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ABSTRACT 

Some aspects of the CubeMAP mission (also known as ESP-MACCS) are presented: its science objectives, and the key 

choices made to address these from small satellite platforms. The science case, addressing some key scientific questions 

related to global change, is elaborated into four questions focused on upper troposphere and stratospheric composition 

and its change. The sounding choices and the associated observation concept retained is a constellation of miniature limb 

solar occultation thermal infrared sounders, offering the advantages of limb solar occultation, whilst mitigating the 

inherent lack of coverage of this geometry. The mission focuses on tropical regions as the gateway to the upper 

troposphere, and the stratosphere. The miniaturized instrument payloads developed for the mission are briefly presented: 

the High resolution InfraRed Occultation Spectrometer (HIROS) and the Hyperspectral Solar Disk Imager (HSDI). 

Lastly, the nanosatellite 12U platform and its subsystem are described completing the overview of the mission space 

segment. 

Keywords: Cubesat constellation, atmospheric remote sensing, high resolution spectrometers, limb sounding. 

Atmospheric processes. 

 

1. INTRODUCTION 

Within the context of the ESA SCOUT program dedicated to developing Earth Observation science mission using small 

satellite platforms, the CubeMAP mission (also known as ESP-MACCS) has been proposed and retained as one of the 

four mission candidates to be consolidated. 

Earth is changing at an unprecedented pace. Understanding and quantifying the processes driving the change and 

particularly the role played by the atmosphere is necessary, and the CubeMAP mission has been designed to address this 

need. The overall mission goal is to study, understand, and quantify processes in the tropical Upper Troposphere and 

Stratosphere (UTS), study its variability, and contribute to trends analysis in its composition and its effects on climate 

and vice-versa. The UTS composition plays a significant role in controlling the Earth’s climate, with still poorly 

explored feedbacks within the Earth System. This region of the atmosphere is coupled to the surface and the free 

troposphere both dynamically and radiatively. Its composition is determined by anthropogenic emissions of greenhouse 

gases and pollution precursors and is subject to changes via radiative, dynamical, and chemical processes. 
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Addressing these demanding science needs has traditionally been the scope of very large scientific missions, using high 

performance large instruments and buses. The advent of small satellite platforms, which allow for higher agility and 

cost-effectiveness, offers opportunities to rethink ways valuable science missions can be implemented. CubeMAP 

contributes to that effort by proposing a mission delivering significant middle atmosphere scientific output using a 12U 

satellite constellation. The sounding precision and accuracy is ensured by using solar occultation for atmospheric 

transmittance measurements. The traditional coverage limitation associated to solar occultation is mitigated by the use of 

constellation flying: three identical spacecrafts are considered. The use of small satellite is enabled by novel payload 

instruments maintaining an excellent performance vs. size and mass trade-offs. 

Section 2 elaborates the specific science objectives of the mission, related to middle atmosphere processes. Section 3 

briefly describes the observation concept and the coverage it provides. Section 4 and 5 respectively deals with the 

instruments part of the science payload and the satellite platform developed for the bus. 

2. SCIENCE QUESTIONS CUBEMAP ADRESSES 

CubeMAP focuses in the quantitative understanding of processes occurring in the middle atmosphere, defined in this 

context as composed of the UTS, further split into two regions: the Upper Troposphere/Lower Stratosphere (UTLS) and 

the stratosphere (S). These regions of the atmosphere, as much as the whole Earth, are subject to change owing to the 

activities of humankind, changes whose impact requires quantitative understanding. The mission further focuses on the 

tropical regions as its first component, as Upper Troposphere (UT) to Stratosphere (S) injection is primarily driven by 

tropical deep convective uplift. They are also the most important source of global biomass burning and mineral dust. The 

tropics cover half of the globe, with uncertainties in process knowledge being considered to be largest in this region1. 

The UTLS is an exchange and coupling layer between the turbulent free troposphere and the stably stratified 

stratosphere. Radiative, dynamical, and chemical processes occurring in the UTLS strongly affect the near-term 

predictability of the climate system. Indeed, surface climate and climate feedbacks are particularly sensitive to the 

composition and temperature change in this layer2,3. Because of the relative minimum temperature in this region, it plays 

a critical role in controlling the Earth’s outgoing long-wave radiation4. The UTLS is also hypothesized to play a key role 

in stratosphere-troposphere coupling, such as during stratospheric sudden warming events that affect surface weather for 

months after they have occurred5, 6. However, the exact mechanism of how the coupling works and how it could be used 

to enhance predictability of weather is still an open question7. Importantly, the tropical UTLS is considered as the 

gateway into the stratosphere and controls the amount of both long-lived greenhouse gases (H2O, CH4, N2O, and 

CFCs), medium-lived (CO), and Very Short Lived chemical Species (VSLS) from both human and natural sources 

passing through the tropopause. In particular, VSLS have been recently pointed out as likely and potential future threats 

to the stratospheric ozone layer8. The Asian monsoon may play an important role in accelerating the transport of such 

VSLS into the lowermost stratosphere9. As such, changes in the UTLS may trigger further changes to stratospheric 

chemistry and climate. 

The stratosphere is less variable than the UTLS. It contains the ozone layer, which shields the Earth from the harmful 

effects of ultraviolet radiation and affects the Earth’s radiation balance. Changes in stratospheric radiatively active 

species (and in particular ozone, water vapour, and carbon dioxide) affect the temperatures and, through thermal-wind 

balance, also the winds in the stratosphere. The most prominent example for this mechanism is the Antarctic ozone hole, 

which has influenced the Southern hemisphere surface climate10, 11. Stratospheric water vapour content may be an 

important driver of decadal surface climate change12 and is strongly coupled to tropical tropopause temperatures, but also 

to the amount of methane entering the stratosphere. Stratospheric aerosols are another key driver of the radiative balance 

of the Earth. The main source of injection comes from tropospheric sulphur species and episodic volcanic eruptions. In 

addition, stratospheric temperature trends are an important fingerprint of human impact on the climate system, and lack 

of knowledge of changes in water vapour and ozone in the LS (Lower Stratosphere) lead to significant difficulties in 

attributing that change13. Accurate knowledge of stratospheric climatologies and variability is also pivotal in reaping the 

benefit of climate and numerical weather prediction models, as well as of nadir sounding observing systems.  

