
A substitution of the general partial
differential equation with extended
polynomial networks
Conference or Workshop Item

Accepted Version

Zjavka, Ladislav, Snásel, Vaclav, Ojha, Varun ORCID
logoORCID: https://orcid.org/0000-0002-9256-1192 and
Pedrycz, Witold (2016) A substitution of the general partial
differential equation with extended polynomial networks. In:
International Joint Conference on Neural Networks (IJCNN),
25-29 Jul 2016, Vancouver, Canada, pp. 4819-4826. doi:
https://doi.org/10.1109/IJCNN.2016.7727833 Available at
https://centaur.reading.ac.uk/93555/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1109/IJCNN.2016.7727833

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

Ladislav Zjavka, Václav Snášel, Varun Kumar Ojha
Department of Computer Science and IT4Innovations

Faculty of Electrical Engineering and Computer Science

VŠB-Technical University of Ostrava

Ostrava, Czech Republic

Witold Pedrycz
Department of Electrical & Computer Engineering

University of Alberta

Edmonton, Canada

Abstract — General partial differential equations, which can

describe any complex functions, may be solved by means of the

dimensional similarity analysis to model polynomial data

relations on the basis of discrete observations. Designed new

differential polynomial networks define and substitute for a

selective form of the general partial differential equation using

fraction derivative units to model an unknown system or pattern.

Convergent series of relative derivative substitution terms,

produced in all network layers, describe partial derivative

changes of some combinations of input variables to generalize

elementary polynomial data relations. The general differential

equation is decomposed into polynomial network backward

structure, which defines simple and composite sum derivative

terms in respect of previous layers variables. The proposed

method enables to form more complex and varied derivative

selective series models than standard soft-computing techniques

allow. The sigmoidal function, commonly employed as an

activation function in artificial neurons, may improve the

polynomial and substituting derivative term abilities to

approximate complicated periodic multi-variable or time-series

functions in a system model.

Index Terms — partial differential equation substitution;

differential polynomial network; substitution derivative sum term;

multi-variable function approximation

I. INTRODUCTION

onventional artificial neural networks (ANN) are not able

to generalize input pattern elementary data relations,

using only weighted sums of inputs, which describe overall

similarity relationships of new presented test input patterns

with the trained ones. The ANN generalization from the

training data, based on the absolute interval values, may be

difficult or problematic if the model has not been trained with

inputs or outputs around the range covered by testing data [1].

Polynomial neural networks (PNN) decompose the

Kolmogorov-Gabor polynomial (1), which can express the

general connections between input and output variables of a

system, into many simpler relationships, each described by

low-order multi-variable polynomial processing functions (2)

of single neurons.


= = == ==

++++=
n

i

n

j

n

k

kjiijk

n

i

n

j

jiij

n

i

ii xxxaxxaxaaY
1 1 11 11

0 ... (1)

n – number of variables A(a1, a2, ... , an), ... - vectors of parameters

X(x1, x2, ... , xn) - vector of input variables

Group Method of Data Handling (GMDH) created by a

Ukrainian scientist A. Ivakhnenko in 1968 [2], forms the PNN

in successive steps, adding the next new layers, calculating

polynomial parameters of the last layer and selecting its best

neurons (nodes), while an improvement is attainable. The

PNN can model highly non-linear systems as the neurons

polynomial degree doubles in each following hidden layer [3].

y = a0 + a1xi + a2xj + a3xixj + a4xi
2 + a5xj

2 (2)

Partial differential equations can model a variety of

systems, which are not possible to describe unambiguously by

means of unique explicit functions and may be solved e.g. by

means of evolutionary strategies [4], genetic programing

techniques [5] [6] or ANN [7]. Differential polynomial neural

network (D-PNN) is a new neural network type, designed by

L. Zjavka [8], which extends the complete PNN structure to

define and solve the general partial differential equation

(PDE). It produces convergent series of relative polynomial

derivative terms, which can substitute for the selected PDE

terms to model a searched function on account of data

samples. The D-PNN operating principles differ from that of

the GMDH, based on the Taylor-series expansions, however it

decomposes the general PDE analogous to the PNN does the

general connection polynomial (1). In contrast with the ANN

each D-PNN neuron (i.e. substitution derivative term in this

concept), regardless of its layer, can be directly involved

(selected) in the total network output sum (PDE solution).

Fig. 1. Biological neural cells can remind a multinomial form.

A Substitution of the General Partial Differential

Equation with Extended Polynomial Networks

C

Biological neural cells seem to apply a similar principle.

