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Abstract — General partial differential equations, which can 

describe any complex functions, may be solved by means of the 

dimensional similarity analysis to model polynomial data 

relations on the basis of discrete observations. Designed new 

differential polynomial networks define and substitute for a 

selective form of the general partial differential equation using 

fraction derivative units to model an unknown system or pattern. 

Convergent series of relative derivative substitution terms, 

produced in all network layers, describe partial derivative 

changes of some combinations of input variables to generalize 

elementary polynomial data relations. The general differential 

equation is decomposed into polynomial network backward 

structure, which defines simple and composite sum derivative 

terms in respect of previous layers variables. The proposed 

method enables to form more complex and varied derivative 

selective series models than standard soft-computing techniques 

allow. The sigmoidal function, commonly employed as an 

activation function in artificial neurons, may improve the 

polynomial and substituting derivative term abilities to 

approximate complicated periodic multi-variable or time-series 

functions in a system model. 

 
Index Terms — partial differential equation substitution; 

differential polynomial network; substitution derivative sum term; 

multi-variable function approximation 

 

I. INTRODUCTION 

onventional artificial neural networks (ANN) are not able 

to generalize input pattern elementary data relations, 

using only weighted sums of inputs, which describe overall 

similarity relationships of new presented test input patterns 

with the trained ones. The ANN generalization from the 

training data, based on the absolute interval values, may be 

difficult or problematic if the model has not been trained with 

inputs or outputs around the range covered by testing data [1]. 

Polynomial neural networks (PNN) decompose the 

Kolmogorov-Gabor polynomial (1), which can express the 

general connections between input and output variables of a 

system, into many simpler relationships, each described by 

low-order multi-variable polynomial processing functions (2) 

of single neurons.  
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n – number of variables  A(a1, a2, ... , an), ... -  vectors of parameters 

X(x1, x2, ... , xn)  -  vector of input variables 

 

Group Method of Data Handling (GMDH) created by a 

Ukrainian scientist A. Ivakhnenko in 1968 [2], forms the PNN 

in successive steps, adding the next new layers, calculating 

polynomial parameters of the last layer and selecting its best 

neurons (nodes), while an improvement is attainable. The 

PNN can model highly non-linear systems as the neurons 

polynomial degree doubles in each following hidden layer [3]. 

 

y = a0 + a1xi + a2xj + a3xixj + a4xi
2 + a5xj

2    (2) 

 

Partial differential equations can model a variety of 

systems, which are not possible to describe unambiguously by 

means of unique explicit functions and may be solved e.g. by 

means of evolutionary strategies [4], genetic programing 

techniques [5] [6] or ANN [7]. Differential polynomial neural 

network (D-PNN) is a new neural network type, designed by 

L. Zjavka [8], which extends the complete PNN structure to 

define and solve the general partial differential equation 

(PDE). It produces convergent series of relative polynomial 

derivative terms, which can substitute for the selected PDE 

terms to model a searched function on account of data 

samples. The D-PNN operating principles differ from that of 

the GMDH, based on the Taylor-series expansions, however it 

decomposes the general PDE analogous to the PNN does the 

general connection polynomial (1). In contrast with the ANN 

each D-PNN neuron (i.e. substitution derivative term in this 

concept), regardless of its layer, can be directly involved 

(selected) in the total network output sum (PDE solution). 

 
Fig. 1.  Biological neural cells can remind a multinomial form.  
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Biological neural cells seem to apply a similar principle. 

The dendrites collect signals incoming from other neurons but 

unlike the ANN functionality the signals can interact already 

in single dendrites (input lines) (Fig.1.). Multi-variable 

polynomials might model this framework by means of the 

products of some input variables. The weighted combinations 

are summed in the cell of the body and then transformed 

through time-delayed dynamic periodic activation function 

(the activated neural cell generates series of time-delayed 

output pulses in response to its input signals). The period of 

this activation function depends on values of input variables 

combinations and seems to represent a derivative operator of a 

single PDE substitution term. According to these assumptions 

brain applies combined techniques of relative data processing 

to compose and substitute for systems of differential 

equations, forming time-dependent relative pulse models, very 

efficient for a large scale variability, variable-differences and 

adaptability of varied (shape) input pattern forms. 