The UTS is difficult to access on a global scale by in-situ measurements whereas a space-borne infrastructure is ideal to 

characterize them. Composition changes in these regions are driven by processes including deep convection and 

Stratosphere Troposphere Exchange (STE). Effects of deep convection and transport pathways of STE are poorly 

quantified and are a frontier for understanding the composition of the UTLS and the S. This requires the simultaneous 

measurements of key molecular species and aerosols with high accuracy, high precision, and high vertical resolution. 



 

 
 

 

 

 

These include radiatively active gases (H2O, O3, CO2, CH4, N2O), STE tracers (HCN, CO, HDO), ozone chemistry 

gases (HCl, ClO and BrO), and aerosols and clouds, as well as their precursors (SO2). 

Given the programmatic constraint, CubeMAP will focus on the tropical region, which as the gateway to the 

stratosphere, critically determines the chemistry of the entire stratosphere. In the tropics, the large-scale patterns of 

tropical tropospheric convection generate large scale waves which propagate into the stratosphere. These waves 

influence the Brewer Dobson Circulation (BDC) by affecting transport timescales and pathways, determine the tropical 

tropopause temperatures, and drive one of the main STE pathways. 

More precisely, the quantitative understanding of the processes in the UTS raise the specific questions described in the 

next subsections. Addressing these questions is the focus of CubeMAP. 

2.1 How is water vapour in the UTS responding to climate change, and what is its feedback and impact on 

climate? 

Changes of the distributions of water vapour or thin cirrus clouds in the UTLS strongly impact radiative forcing of the 

Earth's climate and surface temperatures3 and also LS temperature trends12, 14. UT water vapour changes also play an 

important (and sometime contentious) role in the strength of the water vapour climate feedback that significantly 

enhances the sensitivity of climate2. Despite its importance, processes controlling interannual variability and trends in 

UTS water vapour are currently not well characterised. Past trends derived from satellite and in-situ balloon observations 

in fact seem to show opposite signs15. 

Water vapour in the stratosphere is largely controlled by the seasonal cycle of the minimum temperatures in the tropical 

tropopause region, which determine the minimum water vapour mixing ratio in the ascending branch of the BDC16. 

Another source of stratospheric water vapour is CH4 oxidation17.The Asian summer monsoon provides an additional 

large-scale pathway for water vapour entering the stratosphere during northern summer18. The vertical gradient of water 

vapour at the extratropical tropopause also affects local temperature profiles and thus static stability19, 20, 21 with potential 

effects on the propagation of gravity waves at the tropopause and, in turn, stratospheric dynamics. 

Besides the large-scale ascent in the tropics, production from methane oxidation, and the monsoon, the contribution of 

UT convection to stratospheric water vapour is still under debate particularly in the lower stratosphere. In addition, 

transport and mixing at the subtropical jet affect the lower stratospheric water vapour budget. Both processes have a high 

temporal and spatial variability and thus introduce large uncertainties to trend estimates. Since the radiative effect of 

water vapour is directly linked to the vertical gradient, this, in turn, introduces a large uncertainty to forcing estimates. 

While stratospheric water vapour is projected by chemistry-climate models (CCMs) to exhibit significant increases by 

the end of the 21st century, the CCMs show a large spread in projected concentrations, implying large differences in 

radiative feedback effects in these models22. Testing model processes with more precise observations than hitherto 

available and diagnostics that help identify processes behind the changes (e.g., through the use of isotopologues) is 

needed to constrain the climate feedbacks via stratospheric water vapour changes1. A recent study demonstrated the use 

of such water vapour isotopologues for detection of dehydration at the tropical tropopause and resulting transport signals 

within the stratosphere23. 

Atmospheric reanalyses, in providing coherent estimates of the global atmospheric state over multi-decadal timescales, 

provide another widely used tool for the study of climate variability and change, and for testing CCMs24. Estimated 

trends in lower stratospheric temperatures, a key prediction of climate models, are strongly dependent on the 

representation of the evolving distribution of stratospheric water vapour25, 26. Short term advances in this aspect of 

reanalyses are dependent on improved initialisation and parametrisation of water vapour and methane in the stratosphere. 

Longer term improvements are dependent upon: a more complete understanding (and representation) of the complex 

transport processes in the UTLS; developments in the assimilation of water vapour observations in the stratosphere, and; 

the development of an observing system for stratospheric water vapour. CubeMAP addresses these challenges. 

Vertically highly resolved water vapour measurements from satellites are essential to estimate the effect of convection of 

the water vapour distribution in the UTLS. In combination with precise temperature measurements, cloud top 

observations and tropopause measures, this significantly improves the quantification of the different transport pathways 

into the UTS. 

CubeMAP aims to quantify vertically resolved water vapour and methane in the UTS and particularly across the 

tropopause over a period of at least four years to allow interannual variability to be studied with trend-quality data. 



 

 
 

 

 

 

Methane observations will thereby help to constrain the contribution of methane oxidation to stratospheric water vapour. 

The observation of multiple water vapour isotopologues, on the other hand, will help to quantify the processes that 

control UTS water vapour and thereby improve our understanding of the hydrological cycle, including knowledge on 

cloud formation and precipitation processes, but alo water supersaturation in the UT and water vapour entering the 

stratosphere from the UT in the tropics. High vertical resolution profile information in the UTS will in addition help to 

constrain and validate water vapour fields (and through its radiative effects also temperatures) in climate and Numerical 

Weather Prediction (NWP) models. 