The dendrites collect signals incoming from other neurons but

unlike the ANN functionality the signals can interact already

in single dendrites (input lines) (Fig.1.). Multi-variable

polynomials might model this framework by means of the

products of some input variables. The weighted combinations

are summed in the cell of the body and then transformed

through time-delayed dynamic periodic activation function

(the activated neural cell generates series of time-delayed

output pulses in response to its input signals). The period of

this activation function depends on values of input variables

combinations and seems to represent a derivative operator of a

single PDE substitution term. According to these assumptions

brain applies combined techniques of relative data processing

to compose and substitute for systems of differential

equations, forming time-dependent relative pulse models, very

efficient for a large scale variability, variable-differences and

adaptability of varied (shape) input pattern forms.

Fig. 2. Low-level properties - line terminations.

The D-PNN may also decompose and generalize a (visual)

input pattern into some characteristic elements relations of a

model function, which can identify all its manifold forms

(analogous to the ANN function approximation and pattern

classification). The D-PNN can correctly recognize any

untrained variable-shape pattern forms, which keep the trained

data relations, regardless of the size and position in the input

matrix [8]. Many biological and psychological studies suggest

the brain applies just relative units of input variables, contrary

e.g. to the absolute input signal processing of a CCD camera

[9], and a reductive decomposition of complete input patterns

into some major characteristic elements - low-level properties

(Fig.2.). Line terminations are by far the most important

features for the correct human letter identification [10]. Other

features as intersections, curvatures or slants are little

considered [11]. Generalized relations of the fragment

positions could define a type model for all alterative visual

pattern forms [8]. The PNN application in the field of

differential equation solutions is a novelty however the

experimental results indicate the method is efficient, using

only a few substitution derivative terms [12], and can model

physical or natural dynamic processes or systems that are too

uncertain or complex to be easy described unambiguously by

means of standard composite computational techniques.

II. PARTIAL DIFFERENTIAL EQUATION SUBSTITUTION

D-PNN forms and solves the general partial differential

equation (3), with a sum combination (4) of selected

substitution fractional multi-variable polynomial derivative

terms (9). The unknown function u is possible to calculate

from the PDE (3), which involves also its simple form, as the

sum of the rest of its partial function derivative terms (4).

 0...
1 1

2

1

=+



+




++ 

= ==

n

i

n

j ji

ij

n

i i

i
xx

u
d

x

u
cbua (3)

u = f(x1, x2,, … , xn) - searched function of n-input variables

a, B(b1, b2,, ..., bn), C(c11, c12, ,...) - parameters

In the case of the pattern recognition (described by the

modelled function of a PDE solution), the simple function u

term (without derivatives) must be added to the derivative

fraction sum (in each block) to keep the complete PDE

substitution and produce a coequal output identification to all

presented input patterns of the same class (shape-form) [8].




=

=
1k

kuu (4)

If each variable xi of a function u (4) is independent of other

variables, then the u function is separable and might be

approximated by its partial sum uk functions (4), i.e. its

derivative terms, formed in respect of 1 or more variables. The

searched function u may be expressed in the form of sum

series (4), consisting of convergent series arising from the

competent partial derivative terms (5) of 2 input variables.


































  2

2

2

21

2

2

1

2

21

,,,,
x

u

xx

u

x

u

x

u

x

u kkkkk (5)

The function partial derivatives can be expressed in a form

of the product of 2 functions, where g means one (or several) -

variable function of xi only and h is any function of all input

vector variables x(x1, x2, … , xn) (6).

),...,,()(
),...,,(

21
21

ni

i

n xxxhxg
x

xxxu
=



 (6)

The similarity theory is based on the hypothesis functional

relationships exist among the non-dimensional parameters,

which can describe a physical system. The Buckingham 

theorem removes extraneous information from a problem by

forming dimensionless groups and is the fundamental of

dimensional analysis. It states if the eq. (7) is the only

relationship among the qi‘s and if it holds for any arbitrary

choice of the units in which q1,q2 ,…,qn are measured, then (7)

can be written in the form using 1,  2 , … , m as independent

dimensionless products of the qi’s (8). If k is the minimal

number of principal quantities necessary to express the

dimensions of the q's, then m = n − k [13].

 (q1,q2 , … , qn) = 0 (7)

 (1,  2 , … , m) = 0 (8)
where 1,  2 , … , m are independent dimensionless products of the q’s.

If a differential equation form is unknown, the dimensional

analysis can search for a non-dimensional set of units from

variables using matrix methods of linear algebra. The searched

function must be invariant to a change of model units for each

ith dimensional variable
i

Dji

j

DD

i XX ii  ...21

21= . If a physical

model with i-dimensional variables is assumed, the invariance

for all possible  changes of j-units may be written in the

following forms (9) (10).

()i

Dji

j

DDDj

j

DDDj

j

DD

i

XXXF

XXXF

ii  ...,...,...,...