 

 
 

Fig. 2.  Low-level properties - line terminations.  

 

The D-PNN may also decompose and generalize a (visual) 

input pattern into some characteristic elements relations of a 

model function, which can identify all its manifold forms 

(analogous to the ANN function approximation and pattern 

classification). The D-PNN can correctly recognize any 

untrained variable-shape pattern forms, which keep the trained 

data relations, regardless of the size and position in the input 

matrix [8]. Many biological and psychological studies suggest 

the brain applies just relative units of input variables, contrary 

e.g. to the absolute input signal processing of a CCD camera 

[9], and a reductive decomposition of complete input patterns 

into some major characteristic elements - low-level properties 

(Fig.2.). Line terminations are by far the most important 

features for the correct human letter identification [10]. Other 

features as intersections, curvatures or slants are little 

considered [11]. Generalized relations of the fragment 

positions could define a type model for all alterative visual 

pattern forms [8]. The PNN application in the field of 

differential equation solutions is a novelty however the 

experimental results indicate the method is efficient, using 

only a few substitution derivative terms [12], and can model 

physical or natural dynamic processes or systems that are too 

uncertain or complex to be easy described unambiguously by 

means of standard composite computational techniques.  

II. PARTIAL DIFFERENTIAL EQUATION SUBSTITUTION 

D-PNN forms and solves the general partial differential 

equation (3), with a sum combination (4) of selected 

substitution fractional multi-variable polynomial derivative 

terms (9). The unknown function u is possible to calculate 

from the PDE (3), which involves also its simple form, as the 

sum of the rest of its partial function derivative terms (4).  
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u = f(x1, x2,, … , xn)  - searched  function of n-input variables 

a, B(b1, b2,, ..., bn), C(c11, c12, ,... )  -  parameters 

 

In the case of the pattern recognition (described by the 

modelled function of a PDE solution), the simple function u 

term (without derivatives) must be added to the derivative 

fraction sum (in each block) to keep the complete PDE 

substitution and produce a coequal output identification to all 

presented input patterns of the same class (shape-form) [8]. 
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If each variable xi of a function u (4) is independent of other 

variables, then the u function is separable and might be 

approximated by its partial sum uk functions (4), i.e. its 

derivative terms, formed in respect of 1 or more variables. The 

searched function u may be expressed in the form of sum 

series (4), consisting of convergent series arising from the 

competent partial derivative terms (5) of 2 input variables.    
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The function partial derivatives can be expressed in a form 

of the product of 2 functions, where g means one (or several) - 

variable function of xi only and h is any function of all input 

vector variables x(x1, x2, … , xn) (6). 
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The similarity theory is based on the hypothesis functional 

relationships exist among the non-dimensional parameters, 

which can describe a physical system. The Buckingham  

theorem removes extraneous information from a problem by 

forming dimensionless groups and is the fundamental of 

dimensional analysis. It states if the eq. (7) is the only 

relationship among the qi‘s and if it holds for any arbitrary 

choice of the units in which q1,q2 ,…,qn are measured, then (7) 

can be written in the form using 1,  2 , … , m as independent 

dimensionless products of the qi’s (8). If k is the minimal 

number of principal quantities necessary to express the 

dimensions of the q's, then m = n − k [13]. 

 

 (q1,q2 , … , qn) = 0       (7) 

 (1,  2 , … , m) = 0       (8) 
where 1,  2 , … , m are independent dimensionless products of the q’s. 