2.2 How does climate change affect stratospheric O3 and its recovery? 

While the Montreal Protocol and its controls on O3 depleting substances has proven to be one of the most effective 

international agreements to date, addressing a major pressing global environmental issue of the 20th century, the O3 

layer is facing new threats from a changing climate. Satellite and ground-based measurements start to indicate a recovery 

of ozone in the upper stratosphere27, and in the Southern polar vortex in September28. However, ozone increase has not 

yet been detected at global scale in the LS, where the bulk of ozone resides, 20 years after the peak of Ozone Depleting 

Substances (ODS) in that region. Recent publications even indicate a decrease in ozone in that region29, 30. 

While the reasons for the recent decline may point towards enhanced chemical depletion, either through very short-lived 

ozone depleting substances (ODSs) that are not controlled by the Montreal Protocol8 or due to a renewed increase of 

previously controlled ODSs31, 32, were able to show that the observed decreases were mainly driven by stratospheric 

transport and dynamics. The daunting question here remains whether this dynamical trend will persist into the future. 

Indeed, climate change is expected to lead to changes in the distribution of stratospheric ozone in several ways. 

Current Chemistry Climate Model (CCM) simulations indicate that the future evolution of the ozone layer in the 21st 

century will be controlled not only by the decline of ODS but also by changes in greenhouse gases (GHGs), mainly CO2, 

CH4, and N2O. The increase of GHG abundances generally cools the stratosphere, which slows down gas-phase 

chemical ozone destruction cycles and leads to an ozone increase in the upper stratosphere. Another robust feature of 

CCM simulations driven by GHG increases is an acceleration of the Brewer-Dobson circulation (BDC) that transports 

ozone towards higher latitudes33, 34. Such an acceleration, whose attribution is still a subject of debate, would induce a 

decrease of ozone in the tropical lower stratosphere and an increase at higher latitudes.  

Hegglin and Shepherd19 showed that an important effect of these changes in stratospheric ozone will increase the 

ultraviolet (UV) radiation reaching the Earth’s surface in the tropics by 5%, and decrease UV at mid to high latitudes in 

the Northern Hemisphere by up to 10% year-around. The increases in UV in the tropics is of great concern since UV 

levels are to begin with higher and more people live in the tropics than at higher latitudes, increasing greatly the risk for 

skin cancer. The large decrease in UV at Northern mid to high latitudes, on the other hand, may cause severe problems 

for vitamin-D production and human-health, a topic already now identified as a key issue for people living in Northern 

countries35. The findings are in the meantime confirmed by an evaluation based on a larger suite of chemistry-climate 

models36. 

In addition, these changes may affect stratospheric ozone fluxes into the troposphere, with increases in the Northern 

hemisphere by up to 30% over this time period, potentially affecting tropospheric air quality, and also leading to a 

radiative feedback due to the large radiative impact of ozone changes in the UTLS19. 

The role of ozone changes in the UTS region and its influence on radiative forcing is poorly understood and reproduced 

in climate models. IPCC AR537 identified significant uncertainties in radiative forcing (RF) due to ozone change. The 

central RF estimate for tropospheric ozone increases between 1765 and 2011 is 0.4 W.m-2 but with a 95% confidence 

level of 0.2 to 0.6 W.m-2. At its upper limit, tropospheric ozone would be the second most important GHG RF after 

CO2; similarly, stratospheric ozone changes in recent decades have also contributed to RF38, 39. Estimates of ozone RF 

are heavily reliant on model simulations, but there is a dearth of height-resolved measurements in the UT with which to 

confidently validate them; ozone RF is particularly sensitive to changes in the UT. 

While the mechanisms behind the chemistry-climate model predictions and the extent of these impacts still need to be 

explored in further detail, observations of the real atmosphere over the next few decades and particularly in the tropics 

are essential to evaluate and gain confidence in these predictions. CubeMAP will contribute to the monitoring of the 

global O3 layer with an improved coverage dataset compared to a single solar occultation instrument and help quantify 

how a changing climate, through changes in stratospheric circulation and changing levels of GHG, may affect its natural 



 

 
 

 

 

 

balance. Hence the effects of changing UV levels and its effects on the biosphere would be quantified. In addition, 

CubeMAP will help to identify the key processes in the UT and S region that lead to the changes. 

2.3 How can we improve surface emission estimates of GHG and surface ozone through improving UTS 

representation of GHG and O3? 

The effectiveness of future emission controls on concentrations of the major GHG, CO2, methane, and O3, will 

primarily be monitored by nadir sounders with high horizontal resolution, combined with inverse modelling or data 

assimilation. UTS distributions of these gases however account for a considerable amount of variability and need to be 

constrained by observations to allow for a more meaningful and accurate source estimation40. 

Emissions of GHGs, such as methane, were estimated based on inversion approaches, mainly using vertical column 

satellite products from nadir satellite measurements41. Since the relationship between surface emissions and measured 

atmospheric quantities is assumed to be predicted well by the model in the inversions, it is important to represent the 

transport/chemical processes and tropospheric vertical profiles in a realistic way when estimating the surface emissions. 

Assimilating limb profile measurements is expected to improve emission estimates, as these reduce model errors 

unrelated to surface emissions and modify vertical profiles.  

The case of GHGs has been made by Houweling et al.42, who showed the large diversity in the simulated column-

average CH4 (XCH4) among models associated with errors in atmospheric transport models, such as in STE, and the 

large contribution from the stratosphere to the model differences in XCH4. Compared with CO2, stratospheric variability 

and transport are relatively important for the column-average mixing ratio of CH4 because of the steeper vertical 

gradient of methane in the stratosphere. Constraining UTS methane from CubeMAP is expected to improve source–sink 

inversions when combining with nadir satellite measurements, through greatly reduced errors in model representations of 

stratospheric vertical profiles or facilitating use of tropospheric column averages derived from nadir and limb. 

