N |f(n)|
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converges. Since∑
p∈P

∑
k∈N

|f(pk)| converges, it is follows by Theorem 1.8 that

∏
p∈P

(
1 +

∞∑
k=1

|f(pk)|
)

=
∏
p∈P

( ∞∑
k=0

|f(pk)|
)

converges.

The right hand side is at least
∏

p≤x

{∑∞
k=0 |f(pk)|

}
. But, by the proof of Theorem 3.22,

we have

∏
p≤x

{ ∞∑
k=0

|f(pk)|
}

=
∑
n ∈ N

p|n & p ≤ x

|f(n)|

≥
∑
n≤x

|f(n)|.

Hence
∑

n∈N |f(n)| converges.

�

3.6 Beurling’s Prime Number Theorem

A. Beurling in 1937 [6] found a condition on NP to ensure the validity of the Prime

Number Theorem (PNT) as follows: if

NP(x) = ρx+O
( x

(log x)γ

)
, (3.7)

where ρ is a positive constant and γ > 3
2
, then

πP(x) ∼ x

log x
. (3.8)

Beurling, and later Diamond, showed that Beurling’s condition is sharp by

providing different examples of generalised prime systems where PNT fails when γ = 3
2

(see [6] [12]). Many researchers have refined this result with error terms; (i.e if we

assume something more in (3.7), can we say something more in (3.8)?)

E. Landau 1903 [36] showed that if

NP(x) = ρx+O(xβ) (3.9)
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for some ρ > 0 and β < 1, then

πP(x) = li(x) +O
( x

ek
√

log x

)
(3.10)

for some k > 0, where li(x) =
∫ x

2
dt

log t
is the Logarithmic integral function. H. G.

Diamond, H. L. Montgomery and U. M. A. Vorhauer 2006 [14] showed that the above

result is best possible by establishing a g-prime system for which (3.9) holds for some

ρ > 0 and β < 1, but the error term of (3.10) is Ω
(

x

ek1
√

log x

)
for some k1 > 0.

In 1949, B. Nyman [47] treated the converse of PNT by proving that if

πP(x) = li(x) +O
( x

(log x)δ

)
holds for all δ > 0, then

NP(x) = ρx+O
( x

(log x)δ

)
(3.11)

holds for some ρ > 0 and for all δ > 0. In 1961, P. Malliavin [43] verified that if

πP(x) = li(x) +O
( x

ec2(log x)b

)
(3.12)

for some 0 < b < 1 and c2 > 0, then (3.11) holds with the error term O
(

x
ec1(log x)a

)
for

some c1, ρ > 0 and a = b
b+2

. In 1970, H. G. Diamond [11] improved Malliavin’s result

by proving that if (3.12) holds for some 0 < b < 1 and c2 = 1, then (3.11) holds with

error term O
(

x
e(log x log log x)a

)
for some ρ > 0 and a = b

b+1
. In 2006, T. W. Hilberdink

and M. L. Lapidus [27] extended Diamond’s result by showing that if (3.12) holds for

b = 1, (i.e ψP(x) = x + O(xα) for some 0 < α < 1), then (3.11) holds with the error

term O
(

x
eC
√

log x log log x

)
for some ρ, C > 0. The open question here is: is this result best

possible?

Several asymptotic formulas that are “equivalent” to Beurling’s PNT have been

recently investigated by Diamond and Zhang [15, 16]. For instance, this includes

ψP(x) ∼ x,

MP(x) = o(x),

mP(x) = o(1),
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∑
n ≤ x
n ∈ N

ΛP(n)

n
= log x− c+ o(1),

where c is not Euler’s constant in general. They researched conditions under which

these relations do or do not hold, and they found some of the implications between such

formulas without additional assumptions, while the others can fail unconditionally.

Many of their results have been recently improved by means of different approaches

which are based on recent complex tauberian theorems for Laplace transforms with

pseudo function boundary behavior [9]. In 2018, G. Debruyne, H. G. Diamond and

J. Vindas [8] gave conditions that imply the Beurling version of PNT equivalence

related to the partial sum of Möbius’s function not exceeding x. They have also shown

that such sum estimates fail by giving some examples which violate their necessary

condition for MP(x) = o(x).

3.7 Known results about Beurling numbers where

ψP or NP is well-behaved

In this section, we outline some relevant ideas and results about g-primes

and g-integers, in order to prove the main results in later chapters, where we are

interested in g-prime systems for which both NP(x) and ψP(x) are simultaneously

“well-behaved”. These systems were investigated by T. W. Hilberdink in 2005 [25]

and have the following properties:

NP(x) = ρx+O(xβ+ε) for some ρ > 0 (3.13)

and

ψP(x) = x+O(xα+ε) (3.14)

hold for all ε > 0, but for no ε < 0 and 0 ≤ α, β < 1. For the usual primes, (3.13)

holds with β = 0 and if the RH is true, then (3.14) would hold for α = 1
2
. Such

systems exist as was shown by Zhang [58]. Indeed, PZ (his system) satisfies these

with α = β = 1
2
. We also study such systems where either of (3.13) or (3.14) holds

with α, β < 1
2
.
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Theorem 3.28. Suppose that for some 0 ≤ α < 1, we have

ψP(x) = x+O(xα+ε) for all ε > 0.

Then ζP(s) has an analytic continuation to the half plane {s ∈ C : <s > α} except

for a simple (non-removable) pole at s = 1 and ζP(s) has no zeros in this region.

Conversely, suppose that for some 0 ≤ α < 1, ζP(s) has an analytic continuation

to the half plane {s ∈ C : <s > α}, except for a simple (non-removable) pole at s = 1,

and that ζP(s) 6= 0 in this region. Further assume that |VP(σ + it)| = O(|t|ε) holds

for all ε > 0, uniformly for σ ≥ α + δ with any δ > 0. Then

ψP(x) = x+O(xα+ε) for all ε > 0.

Proof. See Theorem 2.1 of [27].

�

Theorem 3.29. Suppose that ψP(x) = x + O(xα) for some 0 < α < 1. Then there

exist positive constants ρ and c such that

NP(x) = ρx+O(xe−c
√

log x log log x).

Proof. See Theorem 2.2 of [27].

�

Corollary 3.30.

(i) If ψP(x) = x+O(xα) for some constant α < 1
2

(which implies that NP(x) ∼ ρx

for some ρ > 0), then for every α < η < 1
2
, NP(x)− ρx = Ω(xη) and ζP(s) does

not have finite order throughout the strip {s ∈ C : η < <s < 1}.

(ii) If NP(x) = ρx + O(xβ) for some constants ρ > 0 and β < 1
2
, then for every

β < η
′
< 1

2
, ψ(x)− x = Ω(xη

′
) and ζP(s) has infinitely many zeros in the strip

{s ∈ C : η
′
< <s < 1}.

Proof. See Corollary 2 of [25].

�

Theorem 3.31. Let P a g-prime system satisfying (3.13) and (3.14) for some

0 ≤ α, β < 1. Then max{α, β} ≥ 1
2
.
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Proof. See Theorem 1 of [25].

�

Theorem 3.32. Let P a g-prime system satisfying (3.13) and (3.14) for some

0 ≤ α, β < 1. Then for σ > Θ = max{α, β}, and uniformly for σ ≥ Θ+δ (any δ > 0),

VP(σ + it) = O
(

(log |t|)
1−σ
1−Θ

+ε
)

and ζP(σ + it) = O
(

exp
{

(log |t|)
1−σ
1−Θ

+ε
})
,

for all ε > 0. In particular, ζP(σ + it) = O(|t|ε) for all ε > 0.

Proof. See Theorem 2.3 of [27].

�

Remark 3.33.

(i) If α < β and we already know that ζP(s) is of finite order for σ > η for some

α < η < β, then ζP(s) and VP(s) have zero order in this range.

(ii) If β < α and we we already know that VP(s) has only finitely many poles for

σ > η
′

for some α < η
′
< β (equivalently, ζP(s) has finitely many zeros here),

then ζP(s) and VP(s) have zero order in this range.

The following result shows the existence of a system which satisfies (3.13) and

(3.14) unconditionally.

Theorem 3.34. There is a system of Beurling primes PZ such that

(i) the associated Beurling integer counting function satisfies

NP(x) = ρx+O(x
1
2 ec(log x)

2
3 ) with ρ > 0;

(ii) the associated zeta function ζP(s) is analytic for σ > 1
2

except a simple pole at

s = 1 with residue ρ;

(iii) the function ζP(s) has no zeros on the half plane σ > 1
2
;

(iv) the prime counting function satisfies

πP(x) = li(x) +O(x
1
2 ).
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Proof. See Theorem 1 of [58] and Theorem 17.11 of [16].

�

We shall use the next theorem in the proof of Theorem 4.15 (see also the preprint

[45]). An eealier version was proved in [25].

Theorem 3.35. Let f(s) =
∑

n∈N
a(n)
ns

be a Dirichlet series with abscissa of convergence

σc ≤ 1.

(i) Suppose that for some 0 ≤ ϑ < 1 and ρ ∈ C, we have

A(x) :=
∑
n ≤ x
n ∈ N

a(n) = ρx+O(xϑ+ε) for all ε > 0.
(3.15)

Then f(s) has an analytic continuation to the half plane {s ∈ C : <s > ϑ} with a

simple (removable if ρ = 0) pole at s = 1 with residue ρ and f(s) has finite order;

indeed µf (σ) ≤ 1 for σ > ϑ.

(ii) Conversely, suppose that for some 0 ≤ ϑ < 1, f(s) has an analytic continuation

to the half plane {s ∈ C : <s > ϑ} except for a simple pole at s = 1 with residue ρ.

Further assume that µf (σ) = 0 for σ > ϑ (see Definition 1.25) and either

(a) a(n) ≥ 0 or

(b)
∑

x− 1 < n ≤ x
n ∈ N

|a(n)| = O(xϑ+ε) for all ε > 0.
(3.16)

Then (3.15) holds.

Proof.

(i) The proof of the first part follows on writing

f(s) = s

∫ ∞
1

A(x)

xs+1
dx =

ρs

s− 1
+ s

∫ ∞
1

A(x)− ρx
xs+1

dx. (3.17)

The integral on the side of (3.17) converges to a holomorphic function for <s > ϑ

since ∣∣∣∣A(x)− ρx
xs+1

∣∣∣∣ =
|A(x)− ρx|
|xs+1|

=
|O(xϑ+ε)|
xσ+1

≤ Bxϑ+ε

xσ+1
=

B

x1+σ−ϑ−ε .

Furthermore,
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|f(s)|=
∣∣∣∣ ρs

s− 1
+ s

∫ ∞
1

A(x)− ρx
xs+1

dx

∣∣∣∣
≤ |ρ|

∣∣∣ σ + it

σ − 1 + it

∣∣∣+ |σ + it|
∫ ∞

1

|A(x)− ρx|
xσ+1

dx

≤ Cρ

∣∣∣1+
1

σ − 1 + it

∣∣∣+Cσ|t|∣∣∣1+
σ

it

∣∣∣ (since

∫ ∞
1

A(x)− ρx
xσ+1

dx converges for σ > ϑ)

= O(|t|), as |t| −→ ∞.

(ii) For the converse, let c > 1, x, T > 0 such that x /∈ N , then, for n ∈ N , we

have

1

2πi

∫ c+iT

c−iT

(x
n

)sds
s

= O
( (x

n
)c

T | log x
n
|

)
+

{
1 if n < x

0 if n > x
.

Multiply by a(n) and sum over all n ∈ N . Therefore, for x /∈ N , we have

1

2πi

∫ c+iT

c−iT

f(s)xs

s
ds = O

(xc
T

∑
n∈N

|a(n)|
nc| log x

n
|

)
+
∑
n ≤ x
n ∈ N

a(n).

The range is split into (n ≥ 2x & n ≤ x
2
) and (x

2
< n < 2x) in order to use the bound

| log x
n
| ≥ log 2 for the first range. This gives

A(x) =
1

2πi

∫ c+iT

c−iT

f(s)xs

s
ds+ O

(
xc

T

∑
n ≥ 2x&n ≤ x

2
n ∈ N

|a(n)|
nc| log x

n
|

)
+O

(
xc

T

∑
x
2
< n < 2x

n ∈ N

|a(n)|
nc| log x

n
|

)
.

Using
∣∣ log x

n

∣∣ =
∣∣ log

(
1 + n−x

x

)∣∣ � |n−x|
x

for the second range, we obtain

A(x) =
1

2πi

∫ c+iT

c−iT

f(s)xs

s
ds+O

(
xc

T

∑
n ≥ 2x&n ≤ x

2
n ∈ N

|a(n)|
nc

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

|a(n)|
|n− x|

)
.

Therefore
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A(x) =
1

2πi

∫ c+iT

c−iT

f(s)xs

s
ds+O

(
xc

T (c− 1)

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

|a(n)|
|n− x|

)

since f(c) = O( 1
c−1

).

Now consider the right integral of the above equation. We move the contour past

the line s = 1 to the line <s = σ for any σ > ϑ (see Figure 3.1). The residue at 1 is

ρx since f(s) is holomorphic in this region.

Figure 3.1: rectangular contour

Hence

1

2πi

∫ c+iT

c−iT

f(s)xs

s
ds = ρx+

1

2πi

(∫ σ−iT

c−iT
+

∫ σ+iT

σ−iT
+

∫ c+iT

σ+iT

)
f(s)xs

s
ds.

The integrals will be estimated by using the bound |f(s)| = O(|t|ε) for all ε > 0. The

integral over the horizontal path [σ + iT, c+ iT ] is∣∣∣∣ 1

2πi

∫ c+iT

σ+iT

f(s)

s
xsds

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫ c

σ

f(y + iT )

y + iT
xy+iTdy

∣∣∣∣
≤ xc

2πT

∫ c

σ

|f(y + iT )|dy

= O
(xc
T
T ε
)

= O
( xc

T 1−ε

)
for all ε > 0,
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by the above bound. Similarly for the integral over [c − iT, σ − iT ]. On the line

<s = σ, we will have∣∣∣∣ 1

2πi

∫ σ+iT

σ−iT

f(s)

s
xsds

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫ T

−T

f(σ + it)

σ + it
xσ+itdt

∣∣∣∣
≤ xσ

2π

∫ T

−T

|f(σ + it)|
|σ + it|

dt =
xσ

π

∫ T

0

|f(σ + it)|
|σ + it|

dt

=
xσ

π

∫ 1

0

|f(σ + it)|
|σ + it|

dt+
xσ

π

∫ T

1

|f(σ + it)|
t

dt

= O(xσ) +O(xσT ε) = O(xσT ε) for all ε > 0,

by the above bound. Hence

A(x) = ρx+O
( xc

T 1−ε

)
+O(xσT ε) +O

( xc

T (c− 1)

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

|a(n)|
|n− x|

)
.

Choosing c = 1 + 1
log x

gives

A(x) = ρx+O
( x

T 1−ε

)
+O(xσT ε) +O

(x log x

T

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

|a(n)|
|n− x|

)
(3.18)

for x /∈ N and for all ε > 0. We need to bound the term on the right hand side, which

is difficult for general x when n is an integer close to x, as then |n−x|−1 could be very

large. To take into account this eventuality we choose x here such that |n− x| < 1
x2 .

This ensures that it stays away from these integer n; i.e.

(
x− 1

x2
, x+

1

x2

)
∩N = φ. (3.19)

Then, for such x,

∑
x
2
< n < 2x

n ∈ N

|a(n)|
|n− x|

≤ x2
∑

x
2
<n<2x

|a(n)|.

In case (a) of Theorem 3.35 (ii), the term on the right hand side of the above inequality

is O(x3+ε) since the abscissa of convergence σc ≤ 1, while in case (b), it is O(x3+ϑ+ε)

by (3.16).
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Taking T = x4, (3.18) gives A(x) = ρx + O(xσ+ε) for all ε > 0. This holds for

all σ > ϑ, so (3.15) holds whenever x → ∞ satisfying (3.19). Now we follow the

method used in the proof of Theorem 2.2, originally given in [27]. We show for all x

sufficiently large for which (
x− 1

x2
, x+

1

x2

)
∩N 6= φ,

there exist x1 ∈ (x− 1, x) and x2 ∈ (x, x+ 1) such that(
x1 −

1

x2
1

, x1 +
1

x2
1

)
∩N = φ and

(
x2 −

1

x2
2

, x+
1

x2
2

)
∩N = φ.

For case (a), positivity of a(n) gives

A(x) ≤ A(x2) = ρx2 +O(xϑ+ε
2 ) = ρx+O(xϑ+ε)

and

A(x) ≥ A(x1) = ρx1 +O(xϑ+ε
1 ) = ρx+O(xϑ+ε).