),...,,(

2122122111

212

2

211

1

21

21

=

= (9)

0...2

2

1

1

=








++









+









=





j

i

ijjj

X

X

FX

X

FX

X

FF


 (10)

j - unit scale change Dji - dimensionality of the ith variable

j - number of fundamental units

The designed PDE substitution terms (11) are formed

according to the adapted method of integral analogues, which
is a part of the similarity dimensional analysis. It replaces

mathematical operators and symbols of a PDE by the ratio of

corresponding values. Derivatives are replaced by the integral

analogues, i.e. derivative operators are removed and along

with all operators replaced by analogue or proportion signs in

equations to form dimensionless units (groups) of variables

[14]. According to the above-mentioned concept definitions

the relative polynomial fractions (11) describe partial

derivative relations of n-input variables through the PDE

terms (3).

()
...

......

...

),...,(

110

21122110

21

1

++

++++++
=

=




+

xbb

xxaxaxaxaa
w

xxx

xxf

n
m

nnn
i

m

n

m

 (11)

n - combination degree of a complete polynomial of n-variables

m - combination degree of a derivative polynomial denominator

The complete polynomials of n-input variables (2),

substitute for the PDE term numerators (3) and define the

partial uk functions (4) from the sum series (5) in the complete

searched function u solution. The denominator (11) is a

derivative part, which gives a partial dependent derivative

change of some polynomial combinations of variables. It arose

from a competent partial derivation of the complete n-variable

input polynomial. The root functions of D-PNN neurons, i.e.

substitution PDE terms (11), reduce the numerator

combination degree in order to form dimensionless fractions.

()

1

2
1

2121

1

21

1

1),(

x

xxxx

x

xxf

+

+++
=



 (12)

()

2

2
1

2121

2

21

1

1),(

x

xxxx

x

xxf

+

+++
=



 (13)

The simplest linear form of 2-variable polynomial fraction

terms, represented by 1st derivative substitutions only, is

considered to prove the validity. All parameters ai, bi can be

set simplified to 1 (12) (13). If f/x1 is integrated with respect

to x1 and f/x2 with respect to x2, the equations (14) (15)

should give the same result: f(x1, x2) as f/x1 and f/x2 are

partial derivatives of the same function f (16) (17). Partial

derivatives of the functions f in eq. (11) are valid if

denominator exponents equal 1, only the complete polynomial

numerator may apply a root m/n quotient to balance the

combination degree.

2
1

1

2
1

2

1

2
1

21

1

21

)1(

)1(

1

))1)(1((),(

x

x

x

xx

x

xxf

+

+
=

+

++
=



 (14)

2
1

2

2
1

1

2

2
1

21

2

21

)1(

)1(

1

))1)(1((),(

x

x

x

xx

x

xxf

+

+
=

+

++
=



 (15)

),(
 1

)) (1) ((1) 2(1
21

1

2
1

211
1

1

xxf
x

xxx
dx

x

f
g =

+

+++
=




= 

 (16)

),(
 1

)) (1) ((1) 2(1
21

2

2
1

212
2

2

xxf
x

xxx
dx

x

f
h =

+

+++
=




= 

 (17)

Blocks of the D-PNN group neurons with the same inputs

(Fig.3.), one for each fractional polynomial derivative

combination of the sum PDE terms (3). Each block contains a

single output polynomial without derivative part, which enters

the next hidden layer, i.e. the D-PNN block skeleton is formed

by the GMDH PNN. Neurons don’t affect the block output but

can be directly involved in the total network sum output of a

PDE solution (4). Each block has 1 and neuron 2 vectors of

adjustable parameters a and a, b respectively. All neuron and

block polynomial outputs cannot become negative values.

Fig. 3. A block of derivative neurons

The simple non-linear 2-variable GMDH polynomial (2) in

the block neurons, which form the PDE substitution terms

(11), is applied in all following experiments. 2 or more

variable single combination blocks (Fig.3.) can approximate

any multi-variable function; published experiments of n>2,

using only 1-block solutions, are only demonstration cases [8].

The probability of neurons activations PA is set around the

value 0.5 (may be adapted in respect of the application), so a

block largely produces about half of all the possible simple

neurons to form an optimal PDE solution.

0,,,,,,,
2

2

2

21

2

2

1

2

21

21 =

































x

u

xx

u

x

u

x

u

x

u
uxxF (18)

where F(x1, x2, u, p, q, r, s, t) is a function of 8 variables

Partial
differential
equation
solution

x1 x2

 Block output

+ + … 5 simple
 neurons

 /

Input
variables

Composite

neurons

 /

 /



GMDH
polynomial

While using 2 input variables an equivalent 2nd order PDE

(3) may be expressed in the form (18), which derivative

variables of the PDE terms, correspond exactly to all the

GMDH polynomial (2) variables. The 2-variable block

neurons form and substitute for all the relevant partial

derivative terms, so each block includes 5 simple neurons

formed with respect to 2 single linear x1, x2 (19), 2 squared x1
2,

x2
2 (20) and 1 combination x1x2 (21) derivative variables of the

2nd order PDE substitution (18) in a searched 2-variable u

function model.