An equivalent problem concerns tropospheric ozone in the tropical region. Currently available estimates of tropospheric 

partial column ozone from a suite of satellite nadir sounders show large discrepancies in both interannual variability and 

trends43. However, indirect evidence for tropical tropospheric ozone increases between 1960 and 2010 has been obtained 

by subtracting stratospheric partial column ozone derived from stratospheric limb sounders from ground-based total 

column ozone measurements, supported by the successful modelling of the respective changes in the stratosphere 44. The 

information from the satellite limb sounders (as would be obtained by CubeMAP measurements) thus also provides an 

important constraint for the a priori profile used in the retrieval process of the tropospheric ozone measurement, 

exploiting nadir/limb solar occultation complementarity. 

CubeMAP will provide the high accuracy CO2, CH4, and O3 profile observations needed in tandem with assimilated 

UV/VIS (Visible) – TIR (Thermal InfraRed) and SWIR/TIR nadir sounding data to enable improved global/regional 

emission estimations of GHG and air quality. This will also improve understanding of the chemistry-climate system both 

in the troposphere and stratosphere and the chemical lifetime of various gases. 

2.4 How does the composition of the tropical UTS and its response to increasing anthropogenic and natural 

emissions change? 

Distributions of trace gases in the tropical tropopause region show large spatial and temporal variability driven by 

complex dynamical, transport, and chemical processes across a range of scales, which makes the quantification of long-

term changes difficult45. In addition, emission sources in the tropics are currently undergoing significant changes driven 

by economic growth, particularly across the Asian region. Thus, there is also a challenge to understanding the drivers of 

long-term change in the tropical UT and S.  

Air in the tropical upper troposphere undergoes (on average) continuous and slow ascent, while circling zonally around 

the globe, during which it is influenced by deep convective transport of air from different source regions46, 47. Over the 

ocean, air depleted in ozone causes low upper tropospheric ozone values, while over land, convection leads to higher 

ozone values due to concomitant transport of air pollution gases. In addition, stratosphere-troposphere exchange via deep 

stratospheric intrusions from the extratropical LS also can impact the tropical UT1. 

Recently, the aerosol budget in the tropical UTS has been shown to be influenced by uplift of non-volcanic aerosols, e.g. 

smoke aerosols due to pyroconvection48 and pollution aerosols uplifted by monsoon systems in the Northern 

Hemisphere. In the last two decades a new aerosol layer coined ATAL (Asian Tropopause Aerosol Layer), has 

developed near 16 km inside the monsoon anticyclone and is attributed to the increasingly polluted sources at the 



 

 
 

 

 

 

ground49, 26. Recent studies have pointed out that the upper layer circulation of the Asian monsoon has a remarkable 

impact on the chemical composition of the northern mid-latitude stratosphere, in particular at the end of the monsoon 

season50, 51.  

CubeMAP will provide new tropical constraints on tropical UTS tracer distributions that will help quantify the influences 

of deep convection, stratosphere-troposphere exchange (from the extratropics), pollutant transport from the planetary 

boundary layer via long-range transport and convection, and in-situ sources of reactive chemical species from lightning 

and aircraft. 

3. OBSERVATION CONCEPT 

3.1 Limb solar occultation transmittance measurements 

The observation techniques retained for CubeMAP is limb solar occultation (LSO). LSO provides high vertical 

resolution, high sensitivity owing to the high Signal to Noise Ratio (SNR) from the strong solar background radiation 

making tenuous species measurable. It also warrants the possibility of isotopologue ratio measurements, requiring few 

per mil relative difference to be resolved. The SNR remains high even when Doppler-limited spectral resolution is 

required to fully resolve absorption lines in the stratosphere.  

Using LSO, a relative transmission measurement is made, which is self-calibrated and remains so over long period of 

time. By using an exoatmospheric measurement for each occultation and owing to the stability of the Sun as a 

background source on short timescales, high accuracy can be obtained with instrumental simplicity. This relaxes 

requirements on the instrument stability, as stability is only required over a single occultation measurement52. 

LSO has a long heritage from the late 1970’s up to now. Instruments carrying out LSO include the Stratospheric 

Aerosols and Gas Experiment (SAGE I, II, and III), the Halogen Occultation Experiment (HALOE), the Polar Ozone and 

Aerosol Measurement (POAM II and III), SOFIE (Solar Occultation For Ice Experiment), and the still operational 

Atmospheric Chemistry Experiment (ACE). 

In LSO, time can be converted to tangent altitude and vertical resolution is driven by instantaneous instrument’s field of 

view (FoV) and measurement integration time. The FoV needs to be small enough to cope with the apparent decreasing 

vertical extent of the sun owing to atmospheric refraction at low tangent heights. Typically, for a lower Earth orbit, an 

occultation event lasts from ~30 s to ~1 min depending on the angle between the satellite-sun vector and the satellite 

orbital plane. This angle also controls the apparent ascent/descent rate and in turns affects the vertical resolution. Vertical 

resolution can be very high (~1 km typically) at the expense of the geographic coverage (typically a ~200 km long line of 

sight when the occultation is aligned to the orbital plane). The longitude/latitude coverage is dependent on orbit 

inclination and flight altitude. For CubeMAP, the tropics is the area of focus. Two measurements per orbit can be made, 

at spacecraft sunset and sunrise, leading to ~30 measurements per day per spacecraft. Cycle of coverage (latitude vs 

time) can be changed depending of the orbit precession rate compared to the sun, which in turns will affect the latitude 

coverage. The geometry of LSO measurement is illustrated in Figure 1. 

Clearly, the high-sounding SNR, the vertical resolution, and the simplicity comes at the cost of temporal and spatial 

coverage, and to a lesser extent to measurements at solar zenith angle limited to 90 degrees. How can we address the 

coverage drawback whilst retaining the advantages? CubeMAP proposes to obviate the coverage limitations by flying a 

constellation of configurable small satellites, whose individual orbits can be optimised to fulfil the science requirements. 

