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The expansion of flow chemistry as a means for under-

taking a chemical reaction has developed rapidly over re-

cent years. When teaching chemistry to undergraduate stu-

dents, one aspect that has to be addressed is the core sub-

ject-knowledge required to function as a chemist, usually

taught through lectures. In addition, chemistry is a practi-

cal subject; therefore, the laboratory-based skills that stu-

dents learn and will require upon graduation also need con-

sideration. Traditionally, batch chemistry has dominated

the practical laboratory curriculum because, within an in-

dustrial setting, completing a reaction using batch chemis-

try has been the norm. However, in recent years flow chem-

istry has started to become more ubiquitous within the

pharmaceutical industry and fine chemical production,1

therefore undergraduate programs have started to amend

their practical provision to reflect this.2–4 In recent years

there have been a number of practical classes designed that

utilise continuous-flow analysis and flow-injection analysis

procedures,5–16 as well as construction of inexpensive mi-

crofluidic chips17–19 for use both within the undergraduate

curriculum and to engage high school students with chem-

istry.20 However, the number of experiments that can be

used upon preparative scale are much smaller in number.

Examples include Fischer esterification,21,22 methylation of

2-napthol,23 Hofmann rearrangement,21 Knoevenagel con-

densation,21 electrophilic aromatic substitution,21 Paal–

Knorr pyrrole synthesis,21 Diels–Alder cycloaddition21 and

synthesis of azo dyes and disulfides.24 Some examples

showcasing more recently developed reactions are dis-

cussed further in this Spotlight. This field is in its infancy;

therefore, this Spotlight should not be considered exhaus-

tive but rather a starting point for any practical class devel-

oper looking to include examples of flow chemistry. As this

field develops, it is likely that more reactions utilising flow

chemistry that are suitable for an undergraduate laboratory

will be disclosed over the coming years.
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versity of Reading. She undertook her PhD studies under the supervi-
sion of Professor Steven Ley at the University of Cambridge, and was a 
postdoctoral research assistant in the group of Professor Erick Carreira 
at ETH Zürich. She has a keen interest in understanding how students 
learn, particularly in relation to student misconceptions and how they 
arise, and she has published work relating to the language used when 
teaching organic chemistry. She has contributed extensively to the de-
velopment of new chemistry programmes and re-invigoration of exist-
ing programmes, and has a keen interest in ensuring that the chemistry 
taught within the undergraduate curriculum remains relevant and in-
corporates the latest technological and scientific developments.
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(A) A number of reactions using flow photochemistry suitable for an under-
graduate practical class have been disclosed,25–27 but only two will be show-
cased here. The first is a photopinacol coupling of benzophenone (1)28 and 
the second a thiol-alkene coupling,29 based on previous work by Tyson et 
al.30,31 In both cases, students compared conversion into, and yields of, the 
desired product between the flow and batch process.

(B) Examples of reactions showcasing green chemistry under flow conditions 
include the synthesis of 5-hydroxymethylfurfural (6) from fructose (5)32 and 
the conversion of reclaimed vegetable oil into biodiesel (not shown).33

(C) Oxidation reactions under flow conditions on a preparation scale have 
been developed by Kairouz and Collins34 and by the Leadbeater group21 based 
on work developed by the Jamison group.35 In both cases, a benzylic aldehyde 
was oxidised to a methyl ester using aqueous NaOCl in the presence of tetra-
butylammonium bromide. In the case of Kairouz and Colins, a range of alde-
hydes were oxidised and students were able to compare the flow and batch 
processes.

(D) A ring-closing metathesis reaction36,37 to form cyclopentene 10 from di-
ethyl diallylmalonate (9) on preparative scale, suitable for undergraduate stu-
dents under flow conditions has been reported.21,22 In this case, a short silica 
plug was required to separate the products from the metathesis catalyst.

(E) A Suzuki–Miyaura cross-coupling21,22 between bromobenzene (11) and 
phenylboronic acid (12) on preparative scale under flow conditions, and suit-
able for undergraduate students, has been achieved in high yield. To avoid 
clogging of the reactor system by precipitation of the biaryl product (13), the 
product stream was intercepted with ethyl acetate, in which the product 
readily dissolves.
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