 



  

If a differential equation form is unknown, the dimensional 

analysis can search for a non-dimensional set of units from 

variables using matrix methods of linear algebra. The searched 

function must be invariant to a change of model units for each 

ith dimensional variable
i

Dji

j

DD

i XX ii  ...21

21= . If a physical 

model with i-dimensional variables is assumed, the invariance 

for all possible  changes of j-units may be written in the 

following forms (9) (10). 
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j - unit scale change Dji - dimensionality of the ith variable  

j - number of fundamental units 

 

The designed PDE substitution terms (11) are formed 

according to the adapted method of integral analogues, which 
is a part of the similarity dimensional analysis. It replaces 

mathematical operators and symbols of a PDE by the ratio of 

corresponding values. Derivatives are replaced by the integral 

analogues, i.e. derivative operators are removed and along 

with all operators replaced by analogue or proportion signs in 

equations to form dimensionless units (groups) of variables 

[14]. According to the above-mentioned concept definitions 

the relative polynomial fractions (11) describe partial 

derivative relations of n-input variables through the PDE 

terms (3).  
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n - combination degree of  a complete polynomial of n-variables  

m - combination degree of a derivative polynomial denominator  

 

The complete polynomials of n-input variables (2), 

substitute for the PDE term numerators (3) and define the 

partial uk functions (4) from the sum series (5) in the complete 

searched function u solution. The denominator (11) is a 

derivative part, which gives a partial dependent derivative 

change of some polynomial combinations of variables. It arose 

from a competent partial derivation of the complete n-variable 

input polynomial. The root functions of D-PNN neurons, i.e. 

substitution PDE terms (11), reduce the numerator 

combination degree in order to form dimensionless fractions. 
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The simplest linear form of 2-variable polynomial fraction 

terms, represented by 1st derivative substitutions only, is 

considered to prove the validity. All parameters ai, bi can be 

set simplified to 1 (12) (13). If f/x1 is integrated with respect 

to x1 and f/x2 with respect to x2, the equations (14) (15) 

should give the same result: f(x1, x2) as f/x1 and f/x2 are 

partial derivatives of the same function f (16) (17). Partial 

derivatives of the functions f in eq. (11) are valid if 

denominator exponents equal 1, only the complete polynomial 

numerator may apply a root m/n quotient to balance the 

combination degree.  
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Blocks of the D-PNN group neurons with the same inputs 

(Fig.3.), one for each fractional polynomial derivative 

combination of the sum PDE terms (3). Each block contains a 

single output polynomial without derivative part, which enters 

the next hidden layer, i.e. the D-PNN block skeleton is formed 

by the GMDH PNN. Neurons don’t affect the block output but 

can be directly involved in the total network sum output of a 

PDE solution (4). Each block has 1 and neuron 2 vectors of 

adjustable parameters a and a, b respectively. All neuron and 

block polynomial outputs cannot become negative values. 

  
Fig. 3.  A block of derivative neurons 

 

The simple non-linear 2-variable GMDH polynomial (2) in 

the block neurons, which form the PDE substitution terms 

(11), is applied in all following experiments. 2 or more 

variable single combination blocks (Fig.3.) can approximate 

any multi-variable function; published experiments of n>2, 

using only 1-block solutions, are only demonstration cases [8]. 

The probability of neurons activations PA is set around the 

value 0.5 (may be adapted in respect of the application), so a 

block largely produces about half of all the possible simple 

neurons to form an optimal PDE solution. 
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where F(x1, x2, u, p, q, r, s, t) is a function of 8 variables 
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While using 2 input variables an equivalent 2nd order PDE 

(3) may be expressed in the form (18), which derivative 

variables of the PDE terms, correspond exactly to all the 

GMDH polynomial (2) variables. The 2-variable block 

neurons form and substitute for all the relevant partial 

derivative terms, so each block includes 5 simple neurons 

formed with respect to 2 single linear x1, x2 (19), 2 squared x1
2, 

x2
2 (20) and 1 combination x1x2 (21) derivative variables of the 

2nd order PDE substitution (18) in a searched 2-variable u 

function model.  