LSO has already been proposed from a nanosatellite type of platform53, and so has the concept of nanosatellite 

constellation54 to probe the middle atmosphere using miniaturized multi-spectral radiometers. CubeMAP follows this 

trend and adds high-resolution transmittance spectroscopy capabilities. This represents a paradigm shift compared to 

using single large payloads taking large, complex, high specification instruments. The cost of flying a constellation 

requires significant reduction in volume and mass. It also provides economy of scale when the platform and payloads are 

modular enough and nearly identical. 

To fulfil CubeMAP requirements, the payloads must be miniaturized whilst retaining the high level of spectrometric 

performance needed for UTS sounding, which is typically antagonistic. We propose using spectrometers that target 

highly specific and optimized narrow-spectral windows, in which individual spectral lines are fully resolved even in the 

stratosphere. By selecting individual molecular transitions, the temperature dependence can be minimized (low ground 

state energy of the transition) or optimized if a proxy to temperature measurement is needed, and measurement dynamic 



 

 
 

 

 

 

range can be optimized. Likewise, isotopologue transitions can be optimally selected. Trade-offs between multiple 

molecular signature and optimum absorption intensities are to be realised. Lastly, the use of narrow spectral windows 

favours an enhanced control of the error and bias budget (broadband effects, baseline effects, interferences effects…) and 

ultimately delivers higher accuracy. 

 

Figure 1. Two dimensional illustration of the LSO geometry where the spacecraft orients itself to catch the atmospheric 

sunlight transmitted through the atmosphere at sunset and sunrise every orbit. This illustration relates to the particular case 

where the sun vector is coplanar to the orbit plane. 

 

3.2 Constellation’s coverage 

The mission science objectives focus on processes in the tropics. Therefore, overall geographical coverage must at the 

very least span these regions between +/- 25° latitude. This coverage requirement implies low inclination orbit [20-30°] 

for the satellites. Beyond the latitude extent, the spatial coverage requirements are determined by transport processes on 

regional to global scales. While convective outflow, biomass burning, and other anthropogenic emissions act more 

localised, upper tropospheric transport and mixing act to spread the signature of convective transport over vertical and 

horizontal scales of 1-3 km and 100 s of kilometres, respectively. Resolving processes down to the synoptic scale calls 

for a spatial resolution in the range of ~500 km. The spatial resolution requirement is therefore set to a 4°x4° latitude 

longitude grid. 

Inherent to the LSO, each tangent point measured to obtained atmospheric profiles will happen at slightly different 

locations due to the spacecraft motion. This effect is illustrated in Figure 2a, where locations of tangent points from 0 to 

100 km are represented within the 4°x4° cell. With this in mind, for the sake of clarity, onwards only the 30 km tangent 

point will be represented. A one month coverage map for the CubeMAP constellation is represented in Figure 2b, and 

perhaps more informative, the one month coverage density map is represented in Figure 2c. The coverage density map 

shows that >90% of the tropics are covered with observations within a month. 

If a single 4°x4° cell is considered, an analogue to the revisit time can be derived. This is illustrated in Figure 3 for a cell 

located on the equator at 90° east. The stick diagram shows the observations occurrence within a year of the mission, the 

color coding related to the three different spacecraft of the constellation. Revisit time requirement is driven by the UTS 

variability, which is pronounced both longitudinally and temporally. The longitudinal variations are driven mainly by 

differences in convective activity over different regions, while temporal variations range from daily, over seasonally, to 

interannually. To resolve processes at timescales shorter than the seasonal variability a requirement for a full coverage on 

a monthly basis was retained and is fulfilled. Interestingly, the close temporal proximity of measurements from different 

spacecrafts suggest inter-calibration methods can be developed.  

The mission lifetime requirement is driven by the need to cover at least one annual cycle. Therefore, a minimum mission 

lifetime of at least two years is required. As a secondary requirement, the mission lifetime would benefit from extension 

to 4 years in order to sample the El Nino Southern Oscillation and the quasi-biennial oscillation. 



 

 
 

 

 

 

 

Figure 2. a) Illustration of the geographical spread of tangent height measurement during a single occultation event for a 

single spacecraft. Tangent height from 0 to 100 km are represented; b) Monthly coverage map of the constellation 

considering only the 30 km tangent height measurement; c) corresponding monthly coverage density map using the 4°x4° 

latitude longitude grid requirements. All these calculations were done for a nominal orbit of 520 km altitude and 28° 

inclination. 

 

 

Figure 3. Analogous to a revisit time considering a 4°x4° cell and recording the measurement occurrences over a one month 

period. The stick colours refers to the three different satellites of the constellation. On the right hand side is shown the 

geographical position of the 30 km tangent point measured within the cell. 

 

4. INSTRUMENT PAYLOAD 

4.1 High resolution InfraRed Occultation Spectrometer (HIROS) 

HIROS is an ultra-high spectral resolution laser heterodyne spectro-radiometer (LHR) inherited from laboratory and 

ground based instruments used for solar occultation atmospheric sounding. It’s development for space mission started 

with the MISO mission55. 

The combined science and programmatic requirements call for innovative technologies allowing significant 

miniaturization whilst maintaining a high level of performance. The HIROS is based on quantum cascade laser local 

oscillator and optical photomixing using high speed photodiodes56, 57. The spectrometer relies on heterodyne (or 

coherent) detection, similar in its principles to coherent radio-receivers, but transposed in the optical domain. The 

measurement principle consists of measuring the amount of spectral power down-converted from the optical domain to 

radio-frequencies, in the vicinity of the local oscillator frequency and within a fixed filter bandwidth. By tuning the local 

oscillator continuously, the optical spectrum is resolved within the tuning range of the laser with noise ideally limited to 

the photon shot noise. This approach uniquely allows to obtain ultra-high spectral resolution in miniaturized packages, 

using hybrid optical integration technique based on hollow waveguides58, 59. Figure 4 shows a 3D model of the HIROS 

optical payload and its control electronics, and Table 1 provide some key generic specifications of the instrument. 