Hence (3.15) follows for x. While for case (b), we have

|A(x)− A(x1)| ≤
∣∣∣ ∑
x1 − 1 < n ≤ x

n ∈ N

a(n)
∣∣∣ ≤ ∑

x− 1 < n ≤ x
n ∈ N

|a(n)| � xϑ+ε

for all ε > 0 by (3.16). Hence (3.15) follows. It remains to prove (3.19).

Assume x is sufficiently large, so that NP(x) < L, where L = [ (x−1)2

2
]. Divide

(x− 1, x) into L intervals of equal length. Then one of them contains no elements of

x /∈ N . Let its midpoint be x1. Then
(
x1 − 1

2L
, x1 + 1

2L

)
∩N = φ. Thus the equation

(3.19) holds with such x1 when 1
x2

1
≤ 1

2L
; (i.e. L ≤ 1

2
x2

1).

Similarly (x, x+ 2) contains suitable x2.

�

Remark 3.36. The following conjecture has been suggested by T. Hilberdink [personal

communication].

Conjecture 3.37. Let P be a g-prime system for which the integer counting function

satisfies (3.13) for some β < 1
2
. Then ζP(s) has at least one zero on the line <s = 1

2

or to the right of this line.
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Chapter 4

The special functions λP and µP

In this chapter, we firstly study the relationship between the partial sum of λP

and µP which play a significant role as examples in chapters 5 and 6. We then

investigate generalised prime systems for which the counting functions ψP(x), NP(x)

and MP(x) are asymptotically well-behaved, in the sense that ψP(x) = x+ O(xα+ε),

NP(x) = ρx + O(xβ+ε) and MP(x) = O(xγ+ε) for some ρ > 0 and α, β, γ < 1

respectively. We shall explore which values of α, β, γ are feasible. We also study the

behaviour of the sums
∑

n∈N
µP (n)
n

and
∑

n∈N
λP (n)
n

under some conditions on g-prime

systems P . Finally, we study the behaviour of the sums
∑

n∈N
µP (n)
n

and
∑

n∈N
λP (n)
n

under some conditions on g-prime systems P .

4.1 Relationship between λP and µP

In this section, we derive results which establish relationships between the λP and

µP functions as in the classical case. Of course, we shall always be aware that these

are not necessarily functions if they are made from different g-primes.

Theorem 4.1. For every n ∈ N , we have

λP(n) =
∑
d2|n
d ∈ N

µP

( n
d2

)
.
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Proof. Let

FP(n) :=
∑
d2|n
d ∈ N

µP

( n
d2

)
=
∑
c|n
c ∈ N

µP

(n
c

)
· S(c) = (µP ∗ S)(n),

where

S(c) =

{
1 if c = m2 with m ∈ N ,
0 otherwise.

We would like to show that FP(n) = λP(n). It is easy to see that S(n) is

multiplicative and since µP(n) is multiplicative, then, by Theorem 3.18, the function

(µP ∗ S)(n) in the Dirichlet convolution algebra of arithmetic functions, is also mul-

tiplicative. We know that λP(n) is a multiplicative function. It therefore suffices to

show that FP(pk) = λP(pk) for all g-primes p ∈ P and all k ∈ N. Now, for every pk,

where p ∈ P , we have

FP(p2m) =
∑
d2|p2m

d ∈ N

µP

(p2m

d2

)
=

∑
r ≥ 0 s.t.

r ≤ m

µP(p2(m−r))

=
∑

r ≥ 0 s.t.

r < m

µP(p2(m−r)) + µP(p2(m−m))

= 0 + µP(1) = 1

and

FP(p2m+1) =
∑

d2|p2m+1

d ∈ N

µP

(p2m+1

d2

)
=

∑
r ≥ 0 s.t.

r ≤ m

µP(p2(m−r)+1)

=
∑

r ≥ 0 s.t.

r < m

µP(p2(m−r)+1) + µP(p2(m−m)+1)

= 0 + µP(p) = −1.

Thus

FP(pk) =

{
1 if k is even

−1 if k is odd
= λP(pk), as required.

�
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Theorem 4.2. For every n ∈ N , we have

µP(n) =
∑
d2|n
d ∈ N

λP

( n
d2

)
µP(d).

Proof. Let

GP(n) :=
∑
d2|n
d ∈ N

λP

( n
d2

)
µP(d) =

∑
c|n
c ∈ N

λP

(n
c

)
· T (c) = (λP ∗ T )(n),

where

T (c) =

{
µP(m) if c = m2 with m ∈ N ,

0 otherwise.

We would like to show that GP(n) = µP(n). It is easy to see that T (n) is

multiplicative and since λP(n) is multiplicative, then, by Theorem 3.18, the function

(λP ∗ T )(n) in the Dirichlet convolution algebra of arithmetic functions, is also mul-

tiplicative. We know that µP(n) is a multiplicative function. It therefore suffices to

show that GP(pk) = µP(pk) for all g-primes p ∈ P and all k ∈ N. Now, for every pk,

where p ∈ P , we have

GP(pk) =
∑
d2|pk

d ∈ N

λP

(pk
d2

)
µP(d) =

∑
r ≥ 0 s.t.

2r ≤ k

λP(pk−2r)µP(pr)

= λP(pk)µP(1) + λP(pk−2)µP(p).

Note: λP(pk−2)µP(p) exists only if k ≥ 2. Thus

GP(pk) =


1 if k = 0

−1 if k = 1

0 if k ≥ 2

= µP(pk), as required.

�

For the following, we recall that

mP(x) =
∑
n ≤ x
n ∈ N

µP(n)

n
and lP(x) =

∑
n ≤ x
n ∈ N

λP(n)

n
.
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As consequences of Theorems 4.1 and 4.2 we have

lP(x) =
∑
n ≤ x
n ∈ N

∑
d2|n
d ∈ N

µP( n
d2 )

n
=

∑
d2 ≤ x
d ∈ N

∑
n ≤ x s.t. d2|n

n ∈ N

µP( n
d2 )

n

=
∑
d2 ≤ x
d ∈ N

∑
m ≤ x

d2

m ∈ N

µP(m)

md2
=

∑
d2 ≤ x
d ∈ N

mP( x
d2 )

d2
(4.1)

and

mP(x) =
∑
n ≤ x
n ∈ N

∑
d2|n
d ∈ N

λP( n
d2 )

n
µP(d)

=
∑
d2 ≤ x
d ∈ N

∑
n ≤ x s.t. d2|n

n ∈ N

λP( n
d2 )

n
µP(d)

=
∑
d2 ≤ x
d ∈ N

∑
m ≤ x

d2

m ∈ N

λP(m)

md2
µP(d) =

∑
d2 ≤ x
d ∈ N

lP( x
d2 )

d2
µP(d). (4.2)

Lemma 4.3. Let P be a g-prime system for which
∑

n∈N
1
n2 converges. Then

NP(x) = o(x2).

Proof. Since
∑

n∈N
1
n2 converges and put

A(x) :=
∑
n ≤ x
n ∈ N

1

n2
= C + o(1),

then, by Abel summation,

NP(x) =
∑
n ≤ x
n ∈ N

1 = A(x) · x2 − 2

∫ x

1

A(t)tdt

= (C + o(1))x2 − 2

∫ x

1

(C + o(1))tdt

= Cx2 + o(x2)− 2C

∫ x

1

tdt− 2

∫ x

1

o(t)dt

= Cx2 + o(x2)− C[x2 − 1] + o(x2) = o(x2).

�
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We now establish a relationship between lP(x) and mP(x) in terms of these sum

functions tending to zero with increasing terms.

Theorem 4.4. Let P be a g-prime system for which
∑

n∈N
1
n2 converges. Then

lP(x) = o(1) if and only if mP(x) = o(1).

Proof. Suppose mP(x) = o(1). We want to show that lP(x) = o(1). Let ε > 0. Then

|mP(x)| < ε for x ≥ x0, some x0. Thus |mP( x
d2 )| < ε if x

d2 ≥ x0. Hence (4.1) gives

|lP(x)| =
∑
d2 ≤ x
d ∈ N

|mP( x
d2 )|

d2
≤ ε

∑
d2 ≤ x

x0
d ∈ N

1

d2
+

∑
x
x0

< d2 ≤ x
d ∈ N

|mP( x
d2 )|

d2

≤ ε
∑

d2 ≤ x
x0

d ∈ N

1

d2
+ A

x0

x

∑
x
x0

< d2 ≤ x
d ∈ N

1 (since |mP( x
d2 )| ≤ A)

≤ ε ζP(2) + Ax0
NP(
√
x)

x
.

Letting x −→∞ and using NP(
√
x) = o(x) (by Lemma 4.3), we find

lim sup
x−→∞

|lP(x)| ≤ ε ζP(2).

This is true for all ε> 0. Since ε is arbitrary, then lP(x)→ 0; (i.e. lP(x) = o(1)).

Now suppose lP(x) = o(1). We would like to show that mP(x) = o(1). Let ε > 0.

Then |lP(x)| < ε for x ≥ x0, some x0. Thus |lP( x
d2 )| < ε if x

d2 ≥ x0. Hence (4.2) gives

|mP(x)| =
∑
d2 ≤ x
d ∈ N

|lP( x
d2 ) · µP(d)|
d2

≤ ε
∑

d2 ≤ x
x0

d ∈ N

1

d2
+

∑
x
x0

< d2 ≤ x
d ∈ N

|lP( x
d2 )|
d2

(since |µP(d)| ≤ 1)

≤ ε
∑

d2 ≤ x
x0

d ∈ N

1

d2
+ A

x0

x

∑
x
x0

< d2 ≤ x
d ∈ N

1 (since |lP( x
d2 )| ≤ A)

≤ ε ζP(2) + Ax0
NP(
√
x)

x
.

Letting x −→∞ and using NP(
√
x) = o(x) (by Lemma 4.3), we find

lim sup
x−→∞

|mP(x)| ≤ ε ζP(2).

This is true for all ε> 0. Since ε is arbitrary, then mP(x)→0; (i.e. mP(x)=o(1)). �
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Remark 4.5. In particular, if the abscissa of the g-prime system P is 1, then mP(x)

and lP(x) tend to zero together.

In Chapters 5 and 6 we are interested in how quickly the partial sum of λP over

n ≤ x tends to zero. The following theorem establishes a useful correspondence

between lP and mP which we will use in later calculations to link these estimates.

Theorem 4.6. Let P be a g-prime system with abscissa 1 and let 0 < a < 1
2
. Then

lP(x) = O
(

1
xa

)
if and only if mP(x) = O

(
1
xa

)
.

Proof. Suppose mP(x) = O
(

1
xa

)
. We would like to show that lP(x) = O

(
1
xa

)
. Using

(4.1), we have

lP(x) =
∑
d2 ≤ x
d ∈ N

mP( x
d2 )

d2
�

∑
d ≤
√
x

d ∈ N

d2a−2

xa
≤ 1

xa

∑
d∈N

1

d2−2a
=
ζP(2− 2a)

xa

since 2− 2a > 1, so ζP(2− 2a) exists. Hence

lP(x) = O
( 1

xa

)
.

For the converse, suppose lP(x) = O
(

1
xa

)
. We want to show that mP(x) = O

(
1
xa

)
.

Using (4.2), and since |µP(d)| ≤ 1, we have

mP(x) =
∑
d2 ≤ x
d ∈ N

lP( x
d2 )

d2
µP(d)� 1

xa

∑
d∈N

1

d2−2a
=
ζP(2− 2a)

xa
.

Hence

mP(x) = O
( 1

xa

)
.

�

For the following, we recall that

MP(x) =
∑
n ≤ x
n ∈ N

µP(n) and LP(x) =
∑
n ≤ x
n ∈ N

λP(n).

In the same way of Theorem 4.6 we can prove:

Theorem 4.7. Let P be a g-prime system with abscissa 1 and let 1
2
< a ≤ 1. Then

LP(x) = O(xa) if and only if MP(x) = O(xa).
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Proof. Assume MP(x) = O(xa). Then, in the same way that we obtained (4.1), we

have

LP(x) =
∑
d2 ≤ x
d ∈ N

MP

( x
d2

)
�

∑
d ≤
√
x

d ∈ N

xa

d2a
≤ xaζP(2a)

since 2a > 1, so ζP(2a) exists.

For the converse, assume LP(x) = O(xa). Since |µP(d)| ≤ 1, in the same way that

we obtained (4.2), we have

MP(x) =
∑
d2 ≤ x
d ∈ N

LP

( x
d2

)
µP(d)� xa

∑
d ≤
√
x

d ∈ N

1

d2a
= xaζP(2a).

�

Remark 4.8.

(i) It immediately follows from Theorem 4.7 that if 0 ≤ a ≤ 1
2

and

(a) MP(x) = O(xa), then LP(x) = O(x
1
2

+ε) for all ε > 0.

(b) LP(x) = O(xa), then MP(x) = O(x
1
2

+ε) for all ε > 0.

(ii) We can ask whether Theorem 4.7 extends to a ≤ 1
2
. But as we see below this

cannot be expected in general as it depends on ζP(s) having pole at s = 1
2
.

Propostion 4.9. Let P be a g-prime system with abscissa 1. Suppose LP(x) = O(xc)

for some c < 1
2
. Then ζP(s) has a pole at 1

2
.

Proof. Since LP(x) = O(xc) for some c < 1
2
, then this implies (ZP(s) =) ζP (2s)

ζP (s)
is

holomorphic for <s > c. Thus ZP(s) has analytic continuation to <s > c. On the

other hand, we know that ζP(s) is holomorphic and has no zeros for <s > 1 since

P has abscissa 1. Thus ζP(2s) is holomorphic and has no zeros for <s > 1
2
. This

shows that 1
ζP (2s)

is holomorphic for <s > 1
2

and ZP (s)
ζP (2s)

is also holomorphic for <s > 1
2
.

Thus 1
ζP (s)

is holomorphic for <s > 1
2
. This implies 1

ζP (2s)
is holomorphic for <s > 1

4
.

Therefore ZP (s)
ζP (2s)

is holomorphic for <s > α = max{c, 1
4
} since ZP(s) is holomorphic

for <s > c. This means 1
ζP (s)

is holomorphic for <s > α as well as implying that ζP(s)

is meromorphic and has no zeros for <s > α.
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Also, ζP(s) has a pole at s = 1 since it has a singularity at the abscissa of

convergence which is s = 1. Thus ζP(2s) has a pole at s = 1
2
. However, we know that

ζP (2s)
ζP (s)

has to be holomorphic for <s > c, and so ζP(s) must have a pole at 1
2

since the

pole of ζP(s) must be cancelled with the pole of ζP(2s).

�

Remark 4.10. The only way which would get LP(x) = o(
√
x) is if ζP(s) has a pole

at 1
2
. In other words, in order to have LP(x) = Ω(x

1
2 ), ζP(s) must have no pole at 1

2

(see also Proposition 5.13 for more precise result).

4.2 Partial Sums of the Möbius function over N

In this section, we are interested in Beurling prime systems for which the counting

functions ψP(x), NP(x) and MP(x) are asymptotically well-behaved, in the sense that

ψP(x) = x+O(xα+ε), (4.3)

NP(x) = ρx+O(xβ+ε) for some ρ > 0 (4.4)

and

MP(x) =
∑
n ≤ x
n ∈ N

µP(n) = O(xγ+ε)
(4.5)

hold for all ε > 0, but for no ε < 0, where ρ > 0, α, β, γ < 1 respectively. We shall

explore which values of α, β, γ are feasible. We show that it is impossible to have

both β and γ less than 1
2

or both α and γ less than 1
2
. We also rule out some possible

orders for α, β, γ and show that out of the three numbers {α, β, γ}, the largest two

must be equal and at least 1
2
. Clearly, we need α, β, γ ≥ 0 since ψP(x), NP(x) and

MP(x) are Ω(1).

Theorem 4.11. Given a g-prime system P satisfying (4.4) for some β < 1 and

(4.13) for some γ < 1, we have max{β, γ} ≥ 1
2
.

Proof. Assume Θ := max{β, γ} < 1
2
.

Assumption (4.13) implies that s
∫∞

1
MP (x)
xs+1 dx converges to a holomorphic function

for <s > γ. This implies (UP(s) =) 1
ζP (s)

is holomorphic for <s > γ. However, the

assumption (4.4) for some β < 1
2

implies that ζP(s) is holomorphic for <s > β except
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for a simple pole at s = 1. Thus (4.4) and (4.13) together show ζP(s) is holomorphic

except for a simple pole at s = 1 and has no zeros for <s > Θ. But, this gives

a contradiction with Corollary 3.30 (part (ii)) since this says that ζP(s) has infinitely

many zeros in the strip {s ∈ C : η
′
< <s < 1} for every η

′ ∈ (β, 1
2
). Hence Θ ≥ 1

2
.

