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A computer vision approach 
to improving cattle digestive 
health by the monitoring of faecal 
samples
Gary A. Atkinson1*, Lyndon N. Smith1, Melvyn L. Smith1, Christopher K. Reynolds2, 
David J. Humphries2, Jon M. Moorby3, David K. Leemans3 & Alison H. Kingston‑Smith3

The digestive health of cows is one of the primary factors that determine their well‑being and 
productivity. Under‑ and over‑feeding are both commonplace in the beef and dairy industry; leading 
to welfare issues, negative environmental impacts, and economic losses. Unfortunately, digestive 
health is difficult for farmers to routinely monitor in large farms due to many factors including the 
need to transport faecal samples to a laboratory for compositional analysis. This paper describes a 
novel means for monitoring digestive health via a low‑cost and easy to use imaging device based on 
computer vision. The method involves the rapid capture of multiple visible and near‑infrared images 
of faecal samples. A novel three‑dimensional analysis algorithm is then applied to objectively score 
the condition of the sample based on its geometrical features. While there is no universal ground truth 
for comparison of results, the order of scores matched a qualitative human prediction very closely. 
The algorithm is also able to detect the presence of undigested fibres and corn kernels using a deep 
learning approach. Detection rates for corn and fibre in image regions were of the order 90%. These 
results indicate the potential to develop this system for on‑farm, real time monitoring of the digestive 
health of individual animals, allowing early intervention to effectively adjust feeding strategy.

Accurate feeding of animals in the beef and dairy industries is important both for efficient production and to 
reduce the impact of cattle farming on the wider environment. Sustainability in the ruminant livestock sec-
tor involves efficient use of resources to deliver quality products (meat and milk) with minimal impact on the 
environment. By improving estimates of feed composition, digestibility, and digestive health, it will be possible 
to obtain:

• Efficient and more precise nutrient delivery to the animal, thereby reducing instances of overfeeding nutrients 
such as protein and improving productivity which will maintain competitiveness of home-produced livestock 
products.

• Minimised release of pollutants such as ammonia and urea (arising from poor utilisation of protein in the 
rumen and the animal) to land and water.

These important societal and economic targets are directly related to the mitigation of climatic impact of 
livestock and can be facilitated via the development of tools to support sustainable livestock production  systems1.

Both under- and over-feeding of nutrients are inefficient and can lead to environmental, economic and welfare 
issues. Farm businesses cannot afford to waste expensive resources by feeding nutrients in amounts surplus to 
 requirements2. Equally, it is relatively common for farm rations to perform under expectations: too much or too 
little of some components, poor mixing or poor sorting can lead to poor productivity, in addition to health and 
welfare  problems3. Optimisation of feed for production ruminants is imperfect with discrepancies often arising, 
especially for precision feeding strategies that aim to minimise surplus nutrient supply. For fresh forage feeds, 
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the general (“book”) dietary parameters may not agree with the actual values resulting from genenomic and 
environmental factors (often referred to as the “GxE effect”) and  management4. Further, for total mixed rations 
(TMR) the nutritional values may be affected by on farm storage  conditions2.

There is a current need for improved methods of assessment of feed use efficiency; especially ones that can 
be directly applied on a farm. Key issues are the presence of excess starch or too little effective fibre in the feed, 
which can lead to subclinical rumen  acidosis5. However, the farmer’s ability to make feed strategy decisions 
quickly is restricted by the time needed for off-site lab-based chemical analysis of feed and faeces and the lack 
of an appropriate method for determining the optimal level of effective fibre required. Equally, currently avail-
able on-farm  diagnostics6, often relying on visual assessment, are not well positioned to make specific recom-
mendations for remedial actions to halt losses in milk or meat production, or poor feed use efficiency. Rapid 
and accurate diagnosis of poor feed use efficiency will enable more effective dietary adjustments to be made to 
improve nutrient use efficiency and sustain production.

Given the above discussion, new proxies for feed adequacy are sought based on real-life practice that can be 
applied in a tool for better on-farm resource management. This paper proposes a method to parametrise faecal 
consistency as an indicator of gut health and diet fibre content using computer vision. This is a less subjective 
version of current on-farm visual assessment scores of faecal  consistency6–8. A portable imaging system has been 
developed to include near-infrared (NIR) or visible light sources able to capture and analyse the three-dimen-
sional appearance of samples and formulate an objective health score based on consistency. Further, machine 
learning has been applied to a database of training images to extract data related to the presence of undigested 
fibres and corn kernels in the samples adding to the health score above.