The spectrometric technique brings two drawbacks that can be well mitigated: 1) the spectral coverage is defined by the 

tuning range of the local oscillator laser and therefore limited to few cm-1 windows when QCL are used. This is 

mitigated by targeting a few specific molecules within narrow spectral windows, selected from the sounding 

requirements and determined using observing system simulation for optimization of information content55, 60. 2) In its 

most compact form, spectral multiplexing is not viable. Therefore, spectral channels are acquired sequentially through a 



 

 
 

 

 

 

frequency sweep of the local oscillator laser. This simple and cost effective sequential mode of operation nevertheless 

provides suitable SNR in LSO observing mode given the high brightness of the background source. 

 

Figure 4. 3D CAD of the HIROS instrument. The front-end optics is a 1 inch diameter telescope coupling he incoming light 

into the integrated block containing the hollow waveguide integrated laser heterodyne spectro-radiometer. High speed 

photodiode electronics is at the back. The system is mounted on a breadboard that can be coaligned with other instruments’ 

FoV part of the payload. 

 

Each CubeMAP spacecraft will host three HIROS instruments. Identical except for the central wavelength of their local 

oscillators. Through atmospheric retrieval simulations, following a methodology already reported61, 60, 55, three spectral 

windows were optimally selected: 

- 1135.2 – 1134.2 cm-1 for O3, N2O, H2O, and CH3D  

- 1239.2 - 1240.2 cm-1 for 13CH4, CH4, N218O, 15NNO, N2O, H2O, HDO and 18COC 

- 1252.0 - 1253.0 cm-1 for 15NNO, N2O, CH4, 13CH4, HDO, 18COC 

 

Table 1. Top level specifications of the HIROS instrument. 

Parameter Value Comment 

Volume 

Mass 

Power 

1 dm3 

1.3 kg 

4Wh per orbit 

The volume envelope is given in Figure 4. Mass includes 

margins. Power consumption peaks during eclipse only 

(~few minutes / orbit). 

Spectral resolution 0.02–0.002 cm-1 Enable line shapes resolution and improved spectral 

selectivity. Determined by RF filters switchable in orbit if 

multiple resolution is required. 

SNR@8.5m >200 Key parameter in determining the sounding precision. 

Strongly dependent on integration time and resolution. 

FOV <0.5 mrad  

@ 25 mm dia. 

Limited to a single spatial mode, therefore inherently small 

even with small optics. Dependent on mirror diameter. 

Wavelength 8-12 m Central wavelength of laser can be tailored within this 

range. Once tailored, typically ~1 cm-1 narrow window are 

used. 



 

 
 

 

 

 

 

4.2 Hyperspectral Solar Disc Imager (HSDI) 

The HSDI fulfils two requirements. Primarily, a solar disk imager is required in order to ensure the required pointing 

knowledge of the spacecraft and reconstruct the sounding geometry: this is the prime function of the HSDI. As a 

secondary requirements, since the imager is required, by using a hyperspectral imager, additional science data useful to 

fulfil the science objectives can be obtained: aerosol extinction measurements, and oxygen A band measurements to 

derive pressure or air mass. Turning the solar disk imager into the HSDI cost-effectively adds a hyperspectral radiometer 

operating in the VIS/NIR to the instrument payload. 

To fulfil the miniaturization and cost-effectiveness requirements enabling the constellation, a Multi Spectral Filter Array 

(MSFA) in place of a standard CMOS imager is used. CubeMAP uses a standard MSFA from IMEC based on CMOSIS 

CMV2000, made of 16 spectral channels with bandpass Δλ of ~16 nm in the VIS/NIR. The filter responses are shown in 

Figure 5. A first performance analysis has been made based on the sensor specification, data from a laboratory ground-

based demonstrator and retrieval simulations. The sensor will provide a noise equivalent transmission of 10-4 in each 

band. The bands are suitable for O2, H2O column retrieval, as well as aerosol extinction coefficients. Figure 5 shows the 

sensor spectral response together with a simulated 12 km tangent high atmospheric limb transmission. Unlike other 

aerosol remote sensing techniques such as lidars and limb scattering sensors, CubeMAP will measure the aerosol 

extinction directly and does not need any assumptions on the particle type and size distribution. This is therefore, the 

ultimate aerosol remote sensing solution for the UT/LS and the stratosphere. 

The benefits of the approach retained for CubeMAP are twofold:  

- The solar disc image can be analysed at full sensor pixel resolution (2048x1088) to deduce a highly accurate 

pointing knowledge to +/- 1 pixel resolution (5.5 micron in the sensor plane). 

- 16 lower resolution images (512x272) can be extracted from the aliased mosaic image, and pixel averaging can 

be used to improve the SNR of the transmission measurement. 

 

 

Figure 5. Illustration of the way the HSDI transmittance data are simulated. The atmospheric forward model produces the 

high resolution transmittance of the atmosphere given the viewing geometry (12 km tangent height in this example). Main 

absorbers in scope are water, oxygen and aerosols. The instrument is primarily characterized by the response of its 16 

mosaic channels as well as the two out of band filters. 



 

 
 

 

 

 

 

To image the sun onto the mosaic sensor, an achromatic doublet is used. The layout has been folded to ensure 

compactness and the correct position of the focal plane as shown in Figure 6. The folding is done in-plane, except for the 

last mirror that sent the beam to the sensor installed on the electronic board. The telescope is diffraction limited at all 

wavelengths. Due to the high f# (29) there is a correspondingly large depth of focus = ± 1 mm, which makes this design 

relatively insensitive to uniform thermal variations. The completed model of HSDI is shown in Figure 6. It fits in an 

envelope of 10x10x3.1 cm3, weights 540 g (including margins) and consumes up 3.5 W in readout mode. 

  

Figure 6. Left, schematic of the optical layout of the HSDI instrument. Right, CAD model of the completed, enclosed 

instrument. 

 

5. THE CUBEMAP PLATFORM 

The space segment of the CubeMAP mission is comprised of three identical spacecraft that interact with the Mission 

Operations Centre (MOC) through a commercial Ground Station Network (GSN). The satellites fly on the same orbit and 

they are equally spaced along it with a nominal difference in the mean anomaly of 120 deg. This provides a coverage and 

revisit time in accordance with the overall objectives of the mission. 