()
)(

)(),(

1102
1

2
1

2

25

2

14213221106
1

1

1

21

1
xbb

xaxaxxaxaxaa
w

x

xxf
y

+

+++++
=




=

 (19)

)(6

)(3),(
2

22210

2

25

2

1421322110

32

2

21

2

3
xbxbb

xaxaxxaxaxaa
w

x

xxf
y

++

+++++
=




=

 (20)

)(6

)(4),(

121131221110

2

25

2

1421322110

5

21

21

2

5
xxbxbxbb

xaxaxxaxaxaa
w

xx

xxf
y

+++

+++++
=




=

 (21)

The D-PNN total output Y is the arithmetic mean of all the

active neuron outputs (22) so as to prevent the varying number

of neurons (of a sum combination) from influencing the total

network output sum value.

k

y

Y

k

i

i
== 1 k = number of active neurons (PDE terms) (22)

The input variables (of a data set) are normalized to the

range <0.5, 1.5>. All the neuron and block output

polynomials are divided by the number of the items

(members) they include (19), which is especially useful for an

applications of the block outputs in next hidden layers and the

parameters adjustment. This way all the neurons (PDE terms)

and blocks (the complete network) produce its outputs around

the value 1.0, mostly in the interval <0.9, 1.1>, which may be

adapted (optimized). The internal total network output must be

scaled (denormalized) to retrieve desired range values of the

output function.

III. MULTI-LAYER BACKWARD D-PNN

Multi-layer networks form composite functions (24). The

blocks preceding layers create internal functions (23), which

substitute for the next hidden layer input variables of neuron

and block polynomials to produce external functions (24).

Composite PDE terms, i.e. composite function derivatives

with respect to the variables of previous layers blocks, are

calculated according to the partial derivation rules (25)(26).

),...,,()(21 niii xxxXy  === i=1, … , m (23)

F(x1, x2, … , xn) = f(y1, y2, … , ym) = f(1(X), 2(X),..., m(X)) (24)
























++









+









=













++









+









=













++









+









=





n

m

mnnn

m

m

m

m

xy

f

xy

f

xy

f

x

F

xy

f

xy

f

xy

f

x

F

xy

f

xy

f

xy

f

x

F







...

..........

...

...

2

2

1

1

22

2

22

1

12

11

2

21

1

11
 (25)


= 







=



 m

i k

i

i

m

k x

X

y

yyyf

x

F

1

21)(),...,,( k=1, … , n (26)

The blocks of the 2nd and following hidden layers form

additionally composite terms (CT), i.e. neurons, which

substitute for composite function derivatives with respect to

the output and input variables of back connected previous

layers blocks (Fig.4.). For example the 1st block of the last 3rd

hidden layer forms 5 simple neurons, i.e. basic terms (19) (20)

(21) of the general PDE (3) solution using its own 2 input

variables only (Fig.5.). Additionally it creates 10 CT (a double

of the neurons) with respect to the previous 2nd layer 2 blocks

derivative input variables using composite function derivatives

products with respect to reverse outputs of the 2 back-

connected blocks (27). As the couples of variables of the

internal functions 1(x1, x2) and 2(x3, x4) can differ from each

other (Fig.5.), their partial derivations are calculated

separately in respect of each individual block variables, so

each sum (26) consists of only 1 term (single neuron). The 20

CT, formed with respect to the 1st layer 3 blocks input

variables, are created analogously (28). The back-calculation

of the composite function derivatives is well done by a

recursive algorithm in the network tree-like structure (Fig.5.).

 Fig. 4. 3-variable multi-layer D-PNN with 2-variable combination blocks

The number of block neurons, which include composite

function derivatives, doubles each previous back-connected

layer, so the probability activation PA of CT, which derivatives

are formed with respect to the previous layers block input

variables must halve together with the increasing number of

hidden layers they comprise (Fig.5.). All the blocks, regardless

of the network layer and position form equivalent neurons,

which sum (total network output) substitutes for the general

PDE (3) and have the same initial probabilities of neurons

activations PA that may be optimized [15].