In addition to the immediate estimation of cattle digestive health, it is envisaged that, ultimately, this method 
will allow for the estimation of feed quality (e.g. protein and fibre concentrations and particle size). In com-
bination with other technology such as NIR spectroscopy, the development of “on-farm visual analysis” as an 
additional automated diagnostic tool will significantly enhance the ability to make real-time feeding decisions. 
This will enable more precise, strategic feeding of individual animals (in a so-called “precision” farming manner) 
and herds for on-farm nutrient management to improve welfare, production and the environment.

It is hoped that, with the proposed system, it will be easy for farmers to frequently assess the digestive health 
of cattle on the farm with minimal training and cost outlay. The next section of this paper, Materials and meth-
ods, describes the bespoke hardware used for this project, and computer vision algorithms for faecal consist-
ency scoring and grain/fibre detection. After this, a detailed Results and discussion section is presented before 
a Conclusion with consideration of limitations and potential future work.

Materials and methods
This section first describes the hardware and methods used to acquire the necessary data for the two parts of the 
image analysis, i.e. consistency score estimation and corn kernel/fibre detection. It then furnishes the algorithms 
used to subsequently process the data.

Data capture. The requirements for the data capture hardware were that:

• the system is relatively low cost;
• the system is easy to use and portable;
• the system is minimally affected by typical farm conditions including common changes to ambient light and 

temperature;
• fibres and corn are visible, where possible;
• the surface structure (e.g. three-dimensional roughness) associated with the scoring method can be extracted; 

and
• there is a manageable computational expense.

Note that corn kernels were used as a common test case—other undigested cereal grains will be considered 
in future work using a similar paradigm.

The method of photometric stereo (PS)9 was chosen as the basic hardware for data capture. This technique 
involves the capture of at least three 2D images of an object with different illumination directions, which are then 
used to determine the orientation of the surface of the sample (in the form of surface normal vectors) at each 
pixel on the target object/sample. The map of surface normals can be integrated into a depth  estimate10. However, 
this step should only be used if necessary as it introduces distortions to the data due to the accumulation of noise 
and systematic artefacts in the reconstruction  process11. Therefore, the adopted algorithm, as described below, 
uses the surface normal data as a means of encoding 3D information. The method was chosen due to its ability 
to obtain both 3D and 2D surface geometry simultaneously, its relatively low cost of off-the-shelf components 
and its high resolution; thus largely meeting the above requirements.

For this project, a bespoke rig was constructed based on earlier work carried out by the authors for other 
 applications11,12. The rig, shown in Fig. 1, consists of a USB3.0 Point Grey Grasshopper camera (both colour 
and monochrome NIR were used), four white LEDs and four NIR LEDs (850 nm). The lights are interfaced to 
a laptop computer (that can be bolted on top of the device) via an Arduino micro-controller and Python code. 
The code triggers the camera to capture images in turn with one image per illuminated light source. The Python 
code also processes the raw images to obtain albedo (reflectance) and surface normal data. An example of the 
recovered albedo, surface normals and depth is shown in Fig. 2. The algorithm either uses NIR or visible lights 
but not both simultaneously. Experiments determined that the NIR data appeared to give better results for 3D 
analysis but that the visible light offered superiority for some of the 2D aspects covered below.
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Scoring. This section describes an approach to score the health of a cow using the consistency of its faeces as 
an indicator of digestive function and health. In the literature, several researchers have attempted to standardise 
the parametrisation of manure structure using a score from 1 (very runny) to 5 (firm). While there is a large 
degree of subjectivity associated with this approach, it forms a well-established foundation on which to build a 
metric for this  project6,13.

Concept. Based on consideration of the 2D and 3D appearance variation in samples of particular scores and 
the mechanics by which a sample drops to the ground, it was decided to parametrise each sample for this project 
using three metrics and then combine them into the overall score. The metrics are termed:

• Border metric
• Shininess metric
• Normal metric

The border metric parametrises the roughness or irregularity of the border of the sample as it appears on the 
ground, noting that a runny low-score sample would splatter widely, forming a rough border. The shininess metric 
describes the reflectance of the sample: lower scoring samples are more shiny (while it may seem more logical 
to assign higher scores to shinier samples, the equations/algorithm below are kept more compact when matte 

Figure 1.  Photograph of the bespoke data capture rig. Left: during an actual sample data capture in laboratory 
conditions. Right: from below without power supply and laptop. Note that the camera and LEDs are not visible 
in the left image as they are underneath the computer/power supply.

