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Abstract
Large quantities of mismanaged plastic waste are polluting and threatening the health of the blue
planet. As such, vast amounts of this plastic waste found in the oceans originates from land. It finds
its way to the open ocean through rivers, waterways and estuarine systems. Here we present a novel
machine learning algorithm based on convolutional neural networks (CNNs) that is capable of
detecting and quantifying floating and washed ashore plastic litter. The aquatic plastic litter
detection, classification and quantification system (APLASTIC-Q) was developed and trained
using very high geo-spatial resolution imagery (∼5 pixels cm−1 = 0.002 m pixel−1) captured from
aerial surveys in Cambodia. APLASTIC-Q was made up of two machine learning components (i)
plastic litter detector (PLD-CNN) and (ii) plastic litter quantifier (PLQ-CNN). PLD-CNN
managed to categorize targets as water, sand, vegetation and plastic litter with an 83% accuracy. It
also provided a qualitative count of litter as low or high based on a thresholding approach.
PLQ-CNN further distinguished and enumerated the litter items in each of the classes defined as
water bottles, Styrofoam, canisters, cartons, bowls, shoes, polystyrene packaging, cups, textile,
carry bags small or large. The types and amounts of plastic litter provide benchmark information
that is urgently needed for decision-making by policymakers, citizens and other public and private
stakeholders. Quasi-quantification was based on automated counts of items present in the imagery
with caveats of underlying object in case of aggregated litter. Our scientific evidence-based machine
learning algorithm has the prospects of complementing net trawl surveys, field campaigns and
clean-up activities for improved quantification of plastic litter. APLASTIC-Q is a smart algorithm
that is easy to adapt for fast and automated detection as well as quantification of floating or washed
ashore plastic litter from aerial, high-altitude pseudo satellites and space missions.

1. Introduction

Plastic pollution is a ‘wicked environmental prob-
lem’ with annual estimates indicating global rivers
discharging several million metric tonnes of plastic
waste into the oceans (Balint et al 2011, Jambeck et al
2015, Lebreton et al 2017). These studies have also
reported that river systems of Asian nations including

Cambodia, transport substantial amounts of plastics
into the open ocean (Sethy et al 2014, Lebreton et al
2017, van Emmerik et al 2019). Clearly, these plastic
polluted waterways do not only pose localized health
and environmental problems but a global threat to the
blue economy (Todd et al 2010, Blettler et al 2018).

During the rainy season, flooding and epis-
odes of extreme weather events are possible. As a
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result of these events, it is suspected that plastic leak-
age is enhanced into rivers, and subsequently shal-
low sea and the ocean. After these periods of flood-
ing or even high tides, plastic litter is washed ashore
or trapped by vegetation, whereas the remainder is
transported offshore. Combating plastics should be
made in the rivers or even before they are reaching the
aquatic environment (Hohn et al 2020). Innovative
and affordable monitoring strategies need to be put
in place for improved waste and plastic management.
These strategies should hinge on scientific evidence-
based research highlighting sources and abundances
of litter in various towns, states and countries. Fur-
thermore, plastic litter descriptors like polymer types
constitute actionable information to develop targeted
policies and legislation for priority plastic items and
investments into improved plastic waste collection
and recycling. This is in line with large scale polit-
ical initiatives like the EU Marine Strategy Frame-
work Directive’s descriptor 10 (Galgani et al 2013),
the Single-use Plastics Directive 2019 (EUPPD 2019),
UN Sustainable Development Goal 14 target 14.1 to
‘prevent and significantly reducemarine pollutions of
all kinds’ (Recuero Virto 2018), even the UN ‘Dec-
ade of Ocean Science for Sustainable Development
(2021–2030)’ aiming to ‘support efforts to reverse the
cycle of decline in ocean health and create improved
conditions for sustainable development of the ocean’
(Ryabinin et al 2019, IOC-UNESCO 2019).

Society has shown an increasing interest in
advanced and automatedmonitoring strategies relev-
ant to the plastic litter pollution (Garaba et al 2018,
Smail et al 2019, Maximenko et al 2019). Already,
remote sensing technologies combined with machine
learning algorithms have been at the forefront of
advancing scientific knowledge about plastic litter
distributions as well as bridging the gap from net
trawl surveys to numerical simulations. Unmanned
aerial systems (UAS) and satellite imagery captured
at high to very high geo-spatial resolution on the
shoreline and along beaches have been shown to
be useful in monitoring washed ashore plastic lit-
ter. Using these captured images, state-of-the-art
machine learning algorithms have been evaluated for
potential applications in automated quantification
and identification of plastics litter (Acuña-Ruz et al
2018, Martin et al 2018, Bak et al 2019, Kylili et al
2019, Gonçalves et al 2020). A Random Forest clas-
sifier trained with histograms of gradients was imple-
mented to recognize isolated dry plastic objects on
a beach in the Northern parts of the Red Sea as
well as Cabedelo beach, Portugal (Martin et al 2018,
Gonçalves et al 2020). Washed ashore plastics were
detected, counted and grouped in the Chiloé islands
using support vector machine (SVM) algorithms
(Acuña-Ruz et al 2018). Beached and floating plastic
litter were also detected based on Visual Geometry
Group-16 and SegNet architectures (Bak et al 2019,
Kylili et al 2019). Other approaches for monitoring

plastic litter have employed visual inspection by
trained observers and statistical analysis techniques
for imagery from aerial surveys (Kataoka et al 2012,
2018, Lebreton et al 2018, Garaba et al 2018, Bao et al
2018).