�

Theorem 4.12. Given a g-prime system P satisfying (4.3) for some α < 1 and

(4.13) for some γ < 1, we have max{α, γ} ≥ 1
2
.

Proof. Assume Θ := max{α, γ} < 1
2
.

Assumption (4.13) implies that s
∫∞

1
MP (x)
xs+1 dx converges to a holomorphic function

for <s > γ. This implies UP(s) is holomorphic for <s > γ. However, the assumption

(4.3) for some α < 1
2

implies that ζP(s) is holomorphic for <s > α except for a simple

pole at s = 1 and ζP(s) 6= 0 in this region by Theorem 3.28. Thus (4.3) and (4.13)

together show ζP(s) is holomorphic and has no zeros for <s > Θ except for a simple

pole at s = 1. Let s = σ + it, with <s > Θ. From the Mellin transform, we initially

have

VP(σ + it) = O(|t|) for <s > α, and (4.6)

UP(σ + it) = O(|t|) for <s > γ. (4.7)

We have that for all δ > 0, (4.6) holds uniformly as |t| −→ ∞ for σ ≥ α + δ, and

equally, as |t| −→ ∞ (4.7) holds uniformly for σ ≥ γ + δ.

We know that UP(s) is non-zero for <s > Θ except for a simple pole at s = 1, and

so logUP(s) is well-defined and holomorphic on {s ∈ C : <s > Θ} \ (Θ, 1]. Thus for

σ > Θ, and uniformly for σ ≥ Θ + δ,

<(− log ζP(σ + it)) = log |UP(σ + it)| ≤ C log |t|, |t| ≥ 2,

for some C. Now the Borel-Carathéodory Theorem (see Theorem 1.26) can be applied

to the function logUP(z) and the circles with centre 3 + it and radii r = 3− Θ− 2δ

and R = 3−Θ− δ. Hence on the smaller circle, we have

| logUP(z)| ≤ 2r

R− r
sup
|z|≤R

< logUP(z) +
R + r

R− r
| logUP(3 + it)|

≤ 6− 2Θ− 4δ

δ
(C log |t|) +

6− 2Θ− 3δ

δ
| logUP(3 + it)| = O(log |t|).
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It follows that | logUP(σ+ it)| = | log ζP(σ+ it)| = O(log |t|) uniformly for σ ≥ Θ + δ

since δ is arbitrary. Thus

log |ζP(σ + it)| = < log ζP(σ + it) ≤ | log ζP(σ + it)| = O(log |t|)

Hence, for σ > Θ,

|ζP(σ + it)| = O(|t|k) for some k.

But, this gives a contradiction with Corollary 3.30 (part (i)) since this says that ζP(s)

does not have finite order throughout the strip {s ∈ C : η < <s < 1} for every

η ∈ (α, 1
2
). Hence Θ ≥ 1

2
.

�

Remark 4.13. As a consequence of Theorems 4.11 and 4.12 if we wantMP(x) = O(xc)

for some c < 1
2
, then NP(x)− ρx and ψP(x)− x must both be Ω(x

1
2
−ε) for all ε > 0.

The following theorem shows that UP(s) and VP(s) are of zero order in a strip to

the left of 1 if (4.3) and (4.13) hold.

Theorem 4.14. Given a g-prime system P satisfying (4.3) for some α < 1 and

(4.13) for some γ < 1, we have for 1 ≥ σ > Θ = max{α, γ} and uniformly for

1− δ ≥ σ ≥ Θ + δ (any δ > 0)

VP(σ + it) = O
(

(log |t|)
1−σ
1−Θ

+ε
)

and UP(σ + it) = O
(

(log |t|)
1−σ
1−Θ

+ε
)
,

for all ε > 0. In particular, for σ > Θ we have UP(σ + it) = O(|t|ε) for all ε > 0.

Proof. From the proof of Theorem 4.12, we have

| logUP(σ + it)| = O(log |t|) for σ > Θ.

Now we apply Cauchy’s differentiation formula (see Theorem 1.28) to the function

logUP(z), we have

VP(σ + it) =
1

2πi

∫
γ

logUP(z)

(z − σ − it)2
dz,

where σ + it is the centre of the circle γ with radius ε. Selecting ε > 0 such that

σ > Θ + ε, yields

|VP(σ + it)| = 1

2π

∣∣∣ ∫
γ

logUP(z)

(z − σ − it)2
dz
∣∣∣ ≤ 1

2π

2πε

ε2
sup
z∈γ
| logUP(z)| = O(log |t|). (4.8)
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Now the Hadamard’s Three-Circles Theorem (see Theorem 1.27) can be applied to

the function VP(z) on the circles C1, C2, C3 with centre a + it such that a > 1 + ω

passing through the points 1 + ω+ it, σ+ it,Θ + δ+ it, where δ, ω > 0. The radii are

thus

r1 = a− 1− ω, r2 = a− σ, r3 = a−Θ− δ.

Let M1,M2,M3 be the maxima of |VP(z)| on the three circles C1, C2, C3. Then

M2 ≤M1−κ
1 Mκ

3 , where κ =
log
(
r2
r1

)
log
(
r3
r1

) .
Now M3 = O(log |t|) by estimate (4.8), and

M1 = max
z∈C1

|VP(z)| = max
z∈C1

∣∣∣∑
n∈N

ΛP(n)

nz

∣∣∣ ≤ max
z∈C1

∑
n∈N

|ΛP(n)|
|nz|

= max
z∈C1

∑
n∈N

ΛP(n)

n<z

= max
z∈C1

VP(<z) = VP(1 + ω) = O(1).

Thus M2 = O((log |t|)κ). In particular, for z ∈ C2 we have

|VP(σ + it)| ≤M2 ≤M1−κ
1 Mκ

3 = O((log |t|)κ).

We can make κ, the exponent, as close to 1−σ
1−Θ

as we like through selection of ω, δ

small and a large, since

κ =
log
(
r2
r1

)
log
(
r3
r1

) =
log
(

a−σ
a−1−ω

)
log
(
a−Θ−δ
a−1−ω

) =
log(1− σ

a
)− log

(
1− (1−ω)

a

)
log
(
1− (Θ+δ)

a

)
− log

(
1− (1−ω)

a

)
=
−σ
a

+ 1+ω
a

+O
(

1
a2

)
−Θ+δ

a
+ 1+ω

a
+O

(
1
a2

) =
1
a

(
1 + ω − σ +O( 1

a
)
)

1
a

(
1 + ω − (Θ + δ) +O( 1

a
)
)

=
1− σ +O(ω) +O( 1

a
)

1−Θ +O(ω) +O(δ) +O( 1
a
)

=
(1− σ)(1 +O( ω

1−σ ) +O( 1
(1−σ)a

))

(1−Θ)(1 +O( ω
1−σ ) +O( δ

1−σ ) +O( 1
(1−σ)a

))

=
1− σ
1−Θ

(
1 +O(ω) +O

(1

a

))(
1 +O(ω) +O(δ) +O

(1

a

))
=

1− σ
1−Θ

+O(ω) +O(δ) +O
(1

a

)
.

Hence

|VP(σ + it)| = O((log |t|)
1−σ
1−Θ

+ε) for any ε > 0.
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Finally, applying Theorem 1.29 to the function logUP(z) from the point σ+ it to the

point 2 + it and taking the real part, we have

log |UP(σ + it)| = log |UP(2 + it)| − <
{∫ 2+it

σ+it

VP(z) dz
}
� A+

∫ 2

σ

|VP(y + it)| dy

�
∫ 2

σ

(log |t|)
1−y
1−Θ

+ε dy ≤ (log |t|)
1−σ
1−Θ

+ε

∫ 2

σ

dy � (log |t|)
1−σ
1−Θ

+ε,

and therefore |UP(σ + it)| = O(exp(log |t|)
1−σ
1−Θ

+ε). Choosing ε sufficiently small, so

that the exponent 1−σ
1−Θ

+ ε < 1 for σ > Θ enables us to write for t sufficiently large

and any given ε > 0

−ε log |t| < log |UP(σ + it)| < ε log |t|,

so UP(σ + it) = O(|t|ε) for all ε > 0.

�

Theorem 4.15. Let P be a g-prime system satisfying (4.3), (4.4) and (4.13) for

some α, β and γ < 1 respectively. Then out of the three numbers {α, β, γ}, the largest

two must be equal and at least 1
2
.

Proof. We rule out the three cases where one is strictly larger than the others.

(i) If α, γ < β, then Theorem 4.14 tells us that for <s > max{α, γ}, we have ζP(s)

and UP(s) are of zero order. But this gives a contradiction as ζP(s) has infinite

order in the strip α < <s < β by Remark 3.33 (part (i)).

(ii) If β, γ < α, then ζP(s) is holomorphic and has no zeros for <s > max{β, γ}
except for a simple pole at s = 1. But this gives a contradiction as ζP(s) has

zeros in the strip β < <s < α by Remark 3.33 (part (ii)).

(iii) If α, β < γ, we know from Theorem 3.32 that ζP(s) and UP(s) have analytic

continuations to {s ∈ C : <s > min{α, β}} except for simple pole of ζP(s)

at s = 1 and for <s > max{α, β}, they are of zero order. Now we apply

the converse part of Theorem 3.35 with UP(s), so that MP(x) = O(xα+ε) or

MP(x) = O(xβ+ε) for all ε > 0. This contradicts assumption (4.13) since

α, β < γ.

Therefore we have the other cases which are either β < α = γ, α < β = γ or

γ < α = β. These show that the largest two of these three numbers must be equal.
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Furthermore, Theorems 3.31, 4.11 and 4.12 also reveal us that the largest two must

be at least 1
2
. �

4.2.1 Examples

From this theorem, we are motivated to explore whether it really is possible that

each of β, α and γ can be strictly less than the other two and whether it can be less

than 1, and as such, we provide some examples of g-prime systems.

Example 4.16. (i) Let P = P, so that N = N, then (4.4) holds with β = 0 (and

ρ = 1) and if the RH is true, (4.3) and (4.13) hold for α and γ equal to 1
2
. This is

a conditional example where β < α = γ.

Example 4.17. (ii) Let P = {p1, p2, p3, · · · } be a g-prime system where pn = R−1(n)

for all n ∈ N and R is the function defined by

R(x) :=
∞∑
k=1

(log x)k

k!kζ(k + 1)
,

where ζ(·) is the Riemann zeta function. Note R is strictly increasing and continuous

on [1,∞). For then, πP(x) ≤ R(x) < πP(x) + 1 (since if pn ≤ x < pn+1, then

n = πP(x)). Thus the function ΠP(x) (see Section 3.2.2) of this system can be

calculated by

ΠP(x) =
∞∑
n=1

πP(x
1
n )

n
=

∑
1≤n≤A log x

πP(x
1
n )

n
(since πP(x

1
n ) = 0 if x

1
n < p1)

=
∑

1≤n≤A log x

R(x
1
n )

n
+

∑
1≤n≤A log x

O(1)

n
(for some A > 0)

=
∑

1≤n≤A log x

1

n

∞∑
k=1

(log x
1
n )k

k!kζ(k + 1)
+O

( ∑
1≤n≤A log x

1

n

)
=
∞∑
k=1

(log x)k

k!kζ(k + 1)

∑
1≤n≤A log x

1

nk+1
+O(log log x)

=
∞∑
k=1

(log x)k

k!kζ(k + 1)

(
ζ(k + 1) +O

( 1

k(A log x)k

))
+O(log log x)

= li(x) +O(log log x).

For this system, the prime counting function ψP(x) can be found by integration as
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follows:

ψP(x) =

∫ x

p1

log t dΠP(t) =

∫ x

p1

log t d li(t) +

∫ x

p1

log t d (ΠP(t)− li(t))

=

∫ x

p1

dt+ (ΠP(t)− li(t)) log x−
∫ x

p1

ΠP(t)− li(t)

t
dt

= x+O(log x log log x) +O
(∫ x

p1

log log t

t
dt
)

= x+O(log x log log x)

= x+O(xε) for all ε > 0.

This shows α = 0. Therefore, by Theorem 4.15, β must be equal to γ, but it

is not clear what the common value is except that it lies in [1
2
, 1]. Theorem 3.29

gives NP(x) = ρx+O(x−c
√

log x log log x) for some ρ, c > 0. It may be the case that

NP(x)− ρx = O(xη) for some η < 1, in which case the infimum of such η is β. But

we do not know if this holds for any η < 1. Hence we get 0 = α < 1
2
≤ β = γ ≤ 1 for

this system.

Example 4.18. (iii) For 1
2
≤ β < 1, let P = P ∪ P

1
β , where we include any

multiplicities. Assume that M(x) = O(xη) for some 1
2
≤ η < 1, where M(x) is

the partial sum of the Möbius function not exceeding x. This is equivalent to a

weaker version of the RH which is when ζ(s) 6= 0 for <s > η. The associated Beurling

zeta function of this system is

ζP(s) = ζ(s)ζ(s/β) =
∑
m≥1

1

ms

∑
n≥1

1

n
s
β

=
∑
m,n≥1

1

(mn
1
β )s

.

For this system, we have

NP(x) =
∑

m,n ≥ 1

mn
1
β ≤ x

1.

Applying Dirichlet’s hyperbola theorem (see Theorem 1.11), we have

NP(x) =
∑
n≤aβ

[ x

n1/β

]
+
∑
n≤b

[(x
n

)β]
− [aβ][b]

for any ab = x. Putting a = xλ, we obtain

NP(x) =
∑
n≤xλβ

[ x

n1/β

]
+
∑

n≤x1−λ

[(x
n

)β]
− [xλβ][x1−λ]
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= x
∑
n≤xλβ

1

n1/β
+ xβ

∑
n≤x1−λ

1

nβ
− xλβ+1−λ +O(xλβ) +O(x1−λ)

= x

(
ζ
( 1

β

)
− β

1− β
x−λβ( 1

β
−1) +O(x−λβ( 1

β
))

)
+ xβ

(x(1−λ)(1−β)

1− β
+ ζ(β) +O(x−(1−λ)β

)
− xλβ+1−λ +O(xλβ) +O(x1−λ)

= ζ
( 1

β

)
x+ ζ(β)xβ +O(xλβ) +O(x1−λ).

Selecting λ = 1
1+β

, then λβ = 1− λ minimises this quantity and gives

NP(x) = ζ
( 1

β

)
x+ ζ(β)xβ +O(x

β
1+β ).

Thus the “β” for this system is indeed β. Furthermore, α on our assumption can be

calculated as follows:

ψP(x) = ψ(x) + ψ(xβ) = x+ xβ +O(xη+ε), where η ∈ [1
2
, 1).

Thus, if we assume that η < β, then α = β. Now we would like to estimate MP(x)

for this system. We have

1

ζP(s)
=

1

ζ(s)ζ(s/β)
=
∑
m≥1

µ(m)

ms

∑
n≥1

µ(n)

n
s
β

=
∑
m,n≥1

µ(m)µ(n)

(mn
1
β )s

.

Therefore

MP(x) =
∑

mn
1
β ≤ x

m, n ≥ 1

µ(m)µ(n) =
∑
n≤xβ

µ(n)
∑
m≤ x

nβ

µ(m) =
∑
n≤xβ

µ(n)M
( x

n1/β

)
,

where M(x) is the partial sum of the Möbius function not exceeding x. Now using

the bound M(x) = O(xη) for some 1
2
≤ η < 1 and applying Dirichlet’s hyperbola

theorem again, we have

MP(x) =
∑

mn
1
β ≤x

µ(m)µ(n) =
∑
n≤aβ

µ(n)M
( x

n1/β

)
+
∑
n≤b

µ(n)M
((x

n

)β)
−M(b)M(aβ),

�
∑
n≤aβ

xη

n
η
β

+
∑
n≤b

xβη

nβη
+ bηaβη
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for any ab = x. Putting a = xλ, we obtain

MP(x)� xη
∑
n≤xβλ

1

n
η
β

+ xβη
∑

n≤x1−λ

1

nβη
+ xη(1−λ)xβηλ.

Now if we assume that η < β, then MP(x) is

� xηxλβ(1− η
β

) + xβηx(1−λ)(1−βη) + xλβη+η−λη

� xη+λβ−λη + x1−λ+λβη + xλβη+η−λη.

The third exponent is less than or equal to the second exponent since

λβη + η − λη = λβη + η(1− λ) ≤ 1− λ+ λβη.

Thus choosing λ = 1
1+β

, so that 1− λ+ λβη = η+ λβ − λη minimises the error. This

gives

MP(x)� xβ
(1+η)
1+β + xβ

(2η)
1+β � xβ

(1+η)
1+β .

Hence, γ ≤ β (1+η)
1+β

< β and we get γ < α = β < 1 for this system and γ ≥ 1
2

since
1

ζP (s)
= 1

ζ(s)ζ(s/β)
has poles on the 1

2
-line. Again, it is a conditional example as a version

of RH.