Figure 2.  Sample data captured from the PS rig shown in Fig. 1. (a) Albedo. (b–d) x , y and z components of 
surface normals respectively. (e) Depth. NIR illumination was used for this figure.
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samples score more highly). Finally, the normal metric characterises the roughness of the 3D surface topography 
within the body of the sample itself. Referring to the  literature13 it can be seen that the low-score samples are 
smoother than high score samples.

In summary, a sample with a high total score should correspond to high values of the normal metric but low 
values for border and shininess metrics. If we refer to the metrics for border, shininess and normal as SB , SS and 
SN respectively, then we can pose the total score, S , as:

All data for this section were captured at the University of Reading Centre for Dairy Research (CEDAR) in 
October 2018. The full dataset is publicly  available14. There was a total of twenty samples which had been frozen 
and then thawed for the data capture session. In each case, the thawed sample was stirred to restore original 
consistency as much as possible (although some liquid had escaped from the rest of the sample during the thaw) 
and 0.2 kg extracted and placed in a small pot. The sample was then dropped from a fixed height of approximately 
1 m (to approximate the act of animal defecation) onto a white acrylic sheet covered in blue tissue paper. The 
capture rig was carefully placed above the sample and then used for data capture, as shown in Fig. 1.

To enable consistent conditions for experimentation, the data was captured indoors with the lights switched 
off and only minimal daylight reaching the sample from outside. However, a significant amount of ambient light 
was still present and seemed not to adversely affect results when compared to images taken in complete darkness 
(with a shroud over the capture hardware). To optimise the image quality, a different aperture was used for visible 
and NIR lights ( f 1.8 and f 4 respectively). Experimental results later showed that NIR illumination gave superior 
results for the normals metric while visible illumination fared better for the border and shininess metrics when 
compared to human subjective evaluation.

For reference, Fig. 3 shows the visible light image and a rendering of the surface normals for the samples 
that later gave the lowest and highest scores respectively. These will be used in the next section as test cases to 
describe the algorithm.

Algorithm. The overall algorithmic structure is illustrated by Fig. 4. The top part of the diagram shows the set 
of four raw images, {I}0,1,2,3 , and corresponding light source vectors, {L}0,1,2,3 , used for the photometric stereo 
function (“PS”). For example, the first light source has direction vector L0 =

[

L0x , L0y , L0z
]T from the centre of 

the sample and this generates an image I0 , which is an array of intensity values. Both the raw images and surface 
normals N will be used for the computation of the metrics. For simplicity, only the z (vertical) component of the 
surface normals are used.

Border. Consider first the process to compute the border metric. At the heart of this is the method to seg-
ment the part of the image containing the sample from the rest of the image. To do this, the well-established 

(1)S =
SN

SBSS

Figure 3.  2D images (top) and 3D surface normals (bottom) of the lowest-scoring (left) and highest-scoring 
(right) samples.
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Otsu thresholding  method15 is invoked. This automatically selects a threshold value whereby all pixels with an 
intensity above this are assumed to be “background” (since the ground appears lighter in the image than the 
actual faecal sample). Rather than applying the threshold to any single raw image, the algorithm is applied to 
image Imin , which takes the minimum of the four raw image intensities for each pixel. This reduces bias towards 
a particular light source direction and was experimentally shown to be more robust than using, say, the mean 
intensity.

The validity of this clearly depends on the surface from which the sample is captured so may need revising 
for application in the field. Direct application of the Otsu method results in a few spurious regions such as where 
faeces has split up on the ground or where there are bright spots in the image. These are cleaned up by a few 
standard morphological operations: filling holes, eroding the perimeter and extracting the largest contiguous 
region of the image. The result of this is a “mask” image M that shows the approximate region of the sample. This 
takes the form of a binary image of same dimensionality as the original (4 megapixels) where pixels have value 
“1” if they are part of the faecal sample and “0” otherwise. The white areas in Fig. 5 are examples of extracted 
masks. In future work, a mask regions convolutional neural network16 could be applied here to reduce the effect 
of foreground–background similarities further, thus making the method reliable in less controlled conditions.