Flight operation and control is handled by GomSpace Luxembourg operation centre using the Mega-Constellation 

Operations Platform (MCOP). Data processing is organised at the Centre for Environmental Data Analysis (CEDA) 

located on the Harwell Campus, Oxfordshire, UK. Long term data archival is anticipated to be at ESRIN (ESA's 

European Space Research Institute). 

Each spacecraft is a 12U GomSpace CubeSat (2U x 2U x 3U) designed to accommodate the four different payloads 

(three HIROS instruments and one HSDI) and support their operations in order to achieve the mission objectives. Figure 

7 depicts an artistic representation of the envisioned CubeMAP constellation. 



 

 
 

 

 

 

 

Figure 7. CubeMAP constellation. 

 

In order to achieve the mission objectives, a combination of GomSpace and third-party components are selected for the 

bus. The state of the art platform provides abundant payload volume, a precise Attitude and Orbit Control System 

(AOCS), a reliable power subsystem which can meet the required concept of operations, and a powerful communications 

subsystem with high data throughput.  

As platform key characteristics, it is worth highlighting: 

- Platform form factor: 12U (2U x 2U x 3U). 

- Platform Flight Heritage: CubeMAP inherits and combines the experience of ESA’s GOMX-3, GOMX-4, and 

GOMX-5 missions, as well as other commercial GomSpace projects. 

- Mass: 17.87 kg, including component and system level margins according to ECSS policies. 

- Power capabilities: 

o Orbit Average Power (OAP) ranging between 16.71 and 32.08 W, depending on the satellite attitude 

and the relative geometry between the orbit and the Sun. 

o Maximum Depth of Discharge (DoD) of the batteries of <20% at Beginning of Life (BOL), which 

ensures the platform reliability for the required lifetime. 

o Power budget compatible with the required concept of operations comprising two occultation 

experiments per orbit and four ground station passes per day. 

- AOCS: GomSpace advanced AOCS components, including a star tracker (Hyperion ST200) for fine attitude 

determination and an electric propulsion system (Enpulsion IFM NanoThruster) for orbit control. 

- Pointing accuracy: in Local Vertical Local Horizontal (LVLH) mode: < 0.1 degree @ 3σ in all three axes. 

- Internal data storage capabilities: 

o On-board computer: 512 MB (considerably higher than the retrieved housekeeping data, flight plans 

and memory used by the applications). 

o Software Defined Radio (SDR): up to 32 GB. 

- Communications subsystems: 



 

 
 

 

 

 

o Low rate TMTC subsystem comprising a GomSpace NanoCom AX2150 radio and a 

quasi-omnidirectional antenna. This system is to be used during the critical phases of the mission 

(LEOP and while the satellite is in safe mode) with data rate of 19.2 kbps (configurable) and 

uplink/downlink capabilities of 2.16 MB/day. 

o High Speed Link (HSL) subsystem which relies on the flight proven GomSpace NanoCom SR2000 

and the NanoCom ANT2150 with data rate of 7 Mbps (configurable) and uplink/downlink capabilities 

of 788.12 MB/day. 

- Delta-V capabilities: up to 213 m/s, depending on the operational point of the thruster. 

- Qualification: All qualified components have undergone the GomSpace qualification program which complies 

with a broad range of launch vehicles (NASA GEVS is used as reference). On-going product developments are 

undergoing the same program.  

- Deployer: The 12U platform is being designed to comply with the majority of commercial PODs available on 

the market. 

 

5.1 CubeMAP Spacecraft Subsystems 

This section provides a high-level description of the platform bus subsystems. 

5.1.1 Mechanical and utilities 

The mechanical subsystem comprises a 12U (2Ux2Ux3U) structure, external cover plates and a Flight Preparation Panel 

(FPP), used for on-ground battery charging and data interface. The 12U structure is an on-going development by 

GomSpace which will also be used for ESA’s GOMX-5 mission. The structure relies on the heritage of the GomSpace 

6U platform and aims to optimise the subsystems integration and the volume utilisation whilst ensuring the satellite 

integrity.  

5.1.2 Attitude and Orbit Control system / Guidance Navigation and control 

The advanced AOCS of the CubeMAP satellite is responsible for spacecraft pointing and stability. The ADCS computer, 

known as the NanoDock ADCS-6, is designed with two daughterboards: the ADCS computer (based on the 

NanoMind A3200) and the NovAtel OEM719 GNSS receiver. The computer is equipped with GomSpace ADCS 

software package which has extensive flight heritage and only requires to be tailored to the specific configuration of the 

CubeMAP mission. 

The system uses six NanoSense Fine Sun Sensors (one on each face), the NanoSense M315 3-axis magnetometer, 

Sensonor STIM210 gyroscope and Hyperion ST200 star tracker for primary Attitude Determination. The internal 

magnetometer on the ADCS computer works as backup to the NanoSense M315 and the internal gyro on the ADCS 

computer works as backup for the STIM210, providing redundancy. 

For Attitude Control, four GSW-600 wheels in a pyramid configuration are used, with a single wheel redundancy. The 

proposed system has an accuracy of less than 0.1 degree @ 3σ pointing error in all three axes. 

For Orbit Determination, the spacecraft can use two different inputs: 

- The Novatel OEM719 GNSS receiver is used together with the Tallysman TW1322 antenna covering both 

Global Positioning System (GPS) L1 and Glonass. 

- Two-Line Elements (TLEs) are provided from the ground station on a periodic basis and propagated on-board 

using a SGP4 model. 

Active Orbit Control is achieved using the Enpulsion IFM NanoThruster, an electric-propulsion system designed for 

CubeSats with flight heritage and the capacity of meeting the mission requirements. 

5.1.3 Electronic Power Systems 

The power subsystem provides the power generation, power distribution and energy storage functions to the spacecraft. 