Backward
connections

 x1 x2 x3

Differential
equation
substitution

x22 x21

x33 x32 x31

x23

Y

x13 x12 x11

 N = simple neurons (terms)

CT = composite terms
P = output polynomial

P

P

P

N

N

N

N

N

CT

P

N

N

N

N

N

CT

P

N

N

N

N

N

CT

N

N

N

N

N

CT

N

N

N

N

N

CT

N

N

N

N

N

CT

P

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

2

1121110

21

22

2

225

2

214222132222110

22

11

2221

2

2

2
1

)(

),(

xbxbb

x

x

xaxaxxaxaxaa

w
x

xxf
y

++


+++++


=



= (27)

210

11

12

21

22

2

225

2

214222132222110

3

2

2221

3

2
1

2
1

)()(

),(

xbb

x

x

x

x

xaxaxxaxaxaa

w
x

xxf
y

+


+++++


=



= (28)

Only some of all the potential neurons (substitution terms)

may be included in the PDE sum composition, even though

they have an adjustable term weight wi. The selection of a fit

neuron combination is the principal part of the D-PNN model

composition and it may apply the Particle Swarm

Optimization (PSO) to adjust the neuron activation

probabilities PA in each block (Fig.5.), binary PSO to combine

particle binary vectors in new generation solutions or

Simulated Annealing (SA), able to solve large

combinatorial optimization problems with random

solutions in the initial composing phase. The standard PSO

applied the self-cognition and social coefficients (c1, c2 =

1.5), inertia weight ( = 0.5) to form 20 individual

solutions with the velocity limit <-1.5, 1.5>. The binary PSO

uses binary operators and the corresponding coefficients

settings in the standard PSO (velocity) equations to form new

individuals [15]. Parameters of polynomials and PDE term

weights are represented by real numbers, randomly initialized

from the interval <0.5, 1.5> and adjusted by means of the

gradient steepest descent method [17] combined with a

difference evolution algorithm (EA) [16], performed

simultaneously with the best-fit neuron combination search

[18].

Fig. 5. D-PNN 3rd layer 1st block backward connections, applied for the

composite substitution terms formation.

The root mean squared error (RMSE) (29) was applied for

the parameter optimization and PDE term selection. The D-

PNN can be trained with only a small set of input-output data

samples, analogous to the GMDH algorithm [2].

()
min

2

1 →

−

=


=

M

yy

E

M

i

i

d

 (29)

The D-PNN (also GMDH) approximation ability of

complicated periodic functions is possible to improve by

means of a sigmoidal transformation (sig) of the squared

power items together with their parameters in both the neuron

and block output polynomials (30).

y = (a0+a1xi+a2xj+a3xixj+sig(a4xi
2)+sig(a5xj

2)) / 6 (30)

IV. EXPERIMENTAL STUDIES

Neural networks can learn function f(x) relations of 3

random input x variables, for a defined range of the values.

ANN models were compared, since it is not necessary to keep

the order of multi-variable function training samples.

Following experiments apply training data sets, which include

50 data samples x1, x2, x3 -> f(x1, x2, x3), randomly generated

by a benchmark. Friedman’s benchmark approximation

models were first trained within a reduced function output

range <0, 10> values for the input vector x interval <0, 1>

variables. After the models were tested with 3 random input

variables from x <0, 1> again to estimate the gradually

increasing true function f(x) values on a complete (extended)

test interval <0, 15>. The graph cannot display all the 3D-

benchmark 3 input parameters x, so it features only the lowest

approximation RMSE of the output function successive course

values (Fig.6.). The accuracy of both models is co-equal on

the training interval <0, 10> function values however the

ANN approximation ability falls more rapidly outside of this

range, while the D-PNN alternate errors grow just slowly

(Fig.6.).

Fig. 6. 3-D Friedman’s benchmark approximations minimal testing

RMSE: ANN=0.61, D-PNN=0.36 (PSO) and D-PNN=0.32 (B-PSO).

D-PNN models are more succesful in the approximation of

polynomial benchmarks and if the models are not trained and

tested within the same ranges of input or output function

values (Fig.6.), which holds for all the tested benchmarks, as

the D-PNN applies relative data [15]. Training and testing

intervals of all following experiments coincide. The complete

1st layer

+ 20 CT
PA = 0.125

2nd layer

+ 10 CT
PA = 0.25

x22

 x1 x2 x3

x31

x21

x13 x12 x11

N = simple terms (neurons)
CT = composite terms (neurons)
P = block output polynomial
PA = probability of neurons
activation

P

P

P

P

N

N

N

N

N

CT

P

5
simple
neurons

PA = 0.5

test RMSEs of the benchmark 4D-graph hyper-surface

approximation, were calculated with the gradually increasing

3 input parameters in a step 0.05 for x <0, 1> (in a matrix

20x20x20) from exact function f(x) values compared with the

models output estimations f’(x). The characteristics - Average

training, Minimal testing, Average testing total RMSE and

Standard deviation (Tab.1.) were calculated from 25

successful model experiments.

TABLE I. FRIEDMAN’S BENCHMARK APPROXIMATIONS

Method
Complete matrix RMSE

TestMin TestAver TrainAver St.dev. 