The border metric itself is extracted using the “solidity” measure. First, the convex hull of the segmented 
image is found. This is the smallest possible fully-convex polygon capable of containing the entire sample. The 
solidity is then defined as the proportion of pixels in the convex hull that are also in the mask. This is illustrated 
in Fig. 5 where larger grey areas force a lower score: the sample with a smoother edge has a convex hull that 

{I}0,1,2,3
N=PS({I}0,1,2,3

,{L}0,1,2,3)

IminImax

MI’ = Imax – Imin

N’=|GF(N) – N|

N’’ = SDF( SF(N’) )

{L}0,1,2,3

SB SNSS

S = SN / SB SS

Figure 4.  Flowchart to demonstrate the structure of the algorithm. For simplicity, this assumes either visible or 
NIR lights are used, but not both. The various symbols used are defined in the main text of the paper as they are 
first used.
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more closely matches the mask. The border metric, SB , is simply one minus the solidity, where in general, a 
higher score indicates a more irregular border. All scores (except the total score) are then normalised such that 
the maximum value is scaled to 1.

Shininess. The left side of Fig. 4 shows the progression towards the shininess metric. The principle here is that 
shiny surfaces will exhibit a greater number of specular highlights: that is, there will be more regions of the image 
that appear to show strong direct reflections from the lights. This is demonstrated by Fig. 6: there are far more 
specular highlights in the low scoring sample.

The adopted method to quantify this is to consider that, for a given point on the sample, a specular highlight 
is unlikely to appear with more than one light source. Therefore, it can be expected that, of the four intensity 
values recorded for a given pixel, one will be much brighter than the other three in the presence of specularity. Let 
the highest of the four intensities be Imax and the lowest be Imin . Consider now the difference, I ′ = Imax − Imin . 
High values of I ′ indicate specularities and, therefore, shininess. An illustration of how I ′ is related to shininess 
is shown to the far-right of Fig. 6. The shininess metric, SS , is then taken as the mean of the new image, I ′ , for 
all pixels in mask M.

Normal. The right-hand portion of Fig. 4 describes the normal metric calculation. The key principle here is 
that more high-frequency features in the surface normal data corresponds to greater roughness. This motivates a 
two-step process. The first step aims to highlight such features by subtracting the normal data from a Gaussian-
smoothed version of itself as shown in the top rectangle of the right-hand side of Fig. 4:

where GF represents the Gaussian filter operation. The motivation for this approach is that the Gaussian filter 
has a blurring effect on the image: maintaining low frequency data and diminishing high-frequency. The differ-
ence between this and the original thus leaves only the high frequency data, which is the indicator of roughness. 

(2)N ′ = |GF(N)− N |

Figure 5.  Segmented regions and convex hulls for the two extreme samples in Fig. 3. The solid white areas are 
masks, while the areas enclosed in grey are the convex hulls. The border scores for these samples are 0.74 and 
0.14 respectively.

Figure 6.  Portion of the raw images shown in Fig. 3 for to each of the four visible light sources with the 
difference between maximum and minimum intensity for each pixel shown to the right. The low and high 
scoring samples are on the top and bottom row respectively. The shininess scores for these cases are 0.84 and 
0.53 respectively.
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By simple trial-and-error, the Gaussian standard deviation of 5 pixels seemed to give qualitatively best results 
although this is not necessarily completely optimised. A different, but related, method to this was used previ-
ously for human skin melanoma  detection17. An alternative would involve the Fourier transform but at greater 
computational expense.

A median smooth filter, “SF”, is then applied in the next step where each pixel is replaced with the median 
of a 20-neighbourhood local median (higher weighting for centre pixels). As well as removing noise, this also 
smooths over spurious regions of small highlights in the image. Most importantly, the standard deviation filter, 
“SDF”, is then applied to obtain image N ′′ . This acts in a similar way to the median filter except that the local 
standard deviation in N ′ is used to form a new image instead of the median. In this case however, there is no 
centre-weighting and a larger neighbourhood consisting of a circle of radius 51 pixels is used. The motivation 
for this is that firmer samples appear rougher in the image and should, thus, have greater local variations in 
intensity. A few other filters (e.g. entropy and range) and neighbourhood sizes were also tested with either similar 
or inferior results. Figure 7 shows the images resulting from this process. It is clear from Fig. 7 that high values 
are present for the rougher surface, as required. The final normals metric is then taken as the mean value of N ′′ 
for all pixels in mask M.