The system is designed to: 



 

 
 

 

 

 

- Collect energy from the solar panels and convert it to system voltage. 

- Charge the batteries and maintain batteries in healthy conditions. 

- Convert system voltage to lower voltage fitted payloads. 

- Protect and provide power distribution for payloads. 

- System monitoring and power management. 

The system is comprised of one NanoPower BPX battery pack for energy storage; one NanoPower P60 for energy 

conditioning and distribution with one NanoPower Array Conditioning Units (ACUs) and three NanoPower Power 

Distribution Units (PDUs); and a combination of body-mounted and deployable solar panels to generate power.  

5.1.4 Command & Data-handling Systems 

The C&DH system makes use of the NanoMind A3200 as On-Board Computer (OBC) and GomSpace mission software. 

Apart from collecting housekeeping data and tasking other subsystems, the C&DH has a health monitoring application to 

act as Failure Detection Isolation and Recovery (FDIR) subsystem. The NanoMind A3200 has extensive flight heritage 

and is thus a space proven system. The A3200 daughterboard is accommodated on the NanoDock DMC-3 motherboard 

together with the NanoCom AX2150 S-Band Radio. 

5.1.5 Communications 

The CubeMAP spacecraft has two communications subsystems: one for near-omnidirectional S-Band links used during 

LEOP and as back-up, and one for S-Band HSL used during nominal operations. 

- LEOP/Back-up subsystem: 

o This subsystem comprises the NanoCom AX2150 S-Band radio and a S-Band quasi omni-directional 

antenna providing a close-to-spherical radiation pattern. The AX2150 daughterboard is accommodated 

on the DMC-3 motherboard together with the A3200 onboard computer (OBC). The TMTC specific 

S‑Band up and downlink are planned to be used for telemetry and commands only during LEOP and 

for backup purposes (afterwards TMTC data will be sent over the standard HSL). 

- HSL subsystem: 

o The HSL communications subsystem is comprised of a S-Band Antenna for HSL named 

NanoCom ANT2150 and a Software Defined Radio (SDR) called NanoCom SR2000. The GomSpace 

NanoCom ANT2150 is an active antenna specifically designed for interfacing with GomSpace SDR 

transceivers. The NanoCom ANT-2150-DUP is a full duplex antenna with RX in 2025-2110 MHz and 

TX in 2200-2290 MHz. The SR2000 system is based on the flight proven NanoCom SDR platform 

which comprises one motherboard called NanoDock SDR and two daughterboards: a 

NanoMind Z7000 computer and a NanoCom TR600 radio. 

 

5.2 CubeMAP spacecraft configuration 

As shown in Figure 8, the external faces of the spacecraft are covered by deployable (NanoPower DSP) and 

body-mounted (NanoPower MSP) solar panels and cover plates. Both low-rate TMTC (S-Band omni antenna) and HSL 

(NanoCom ANT2150) antennas are placed on one of the 4U sides of the spacecraft (+Z) together with the openings for 

the payloads’ fields of view. The Flight Preparation Panel is accommodated on the opposite 4U face (-Z) with the star 

tracker (Hyperion ST200) field of view and the electric propulsion thruster (Enpulsion IFM NanoThruster). The two 

deployable solar panels are stowed on the ±X faces and deployed after launch, pointing towards +Y. The +Y side is used 

to accommodate a 16-cell body mounted solar panel (NanoPower MSP), whilst the remaining faces are used as radiators 

to ensure that the payloads remain within their required temperature range. 



 

 
 

 

 

 

  

Figure 8. Left, CubeMAP spacecraft external view, +Z face. Right, CubeMAP spacecraft external view, -Z face.  

 

Figure 9 shows the internal layout of the platform bus components (the top wall has been removed in order to have a 

better view of the distribution of the different parts). All the avionics components (except for the propulsion system and 

the star tracker) are located on the top 6U volume (i.e. facing the +Y side of the satellite). The bottom 6U are allocated 

for the payload. This configuration guarantees that the payload is in contact with the cold face of the spacecraft with a 

more stable thermal behaviour. 

 

Figure 9. CubeMAP spacecraft internal view. 

 

5.3 CubeMAP spacecraft summary 

The GomSpace 12U spacecraft proposed for the CubeMAP mission provides all the resources required to meet the 

mission objectives and requirements. The platform ensures the integrity of the payload and the bus components, provides 



 

 
 

 

 

 

a good thermal interface so that all subsystems are within their acceptable range, and it provides all electrical, software 

and mechanical interfaces. It is a mature spacecraft given that the avionics rely on flight proven components and the 

on-going product developments inherit the experience from existing systems and will reach TRL 9 before the launch date 

expected for CubeMAP. 

6. CONCLUSION 

The science case and some of space segment elements of the CubeMAP mission currently being consolidated in the 

context of the ESA SCOUT programme have been briefly presented. CubeMAP focuses on the monitoring of middle 

atmospheric processes in the tropics, though high-resolution thermal infrared spectroscopy in the limb, using the sun as a 

background. High spectral resolution infrared spectroscopy of atmospheric constituents of the middle atmosphere, 

resolving Doppler limited lines, is usually achievable by very large instrument payload incompatible with nanosatellite 

platforms. CubeMAP obviates these limitations for the first time. As a result, the traditional lack of spatial coverage 

inherent to limb solar occultation can be mitigated through constellation flying, hence offering an excellent trade-off in 

terms of coverage, sounding accuracy, and cost. 

In addition to its immediate scientific objectives, CubeMAP contributes to developing a novel resilient approach to 

atmospheric observation: it offers a high level of deployment flexibility and system modularity, as well as economy of 

scale, through the use of identical payloads and platforms but targeted towards specific Earth observation goals. 

CubeMAP is highly complementary to the existing nadir sounding infrastructure and will add value by enhancing its 

outputs and exploitation. It also addresses the forthcoming critical gap in solar occultation sounding capabilities that is 

inevitable if this mission is not flown. 
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