Propostion 4.19. Let P be a g-prime system satisfying (4.4), (4.3) and (4.13) for

some α, β, γ < 1 respectively and define ξ via

LP(x) =
∑
n ≤ x
n ∈ N

λP(n) = O(xξ+ε)
(4.9)

holds for all ε > 0, but for no ε < 0. Suppose γ ≥ 1
2
. Then γ = ξ and the largest

two of the numbers α, β, ξ are equal and at least 1
2
. On the other hand, if γ < 1

2
, then

ξ > γ.

Proof. Theorem 4.7 and Remark 4.8, as well as using Theorem 4.15 give the required

result.

�

Notice that we do not know if there is a system with abscissa 1 which satisfies

(4.13) with γ < 1
2
.
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4.3 Infinite sums involving the functions λP and µP

In this section, we investigate the value of the sums
∑

n∈N
µP (n)
n

and
∑

n∈N
λP (n)
n

of g-prime systems under some assumptions over P . We also provide special examples

of these sums when the g-prime system P is as in Example 3.3.

Propostion 4.20. Let P be a g-prime system for which
∑

n∈N
1
n

converges to A.

Then

(i)
∑

n∈N
µP (n)
n

converges to 1
A

.

(ii)
∑

n∈N
λP (n)
n

converges to ζP (2)
A

.

Proof. (i) We know,
∑

n∈N
1
n

converges absolutely to A since
∑

n∈N
1
n

converges

and 1
n

is positive for all n ∈ N . Thus, by Theorem 3.22 when f(n) = 1
n
, we

have ∑
n∈N

1

n
=
∏
p∈P

1

1− 1
p

= A. (4.10)

Now since |µP (n)|
n
≤ 1

n
for all n ∈ N and

∑
n∈N

1
n

converges, then
∑

n∈N
µP (n)
n

converges absolutely.

By using Theorem 3.22 again, we have

∑
n∈N

µP(n)

n
=
∏
p∈P

(
1− 1

p

)
=

1

A
.

Hence
∑

n∈N
µP (n)
n

converges to 1
A

.

(ii) Now since |λP (n)|
n

= 1
n

for all n ∈ N and
∑

n∈N
1
n

converges (by (4.10)), then∑
n∈N

λP (n)
n

converges absolutely.

By using Theorem 3.22 again, we have

∑
n∈N

λP(n)

n
=
∏
p∈P

(
1 +

1

p

)−1

=
∏
p∈P

1− 1
p

1− 1
p2

=
1

A

∏
p∈P

1

1− 1
p2

=
ζP(2)

A
.

Hence
∑

n∈N
λP (n)
n

converges to ζP (2)
A

.

�
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Propostion 4.21. Let P be a g-prime system for which
∑

n∈N
1
n

diverges and∑
n∈N

1
ns

converges for every s with <s > 1. If

(i)
∑

n∈N
µP (n)
n

converges to S, then S must be zero.

(ii)
∑

n∈N
λP (n)
n

converges to S, then S must be zero.

Proof. (i) Using Example 3.24 and that
∑

n∈N
1
ns

converges for every s with <s > 1,

we have

UP(s) =
∑
n∈N

µP(n)

ns
=

1

ζP(s)
for <s > 1.

By Theorem 1.13 and the assumption that
∑

n∈N
µP (n)
n

converges to S, we

have

UP(1 + ε) =
1

ζP(1 + ε)
−→ S as ε −→ 0+.

Thus, if S 6= 0, then

ζP(1 + ε) −→ 1

S
as ε −→ 0+.

On the other hand, we know that
∑

n∈N
1
n

diverges, therefore ζP(1 + ε)

diverges as ε −→ 0+, since

lim
ε→0+

ζP(1 + ε) = lim
ε→0+

∑
n∈N

1

n1+ε
≥ lim

ε→0+

∑
n ≤ x
n ∈ N

1

n1+ε
=
∑
n ≤ x
n ∈ N

lim
ε→0+

1

n1+ε
=
∑
n ≤ x
n ∈ N

1

n

for any x. This gives a contradiction since the right hand side can be made

arbitrarily large. Hence S must be zero.

(ii) Using Example 3.24 and that
∑

n∈N
1
ns

converges for every s with <s > 1, we

have

ZP(s) =
∑
n∈N

λP(n)

ns
=
ζP(2s)

ζP(s)
.

By Theorem 1.13 and the assumption that
∑

n∈N
λP (n)
n

converges to S, we have

ZP(1 + ε) =
ζP(2(1 + ε))

ζP(1 + ε)
−→ S as ε −→ 0+.
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Thus, if S 6= 0, then

ζP(1 + ε)

ζP(2(1 + ε))
−→ 1

S
as ε −→ 0+.

Hence ζP(1+ε) converges to a limit since ζP(2(1+ε)) −→ ζP(2) 6= 0 as ε −→ 0+.

By above this gives a contradiction. Hence S must be zero.

�

Remark 4.22.

(i) From above results if the abscissa of P is 1 and
∑

n∈N
µP (n)
n

converges, then∑
n∈N

µP (n)
n

= 0 if and only if
∑

n∈N
1
n

diverges. But if P has abscissa greater

than 1, then
∑

n∈N
µP (n)
n

may not be convergent (see Example 4.23).

(ii) Is it possible to find a g-prime system P with abscissa 1 and
∑

n∈N
1
n

diverges

and either
∑

n∈N
µP (n)
n

or
∑

n∈N
λP (n)
n

diverges?

This question has been partially answered by Tao [50], by assuming P is subset

of the usual primes. He showed that
∑

n∈N
µP (n)
n

converges if and only if
∑

n∈N
1
n

diverges. This means that it is impossible to have such a system if P is a set of

primes.

Example 4.23. Let P = {√p : p ∈ P}. Then N= {
√
n : n ∈ N} and

∑
n∈N

1
n

diverges and

ζP(s) =
∑
n∈N

1

ns
=
∞∑
n=1

1

n
s
2

= ζ( s
2
) for <s > 2.

But
∑

n∈N
µP (n)
n

is divergent since

∑
n∈N

µP(n)

n
=

∞∑
m=1

µP(
√
m)√
m

, where n =
√
m and m ∈ N

=
∞∑
m=1

µ(m)√
m

is not convergent.
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For if
∑∞

m=1
µ(m)√
m

converges, then put m(x) =
∑

m≤x
µ(m)√
m

= C + o(1), so that

M(x) =
∑
m≤x

µ(m) = m(x) ·
√
x− 1

2

∫ x

1

m(t)

t
1
2

dt

= (C + o(1))
√
x− 1

2

∫ x

1

C + o(1)

t
1
2

dt

= C
√
x+ o(

√
x)− C

2

∫ x

1

1

t
1
2

dt+
1

2

∫ x

1

o
( 1

t
1
2

)
dt

= C
√
x+ o(

√
x)− C[

√
x− 1] + o(

√
x)

= o(
√
x).

But this gives a contradiction with the fact that M(x) = Ω(
√
x). Hence

∑
n∈N

µP(n)

n
=

∞∑
m=1

µ(m)√
m

is divergent.

Example 4.24. Let P = {2, 2, 3, 3, 5, 5, · · · }. Then N = N with multiplicity d(n)

and for <s > 1, we have

1

ζP(s)
=
∑
n∈N

µP(n)

ns
=
∏
p

(
1− 1

ps

)2

=
1

ζ2(s)
=
∞∑
n=1

(µ ∗ µ)(n)

ns
.

We would like to show that ∑
n∈N

µP(n)

n
= 0.

It is equivalent to show that

∞∑
n=1

(µ ∗ µ)(n)

n
= 0. (4.11)

Applying Dirichlet’s hyperbola theorem with a = b =
√
x (see Theorem 1.11) to

J(x) :=
∑

n≤x(µ ∗ µ)(n), we have

J(x) = 2
∑
n≤
√
x

µ(n)M
(x
n

)
− (M(

√
x))2, (4.12)

where M(x) is the partial sum of Möbius function up to and including x. Since
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M(x) = O
(

x
(log x)A

)
for any A > 2 as x −→ ∞, then |M(x)| ≤ Cx

(log x)A
for all A [37].

The sum on the right of (4.12) satisfies∣∣∣ ∑
n≤
√
x

µ(n)M
(x
n

)∣∣∣ ≤ ∑
n≤
√
x

|µ(n)| Cx

n(log x
n
)A
≤ Cx

(log
√
x)A

∑
n≤
√
x

1

n
=

Cx

(log
√
x)A−1

.

The last term of the right hand side of (4.12) is bounded by

|(M(
√
x))2| ≤

( C
√
x

(log
√
x)A

)2

=
( C2x

(log
√
x)2A

)
.

Therefore

|J(x)| ≤ 2Cx

(log
√
x)A−1

+
C2x

(log
√
x)2A

<
2Cx

(log
√
x)A−1

for all A.

Hence

J(x) = O
( x

(log x)A−1

)
for all A.

Now, by Abel summation,

∑
n≤x

(µ ∗ µ)(n)

n
= J(x)

1

x
+

∫ x

2

J(t)
1

t2
dt

=
O
(

x
(log x)A−1

)
x

+

∫ ∞
2

J(t)

t2
dt−

∫ ∞
x

J(t)

t2
dt

=
O
(

x
(log x)A−1

)
x

+

∫ ∞
2

J(t)

t2
dt−

∫ ∞
x

O
(

t
(log t)A−1

)
t2

dt

= O
( 1

(log x)A−1

)
+ C +O

( 1

(log x)A−2

)
, where C is constant

since
∫∞

2
(log t)1−A

t
dt converges for A > 2 and

∣∣ ∫∞
x

(log t)1−A

t
dt
∣∣ = 1

(A−2)(log x)A−2 . Thus

∑
n≤x

(µ ∗ µ)(n)

n
= O

( 1

(log x)A−2

)
for all A.

Letting x −→∞, we have (4.11).

Notice that Theorem 4.4 also gives
∑

n∈N
λP (n)
n

= 0.
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4.4 Open problems

(i) From Examples (4.16) and (4.17) we have systems with (α, β, γ) = (A, 0, A) and

(0, B,B) for some 1
2
≤ A,B ≤ 1. Can we find, unconditionally, such systems

with A < 1 and B < 1?

(ii) In Example (4.18) we have a system with (α, β, γ) = (C, C, D) with
1
2
≤ D < C < 1. Can we find one unconditionally, with D < 1. Furthermore,

can we find one with D < 1
2
?

(iii) The findings of the second section may suggest the following conjecture.

Conjecture 4.25. Given a g-prime systems P with abscissa 1 for which

MP(x) =
∑
n ≤ x
n ∈ N

µP(n) = O(xγ),

it is impossible to have γ < 1
2
.
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Chapter 5

Completely Multiplicative

Functions of Zero Sum over N

In this chapter, we generalise the notion of CMO functions to Beurling g-prime

systems. We give some properties and examples of these functions. In particular, we

provide some examples of the function λP (n)
n

for different g-prime systems P where

λP(n) is Liouville function over P . Kahane and Säıas used examples of such functions
λP (n)
n

with P being a subset of usual primes P (see [30], [32]).

5.1 CMOP functions

Let P be a g-prime system. We say that f : N −→ C is a CMOP function if it

satisfies the following conditions:

(i) f is a completely multiplicative function (ii)
∑
n∈N

f(n) = 0.

This is a generalisation of a CMO function. We investigate some properties of

CMOP functions. For instance, let f be a CMOP function and g a completely

multiplicative function “close” to f . We shall show that g is also a CMOP function

under some extra condition on f . Furthermore, the same questions that were asked by

Kahane and Säıas [31] about CMO functions can be discussed for CMOP functions.

For example, how quickly the partial sum of f(n) not exceeding x, (i.e.
∑

n≤x f(n)) can

tend to zero. In particular, we would like to investigate how quickly the partial sum of

λP(n) over n up to and including x tends to zero with different type of systems where

λP(n) is Liouville’s function over N . Specially, we discuss O-Results of
∑

n≤x
λP (n)
n
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over N with a system which satisfies

NP(x) = ρx+O(xβ+ε) (for some ρ > 0) and ψP(x) = x+O(xα+ε) (5.1)

for all ε > 0, but for no ε < 0 and 0 ≤ α, β < 1. As special case we treat Zhang’s

system (see Theorem 3.34) with error term O(x
1
2 e(c log x)

2
3 ) for the counting function

NP(x) and O(x
1
2 ) for ψP(x). We show that

∑
n≤x

λP (n)
n

for the system which satisfies

(5.1) is O
(

1
x1−Θ−ε

)
, where Θ is the maximum value between α and β, whereas Zhang’s

system gives

LP(x) = O(x
1
2 e(c log x)

2
3 ), (5.2)

where LP(x) is the partial sum of the Liouville function on N as defined previously.

This can be compared to the conditional result of M. Balazard and A. de Roton [3]

concerning the Möbius function of the standard integers. They showed that assuming

RH,

M(x) = O
(
x

1
2 e(log x)

1
2 (log log x)

5
2 +ε
)

for all ε > 0,

where M(x) is the partial sum of the Möbius function. Following the above result,

Theorem 4.7 can be used to show that

L(x) = O
(
x

1
2 ec(log x)

1
2 (log log x)

5
2 +ε
)

for all ε > 0.

We notice that the right hand side of (5.2) can be automatically improved if one

would be able to improve the error term in Zhang’s system.

We also explore Ω−Results for the behaviour of
∑

n≤x
λP (n)
n

for a system P which

satisfies either the assumption

NP(x) = ρx+O(xβ) for some ρ > 0 or ψP(x) = x+O(xα),

for some α, β < 1
2
. The aim of this chapter is to find a completely multiplicative

function f over N with abscissa 1 such that

∑
n ≤ x
n ∈ N

f(n) = O
( 1

xc

)
for some c > 1

2
.

83



5.2 Some properties of CMOP functions

In this section, we derive some preliminary properties of CMOP functions.

Propostion 5.1. Let f be a CMOP function. Then
∑

n∈N |f(n)| diverges. Indeed∑
p∈P |f(p)| diverges.

Proof. Let us assume the converse, so that∑
n∈N

|f(n)| converges.

Then, by completely multiplicativity,

∑
n∈N

|f(n)| =
∏
p∈P

1

1− |f(p)|
and

∑
n∈N

f(n) =
∏
p∈P

1

1− f(p)
6= 0.

This contradiction implies ∑
n∈N

|f(n)| diverges.

Furthermore, Proposition 3.26 gives
∑

p∈P |f(p)| diverges, as required.

�

5.2.1 Partial sums of CMOP functions

By definition the partial sum of a CMOP function not exceeding x tends to zero

when x tends to infinity. As we asked in Chapter 2, we can ask how small can we

make g(x), so that (5.3) is true for all CMOP functions f?∑
n ≤ x
n ∈ N

f(n) = Ω(g(x))
(5.3)

To answer this we need some assumptions on g-prime systems.

Propostion 5.2. Let P be a g-prime system with unique representation (all the

multiplicities are 1) for which
∑

p∈P
1

p log p
converges. If f is a CMOP function, then

∑
n ≤ x
n ∈ N

f(n) = Ω
( 1

x log x

)
.
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Proof. Let us assume that the statement is false, so that

∑
n ≤ x
n ∈ N

f(n) = O
( 1

x log x

)
.

We know that for every p ∈ P , we have

f(p) =
∑
m≤p

f(m)−
∑
m<p

f(m) = O
( 1

p log p

)
. (5.4)

Now it follows that
∑

p∈P |f(p)| converges and |f(p)| < 1 for all p ∈ P by the

assumptions. Hence, by Proposition 3.26, we have
∑

n∈N |f(n)| converges. But by

Proposition 5.1 we have a contradiction, and so it follows that

∑
n ≤ x
n ∈ N

f(n) = Ω
( 1

x log x

)
.

�

Remark 5.3.

(i) Similarly, we can get different results by having different assumptions on the

g-prime systems with unique representation. For Example, if f is a CMOP

function and P is a g-prime system with unique representation for which∑
p∈P

1
p(log log p)2 converges, then

∑
n ≤ x
n ∈ N

f(n) = Ω
( 1

x(log log x)2

)
. (5.5)

(ii) As mentioned in Chapter 2, Kahane and Säıas [31] have shown that if f is

a CMO function, then ∑
n≤x

f(n) = Ω
(1

x

)
.

Now if we assume
∑

p∈P
1
p

converges, then the sum on the left of (5.5) is Ω( 1
x
).

(iii) Without unique representations, it can be more complicated. For instance, if P
is as in Example 3.5, then (5.4) does not work.
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5.2.2 Closeness relation between two completely multiplicative

functions which are defined over N

Let CMP := {f : N −→ C completely multiplicative}, and let us define an

(extended) metric on CMP to be the distance function

D(f, g) :=
∑
p∈P

|g(p)− f(p)|.