Total. The very final stage of the algorithm, shown at the bottom of Fig. 4, is simply to combine the metrics 
using Eq. (1). It is not immediately obvious that the three scores should be given equal weighting. In fact, it was 
empirically determined that weighting the shininess metric higher gave superior results:

This improvement may be due to an inherent feature of the shininess properties that shininess affords a gener-
ally more robust metric, or that values must be forced apart by raising the metric to a power. For the results in the 
next subsection, Eq. (3) was used to combine metrics, noting that this is not necessarily completely optimised.

Machine learning for feature detection. This section describes how a machine learning algorithm was 
employed to classify images according to the presence, or otherwise, of large fibre particles or corn kernels in the 
samples. Classification was limited to these two types for simplicity. However additional types of feature could 
be added in the future using the same learning framework.

Deep  learning18 is a ubiquitous method in modern computer vision due to its exceptionally high performance 
in solving previously intractable problems. Its main drawback is the need to “train” the system using a great many 
labelled samples. Deep convolutional neural network methods construct huge hierarchies of low, medium and 
high level image features based on a large number of labelled images. The distribution of these features for given 
image classes are then used to distinguish images or regions of certain objects. Unfortunately, it is often unfeasible 
to acquire the number of images needed per class for a given project/application.

Many recent contributions in the field overcome this challenge using the principle of transfer learning18. In 
this case (slightly simplified), the low and medium level features are used from pre-trained networks that contain 

(3)S =
SN

SBS
2
S

Figure 7.  Left: images ( N ′ ) after the first stage of normal metric computation using Eq. (2). Right: images ( N ′′ ) 
after standard deviation filter applied. For this particular case, the normal metric scores are 0.73 and 1.
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a wide range of mostly unrelated images and the system is trained for the higher-level features using a smaller 
and more focused image database of relevant data.

For this study, transfer learning was used on 100 soil samples (to simulate real samples). The image database 
consisted of roughly equal numbers of samples without fibres or corn kernels, samples with fibres (extracted 
from celery) and samples with corn kernels. All soil samples had some water added to match a real faecal sample, 
but to varying degrees to simulate real variations in viscosity. The collected images were manually broken down 
into sub-images and labelled accordingly. Figure 8 shows a few representative examples. In practice, there was a 
slightly uneven distribution of class samples for training. Figure 9 summarises the numbers of sub-images used 
for each class.

Transfer learning was applied using MATLAB, which was also used to test the classification accuracy. A variety 
of network architectures were applied with a small, but significant variation in classification rate. The overall-best 
performing network was Resnet-10119 so all results presented in this paper use that architecture. Experiments 
were carried out using the standard MATLAB implementation of Resnet-101 with only the fully-connected 
layer and the classification layer changed, as necessary to reflect that only three possible output classes should be 
allowed (“corn”, “fibre”, “neither”). It is likely this gave best results since the network was designed to minimise 
over-fitting in relatively small datasets. However, it should be noted that developing a new or optimised network 
was not the focus of this paper and experiments were restricted to use those architectures already implemented 
in the MATLAB Deep Learning Toolbox such as AlexNet, GoogLeNet and ResNet-50/10120. The classification 
algorithm expects just a single image input (recall there are eight images from the PS rig—four from visible light 
and four from near-infrared light) so it was necessary to construct a final image from one or more of the raw 
images. The results of different image combinations are shown in the next section.

Results and discussion
Scoring using the three metrics. Table 1 summarises all metrics for the two extreme cases shown in 
Fig. 3. This shows good spread for each metric. Figure 10 shows the distribution of the metrics for all 20 samples 
collected at CEDAR. This shows that samples are well-spaced in score-space. As expected, given the arguments 

Figure 8.  Example of manually labelled training data where each square is labelled either “neither”, “fibre”, 
“corn” or “both” (the lower-right box is a result of the MATLAB graphical user interface developed for 
annotation).

Figure 9.  Distribution of training sub-images (neither: 215, fibre: 145, corn: 180).
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leading to Eq. (1), results show negative correlation between the normal score and both shininess and border, 
but positive correlation between shininess and border scores.

The full set of images is shown in Fig. 11 in order of total score. The method appears to have been successful 
in placing the samples in an order that closely matches the manual scoring method. Given the relatively small 
variation among the samples, it is difficult even for a human to place these in an exact order. There are certainly 
no obvious mistakes in the ordering of the samples except perhaps that the fourth-lowest-ranked sample should 
probably have a higher score. This is a result of the sample splitting in two when dropped (it has by far the highest 
border metric) and would likely be addressed using a more repeatable drop process (see Conclusion).