 

( )
)(

)(),(

1102
1

2
1

2

25

2

14213221106
1

1

1

21

1
xbb

xaxaxxaxaxaa
w

x

xxf
y

+

+++++
=




=

  (19) 

)(6

)(3),(
2

22210

2

25

2

1421322110

32

2

21

2

3
xbxbb

xaxaxxaxaxaa
w

x

xxf
y

++

+++++
=




=

   (20) 

)(6

)(4),(

121131221110

2

25

2

1421322110

5

21

21

2

5
xxbxbxbb

xaxaxxaxaxaa
w

xx

xxf
y

+++

+++++
=




=

  (21) 

 

The D-PNN total output Y is the arithmetic mean of all the 

active neuron outputs (22) so as to prevent the varying number 

of neurons (of a sum combination) from influencing the total 

network output sum value. 

k

y

Y

k

i

i
== 1   k = number of active neurons (PDE terms) (22) 

The input variables (of a data set) are normalized to the 

range <0.5, 1.5>. All the neuron and block output 

polynomials are divided by the number of the items 

(members) they include (19), which is especially useful for an 

applications of the block outputs in next hidden layers and the 

parameters adjustment. This way all the neurons (PDE terms) 

and blocks (the complete network) produce its outputs around 

the value 1.0, mostly in the interval <0.9, 1.1>, which may be 

adapted (optimized). The internal total network output must be 

scaled (denormalized) to retrieve desired range values of the 

output function. 

III. MULTI-LAYER BACKWARD D-PNN 

Multi-layer networks form composite functions (24). The 

blocks preceding layers create internal functions (23), which 

substitute for the next hidden layer input variables of neuron 

and block polynomials to produce external functions (24). 

Composite PDE terms, i.e. composite function derivatives 

with respect to the variables of previous layers blocks, are 

calculated according to the partial derivation rules (25)(26). 
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F(x1, x2, … , xn) = f(y1, y2, … , ym) = f(1(X), 2(X),..., m(X))  (24) 
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The blocks of the 2nd and following hidden layers form 

additionally composite terms (CT), i.e. neurons, which 

substitute for composite function derivatives with respect to 

the output and input variables of back connected previous 

layers blocks (Fig.4.). For example the 1st block of the last 3rd 

hidden layer forms 5 simple neurons, i.e. basic terms (19) (20) 

(21) of the general PDE (3) solution using its own 2 input 

variables only (Fig.5.). Additionally it creates 10 CT (a double 

of the neurons) with respect to the previous 2nd layer 2 blocks 

derivative input variables using composite function derivatives 

products with respect to reverse outputs of the 2 back-

connected blocks (27). As the couples of variables of the 

internal functions 1(x1, x2) and 2(x3, x4) can differ from each 

other (Fig.5.), their partial derivations are calculated 

separately in respect of each individual block variables, so 

each sum (26) consists of only 1 term (single neuron). The 20 

CT, formed with respect to the 1st layer 3 blocks input 

variables, are created analogously (28). The back-calculation 

of the composite function derivatives is well done by a 

recursive algorithm in the network tree-like structure (Fig.5.). 

  Fig. 4.  3-variable multi-layer D-PNN with 2-variable combination blocks 
 

The number of block neurons, which include composite 

function derivatives, doubles each previous back-connected 

layer, so the probability activation PA of CT, which derivatives 

are formed with respect to the previous layers block input 

variables must halve together with the increasing number of 

hidden layers they comprise (Fig.5.). All the blocks, regardless 

of the network layer and position form equivalent neurons, 

which sum (total network output) substitutes for the general 

PDE (3) and have the same initial probabilities of neurons 

activations PA that may be optimized [15]. 
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Only some of all the potential neurons (substitution terms) 