ANN (1-layer) 0.30 0.39 0.08 0.078

D-PNN 0.30 0.43 0.13 0.109

 The ANN and D-PNN using the sigmoidal polynomial

transformations (30) (D-PNNs) approximated Schwefel’s

periodic benchmark for input variables x <0, 100> in the

function output range f(x)  <1040, 1420>. The models,

trained with 50 random samples on the complete function

output interval, were tested with gradually increasing values of

input variables x in a step 5 (20x20x20 matrix) to calculate the

complete surface total RMSE. Tab.2. shows both models

results in 25 successful runs.

TABLE II. SCHWEFEL’S BENCHMARK APPROXIMATIONS

Method
Complete matrix RMSE

TestMin TestAver TrainAver St.dev. 

ANN (1-layer) 8.7 13.6 4.8 2.42

D-PNNs 5.9 11.2 3.5 2.08

The ANN applied 1-hidden layer with around 50-60

neurons, for this and following cosine-mixture benchmark

approximations (Tab.3). Both the models were tested with the

total RMSE again for the complete matrix values of input

variables x<0, 1> on the training function interval f(x)

<0.25, 8.5>.

TABLE III. COSINE-MIXTURE BENCHMARK APPROXIMATIONS

Method
Complete matrix RMSE

TestMin TestAver TrainAver St.dev. 

ANN (1-layer) 0.18 0.24 0.07 0.039

D-PNNs 0.10 0.19 0.04 0.052

V. REAL SYSTEM MODELS

Real multi-variable functions may be represented by local

relative humidity observations, related to 3 weather input

variables: the wind speed, temperature and sea level pressure.

The models can roughly estimate the time and amount of

precipitation and indicate also the cloudiness progress,

according to the current state 3 input variables. The relative

humidity values increase at night hours (along with a

temperature decrease), a straight or sudden grow can indicate

precipitations (Fig.9.), a slight or gradual changes, in the slope

curve, feature a variable cloudiness (Fig.8.) [19].

Fig. 7. Helena, 19.12.2013: RMSE - NOAA = 10.0, D-PNN = 5.54.

Fig. 8. Helena, 20.12.2013: RMSE - NOAA = 10.45, D-PNN = 5.34.

Fig. 9. Helena, 12.1.2014: RMSE - NOAA = 16.22, D-PNN = 7.07.

Fig. 10. Helena, 13.1.2014: RMSE - NOAA = 14.94, D-PNN = 13.14.

Fig. 11. Helena, 14.1.2014: RMSE - NOAA = 16.13, D-PNN = 14.27.

Fig. 12. Helena, 15.1.2014: RMSE - NOAA = 30.11, D-PNN = 5.10.

The D-PNN, trained for local actual weather relevant data

relations of several last days (2-6), can revise a meso-scale

numerical weather prediction (NWP) model prognosis in the

cases of settled weather periods. The correction model applies

corresponding NWP model outputs to revise one target 24-

hour original prognosis. The National Oceanic and

Atmospheric Administration (NOAA) provides forecasts [A]

and current daily observations [B] for a selected locality [C]

and also complete free data archives [D]. NOAA forecasts

enter the D-PNN model, locally trained with the same data

types of observations (Helena, Montana), to produce output

hourly revisions of the relative humidity 24-hour forecast at

the same time points (Fig.7. - Fig.12.). The presented D-PNN

correction models were tested (compared with real values) on

the complete 24-hour forecasting interval, which is naturally

not possible in real-time. The trained models might be tested

with the last trained day forecasts but this naturally reduces

the prediction accuracy. The optimal number of training days

(model initialization time) is another parameter necessary to

determinate. The applied relative humidity models do not

allow for any time-series but only multi-variable function

relations.

VI. PATTERN IDENTIFICATION MODELS

The D-PNN can generalize input pattern forms by means of

its model function, which represents the trained feature

relations, to recognize the correct class. Each block must add

its polynomial output (2) to the substitution fraction series sum

(if selected any) in order to allow the network to form the

complete PDE (3) and produce a coequal output to the same

kind (class) of patterns. Average identification results for the

Breast Cancer Wisconsin (Original) Data Set [E] from the UCI

archives are presented in the Tab.4., which compare several

published methods using the Artificial meta-plasticity neural

network (AM-NN) [20], Entropy based neural network (EB-

NN) [21], Discrete particle swarm optimization (D-PSO) [22],

Least square support vector machine (LS-SVM) [23],

Association rule neural network (AR-NN) [24] and Genetic

algorithm rotation forest (GA-RF) [25]. Conventional

validation (complete data are portioned into one training and

test set) and multi-fold cross-validation (CV) techniques were

performed to compare the accuracy of the chosen methods. In

k-fold CV whole data are randomly divided to k-mutually

exclusive and approximately equal size subsets. The

classification algorithm is trained and tested k-times. In each

case, one of the folds is taken as test data and the remaining

folds are added to form training data. Thus k-different test

results exist for each training-test configuration. The average

of these results gives the test accuracy of the algorithm.