Then CMP is an extended metric space since D(f, g) can attain the value ∞. It

is straightforward to check for all f, g, h ∈ CMP

(i) D(f, g) = 0 if and only if f = g,

(ii) D(f, g) = D(g, f),

(iii) D(f, h) ≤ D(f, g) +D(g, h)

hold. We aim to generalise Theorem 3 of Kahane and Säıas in [31] over Beurling

prime systems. The following theorem shows that if f is a CMOP function and g is

a nearby completely multiplicative function on N , then g is also a CMOP function.

In other words, under extra conditions on the values of g-primes for two completely

multiplicative functions if one is a CMOP , then so is the other.

Theorem 5.4. Let P be a g-prime system with abscissa 1, f a CMOP function and

g a completely multiplicative function on P such that

|g(p)| < 1 for all p ∈ P (5.6)

and

D(f, g) <∞. (5.7)

Then g is a CMOP function.

Proof. Let F (s) :=
∑

n∈N
f(n)
ns

and G(s) :=
∑

n∈N
g(n)
ns

. Then the series for F (s) is

absolutely convergent for <s > 1 and it is convergent for <s > 0 and s = 0 since∑
n∈N f(n) = 0. Assumption (5.6) and that g is completely multiplicative function

imply |g(n)| ≤ 1. Thus the series for G(s) also converges for <s > 1 since g is bounded
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and the abscissa of P is 1. Therefore F (s) and G(s) can be written as follows:

F (s) =
∏
p∈P

1

1− f(p)
ps

and G(s) =
∏
p∈P

1

1− g(p)
ps

<s > 1.

Now

H(s) :=
∏
p∈P

(
1− f(p)

ps

1− g(p)
ps

)
=
∏
p

(
1 +

g(p)−f(p)
ps

1− g(p)
ps

)

converges absolutely for <s ≥ 0 if and only if

∑
p∈P

∣∣g(p)−f(p)
ps

∣∣∣∣1− g(p)
ps

∣∣ (5.8)

converges for <s ≥ 0. But ∣∣g(p)−f(p)
ps

∣∣∣∣1− g(p)
ps

∣∣ ≤ 2
|g(p)− f(p)|

p<s

since |g(p)−f(p)|
p<s

≥ 1
2

for p sufficiently large and <s > 0. Thus, since (5.7) and

|1− g(p)
ps
| ∼ 1 as p −→∞ and <s ≥ 0, (5.8) converges for <s ≥ 0 and H(s) converges

absolutely to a holomorphic function for <s > 0. However, H(s) = (G/F )(s) for

<s > 1 then G(s) = F (s)H(s), where the series for F (s) converges for <s > 0

and s = 0 since f is a CMOP function, and H(s) converges absolutely for <s ≥ 0.

Therefore G(s) converges for <s > 0 and s = 0 using the extension of Theorem 1.18.

Thus we have G(0) = F (0)H(0) = 0. Hence g is a CMOP function. �

The proof of Theorem 5.4 implies the following result.

Corollary 5.5. Let P be a g-prime system with abscissa 1, f and g both be completely

multiplicative functions on P such that D(f, g) is finite and satisfying

|f(p)|, |g(p)| < 1 for all p ∈ P .

Then the following two assertions are equivalent:∑
n∈N

f(n) = 0 and
∑
n∈N

g(n) = 0.
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5.3 The function λP(n)
n over different systems P

In this section, we provide some examples of CMOP functions. In particular, we

introduce some examples of the function λP (n)
n

with different g-prime systems where

λP(n) is the Liouville function over the g-prime system P . We emphasize that we are

only interested in those systems for which the abscissa of convergence of the Dirichlet

series for ζP is 1.

Example 5.6. As shown in [10],[16], [17], if P satisfies one of the following assumptions:

ψP(x) =

∫ x

1

d(ψP(t))

t
= log x+ c+ o(1) for some constant c, (5.9)

or

MP(x) = o(x) and NP(x)− ρx = O
(

x
logγ x

)
holds for some ρ > 0 and γ > 1, (5.10)

or

NP(x) ∼ ρx and log ζP(s)− log
(

1
s−1

)
has a continuous extension to <s = 1, (5.11)

or ∫ ∞
2

∣∣ΠP(x)− x

log x

∣∣ dx
x2

<∞, where ΠP(x) =
∞∑
k=1

1

k
πP(x

1
k ), (5.12)

then
∑

n∈N
µP (n)
n

= 0. Therefore, by Theorem 4.4,
∑

n∈N
λP (n)
n

= 0. Hence λP (n)
n

is

a CMOP function since it is completely multiplicative with sum zero.

In fact, we do not even need πP(x) ∼ x
log x

for
∑

n∈N
λP (n)
n

= 0 to be true since it

is shown in [10] that the following condition

∫ ∞
2

∣∣ΠP(x)− x

log x

(
1 +

k∑
j=0

bj cos(tj log x+ yj)
)∣∣ dx

x2
<∞ (5.13)

with distinct tj > 0 and (1 + t2j)
1/2 |bj cos(yj + arctan tj)| < 2, j = 1, · · · , k, is also

sufficient to have
∑

n∈N
µP (n)
n

= 0.

From Example 5.6, we see that
∑

n∈N
λP (n)
n

= 0, but how quickly does it converge?
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5.3.1 O-Results for Euler’s example over N

In this section, we shall be interested in the behaviour of
∑

n≤x
λP (n)
n

over g-prime

system P which satisfies

NP(x) = ρx+O(xβ+ε) (for some ρ > 0) (5.14)

and

ψP(x) = x+O(xα+ε) (5.15)

as x −→∞ for all ε > 0, but for no ε < 0 and 0 ≤ α, β < 1 (see section 3.7).

Theorem 5.7. Given a g-prime system P satisfying (5.14) and (5.15) for some

β, α < 1, and let λP as defined before, we have

∑
n ≤ x
n ∈ N

λP(n)

n
= O

( 1

x1−Θ−ε

)
for all ε > 0,

where Θ = max{α, β}.

Proof. We let P denote a g-prime system satisfying (5.14) and (5.15). Then, for all

<s > 1, we have

ZP(s) =
∑
n∈N

λP(n)

ns
=
ζP(2s)

ζP(s)
.

The idea is to find a bound for
∑

n≤x λP(n). This bound will be used with Abel

Summation to show that

lP(x) = O
( 1

x1−Θ−ε

)
for all ε > 0.

In order to do that, we use Perron’s formula. For this we need a bound for ZP(s) on

vertical line s = σ + it with |t| large and σ > Θ. To find such bound of ZP(s), we

start with

|ζP(2s)| = |ζP(2σ + 2it)| =
∣∣∣∣∑
n∈N

1

n2σ+2it

∣∣∣∣ ≤∑
n∈N

1

n2σ
= ζP(2σ) = O(1)
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for 2σ > 1; (i.e. σ > 1
2
).

From the proof of Theorem 2.3 of [27], for σ > Θ, we have

log |ζP(σ + it)| = O((log |t|)
1−σ
1−Θ

+ε),

which implies

log
1

|ζP(σ + it)|
= O((log |t|)

1−σ
1−Θ

+ε).

In particular, for σ > Θ,

1

|ζP(σ + it)|
= O(|t|ε) for all ε > 0.

Hence, for σ > Θ,

|ZP(s)| =
∣∣∣∣ζP(2σ + 2it)

ζP(σ + it)

∣∣∣∣ = O(|t|ε) for all ε > 0 and for |t| ≥ 1. (5.16)

Using the inverse Mellin transform (see Theorem 1.24) we have for x > 0, x /∈ N

LP(x) =
∑
n ≤ x
n ∈ N

λP(n) =
1

2πi

∫ c+i∞

c−i∞

ZP(s)

s
xsds (c > 1).

Now split the range into (c− i∞, c− iT ], [c− iT, c+ iT ] and [c+ iT, c+ i∞), where

T > 0 is a suitable function of x which will be chosen later, we obtain

LP(x) =
1

2πi

∫ c+iT

c−iT

ZP(s)

s
xsds+

1

2πi

(∫ c+i∞

c+iT

+

∫ c−iT

c−i∞

)
ZP(s)

s
xsds. (5.17)

Denote the left integral by I1. We note that assumption (5.14) implies ζP(s)

has an analytic continuation to {s ∈ C : <s > β} except for a simple pole at s = 1.

This implies (UP(s) =) 1
ζP (s)

is holomorphic for <s > β. However, assumption (5.15)

implies that ζP(s) is holomorphic for <s > α except for a simple pole at s = 1 and

ζP(s) 6= 0 in this region by Theorem 3.28. Thus (5.14) and (5.15) together show ζP(s)

is holomorphic and has no zeros for <s > Θ except for a simple pole at s = 1. Hence

UP(s) has a simple zero at s = 1 and an analytic continuation to {s ∈ C : <s > Θ}.
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Thus (ZP(s) =) ζP (2s)
ζP (s)

has an analytic continuation to {s ∈ C : <s > Θ} with a simple

zero at s = 1. Hence ZP(s) is holomorphic for σ > Θ since ζP(2s) is holomorphic for

σ > Θ. Now move the contour past the line s = 1 to the line <s = σ for any σ > Θ

since ZP(s) is holomorphic in this region, as in the figure below.

Figure 5.1: rectangular contour

Hence

I1 =
1

2πi

(∫ σ−iT

c−iT
+

∫ σ+iT

σ−iT
+

∫ c+iT

σ+iT

)
ZP(s)

s
xsds.

These integrals will be estimated by using the bound |ZP(s)| = O(tε) for all ε > 0.

The integral over the horizontal path [σ + iT, c+ iT ] is

∣∣∣∣ 1

2πi

∫ c+iT

σ+iT

ZP(s)

s
xsds

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫ c

σ

ZP(y + iT )

y + iT
xy+iTdy

∣∣∣∣
≤ xc

2πT

∫ c

σ

|ZP(y + iT )|dy

=O
(xc
T
T ε
)

= O
( xc

T 1−ε

)
for all ε > 0,

by (5.16). Similarly for the integral over [c− iT, σ− iT ]. On the line <s = σ, we will

have
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∣∣∣∣ 1

2πi

∫ σ+iT

σ−iT

ZP(s)

s
xsds

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫ T

−T

ZP(σ + it)

σ + it
xσ+itdt

∣∣∣∣
≤ xσ

2π

∫ T

−T

|ZP(σ + it)|
|σ + it|

dt =
xσ

π

∫ T

0

|ZP(σ + it)|
|σ + it|

dt

=
xσ

π

∫ 1

0

|ZP(σ + it)|
|σ + it|

dt+
xσ

π

∫ T

1

|ZP(σ + it)|
t

dt

=O(xσ) +O(xσT ε) = O(xσT ε) for all ε > 0,

by (5.16). Hence

I1 = O
( xc

T 1−ε

)
+O(xσT ε).

Now the right integral of (5.17) is

I2 =
1

2πi

(∫ c+i∞

c+iT

+

∫ c−iT

c−i∞

)∑
n∈N

λP(n)

s

(x
n

)s
ds.

This integral will be estimated as follows:

|I2| ≤
∑
n∈N

|λP(n)| ·
∣∣∣∣ 1

2πi

(∫ c+i∞

c+iT

+

∫ c−iT

c−i∞

)(x
n

)sds
s

∣∣∣∣.
Using Lemma 1.23 and |λP(n)| = 1, we get

|I2| = O

(∑
n∈N

(x
n
)c

T | log x
n
|

)
= O

(
xc

T

∑
n∈N

1

nc | log x
n
|

)
.

The range is split into (n ≥ 2x and n ≤ x
2
) and (x

2
< n < 2x) in order to use the

bound | log x
n
| ≥ log 2 for the first range. This gives

I2 = O

(
xc

T

∑
n ≥ 2x&n ≤ x

2
n ∈ N

1

nc| log x
n
|

)
+O

(
xc

T

∑
x
2
< n < 2x

n ∈ N

1

nc| log x
n
|

)
.

Using
∣∣ log x

n

∣∣ =
∣∣ log

(
1 + n−x

x

)∣∣ � |n−x|
x

for the second range, we obtain
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I2 = O

(
xc

T

∑
n ≥ 2x&n ≤ x

2
n ∈ N

1

nc

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

1

|n− x|

)
= O

(xc
T
· ζP(c)

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

1

|n− x|

)
.

Therefore

LP(x) = I1 + I2 = O
( xc

T 1−ε

)
+O(xσT ε) +O

(xc
T
· ζP(c)

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

1

|n− x|

)
.

Taking c = 1 + 1
log x

and using ζP(1 + δ) = O(1
δ
), gives

LP(x) = O
( x

T 1−ε

)
+O(xσT ε) +O

(x log x

T

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

1

|n− x|

)

for x /∈ N and for all ε > 0. We need to bound the term on the right hand side, which

is difficult for general x when n is an integer close to x, as then |n−x|−1 could be very

large. To take into account this eventuality we choose x here such that |n− x| < 1
x2 .

This ensures that it stays away from these integer n; i.e.(
x− d

x
, x+

d

x

)
∩N = φ.

Then, for such x,

∑
x
2
< n < 2x

n ∈ N

1

|n− x|
≤ x

d
·
∑

x
2
< n < 2x

n ∈ N

1 <
x

d
·N(2x) = O(x2).

Hence, for such x,

LP(x) = O
( x

T 1−ε

)
+O(xσT ε) +O

(x log x

T

)
+O

(x3

T

)
.

Taking T = x3, then ∑
n ≤ x
n ∈ N

λP(n) = O(xσ+3ε) for all ε > 0.
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Taking σ = Θ + ε for any ε > 0, then∑
n ≤ x
n ∈ N

λP(n) = O(xΘ+4ε)

whenever x is such that
(
x − d

x
, x + d

x

)
∩ N = φ for some d > 0. Now we follow the

method used in the proof of Theorem 2.2, originally given in [27]. We will show for

every x sufficiently large, there exist x1 ∈ (x− 2, x) and x2 ∈ (x, x+ 2) such that(
x1−

d

x1

, x1+
d

x1

)
∩N = φ and

(
x2−

d

x2

, x2+
d

x2

)
∩N = φ for some d > 0. (5.18)

Then the result will follow since∑
n ≤ x1
n ∈ N

λP(n) = O(xΘ+4ε
1 ) = O(xΘ+4ε) for all ε > 0.

Hence∑
n ≤ x
n ∈ N

λP(n) =
∑
n ≤ x1
n ∈ N

λP(n) +
∑

x1 < n ≤ x
n ∈ N

λP(n) =O(xΘ+4ε)+O(xβ+ε)=O(xΘ+4ε) for all ε > 0

since∣∣∣ ∑
x1 < n ≤ x
n ∈ N

λP(n)
∣∣∣≤ ∑

x1 < n ≤ x
n ∈ N

1=NP(x)−NP(x1)≤ NP(x)−NP(x−2)=O(xβ+ε) for all ε > 0,

by (5.14). It remains to prove (5.18).

Assume x is sufficiently large, so that NP(x) < L, where L = [b · x] such that

b > ρ > 0 since NP(x) ∼ ρx. Divide (x, x + 2) into L intervals of equal length.

Then one of them contains no elements of N . Let its midpoint be x1. Then(
x1 − 1

2L
, x1 + 1

2L

)
∩ N = φ. Thus the equation (5.18) holds with such x1 when

d
x1
≤ 1

2L
; (i.e. L ≤ 1

2d
x1).

Similarly (x, x+ 2) contains suitable x2. Thus

LP(x) =
∑
n ≤ x
n ∈ N

λP(n) = O(xΘ+4ε) for all ε > 0.

94



Now using Abel Summation, we find
∑

n≤x
λP (n)
ns

as follows: we note that the integral∫∞
1

LP (x)
xs+1 dx converge for σ > Θ. Thus

∑
n ≤ x
n ∈ N

λP(n)

ns
=
LP(x)

xs
+ s

∫ x

1

LP(t)

ts+1
dt

=
O(xΘ+4ε)

xs
+ s

∫ ∞
1

LP(t)

ts+1
dt− s

∫ ∞
x

LP(t)

ts+1
dt

=O
( 1

xσ−Θ−4ε

)
+ s

∫ ∞
1

LP(t)

ts+1
dt− s

∫ ∞
x

O(tΘ+4ε)

ts+1
dt

= s

∫ ∞
1

LP(t)

ts+1
dt+O

( 1

xσ−Θ−4ε

)
since ∣∣∣∣ ∫ ∞

x

O(tΘ+4ε)

ts+1
dt

∣∣∣∣ = O

(∫ ∞
x

1

tσ+1−Θ−4ε
dt

)
= O

( 1

xσ−Θ−4ε

)
.