may be included in the PDE sum composition, even though 

they have an adjustable term weight wi. The selection of a fit 

neuron combination is the principal part of the D-PNN model 

composition and it may apply the Particle Swarm 

Optimization (PSO) to adjust the neuron activation 

probabilities PA in each block (Fig.5.), binary PSO to combine 

particle binary vectors in new generation solutions or 

Simulated Annealing (SA), able to solve large 

combinatorial optimization problems with random 

solutions in the initial composing phase. The standard PSO 

applied the self-cognition and social coefficients (c1, c2 = 

1.5), inertia weight ( = 0.5) to form 20 individual 

solutions with the velocity limit <-1.5, 1.5>. The binary PSO 

uses binary operators and the corresponding coefficients 

settings in the standard PSO (velocity) equations to form new 

individuals [15]. Parameters of polynomials and PDE term 

weights are represented by real numbers, randomly initialized 

from the interval <0.5, 1.5> and adjusted by means of the 

gradient steepest descent method [17] combined with a 

difference evolution algorithm (EA) [16], performed 

simultaneously with the best-fit neuron combination search 

[18].  

 
Fig. 5.  D-PNN 3rd layer 1st block backward connections, applied for the 

composite substitution terms formation. 

 

The root mean squared error (RMSE) (29) was applied for 

the parameter optimization and PDE term selection. The D-

PNN can be trained with only a small set of input-output data 

samples, analogous to the GMDH algorithm [2]. 
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The D-PNN (also GMDH) approximation ability of 

complicated periodic functions is possible to improve by 

means of a sigmoidal transformation (sig) of the squared 

power items together with their parameters in both the neuron 

and block output polynomials (30). 

 

y = (a0+a1xi+a2xj+a3xixj+sig(a4xi
2)+sig(a5xj

2)) / 6      (30) 

IV. EXPERIMENTAL STUDIES 

Neural networks can learn function f(x) relations of 3 

random input x variables, for a defined range of the values. 

ANN models were compared, since it is not necessary to keep 

the order of multi-variable function training samples. 

Following experiments apply training data sets, which include 

50 data samples x1, x2, x3 -> f(x1, x2, x3), randomly generated 

by a benchmark. Friedman’s benchmark approximation 

models were first trained within a reduced function output 

range <0, 10> values for the input vector x interval <0, 1> 

variables. After the models were tested with 3 random input 

variables from x <0, 1> again to estimate the gradually 

increasing true function f(x) values on a complete (extended) 

test interval <0, 15>. The graph cannot display all the 3D-

benchmark 3 input parameters x, so it features only the lowest 

approximation RMSE of the output function successive course 

values (Fig.6.). The accuracy of both models is co-equal on 

the training interval <0, 10> function values however the 

ANN approximation ability falls more rapidly outside of this 

range, while the D-PNN alternate errors grow just slowly 

(Fig.6.). 

 

 
 

Fig. 6.  3-D Friedman’s benchmark approximations minimal testing 

RMSE: ANN=0.61, D-PNN=0.36 (PSO) and D-PNN=0.32 (B-PSO). 

 

D-PNN models are more succesful in the approximation of 

polynomial benchmarks and if the models are not trained and 

tested within the same ranges of input or output function 

values (Fig.6.), which holds for all the tested benchmarks, as 

the D-PNN applies relative data [15]. Training and testing 

intervals of all following experiments coincide. The complete 
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test RMSEs of the benchmark 4D-graph hyper-surface 

approximation, were calculated with the gradually increasing 

3 input parameters in a step 0.05 for x <0, 1> (in a matrix 

20x20x20) from exact function f(x) values compared with the 

models output estimations f’(x). The characteristics - Average 

training, Minimal testing, Average testing total RMSE and 

Standard deviation (Tab.1.) were calculated from 25 

successful model experiments. 

TABLE I.  FRIEDMAN’S BENCHMARK APPROXIMATIONS  

Method 
Complete matrix RMSE 

TestMin TestAver TrainAver St.dev.  