TABLE IV. BREAST CANCER IDENTIFICATION

Method Accuracy [%] Train./Test

AM-NN 99.26 60-40%

D-PNNs 98.9 70-30%

EB-NN 98.83 10-fold CV

D-PSO 98.71 2/3 - 1/3

LS-SVM 98.53 10-fold CV

AR-NN 97.4 3-fold CV

GA-RF 96.78 10-fold CV

The D-PNN gets with the best testing accuracy 99.5%

(trained on the first 70% data) and 98.5% (trained with 50%).

The experiments were done with the standard D-PNN (for

pattern identification), which was not specially adapted for the

disease recognition as the compared methods usually do. A

feature and block selection algorithm (see the Discussion)

might improve its performance. The data rows with missing

attribute values were removed from the original data set

according to the published compared results.

VII. DISCUSSION

The D-PNN forms and solves the general PDE, which

model solutions enables to form its own independent weather

forecasts based on time-series observations only. However the

next hour forecasts for each grid point (in a selected area),

which enter the model calculations for the next step ahead

predictions would be extremely time-consuming. If the

number of input variables increases then the number of the D-

PNN 2-combination couples grows exponentially in each next

hidden layer (the previous identification models apply 9

inputs). Thus the D-PNN (also PNN) with more than 3 input

variables must face to the “combinatorial explosion”

(analogous to the GMDH) and select from the best blocks in

each hidden layer [8] along with the overall neuron

(substitution PDE term) selection process.

VIII. CONCLUSIONS

The D-PNN combines the multi-layer network composite

function structures with mathematical techniques of PDE

substitutions. It may implement the PDE terms using other

substitution methods, e.g. Fourier series. The presented

models define and solve the general PDE with a sum

combination of selected simple and composite substitution

derivative terms, produced in all layers of the complete

GMDH PNN. The D-PNN function approximation and pattern

recognition models are based on the polynomial derivative

generalization of elementary data relations. The D-PNN (also

PNN) model complexity is proportional to the increasing

number of input variables, as additional hidden layers of

blocks can define all the potential combination PDE terms.

This is contrary to conventional ANN 1 or 2-hidden layer flat

structures, which are not able to form more complex and

versatile models of dynamic systems (with more variables).

The D-PNN can model complex dynamic systems that a PDE

can preferably describe and which exact representation is

unknown. The D-PNN is preferable to approximate

polynomial-like functions however the sigmoidal

transformation of the polynomial squared items improves its

ability to model complicated periodic functions.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,

Youth and Sports from the National Programme of

Sustainability (NPU II) project „IT4Innovations excellence in

science - LQ1602" and is partially supported by Grant of SGS

No. SP2016/ 146, VŠB - Technical University of Ostrava,

Czech Republic.

REFERENCES

[1] C. Giles, “Noisy time series prediction using recurrent neural networks
and grammatical inference,” Machine Learning, vol. 44, p. 161–183,
2001.

[2] N. Y. Nikolaev and H. Iba, Adaptive Learning of Polynomial Networks.
Genetic and evolutionary computation, New York: Springer, 2006.

[3] L. Menezes and N. Nikolaev, “Forecasting with genetically programmed
polynomial neural networks,” International Jounal of Forecasting,
pp. 249–265, 2006.

[4] J. Chaquet and E. Carmona, “Solving differential equations with fourier
series and evolution strategies,” Applied Soft Computing, vol. 12,
p. 3051–3062, September 2012.

[5] H. Iba, “Inference of differential equation models by genetic
programming,” Information Sciences, vol. 178, p. 4453–4468, December
2008.

[6] H. Cao, L. Kang, Y. Chen, and J. Yu, “Evolutionary modeling of
systems of ordinary differential equations with genetic programming,”
Genetic Programming and Evolvable Machines, vol. 1, pp. 309–337,
October 2000.

[7] I. Tsoulos, D. Gavrilis, and E. Glavas, “Solving differential equations
with constructed neural networks,” Neurocomputing, vol. 72, pp. 2385–
2391, 2009.

[8] L. Zjavka, “Recognition of generalized patterns by a differential
polynomial neural network,” Engineering, Technology & Applied
Science Research, vol. 2, no. 1, pp. 167–172, 2012.

[9] M. Druckmüller, “Phase correlation method for the alignment of total
solar eclipse images,” Astrophysical Journal, vol. 706, no. 2, p. 1605–
1608, 2009.

[10] D. Fiset, C. Blais, C. Ethier-Majcher, M. Arguin, D. Bub, and
F. Gosselin, “Features for identification of uppercase and lowercase
letters,” Psychological science, vol. 19, no. 11, 2008.