This shows
∑

n∈N
λP (n)
ns

converges for σ > Θ and it is holomorphic. Since it equals
ζP (2s)
ζP (s)

for <s > 1, by analytic continuation it is true for <s > Θ. Thus

ZP(s) = s

∫ ∞
1

LP(t)

ts+1
dt for σ > Θ.

In particular for s = 1, this means
∑

n∈N
λP (n)
n1 = ZP(1) = 0. Hence

∑
n ≤ x
n ∈ N

λP(n)

n
= O

( 1

x1−Θ−4ε

)
for all ε > 0.

�

Remark 5.8.

(i) It was shown in Theorem 3.31 that Θ ≥ 1
2
. Thus, 1 − Θ ≤ 1

2
and in Theorem

5.7, we can therefore only have an example with exponent ≤ 1
2

for such systems.

(ii) If Θ = 1
2

in Theorem 5.7, then we have lP(x) = O
(
eε log x

x
1
2

)
for all ε > 0. We can

do slightly better than this bound if we take P = PZ (Zhang’s system) which

is a special case of a well-behaved system. In this case

NP(x) = ρx+O(x
1
2 ec(log x)

2
3 ) for some ρ, c > 0 (5.19)
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and

πP(x) = li(x) +O(x
1
2 ) (5.20)

hold. The existence of PZ was shown by Zhang [58]. The proof of the following

theorem is roughly identical with the previous theorem except that we need

a strictly stronger bound on ZP(s) than (5.16).

Theorem 5.9. For Zhang’s system PZ, we have

∑
n ≤ x
n ∈ N

λP(n)

n
= O

(eC(log x)
2
3

x
1
2

)
for some constant C.

Remark 5.10. In order to prove this result, we let P denote a g-prime system

satisfying (5.19) and (5.20). Then, for all <s > 1, we have

ZP(s) =
∑
n∈N

λP(n)

ns
=
ζP(2s)

ζP(s)
.

As in the proof of Theorem 5.7 the idea is to find a bound for
∑

n≤x λP(n). This

bound will be used with Abel Summation to show that

lP(x) = O

(
eC(log x)

2
3

x
1
2

)
.

As mentioned above, we need a stronger bound for ZP(s). This can be found by

using Theorem 3.34 of Zhang [16], [58].

Lemma 5.11. Let F (x, t) be a function defined for 1 ≤ x < ∞ and t ≥ 0 that is

locally of bounded variation in x and satisfies F (1, t) = 0 as well as

F (x, t)�
√
x

(
1 +

√
log(t+ 1)

log x

)
.

Then ∫ ∞
v=1

v−σdF (v, t)� σ

σ − 1
2

+ σ

√
log(t+ 1)

σ − 1
2

for all σ > 1
2

and t ≥ 0.
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Proof. See Lemma 17.13 of [16].

�

Proof of Theorem 5.9.

We know from the proof of Theorem 3.34 of Zhang that there is a sequence of real

numbers which represents a set of g-primes, (i.e P = {pj}), j = 1, 2, · · · , such that

∑
pj≤x

p−itj −
∫ x

1

v−itf(v)dv �
√
x

(
1 +

√
log(t+ 1)

1 + log x

)
(5.21)

for 1 ≤ x <∞ and t ≥ 0, where

f(v) :=
1− v−1

log v
for v ≥ 1.

In particular, when t = 0,

∑
pj≤x

1−
∫ x

1

f(v)dv = O(x
1
2 ), (5.22)

and hence

πP(x) :=
∑
pj≤x

1 = li(x) +O(x
1
2 ). (5.23)

Further Zhang showed that ζP(s) can be written as

ζP(s) =
s

s− 1
exp{F2(s)− F1(s)},

where F1 and F2 are Riemann-Stieltjes integrals (see Section 1.1.3) as follows:

F1(s) =

∫ ∞
1

(v−s + log(1− v−s))dπP(v)

and

F2(s) =

∫ ∞
1

v−s(dπP(v)− f(v)dv).

We know that log(1− v−s) = −v−s +O(v−2σ) for v > 1. Therefore
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F1(s) =

∫ ∞
1

(v−s + log(1− v−s))dπP(v)

=

∫ ∞
1

O(v−2σ)dπP(v) = O

(∫ ∞
1

dπP(v)

v2σ

)
.

The right integral converges uniformly for σ > 1
2
. Thus F1(s) is holomorphic for

σ > 1
2
. We know from (5.22) and (5.23) that

πP(v)−
∫ v

1

f(w)dw = O(v
1
2 ).

Therefore

F2(s)=

∫ ∞
1

v−s(dπP(v)− f(v)dv)=

[
πP(v)−

∫ v
1
f(w)dw

vs+1

]∞
1

+s

∫ ∞
1

πP(v)−
∫ v

1
f(w)dw

vs+1
dv

= s

∫ ∞
1

O(v
1
2 )

vs+1
dv = O

(∫ ∞
1

v
1
2

vσ+1
dv

)
(since

[
O(v

1
2 )

vs+1

]∞
1

= 0).

This integral converges for σ > 1
2
. Thus F2(s) is also holomorphic for σ > 1

2
. Hence

ζP(s) has an analytic continuation in the half plane σ > 1
2

except for a simple pole at

s = 1 with residue k = exp{F2(1)− F1(1)} > 0. From (5.21), we have

∑
pj≤x

p−itj −
∫ x

1

v−itf(v)dv =

∫ x

1

v−itdπP(v)−
∫ x

1

v−itf(v)dv

=

∫ x

1

v−it(dπP(v)− f(v)dv)�
√
x

(
1 +

√
log(t+ 1)

1 + log x

)
.

Now let F (v, t) =
∫ x

1
v−it(dπP(v) − f(v)dv) and applying Lemma 5.11, we have for

t ∈ R

F2(σ + it) =

∫ ∞
1

v−s(dπP(v)− f(v)dv)=

∫ ∞
1

v−σ(v−it(dπP(v)− f(v)dv))

=

∫ ∞
1

v−σdF (v, t) (since dF (v, t) = v−it(dπP(v)− f(v)dv)

� σ

σ − 1
2

+ σ

√
log |t|
σ − 1

2

.

98



This also means that

F2(σ + it)� 1

σ − 1
2

+

√
log |t|
σ − 1

2

uniformly for 1
2
< σ ≤ 2. Furthermore, we know that

log(1− v−s) = −v−s − 1

2
v−2s +O(v−3σ) for v > 1.

Hence we have

F1(s) =

∫ ∞
1

(v−s + log(1− v−s))dπP(v) =

∫ ∞
1

(−1
2
v−2s +O(v−3σ))dπP(v)

= −1
2

∫ ∞
1

v−2sdπP(v) +O

(∫ ∞
1

v−3σdπP(v)

)
= −1

2

∫ ∞
1

v−2sdπP(v) +O

(∫ ∞
1

πP(v)

v3σ+1
dv

)
(since

[πP(v)

v3s

]∞
1

= 0)

= −1
2

∫ ∞
1

v−2sdπP(v) +O(1) (since

∫ ∞
1

πP(v)

v3σ+1
dv <∞).

Therefore

F1(σ + it) = O(1)− 1
2

∫ ∞
1

v−2(σ+it)dπP(v)� 1 +

∫ ∞
1

v−2σdπP(v).

Applying the method of integration by parts to the right hand side we obtain

2σ

∫ ∞
1

v−2σ−1πP(v)dv �
∫ ∞

1

v−2σdv (since [v−2σπP(v)]∞1 = 0)

=
1

2σ − 1
� σ

σ − 1
2

.

This also means that

F1(σ + it)� 1

σ − 1
2

uniformly for 1
2
< σ ≤ 2. Hence ζP is holomorphic for 1

2
< σ ≤ 2 except for a pole at

s = 1, and for these values satisfies uniformly

F2(s)− F1(s)�

(
1

σ − 1
2

+

√
log |t|
σ − 1

2

)
.
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Then, for 1
2
< σ ≤ 2 and |t| ≥ 1, we have

log |ζP(σ + it)| � 1

σ − 1
2

+

√
log |t|
σ − 1

2

.

Also, for 1
2
< σ ≤ 2, we have

log
1

|ζP(σ + it)|
� 1

σ − 1
2

+

√
log |t|
σ − 1

2

.

Thus, for 1
2
< σ ≤ 2 and |t| ≥ 1, we have

1

|ζP(σ + it)|
� exp

{
C

(
1

σ − 1
2

)
+ C

√
log |t|
σ − 1

2

}

and

|ζP(2s)| = |ζP(2σ + 2it)| =
∣∣∣∣∑
n∈N

1

n2σ+2it

∣∣∣∣ ≤∑
n∈N

1

n2σ
= ζP(2σ) = O(1)

for 2σ > 1; (i.e. for σ > 1
2
). Hence

|ZP(s)| =
∣∣∣∣ζP(2σ + 2it)

ζP(σ + it)

∣∣∣∣� exp

{
C

(
1

σ − 1
2

)
+ C

√
log |t|
σ − 1

2

}
. (5.24)

We know from Theorem 1 of Zhang in [58] that the function ζP(s) has an analytic

continuation to {s ∈ C : <s > 1
2
} except for a simple pole at s = 1. Also, ζP(s) has

no zeros for σ > 1
2

but 1
ζP (s)

has a simple zero at s = 1 and analytic continuation

to {s ∈ C : <s > 1
2
}. Thus ZP(s) has an analytic continuation to {s ∈ C : <s > 1

2
}

with a simple zero at s = 1. Thus ZP(s) is holomorphic for σ > 1
2

since ζP(2s) is

holomorphic for σ > 1
2
. Now move the contour past the line s = 1 to the line <s = σ

for any σ > 1
2

since ZP(s) is holomorphic in this region (see Figure 5.1). We obtain

I1 =
1

2πi

(∫ σ−iT

c−iT
+

∫ σ+iT

σ−iT
+

∫ c+iT

σ+iT

)
ZP(s)

s
xsds.

These integrals will be estimated by using the bound (5.24). The integral over the
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horizontal path [σ + iT, c+ iT ] is∣∣∣∣ 1

2πi

∫ c+iT

σ+iT

ZP(s)

s
xsds

∣∣∣∣ ≤ xc

2πT

∫ c

σ

|ZP(y + iT )|dy

� xc

T
exp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}
(using (5.24)).

Similarly for the integral over [c− iT, σ − iT ]. On the line <s = σ, we will have∣∣∣∣ 1

2πi

∫ σ+iT

σ−iT

ZP(s)

s
xsds

∣∣∣∣ =
xσ

π

∫ 1

0

|ZP(σ + it)|
|σ + it|

dt+
xσ

π

∫ T

1

|ZP(σ + it)|
t

dt

�xσ + xσexp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}
(using (5.24))

�xσexp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}
.

Hence

I1 �
xc

T
exp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}
+ xσexp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}
,

and I2 is exactly the same as in the proof of Theorem 5.7. Therefore

LP(x)= I1+I2 �
xc

T
exp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}
+ xσexp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}

+O
(xc
T
· ζP(c)

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

1

|n− x|

)
.

Taking c = 1 + 1
log x

and using ζP(1 + δ) = O(1
δ
) gives

LP(x)� x

T
exp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}
+ xσexp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}

+O
(x log x

T

)
+O

(
x

T

∑
x
2
< n < 2x

n ∈ N

1

|n− x|

)
.
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By following the same argument shown in the proof of Theorem 5.7, we have

LP(x)� x

T
exp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}
+ xσexp

{
C

(
1

σ − 1
2

)
+ C

√
log |T |
σ − 1

2

}

+O
(x log x

T

)
+O

(x3

T

)
.

Taking T = x3, then

∑
n ≤ x
n ∈ N

λP(n)� xσexp

{
C

(
1

σ − 1
2

)
+ C

√
3 log x

σ − 1
2

}

since the O(1) are smaller than the main term. This means

∑
n ≤ x
n ∈ N

λP(n)� exp

{
σ log x+ C

(
1

σ − 1
2

)
+ C

√
3 log x

σ − 1
2

}

� x
1
2 exp

{(
σ − 1

2

)
log x+ C

(
1

σ − 1
2

)
+ C

√
3 log x

σ − 1
2

}
.

Now we want to minimise this quantity over 1
2
< σ < 2; i.e. minimise(

σ − 1

2

)
log x+ C

(
1

σ − 1
2

)
+ C

(
σ − 1

2

)− 1
2 (3 log x)

1
2 .

Put σ = 1
2

+ 1
(log x)α

for some α > 0. This gives

(log x)1−α + C(log x)α + C(log x)
1
2

+α
2 .

This is optimal when α = 1
3
. For σ = 1

2
+ 1

(log x)
1
3

, we have

∑
n ≤ x
n ∈ N

λP(n) = O
(
x

1
2 e(log x)

2
3 +C(log x)

1
3 +C(log x)

1
6 (3 log x)

1
2
)

= O
(
x

1
2 eC(log x)

1
3 +(1+

√
3C)(log x)

2
3
)

= O
(
x

1
2 eC(log x)

1
3 +C

′
(log x)

2
3
)

= O
(
x

1
2 eC

′′
(log x)

2
3
)
.

Hence, by following the same argument shown in the proof of Theorem 5.7 again, we

102



have ∑
n ≤ x
n ∈ N

λP(n)

n
= O

(eC′′(log x)
2
3

x
1
2

)
for some constant C

′′
.

�

5.3.2 Ω-Results for Euler’s example over N

We now consider Ω-results of
∑

n≤x
λP (n)
n

for a system P which satisfies either

NP(x) = ρx+O(xβ) for some ρ > 0 (5.25)

or

ψP(x) = x+O(xα) (5.26)

for some α, β < 1
2
. Both of which give the lower bound Ω

(
1√
x

)
for the sum.

Propostion 5.12. Let P be a g-prime system satisfying (5.25) for some β < 1
2
. Then

∑
n ≤ x
n ∈ N

λP(n)

n
= Ω

( 1√
x

)
.

(5.27)

Proof. We wish to show that (5.27) is true. It is enough to show that

LP(x) =
∑
n ≤ x
n ∈ N

λP(n) = Ω(
√
x).

Let us assume the converse, so that LP(x) = o(
√
x). We know that for all <s > 1

2
,

ZP(s) = s

∫ ∞
1

LP(x)

xs+1
dx (5.28)

is holomorphic. But for <s > 1, (ZP(s) =) ζP (2s)
ζP (s)

and ζP(2s) is holomorphic for <s > 1
2

with no zeros for <s > 1
2

since ζP(s) is holomorphic for <s > 1 and has no zeros

here. For <s > 1, we have ζP(s) = ζP (2s)
ZP (s)

which has a meromorphic continuation for

<s > 1
2

except for a pole at s = 1 and no zeros. Therefore ζP(2s) has a meromorphic

continuation for <s > 1
4

and pole at s = 1
2
. Now we know from the assumption (5.25)
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that ζP(s) has an analytic continuation for σ > β except for a simple pole at s = 1.

Thus ZP(s) is holomorphic for σ = <s > 1
2

with pole at s = 1
2
. On the one hand, we

know that ZP(s) has a pole at 1
2

since ζP(2s) has a simple pole at 1
2
. Thus

ZP(1
2

+ ε) ∼ C

εk
for some k ≥ 1 and C 6= 0. (5.29)

On the other hand, from the right integral of (5.28) we have to check as s = 1
2

+ ε→ 1
2

when ε −→ 0+ as follows:

|ZP(1
2

+ ε)| =
∣∣∣∣(1

2
+ ε)

∫ ∞
1

LP(x)

x
3
2

+ε
dx

∣∣∣∣ ≤ ∣∣12 + ε
∣∣ ∫ ∞

1

|LP(x)|
x

3
2

+ε
dx

|LP(x)| can be written as g(x)
√
x, where g(x) ≥ 0 and g(x) −→ 0 as x −→∞. Hence

we have

|ZP(1
2

+ ε)| ≤ B

∫ ∞
1

g(x)
√
x

x
3
2

+ε
dx = B

∫ ∞
1

g(x)

x1+ε
dx, where B is constant.

Given δ > 0, there exists a constant A such that 0 ≤ g(x) < δ for x ≥ A in order to

split the right integral into (1 < x < A) and (A < x <∞) ranges. Hence∫ ∞
1

g(x)

x1+ε
dx =

∫ A

1

g(x)

x1+ε
dx+

∫ ∞
A

g(x)

x1+ε
dx ≤

∫ A

1

g(x)

x
dx+ δ

∫ ∞
A

x−1−ε dx

≤ C +
δ

ε
.

Thus

ε

∫ ∞
1

g(x)

x1+ε
dx ≤ Cε+ δ.

For ε −→ 0+ we have

lim sup
ε−→0+

ε

∫ ∞
1

g(x)

x1+ε
dx ≤ δ for all δ > 0.

Thus ∫ ∞
1

g(x)

x1+ε
dx = o

(1

ε

)
.