The scope of our research was to advance the
development of machine learning algorithms for
related studies about plastic distributions by present-
ing APLASTIC -Q. It was aimed at providing estim-
ations of litter in a survey region as counts of litter
items and predict plastic types from the imagery. We
also investigated plastics using convolutional neural
networks (CNNs) in various surroundings such as
rivers with few plastics, river carpets and aggreg-
ated litter on beaches. We examine different machine
learning techniques, which have previously been used
to detect pollution on beaches and conclude that
CNNs produce the most promising results, especially
for the classification of plastic types. Thus, the here
developed APLASTIC-Q algorithm is based on CNN
technology. We also compare our classification met-
rics with current automated marine litter detection
systems for drone imagery. As a result, APLASTIC-
Q outperforms these systems with respect to various
classification performance metrics. However, there
are some challenges in comparing the classification
results with related work in the literature. Hence, we
raise the need for a framework enabling fair compar-
ison. Our novel APLASTIC-Q algorithm is easy to
adapt to potential applications for processing imagery
from smartphones, handheld cameras, fixed obser-
vatories, and manned aerial and space platforms.
Objectives of image processing will be automated in
terms of counting and classifying macroplastic (dia-
meter > 25 mm) items in litter. Our study thus aims
to further advance the application of CNNs inmonit-
oring plastic litter in the aquatic environments using
very high geo-spatial true colour aerial images.

2. Methods andmaterials

2.1. Aerial survey
Aerial surveys were completed using a DJI 4 Phantom
Pro photography UAS with a 20 MP RGB (red, green
and blue color scheme) imaging sensor over Phnom
Penh, Sihanoukville and Siem Reap in Cambodia in
October 2019 (figure 1). Plastic litter was observed
floating, trapped in vegetation, washed ashore on
beaches and accumulated forming plastic river car-
pets (figures 1(b)–(d)). Images were captured at a
pixel resolution of 4864 × 3648 with ISO values
between 100 and 400 pixels, shutter speed and aper-
ture were set to automatic. The nadir viewing angle
of the imaging sensor was 0◦ at a flight altitude of
6 m with a vertical GPS hover accuracy of 0.5 m.
Flight altitude was chosen after analyses of imagery
from pre-flight tests ranging between 3 and 60 m, it
provided sufficient wide area coverage at sufficient
resolution of objects (length > 2.5 cm). A Topcon
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Figure 1. (a) Map of Cambodia showing areas survey by a DJI 4 Phantom Pro with a 20 MP RGB camera in October 2019, (b)
beach litter in Sihanoukville, (c) floating and trapped litter in waterways of Siem Reap (d) plastic river carpets in Phnom Penh. A
red or blue marker grid indicates a length of 0.5 m.

GR-5 global navigation satellite receiver system was
used to mark the ground control points.

The points were used to optimize geo-referencing
and mosaicking of imagery. Post-processing of
the collected aerial imagery was performed using
Pix4Dmapper version 4.5.3. It involved automated
point cloud densification, 3D mesh generation,
digital surface modelling, orthomosaic and digital
terrain modelling. A visual meter scale was provided
in some images to complement estimates of sizes
in captured scenes. No atmospheric correction was
applied to the images.

2.2. Detection and quantification of plastic litter
algorithms
True colour RGB images collected during the
aerial survey were partitioned into tiles of
100 × 100 × 3 pixels and 50 × 50 × 3 pixels. Tile
size selection was based on an assessment from a
prior study (Martin et al 2018). The plastic litter
detector (PLD-CNN) algorithm is used to analyse the
100× 100× 3 pixel tiles. It was trained to distinguish
the various targets in the tile part-wise as (i) water,
(ii) vegetation, (iii) litter-low, (iv) litter-high, (v) sand
or (vi) other (figure 2). Tiles with fewer than three
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objects were defined as litter-low and those with at
least three items were labelled litter-high. We defined
these thresholds to optimize counts of litter items by
the algorithm after considering that litter objects in
images varied from almost none in rivers with natural
surroundings to thousands of litter objects in plastic
river carpets.