[11] V. Willenbockel, J. Sadr, D. Fiset, G. Horne, F. Gosselin, and J. Tanaka,
“Controlling low-level image properties: The shine toolbox,” Behavior
Research Methods, vol. 42, pp. 671–684, 2010.

[12] L. Zjavka and A. Abraham, “Failure and power utilization system
models of differential equations by polynomial neural networks,” in
Proceedings of the 13th international conference on Hybrid Intelligence
Systems, Hammamet, Tunisia, December 4-6 (A. Abraham, ed.), 2013.

[13] D. Randall, Dimensional Analysis, Scale Analysis, and Similarity
Theories. September 2012.

[14] K. Chan and W. Y. Chau, “Mathematical theory of reduction of physical
parameters and similarity analysis,” International Journal of Theoretical
Physics, vol. 18, pp. 835–844, November 1979.

[15] L. Zjavka and W. Pedrycz, “Constructing general partial differential
equations using polynomial and neural network,” Neural Networks,
vol. 73, p. 58–69, 2016.

[16] S. Das, A. Abraham, and A. Konar, “Particle swarm optimization and
differential evolution algorithms,” in Studies in Computational
Intelligence, vol. 116, (Berlin), pp. 1–38, Springer-Verlag, 2008.

[17] N. Y. Nikolaev and H. Iba, “Polynomial harmonic GMDH learning
networks for time series modeling,” Neural Networks, vol. 16, p. 1527–
1540, 2003.

[18] L. Zjavka and V. Snášel, “Constructing ordinary sum differential
equations using polynomial networks,” Information Sciences, vol. 281,
pp. 462–477, 2014.

[19] L. Zjavka, “Numerical weather prediction revisions using the locally
trained differential polynomial network,” Expert Systems With
Applications, vol. 44, p. 265–274, 2016.

[20] A. Marcano-Cedeno, J. Quintanilla-Dominguez, and D. Andina, “Wbcd
breast cancer database classification applying artificial metaplasticity
neural network,” Expert Systems with Applications, vol. 38, p. 9573–
9579, 2011.

[21] M.-L. Huang, Y.-H. Hung, and W.-Y. Chen, “Neural network classifier
with entropy based feature selection on breast cancer diagnosis,”
Journal of Medical Systems, vol. 34, p. 865–873, 2010.

[22] W.-C. Yeh, W.-W. Chang, and Y. Y. Chung, “A new hybrid approach
for mining breast cancer pattern using discrete particle swarm
optimization and statistical method,” Expert Systems with Applications,
vol. 36, p. 8204–8211, 2009.

[23] K. Polat and S. Gunes, “Breast cancer diagnosis using least square
support vector machine,” Digital Signal Processing, vol. 17, p. 694–701,
2007.

[24] M. Karabatak and M. C. Ince, “An expert system for detection of breast
cancer based on association rules and neural network,” Expert Systems
with Applications, vol. 36, p. 3465–3469, 2009.

[25] E. Alickovic and A. Subasi, “Breast cancer diagnosis using ga feature
selection and rotation forest,” Neural Computing & Applications, p. 1–
11, 2016.

[A] National Oceanic and Atmospheric Administration (NOAA) forecasts

http://forecast.weather.gov/MapClick.php?lat=46.5927&lon=-

112.0361&unit=0&lg=english&FcstType=digital
[B] NOAA local observations

www.wrh.noaa.gov/mesowest/getobext.php?wfo=tfx&sid=KHLN&num
=168&raw=0&dbn=m&banner=header

[C] NOAA Montana station locations
www.ndsu.edu/fileadmin/ndsco/normals/documents/7100/MTnorm.pdf

[D] National Climatic Data Center (NCDC) historical data archives
http://cdo.ncdc.noaa.gov/qclcd_ascii/

[E] Breast Cancer Wisconsin (Original) Data Set
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Or
iginal%29

http://forecast.weather.gov/MapClick.php?lat=46.5927&lon=-112.0361&unit=0&lg=english&FcstType=digital
http://forecast.weather.gov/MapClick.php?lat=46.5927&lon=-112.0361&unit=0&lg=english&FcstType=digital
http://www.wrh.noaa.gov/mesowest/getobext.php?wfo=tfx&sid=KHLN&num=168&raw=0&dbn=m&banner=header
http://www.wrh.noaa.gov/mesowest/getobext.php?wfo=tfx&sid=KHLN&num=168&raw=0&dbn=m&banner=header
http://www.ndsu.edu/fileadmin/ndsco/normals/documents/7100/MTnorm.pdf
http://cdo.ncdc.noaa.gov/qclcd_ascii/
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

	I. INTRODUCTION
	II. Partial Differential Equation Substitution
	III. Multi-Layer Backward D-PNN
	IV. experimental studies
	V. Real System Models
	VI. Pattern Identification Models
	VII. Discussion
	VIII. Conclusions
	Acknowledgment
	References