ANN (1-layer) 0.30 0.39 0.08 0.078 

D-PNN 0.30 0.43 0.13 0.109 

 

 The ANN and D-PNN using the sigmoidal polynomial 

transformations (30) (D-PNNs) approximated Schwefel’s 

periodic benchmark for input variables x <0, 100> in the 

function output range f(x)  <1040, 1420>. The models, 

trained with 50 random samples on the complete function 

output interval, were tested with gradually increasing values of 

input variables x in a step 5 (20x20x20 matrix) to calculate the 

complete surface total RMSE. Tab.2. shows both models 

results in 25 successful runs.  

TABLE II.  SCHWEFEL’S BENCHMARK APPROXIMATIONS 

Method 
Complete matrix RMSE 

TestMin TestAver TrainAver St.dev.  

ANN (1-layer) 8.7 13.6 4.8 2.42 

D-PNNs 5.9 11.2 3.5 2.08 

 

The ANN applied 1-hidden layer with around 50-60 

neurons, for this and following cosine-mixture benchmark 

approximations (Tab.3). Both the models were tested with the 

total RMSE again for the complete matrix values of input 

variables x<0, 1> on the training function interval f(x) 

<0.25, 8.5>. 

TABLE III.  COSINE-MIXTURE BENCHMARK APPROXIMATIONS 

Method 
Complete matrix RMSE 

TestMin TestAver TrainAver St.dev.  

ANN (1-layer) 0.18 0.24 0.07 0.039 

D-PNNs 0.10 0.19 0.04 0.052 

V. REAL SYSTEM MODELS 

Real multi-variable functions may be represented by local 

relative humidity observations, related to 3 weather input 

variables: the wind speed, temperature and sea level pressure. 

The models can roughly estimate the time and amount of 

precipitation and indicate also the cloudiness progress, 

according to the current state 3 input variables. The relative 

humidity values increase at night hours (along with a 

temperature decrease), a straight or sudden grow can indicate 

precipitations (Fig.9.), a slight or gradual changes, in the slope 

curve, feature a variable cloudiness (Fig.8.) [19].  

 
Fig. 7.  Helena, 19.12.2013: RMSE - NOAA = 10.0, D-PNN = 5.54. 

 

 
Fig. 8. Helena, 20.12.2013: RMSE - NOAA = 10.45, D-PNN = 5.34. 

 

 
Fig. 9.  Helena, 12.1.2014: RMSE - NOAA = 16.22, D-PNN = 7.07. 

 

 



  

Fig. 10.  Helena, 13.1.2014: RMSE - NOAA = 14.94, D-PNN = 13.14. 

 
Fig. 11.  Helena, 14.1.2014: RMSE - NOAA = 16.13, D-PNN = 14.27. 

 

 
Fig. 12.  Helena, 15.1.2014: RMSE - NOAA = 30.11, D-PNN = 5.10. 

 

The D-PNN, trained for local actual weather relevant data 

relations of several last days (2-6), can revise a meso-scale 

numerical weather prediction (NWP) model prognosis in the 

cases of settled weather periods. The correction model applies 

corresponding NWP model outputs to revise one target 24-

hour original prognosis. The National Oceanic and 

Atmospheric Administration (NOAA) provides forecasts [A] 

and current daily observations [B] for a selected locality [C] 

and also complete free data archives [D]. NOAA forecasts 

enter the D-PNN model, locally trained with the same data 

types of observations (Helena, Montana), to produce output 

hourly revisions of the relative humidity 24-hour forecast at 

the same time points (Fig.7. - Fig.12.). The presented D-PNN 

correction models were tested (compared with real values) on 

the complete 24-hour forecasting interval, which is naturally 

not possible in real-time. The trained models might be tested 

with the last trained day forecasts but this naturally reduces 

the prediction accuracy. The optimal number of training days 

(model initialization time) is another parameter necessary to 

determinate. The applied relative humidity models do not 

allow for any time-series but only multi-variable function 

relations.  