This also implies that ∫ ∞
1

LP(x)

x
3
2

+ε
dx = o

(1

ε

)
,
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so that ZP(1
2

+ ε) = o(1
ε
). Therefore this gives a contradiction with (5.29) and hence

∑
n ≤ x
n ∈ N

λP(n)

n
= Ω

( 1√
x

)
.

�

In order to show (5.26) implies (5.27), we first need to prove a more general result.

Propostion 5.13. If P is a g-prime system for which

NP(x) ∼ ρx for some ρ > 0,

and ζP(s) has an analytic continuation past <s = 1 to a region containing a neighborhood

of s = 1
2
, then (5.27) holds.

Proof. To show (5.27) is true, it is enough to show that

LP(x) =
∑
n ≤ x
n ∈ N

λP(n) = Ω(
√
x).

Let us again assume that LP(x) = o(
√
x). We know that

ZP(s) = s

∫ ∞
1

LP(x)

xs+1
dx

is holomorphic for all <s > 1
2
. But for <s > 1, (ZP(s) =) ζP (2s)

ζP (s)
and ζP(2s) is

holomorphic for <s > 1
2

with no zeros for <s > 1
2

since ζP(s) is holomorphic for

<s > 1 and has no zeros here. For <s > 1, we have ζP(s) = ζP (2s)
ZP (s)

which has a

meromorphic continuation for <s > 1
2

except for a pole at s = 1 and no zeros. Thus

ζP(2s) has a meromorphic continuation for <s > 1
4

and pole at s = 1
2
. Thus ZP(s) is

holomorphic for σ = <s > 1
2

with pole at s = 1
2

because ζP(s) is holomorphic at 1
2
.

Hence, by following the same argument shown in the proof of Proposition 5.12,

we obtain the required result.

�

Remark 5.14. With Zhang’s system which was previously detailed in the thesis, then

(5.27) is also true if we assume ζP(s) has an analytic continuation to a neighborhood

of s = 1
2
.
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In the following corollary we consider the effect of the assumption (5.26) for some

α < 1
2
.

Corollary 5.15. Let P be a g-prime system satisfying (5.26) for some α < 1
2
. Then

(5.27) holds.

Proof. By Theorems 3.28 and 3.29 the assumption (5.26) for some α < 1
2

implies

ζP(s) is holomorphic for <s > α except for a simple pole at s = 1 and that it has no

zeros in this region, and

NP(x) = ρx+O(x−c
√

log x log log x)

for some ρ > 0 (see [27]). Hence, by Proposition 5.13, (5.27) holds.

�

Remark 5.16. Let P be a g-prime system satisfying (4.4), (4.3) and (4.9) for some

α, β, ξ < 1 respectively. Then Proposition 5.12 and Corollary 5.15 imply that

max{β, ξ} ≥ 1
2

and max{α, ξ} ≥ 1
2
.

5.4 Open problem

As mentioned in Chapter 2, Kahane and Säıas proposed that for all CMO

functions, one has
∑

n≤x f(n) = Ω
(

1√
x

)
. They also showed that GRH-RH (Generalised

Riemann Hypothesis-Riemann Hypothesis) would follow from this result. In our

findings, we did not find any CMOP functions f such that
∑

n≤x f(n) = O
(

1
xc

)
for c > 1

2
. This may suggest the following conjecture.

Conjecture 5.17. Let P be a g-prime system with abscissa 1. Then, for all completely

multiplicative functions on N , we have

∑
n ≤ x
n ∈ N

f(n) = Ω
( 1√

x

)
.
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Chapter 6

Multiplicative Functions of Zero

Sum over N

In this chapter, we extend the concept of CMOP functions to multiplicative

functions using the generalisation of MO functions. Firstly, we introduce these

functions, while in the second part we discuss some properties of these functions.

Finally, we construct some examples of such functions. In particular, we give a different

type of example to those which have been previously discussed.

6.1 MOP functions

Let P be g-prime system. A function f : N −→ C is called an MOP function if

it is multiplicative and satisfies

(i)
∑
n∈N

f(n) = 0 and (ii)
∞∑
k=0

f(pk) 6= 0 for all p ∈ P .

The extra (ii) condition is put in order to avoid trivial examples such as: if

f(1) = 1, f(p1) = −1 and f(n) = 0 for all n ∈ N \ {1, p1}, then
∑

n∈N f(n) =

f(n1) + f(n2) + f(n3) + · · · = 0 but
∑∞

k=1 f(pk1) = f(1) + f(p1) + f(p2
1) + · · · = 0, and

so does not satisfy the extra condition.

For the convenience of exposition, we define MOP functions to be

MOP := {f : N −→ C multiplicative and (i) and (ii)}

We can view such functions as a generalisation of CMOP functions with an extra
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condition or a generalisation of MO functions over Beurling prime systems. Such a

generalisation gives more scope and allows us to look for other types of functions. For

instance, we consider the function aP (n)
nα

with a g-prime system satisfying

NP(x) = ρx+O(xβ) for some ρ > 0 and β < 1,

where aP(n) is 1 − p0 if p0 divides n ∈ N and 1 if p0 does not divide n ∈ N . In

particular, we show that if α with <α > β is a zero of ζP , then

∑
n ≤ x
n ∈ N

aP(n)

nα
= O

( 1

x<α−β

)
.

We develop the theory of CMOP functions which have been studied in Chapter 5

to multiplicative functions. Moreover, we derive O and Ω results of the partial sum

of µP(n) over n up to and including x on N , (i.e
∑

n≤x
µP (n)
n

) with various g-prime

systems. For all examples which are found, we have
∑

n≤x f(n) = Ω
(

1

x
1
2 +ε

)
for all

ε > 0. In fact, this may suggest that for all functions f which are multiplicative

functions over N , we have ∑
n ≤ x
n ∈ N

f(n) = Ω
( 1√

x

)
.

Furthermore, we discuss repercussion of this conjecture.

6.2 Some properties of MOP functions

In this section, we drive some preliminary properties of MOP functions.

Propostion 6.1. If f is a CMOP function, then f is an MOP function; (i.e CMOP ⊂
MOP).

Proof. It is clear that f is multiplicative and
∑

n∈N f(n) = 0. It remains to show

that
∑∞

k=0 f(pk) 6= 0 for every p ∈ P . Now since f is completely multiplicative, then

f(pk) = f(p)k for every p ∈ P . Therefore

∞∑
k=0

f(pk) =
∞∑
k=0

f(p)k =
1

1− f(p)
6= 0.

This series converges since |f(p)| < 1. Hence f is an MOP function. �
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Propostion 6.2. Let f be an MOP function. Then
∑

n∈N |f(n)| diverges. Indeed∑
p∈P

∑
k∈N |f(pk)| diverges.

Proof. Let us assume the converse, i.e. that∑
n∈N

|f(n)| converges.

Then, by multiplicative property,

∑
n∈N

f(n) =
∏
p∈P

∞∑
k=0

f(pk) 6= 0 since
∞∑
k=0

f(pk) 6= 0.

Thus this gives a contradiction since f is an MOP function and hence∑
n∈N

|f(n)| diverges.

Furthermore, Proposition 3.27 gives
∑

p∈P
∑

k∈N |f(pk)| diverges, as required.

�

6.2.1 Partial sums of MOP functions

By definition the partial sum of an MOP function not exceeding x tends to zero

when x tends to infinity.

As mentioned in Chapter 5, we can also ask how small can we make g(x), so that

(5.3) is true for all MOP functions f?

We can do this under assumptions on g-prime systems as follows:

Propostion 6.3. Let P be a g-prime system with unique representation (all the

multiplicities are 1) for which
∑

p∈P
1

p log p
converges. If f is an MOP function, then

∑
n ≤ x
n ∈ N

f(n) = Ω
( 1

x log x

)
.

Proof. Let us assume the converse, so that

∑
n ≤ x
n ∈ N

f(n) = O
( 1

x log x

)
.
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We know that for every pk, where p ∈ P and k ∈ N, we have

f(pk) =
∑
m≤pk

f(m)−
∑
m<pk

f(m) = O
( 1

pk log pk

)
. (6.1)

Now it follows that
∑

p∈P
∑

k∈N |f(pk)| converges since

∑
p∈P

∑
k∈N

1

pk log pk
≤
∑
p∈P

∑
k∈N

1

pk log p
=
∑
p∈P

1

log p

∑
k∈N

1

pk
(since log pk ≥ log p)

=
∑
p∈P

1

(p− 1) log p
converges (since

∑
p∈P

1
p log p

converges).

Hence, by Proposition 3.27,
∑

n∈N |f(n)| converges. However, by Proposition 6.2, we

have a contradiction, and so it follows that

∑
n ≤ x
n ∈ N

f(n) = Ω
( 1

x log x

)
.

�

Remark 6.4.

(i) Similarly, we can get different results by having different assumptions on the

g-prime systems. For Example, if f is an MOP function and P is a g-prime

system with unique representation for which
∑

p∈P
1

p(log log p)2 converges, then

∑
n ≤ x
n ∈ N

f(n) = Ω
( 1

x(log log x)2

)
.

(ii) We also can make the above sum to Ω( 1
x
) if we assume

∑
p∈P

1
p

converges.

(iii) As mentioned in Chapter 5, without unique representations, it can also be more

complicated. For instance, if P is as in Example 3.5, then (6.1) does not work.
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6.2.2 Closeness relation between two multiplicative functions

which are defined over N

Let MP := {f : N −→ C multiplicative}, and let us define an (extended)

metric on MP to be the distance function

D(f, g) :=
∑
p∈P

∞∑
k=0

|g(pk)− f(pk)|.

ThenMP is an extended metric space since D(f, g) can attain the value ∞. It is

straightforward to check for all f, g, h ∈MP

(i) D(f, g) = 0 if and only if f = g,

(ii) D(f, g) = D(g, f),

(iii) D(f, h) ≤ D(f, g) +D(g, h),

hold. We aim to generalise Theorem 2.11 in Chapter 2 over g-prime systems. We aim

to show that if f is an MOP function and g is a multiplicative function “close” to f ,

then g is also an MOP function. We can do this under an extra condition on f .

Theorem 6.5. Let P be a g-prime system with abscissa 1, f an MOP function for

which ∣∣∣ ∞∑
k=0

f(pk)

pks

∣∣∣ ≥ a for some a > 0, for all p ∈ P and all <s ≥ 0, (6.2)

and let g be a multiplicative function such that D(f, g) is finite and

∞∑
k=0

g(pk) 6= 0 for all p ∈ P . (6.3)

Then g is an MOP function.

Proof. Let F (s) :=
∑

n∈N
f(n)
ns

and G(s) :=
∑

n∈N
g(n)
ns

. Then the series for F (s) is

absolutely convergent for <s > 1 and it is convergent for <s > 0 and s = 0 since∑
n∈N f(n) = 0. We note that D(f, g) is finite and the fact that f is an MOP function

imply |g(pk)| −→ 0 as pk −→ ∞. Then, by Theorem 1.9, g(n) −→ 0 as n −→ ∞.
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Therefore the series for G(s) converges for <s > 1 since g is bounded and the abscissa

of P is 1. Therefore F (s) and G(s) can be written as follows:

F (s) =
∏
p∈P

∞∑
k=0

f(pk)

pks
and G(s) =

∏
p∈P

∞∑
k=0

g(pk)

pks
<s > 1.

Now

H(s) :=
∏
p∈P

(∑∞
k=0

g(pk)
pks∑∞

k=0
f(pk)
pks

)
=
∏
p∈P

(
1 +

∑∞
k=0

g(pk)−f(pk)
pks∑∞

k=0
f(pk)
pks

)

converges absolutely for <s ≥ 0 if and only if

∑
p∈P

∣∣∑∞
k=0

g(pk)−f(pk)
pks

∣∣∣∣∑∞
k=0

f(pk)
pks

∣∣ (6.4)

converges for <s ≥ 0. But

∑
p∈P

∣∣∑∞
k=0

g(pk)−f(pk)
pks

∣∣∣∣∑∞
k=0

f(pk)
pks

∣∣ ≤ 1

a

∑
p∈P

∞∑
k=0

|g(pk)− f(pk)|

by (6.2) so, since D(f, g) is finite, (6.4) converges for <s ≥ 0 and H(s) converges

absolutely to holomorphic function for <s > 0. However, H(s) = (G/F )(s) for

<s > 1 then G(s) = F (s)H(s), where the series for F (s) converges for <s > 0

and s = 0 since f is an MOP function, and H(s) absolutely converges for <s ≥ 0.

Therefore G(s) converges for <s > 0 and s = 0 using the extension of Theorem 1.18.

Thus we have G(0) = F (0)H(0) = 0. Hence, by assumption (6.3) and G(0) = 0, g is

an MOP function.

�

The proof of Theorem 6.5 implies the following result.

Corollary 6.6. Let P be a g-prime system with abscissa 1, f and g both be

multiplicative functions on P such that D(f, g) is finite and satisfies

∣∣∣ ∞∑
k=0

f(pk)

pks

∣∣∣ ≥ a for some a > 0, for all p ∈ P and all <s ≥ 0,
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∣∣∣ ∞∑
k=0

g(pk)

pks

∣∣∣ ≥ b for some b > 0, for all p ∈ P and all <s ≥ 0.

Then the following two assertions are equivalent:∑
n∈N

f(n) = 0 and
∑
n∈N

g(n) = 0.

6.3 The function µP(n)
n over different systems P

In this section, we present some examples of MOP functions. In particular, we

provide some examples of the function µP (n)
n

associated with various g-prime systems

where µP(n) is the Möbius function over the g-prime system P .

Example 6.7. As mentioned in Example 5.6 that if P satisfies one of the conditions

(5.9), (5.10), (5.11), (5.12) or (5.13), then
∑

n∈N
µP (n)
n

= 0. Hence µP (n)
n

is a MOP

function since it is multiplicative with sum zero and

∞∑
k=0

f(pk) =
∞∑
k=0

µP(pk)

pk
= 1− 1

p
6= 0 for all p ∈ P .

From Example 6.7, we see that
∑

n∈N
µP (n)
n

= 0, but how quickly does it converge?

6.3.1 O-Results for Möbius’s example over N

In this part, we shall be interested in the behaviour of the partial sum

of µP(n) over n up to and including x for either “well-behaved” systems P which

satisfies (5.14) and (5.15) or its special case Zhang’s system which satisfies (5.19) and

(5.20).

Theorem 6.8. Let P be a g-prime system satisfying (5.14) and (5.15) for some

β, α < 1. Then ∑
n ≤ x
n ∈ N

µP(n)

n
= O

( 1

x1−Θ−ε

)
for all ε > 0,

where Θ = max{α, β}.

Proof. We employ a similar approach to that of Theorem 5.7 but now with µP .

Instead of ζP (2s)
ζP (s)

and |λP(n)| = 1 we now have 1
ζP (s)

and |µP(n)| ≤ 1 which does not

make a difference throughout the proof. �
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Remark 6.9. It was shown in Theorem 3.31 that Θ ≥ 1
2
. Thus 1 − Θ ≤ 1

2
and in

Theorem 6.8 we can therefore only have an example with exponent ≤ 1
2

with such

systems.

Theorem 6.10. For Zhang’s system PZ, we have

∑
n ≤ x
n ∈ N

µP(n)

n
= O

(eC(log x)
2
3

x
1
2

)
for some constant C.

Proof. Theorem 4.6 gives the required result.

�

6.3.2 Ω-Results for Möbius’s example over N

We now consider Ω-results of the partial sum µP(n) over n up to and including x

for a system P which satisfies either assumption (5.25) or (5.26) for some α, β < 1
2
.

From assumption (5.25) for some β < 1
2
, we have

∑
n ≤ x
n ∈ N

µP(n)

n
= Ω

( 1

x
1
2

+ε

)
for all ε > 0.

(6.5)

The term on the right hand side of (6.5) can be improved to be Ω
(

1√
x

)
by means of

Conjecture 3.37 which is a stronger than Corollary 3.30. In addition, (6.5) can be

also attained from assumption (5.26) for some α < 1
2
.

Corollary 6.11. Let P be a g-prime system satisfying (5.25) for some β < 1
2
. Then

(6.5) holds.

Proof. Let us assume the converse, so that (6.5) is false.

∑
n ≤ x
n ∈ N

µP(n)

n
= O

( 1

xd

)
for some d > 1

2
.

By Abel summation, we have MP(x) = O(xγ) for some γ < 1
2
, where γ = 1− d. But

by Theorem 4.11 this contradicts our initial assumption, and hence the result follows.

�
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If Conjecture 3.37 is true, then the bound of (6.5) will improve to Ω
(

1√
x

)
, as the

following Proposition shows.

Propostion 6.12. Let P be a g-prime system satisfying (5.25) for some β < 1
2
. Then

conjecture 3.37 implies

∑
n ≤ x
n ∈ N

µP(n)

n
= Ω

( 1√
x

)
.