Corn kernel and fibre detection using deep learning. Classification rates varied depending on how 
the raw images from the capture rig were pre-processed to form inputs to the neural network. The rates are sum-
marised in Fig. 12. The most obvious way to combine the images was to simply take the mean intensity across 
all raw images (either all four visible images, all four NIR, or all eight combined). However, this gave very poor 
results, barely improving on statistical chance. It is thought that this poor result is due to the mean intensity hav-
ing the effect of smoothing over useful information. More successful combinations are shown in Fig. 12.

Interestingly, excellent results were achieved using the median (“med. vis” and “med. NIR”) instead of the 
mean: presumably as this does not have the smoothing effect mentioned above and/or a reduced impact of outli-
ers. It does however, seem better when just using the visible lights rather than NIR (though note the large standard 
deviations in test results). Results using individual images (“ind. vis.” and “ind. NIR” in Fig. 12) were unsurpris-
ingly inferior while using the minimum intensity for a given pixel location gave best results of all. Results for the 
maximum intensities are not shown as this confounded the algorithm by emphasising specularities.

The fact that the results in Fig. 12 are so varied, and that the other network architectures considered only 
affected results by a few percentage points, reinforce the more general  research21 that image quality and pre-
processing are the key steps to optimisation. Fine-tuning the network optimisation parameters from the MAT-
LAB default gave similarly small improvements although optimising the mini-batch size did yield results over 
90% in certain cases when set to 30 or higher.

The highest recognition rates here are clearly very promising; especially considering that the manual labelling 
process was limited in that it did not permit much freedom in how the image was broken down (a mask regions 
convolutional neural network is more  flexible16 but is reserved for future work). On the other hand, the samples 
used here contain more visually obvious features compared to real samples which would typically have finer 
and shorter fibres for example. Therefore, it is unlikely that the method in its current form would extrapolate to 
real-world data without any reduction in classification rate. This will be explored in further work.

Conclusion
This research has proven the potential for the use of computer vision in the assessment of cattle faeces consist-
ency and large particle content. The scoring method closely matched subjective analysis while the deep learning 
approach gave promising results in the detection of undigested corn and fibre. While the current data capture 

Table 1.  Summary of individual metrics for the extreme cases.

Sample Border Shininess Normal Total

Left in Fig. 3 0.74 0.84 0.73 1.4

Right in Fig. 3 0.14 0.53 1 26

Figure 10.  Distribution of metrics for all 20 samples. The colours indicate the total score while the numbers 
show the rank of the sample’s total score compared to others. The data point ranked 1 (i.e. lowest of all scores) 
indicates the left-hand sample from Fig. 3, while the point ranked 20 is the right-hand sample of Fig. 3.
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hardware is clearly not as convenient as, say a mobile telephone camera, it is nevertheless portable and cheap 
enough for realistic usage on a farm and diminishes the need for regular samples to be transferred for laboratory 
analysis. While the current device shown in Fig. 1 is clearly only at prototype stage, this could easily be made 
more compact and transportable. In particular: the computer could be replaced with a low-cost embedded 
system (using a Raspberry  Pi22, for example); the desktop power supply can be replaced with a simple fixed-
voltage unit; and the legs could be made foldable. These steps would allow the entire system to fit into a padded 
briefcase-style container.

Despite the clear outcomes of the research, there remain a few questions/tasks necessary to consider during 
any follow-on research to make the method more applicable:

• A greater range of fibre and corn sample training images would improve robustness.

Figure 11.  Images of samples according to calculated total score (score values above-left of each sample).

Figure 12.  Classification rates using MATLAB’s default training parameters for various image combinations. 
The whiskers indicate the standard deviations of accuracies when the test dataset images are changed.
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• The scoring algorithm should be tested on a greater range of samples (i.e. those scoring 1 or 5 in the literature’s 
scoring  method13) and mapped to more established metrics.

• The scoring system would be more reliable if the process for dropping the samples were made more conveni-
ent and repeatable: e.g. by releasing the sample from some device, such as that suggested in Fig. 13.

• It may prove that a deep regression network21 is able to enhance the scoring by better learning the means by 
which human experts grade the samples.

• As mentioned in the introduction, it is hoped that the method can be calibrated against better-established 
technologies, such as visual assessment or wet screening of faeces to establish particle size  distribution6. 
This would theoretically allow to attain the precision of such well-known methods using the more objective 
technology discussed in this paper.

• Other features such as “bubbles”, which are indicators of abnormal hindgut fermentation of starch, could be 
investigated to incorporate into a feature detector.
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