VI. PATTERN IDENTIFICATION MODELS 

The D-PNN can generalize input pattern forms by means of 

its model function, which represents the trained feature 

relations, to recognize the correct class. Each block must add 

its polynomial output (2) to the substitution fraction series sum 

(if selected any) in order to allow the network to form the 

complete PDE (3) and produce a coequal output to the same 

kind (class) of patterns. Average identification results for the 

Breast Cancer Wisconsin (Original) Data Set [E] from the UCI 

archives are presented in the Tab.4., which compare several 

published methods using the Artificial meta-plasticity neural 

network (AM-NN) [20], Entropy based neural network (EB-

NN) [21], Discrete particle swarm optimization (D-PSO) [22], 

Least square support vector machine (LS-SVM) [23], 

Association rule neural network (AR-NN) [24] and Genetic 

algorithm rotation forest (GA-RF) [25]. Conventional 

validation (complete data are portioned into one training and 

test set) and multi-fold cross-validation (CV) techniques were 

performed to compare the accuracy of the chosen methods. In 

k-fold CV whole data are randomly divided to k-mutually 

exclusive and approximately equal size subsets. The 

classification algorithm is trained and tested k-times. In each 

case, one of the folds is taken as test data and the remaining 

folds are added to form training data. Thus k-different test 

results exist for each training-test configuration. The average 

of these results gives the test accuracy of the algorithm. 

TABLE IV.  BREAST CANCER IDENTIFICATION 

Method Accuracy [%] Train./Test 

AM-NN 99.26 60-40% 

D-PNNs 98.9 70-30% 

EB-NN 98.83 10-fold CV 

D-PSO 98.71 2/3 - 1/3 

LS-SVM 98.53 10-fold CV 

AR-NN 97.4 3-fold CV 

GA-RF 96.78 10-fold CV 

 

The D-PNN gets with the best testing accuracy 99.5% 

(trained on the first 70% data) and 98.5% (trained with 50%). 

The experiments were done with the standard D-PNN (for 

pattern identification), which was not specially adapted for the 

disease recognition as the compared methods usually do. A 

feature and block selection algorithm (see the Discussion) 

might improve its performance. The data rows with missing 

attribute values were removed from the original data set 

according to the published compared results. 

VII. DISCUSSION 

The D-PNN forms and solves the general PDE, which 

model solutions enables to form its own independent weather 

forecasts based on time-series observations only. However the 

next hour forecasts for each grid point (in a selected area), 

which enter the model calculations for the next step ahead 

predictions would be extremely time-consuming. If the 

number of input variables increases then the number of the D-

PNN 2-combination couples grows exponentially in each next 

hidden layer (the previous identification models apply 9 

inputs). Thus the D-PNN (also PNN) with more than 3 input 

variables must face to the “combinatorial explosion” 

(analogous to the GMDH) and select from the best blocks in 

each hidden layer [8] along with the overall neuron 

(substitution PDE term) selection process. 



  

VIII. CONCLUSIONS 

The D-PNN combines the multi-layer network composite 

function structures with mathematical techniques of PDE 

substitutions. It may implement the PDE terms using other 

substitution methods, e.g. Fourier series. The presented 

models define and solve the general PDE with a sum 

combination of selected simple and composite substitution 

derivative terms, produced in all layers of the complete 

GMDH PNN. The D-PNN function approximation and pattern 

recognition models are based on the polynomial derivative 

generalization of elementary data relations. The D-PNN (also 

PNN) model complexity is proportional to the increasing 

number of input variables, as additional hidden layers of 

blocks can define all the potential combination PDE terms. 

This is contrary to conventional ANN 1 or 2-hidden layer flat 

structures, which are not able to form more complex and 

versatile models of dynamic systems (with more variables). 

The D-PNN can model complex dynamic systems that a PDE 

can preferably describe and which exact representation is 

unknown. The D-PNN is preferable to approximate 

polynomial-like functions however the sigmoidal 

transformation of the polynomial squared items improves its 

ability to model complicated periodic functions. 
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