(6.6)

Proof. We know that for all <s > 1,

UP(s) =
1

ζP(s)
=
∑
n∈N

µP(n)

ns
= s

∫ ∞
1

MP(x)

xs+1
dx, where MP(x) =

∑
n ≤ x
n ∈ N

µP(n).
(6.7)

We wish to show that (6.6) is true. It is enough to show that

MP(x) =
∑
n ≤ x
n ∈ N

µP(n) = Ω(
√
x).

Let us assume the converse, so that MP(x) = o(
√
x). We know that from our

assumption (5.25) ζP(s) has an analytic continuation for σ > β except for a simple

pole at s = 1. Therefore UP(s) is holomorphic for <s > 1
2
. This also means UP(s)

has an analytic continuation to {s ∈ C : <s > 1
2
}.

On the one hand, Conjecture 3.37 implies that there exist zero of ζP(s) such that

s0 = 1
2

+ it0. Thus

UP(s0 + ε) ∼ C

εk
for some k ≥ 1 and C 6= 0. (6.8)

On the other hand, from the right integral of (6.7) we have to check as s −→ s0

when ε −→ 0+ as follows:

|UP(s0 + ε)| =
∣∣∣∣(1

2
+ it0 + ε)

∫ ∞
1

MP(x)

x
3
2

+it0+ε
dx

∣∣∣∣ ≤ ∣∣12 + it0 + ε
∣∣ ∫ ∞

1

|MP(x)|
x

3
2

+ε
dx.

|MP(x)| can be written as g(x)
√
x, where g(x) ≥ 0 and g(x) −→ 0 as x −→ ∞.
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Therefore we have

|UP(s0 + ε)| ≤ B

∫ ∞
1

g(x)
√
x

x
3
2

+ε
dx = B

∫ ∞
1

g(x)

x1+ε
dx, where B is constant.

Given δ > 0, there exists a constant A such that 0 ≤ g(x) < δ for x ≥ A > 1 in order

to split the right integral into (1 < x < A) and (A < x <∞) ranges. Hence∫ ∞
1

g(x)

x1+ε
dx =

∫ A

1

g(x)

x1+ε
dx+

∫ ∞
A

g(x)

x1+ε
dx ≤

∫ A

1

g(x)

x
dx+ δ

∫ ∞
A

x−1−ε dx

≤ C +
δ

ε
.

Thus

ε

∫ ∞
1

g(x)

x1+ε
dx ≤ Cε+ δ.

For ε −→ 0+, we have

lim sup
ε−→0+

ε

∫ ∞
1

g(x)

x1+ε
dx ≤ δ for all δ > 0.

Thus ∫ ∞
1

g(x)

x1+ε
dx = o

(1

ε

)
.

This also implies that ∫ ∞
1

MP(x)

x
3
2

+ε
dx = o

(1

ε

)
.

Hence UP(s0 + ε) = o(1
ε
) as s −→ s0. Therefore this gives a contradiction with (6.8)

and hence ∑
n ≤ x
n ∈ N

µP(n)

n
= Ω

( 1√
x

)
.

�

In the following corollary we consider the effect of the assumption (5.26) for some

α < 1
2
.

Corollary 6.13. Let P be a g-prime system satisfying (5.26) for some α < 1
2
. Then

(6.5) holds.
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Proof. Let us assume the converse, so that (6.5) is false. Then

∑
n ≤ x
n ∈ N

µP(n)

n
= O

( 1

xd

)
for some d > 1

2
.

By Abel summation, we have MP(x) = O(xc) for some c < 1
2
, where c = 1 − d. But

by Theorem 4.12 this contradicts our initial assumption, and hence the result follows.

�

6.4 The Example aP(n)
nα

In this section, we first define aP(n) which is a generalisation of the function

(−1)n−1 over N as follows:

Fix p0 ∈ P and n ∈ N , then

aP(n) :=

{
1− p0 if p0| n,
1 if p06 | n.

(6.9)

We shall be concerned with the behaviour of
∑

n≤x
aP (n)
nα

for a system P which satisfies

NP(x) = ρx+O(xβ) for some ρ > 0 and β < 1. (6.10)

More precisely, we will show that for any α with <α > β,

∑
n ≤ x
n ∈ N

aP(n)

nα
= (1− p0

1−α)ζP(α) +O
( 1

x<α−β

)
.

Lemma 6.14. Let P be a g-prime system, and let aP(n) defined as above. Then aP (n)
nα

is a multiplicative function for any α ∈ C.

Proof. We wish to find all values of α ∈ C for which aP(n) is a multiplicative function

as follows:

Assume (m,n) = 1 and consider a(mn). Ifm = n = 1, then aP(m)aP(n) = aP(mn).

Now if p0| mn, then either p0| m and p0 6 | n or vice versa.

(i) If p0| n and p0| m, then (m,n) 6= 1. We cannot have p0 divides both m,n since

we need (m,n) = 1.
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(ii) If p0| m and p0 6 | n, then aP(m)aP(n) = (1− p0)(1) = 1− p0 = aP(mn).

If p0 6 | mn, then p0 6 | m and p0 6 | n, and aP(m)aP(n) = (1)(1) = 1 = aP(mn).

Thus aP(n) and aP (n)
nα

are a multiplicative function for any α ∈ C.

�

Theorem 6.15. Let P be a g-prime system for which (6.10) hold, and let aP(n)

defined as above. Then

(i) For any α with <α > β,

∑
n ≤ x
n ∈ N

aP(n)

nα
= (1− p0

1−α)ζP(α) +O
( 1

x<α−β

)
.

(ii) aP (n)
nα

is an MOP function if and only if <α > β and ζP(α) = 0.

Proof. We note from (6.10) that ζP(α) has an analytic continuation to <(α) > β

except for a simple pole at s = 1.

(i) The series
∑

n∈N
aP (n)
nα

converges for <α > β since

A(x)=
∑
n ≤ x
n ∈ N

aP(n) =
∑
n ≤ x
p0 6 | n

1 +
∑
n ≤ x
p0| n

(1− p0) =
∑
n ≤ x

p0 6 | n or p0| n

1 −
∑
n ≤ x
p0| n

p0

= NP(x)− p0

∑
m ≤ x

p0
m ∈ N

1 = NP(x)− p0NP

( x
p0

)

= ρx+O(xβ)− p0

(
ρx

p0

+O
(( x

p0

)β ))
(using (6.10))

= O(xβ).

Then, by Abel summation,

∑
n ≤ x
n ∈ N

aP(n)

nα
=
A(x)

xα
+ α

∫ x

1

A(t)

tα+1
dt= O

( 1

x<α−β

)
+ α

∫ ∞
1

A(t)

tα+1
dt− α

∫ ∞
x

O(tβ)

tα+1
dt

= Cα +O
( 1

x<α−β

)
, where Cα is a constant

since
∣∣ ∫∞

x
O(tβ)
tα+1 dt

∣∣ = O
( ∫∞

x
1

t<α+1−β dt
)

= O
(

1
x<α−β

)
and

∫∞
1

A(t)
tα+1 dt converges for
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<α > β. Hence, for <α > β,

∑
n ≤ x
n ∈ N

aP(n)

nα
= Cα +O

( 1

x<α−β

)
.

In particular,

∑
n∈N

aP(n)

nα
converges to Cα = (1− p0

1−α)ζP(α).

Now, for <α > 1, we have

∑
n∈N

aP(n)

nα
=
∑
n∈N

1

nα
−
∑
n∈N

p0

(p0n)α
= (1− p0

1−α)ζP(α). (6.11)

The sum on the left of (6.11) is Cα for <α > β by analytic continuation. Thus

∑
n∈N

aP(n)

nα
= 0 if and only if pα0 = p0 or ζP(α) = 0.

(ii) We know that aP (n)
nα

is multiplicative function and
∑

n∈N
aP (n)
nα

= 0 if and only

if pα0 = p0 or ζP(α) = 0. It remains to get all α for which
∑∞

k=0 a(pk) 6= 0 for

all p ∈ P . If p 6= p0, then aP(pk) = 1. Therefore

∞∑
k=0

aP(pk)

pkα
=
∞∑
k=0

1

pαk
=

1

1− 1
pα

.

This is non-zero for any α with <α > β. Now if p = p0, then aP(pk) = 1 − p0

for all k ≥ 1. Therefore

∞∑
k=0

aP(pk)

pkα
= 1 + (1− p0)

∞∑
k=1

1

pαk
= 1 + (1− p0)

1

pα − 1
=
pα0 − p0

pα0 − 1
.

This is non-zero if and only if pα0 6= p0.

We see that aP (n)
nα

is not an MOP function if pα0 = p0 since Lemma 6.14 and (i) hold

but (ii) fails. We can conclude that aP (n)
nα

is an MOP function if and only if <α > β

and ζP(α) = 0 since Lemma 6.14, (i) and (ii) hold.
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Furthermore, if ζP(α) = 0 with <α > 0, then

∑
n ≤ x
n ∈ N

aP(n)

nα
= O

( 1

x<α−β

)
.

�

Remark 6.16. If P is the system which satisfies (6.10) but has oscillating primes in

the sense that

πP(x) = li(x) + Ω(xe−c
√

log x)

holds. Here ζP(α) has infinitely many zeros, α, of the corresponding zeta function

close to <α = 1 [14], [58]. Then aP (n)
nα
∈MOP and

∑
n ≤ x
n ∈ N

aP(n)

nα
= O

( 1

xc

)
for any c < 1

2
.

To get examples where we have O
(

1
xc

)
for some c > 1

2
, we need <α − β > 1

2
. In

other words, we need zeros α of ζP with <α > 1
2

and β < 1
2

(since <α < 1). Therefore

we wonder if there exist such systems with zeros of ζP(α) close to the 1-line and small

β such that β < 1
2

?

6.4.1 Special case when P ⊂ P

As we mentioned in Chapter 2, Kahane and Säıas give the example χ(n)
ns

, where

χ is a non-principal Dirichlet character of a CMO function. This motivates us to

find an “equivalent”, (i.e. multiplicative and periodic) example of MOP functions to

their example. In order to find an example such as this, we are required to seek a

function that is both multiplicative and periodic. As we know that the function (6.9)

is multiplicative it remains to be shown for which g-prime system P the function (6.9)

is periodic. One way we are able to meet this criteria and have the function (6.9)

periodic is for it to be defined on a subset of the usual primes; (i.e. P ⊆ P). In this

instance we find that the function aP (n)
nα

is in some sense equivalent to their example.

We also show that
∑∞

n=1
aP (n)
nα

converges to Cα = (1− p0
1−α)ζ(α).
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Theorem 6.17. Let P = P\F , where F is a finite set of primes and p0 is the smallest

element in P. Then
(
1− p0

pα0

)
ζ(α)

∏
p∈F

(
1− 1

pα

)
=
∑∞

n=1
b(n)
nα

, where

b(n) :=


1 if (k, n) = 1,

1− p0 if (k, n) = p0,

0 otherwise,

here k = p0

∏
p∈F p . In particular, b(n) has period k.

Proof.(
1− p0

pα0

)
ζ(α)

∏
p∈F

(
1− 1

pα

)
=

(
1− p0

pα0

)∏
p/∈F

1(
1− 1

pα

) =

(
1− p0

pα0

) ∞∑
n=1

χ1(n)

nα
,

where χ1 is the principle character mod r =
∏

p∈F p; i.e.

χ1(n) =

{
1 if (r, n) = 1,

0 if (r, n) > 1.

Thus(
1− p0

pα0

)
ζ(α)

∏
p∈F

(
1− 1

pα

)
=
∞∑
n=1

χ1(n)

nα
− p0

∞∑
n=1

χ1(n)

(np0)α
=
∞∑
n=1

χ1(n)

nα
− p0

∞∑
n=1

c(n)

nα
,

where

c(n) =

{
χ1( n

p0
) if p0 |n,

0 if p06 | n.

Hence (
1− p0

pα0

)
ζ(α)

∏
p∈F

(
1− 1

pα

)
=
∞∑
n=1

b(n)

nα
,

where

b(n) =


1 if (r, n) = 1 and p0 6 | n,
1− p0χ1( n

p0
) if (r, n) = 1 and p0 |n,

−p0χ1( n
p0

) if (r, n) > 1 and p0 |n,
0 if (r, n) > 1 and p06 | n.
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Suppose p0 |n. If (r, n) = 1, then (r, n
p0

) = 1 and χ1( n
p0

) = 1. Also, if (r, n) > 1, then

(r, n
p0

) > 1 since (r, p0) = 1 and χ1( n
p0

) = 0. Note that (r, n) = 1 and p0 6 | n if and

only if (k, n) = 1, while (r, n) = 1 and p0 |n if and only if (k, n) = p0. Hence

b(n) =


1 if (k, n) = 1,

1− p0 if (k, n) = p0,

0 otherwise.

Since (k, n) = (k, n + k). It follow that b(n) = b(n+ k). Therefore b(n) has

a period k. It remains to show that k is the smallest period. Suppose b(n) has a

smallest period d. We would like to show k = d. We know that d ≤ k by definition

so we shall just show that k | d. Suppose there exist p ∈ P such that p | k and p6 | d.

We know that b(1) = 1 = b(d+ 1) = b(yd+ 1), so (k, 1 + d) = 1 = (k, 1 + yd)

for all y ∈ Z. But xp − yd = 1 for some x, y ∈ Z since (p, d) = 1. Therefore

1 = (k, 1 + yd) = (k, xp) ≥ p. This means that every p | k must divide into d. We

conclude that k | d since k is square-free. Hence k = d.

�

Remark 6.18. Let aP(n) be as before and now taking P as in Theorem 6.17. Then

∑
n∈N

aP(n)

nα
=

∞∑
n = 1

(r, n) = 1

aP(n)

nα
=
∞∑
n=1

b(n)

nα
−

∞∑
n = 1

(k, n) 6= 1orp0

b(n)

nα
for any α with <α > 0,

where k = p0r and r =
∏

p∈F p. Furthermore, the period of aP(n) is

k −
k∑

n = 1

(k, n) 6= 1orp0

1 =
k∑

n=1

1 −
k∑

n = 1

(k, n) 6= 1orp0

1 =
k∑

n = 1

(k, n) = 1orp0

1 =
k∑

n = 1

(k, n) = 1

1 +
k∑

n = 1

(k, n) = p0

1 = φ(k) + φ( k
p0

),

where φ is the Euler’s totient function which is the number of positive integers below

and including k that are relatively prime to k.

Corollary 6.19. Let P = P \ F , where F is a finite set of primes and p0 is the

smallest element in P. The function aP(n) is defined as before. Then, for any α with

<α > 0, ∑
n ≤ x
n ∈ N

aP(n)

nα
= (1− p0

1−α)ζ(α) +O
( 1

x<α

)
.
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Proof. Proving this corollary can be obtained by using similar approach to Theorem

6.15 with different error term. Thus, if ζ(α) = 0, then aP (n)
nα

is an MOP function and

∑
n ≤ x
n ∈ N

aP(n)

nα
= O

( 1

x<α

)
.

�

6.5 Open problem

In this section, we suggest an interesting open problem which is related to RH in

the sense that it would follow if the following conjecture is true.

Conjecture 6.20. Let P be a g-prime system with abscissa 1. Then, for all multi-

plicative functions f on N , we have

∑
n ≤ x
n ∈ N

f(n) = Ω
( 1√

x

)
.

Consequences of Conjecture 6.20

Consider P a g-prime system which satisfies NP(x) = cx+O(xβ) for some c > 0,

β < 1
2
. Now suppose there exists a zero, α, of the corresponding zeta function such

that β < <α < 1. Let f(n) = aP (n)
nα

be the function as defined in Theorem 6.15. Then

f ∈MOP and ∑
n ≤ x
n ∈ N

f(n) = O
( 1

x<α−β

)
.

Therefore we have <α − β ≤ 1
2
, (i.e. <α ≤ β + 1

2
< 1) if Conjecture 6.20 is true.

This means that any zeros of the zeta function must be to the left or on the line

σ = β + 1
2
. This conjecture automatically implies that the zeros of the Beurling zeta

function must be bounded away from the 1-line. In other words, there are no zeros

of the Beurling’s zeta function in the strip {s ∈ C : β + 1
2
< <s ≤ 1}. This is a very

strong form of Riemann Hypothesis.

In particular, the Riemann Hypothesis holds for the actual zeta function when

β = 0. This conjecture not only implies Riemann Hypothesis but also implies an

analogous Riemann Hypothesis for all these systems with β < 1
2
.
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multiplicative de somme nulle. L’Enseignement Mathématique, 63(1):155–164,
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for Beurling primes. To appear in International Journal of Number Theory, see

arXiv:1901.06866, 2019.

[46] N. Ng. The distribution of the summatory function of the Möbius function.
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