As for the plastic litter quantifier (PLQ-CNN)
algorithm, 50 × 50 × 3 pixel tiles were selected as
a divider of the 100 × 100 × 3 pixel tiles used by
PLD-CNN. Applying a divider was aimed at optimiz-
ing the algorithm and thus reducing information loss.
PLQ-CNN only evaluated tiles highlighted to have
any amount of litter.Within these tiles PLQ-CNNwas
further trained to distinguish and enumerate indi-
vidual litter items. A total of 18 classes were output
by PLQ-CNN, these expand on the six PLD-CNN cat-
egories and include cans, cartons, plastic bags, bottles,
cups, canister, polystyrene packaging, shoes, Styro-
foam, strings and textiles (figure 2). Plastic bags were
divided into large bags or small bags that included
sweet wrappers, noodle packages, crisps bags. Identi-
fication of items was consistent with updated inter-
national marine litter classification protocol of the
United States National Oceanic and Atmospheric
Administration agency (GESAMP 2019). These items
or plastic objects were validated by visual inspection
during clean-up activities conducted following the
aerial survey.

2.3. Neural network architecture and training
Modelling was executed on an Intel® quad-core i5
8250 U processor utilising two threads per core, a
clock rate of 1.6 GHz and 8 GB random access
memory. PLD-CNN and PLQ-CNN have a similar
architecture except that the training tiles’ sizes were
different with 100 × 100 × 3 pixel and 50 × 50 × 3
pixel respectively (figure 3). It consists of four 2D
CNN layers. The first two 2D convolutional layers
consisted of 32 3× 3 kernels and the last two 2D con-
volutional layers consisted of 64 3 × 3 kernels. 2D
convolutional layers are known to work well on image
data by adequately preserving some of the pixel’s loc-
ality (Krizhevsky et al 2012, Lecun et al 2015). After
every 2D convolutional layer there was a 2 × 2 max
pooling layer preceding a dropout neural network
layer (dropout rate = 25%). Implementing dropouts
in neural networks is known to mitigate the chal-
lenges related to overfitting and non-optimal co-
adaptation. Therefore dropouts minimize generaliz-
ation uncertainties (Krizhevsky et al 2012, Srivastava
et al 2014). Fully connected dense neural network lay-
ers complete the architecture, the first layer comprises
512 units followed by a dropout neural network layer
(dropout rate = 50%). The second dense neural net-
work layer had units matching the number of classes,
6 units for PLD-CNN and PLQ-CNN had 18 units.

For training purposes, we randomly sampled 80%
of the tiles without replacement for each class and

then tested the algorithms using the remaining 20%.
Rectified linear unit (ReLU) activation functions were
applied to the 2D convolutional and the dense neural
network layers, but after the last dense neural net-
work layer a softmax activation function was used.
We utilized ReLU activation functions because they
have shown to be robust in shortening the train-
ing time span compared with alternative activation
function with tanh units (Krizhevsky et al 2012).
Our algorithmswere further established after training
using CIFAR10 dataset on a Keras framework utiliz-
ing a TensorFlow backend (Krizhevsky 2009, Chollet
et al 2015, Abadi et al 2016).

Training of PLD-CNN and PLQ-CNN was per-
formed with a batch size of 32 and the categor-
ical cross entropy was optimized using the Adam
optimizer (learning rate = 0.001, beta1 = 0.9 and
beta2= 0.999), consistent with a prior study (Kingma
and Ba 2015). We also applied data augmenta-
tion to randomly flip the training tiles horizontally
and vertically. The probability of a vertical, hori-
zontal flip or both was 75%. Data augmentation is
a widely used technique that further decreases the
overfitting phenomenon on image processing tasks
(Chollet et al 2015, Perez and Wang 2017, Shorten
and Khoshgoftaar 2019). Steps per epoch were a res-
ult of dividing the number of training tiles with
the batch size parameter for each CNN. Appropriate
epoch parameters were determined after an assess-
ment training of both algorithms with 100 epochs.
We obtained the least validation losses at 20 epochs
for PLD-CNN and at 40 epochs for PLQ-CNN. These
epoch parameters were selected for the final train-
ing due to low model biases and overfitting effects.
Training of 20 PLD-CNN epochs using a sample set of
5515 tiles took 70 min translating to about 210 s per
epoch. Training of PLQ-CNN used 4828 sample tiles
that required 45 s per epoch or 30 min for 40 epochs.
PLD-CNN dataset was established from eight of the
16 RGB true colour images. However, seven images
were used to create the dataset for PLQ-CNN. Selec-
tion of the tiles for training involved extensive visual
inspection that was intended to best detect and differ-
entiate observed litter items (figures 1(b)–(d)). The
remaining tiles were used for qualitative analyses.

In addition to the training of the PLQ-CNNmen-
tioned before, three further PLQ-CNNs have been
trained with cost sensitive learning to mitigate the
effects of class imbalances of the PLQ dataset. Dur-
ing the training cycles of these PLQ-CNNs, identical
architecture and training parameters of PLQ-CNN
were used. However, class weights were enabled dur-
ing training to increase the training loss for samples of
underrepresented classes. Initially, we experimented
with a balanced weight factor which was calculated
for each class as the fraction of number of samples
for the class with the highest number of tiles: Num-
ber of samples for each class. However, these class
weights resulted in harming the training process by
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Figure 2. Flowchart of image processing by APLASTIC-Q system. The end-products of PLD-CNN and PLQ-CNN include the
counts of different classes of litter objects.

getting stuck in a local minimum in the first epoch
and not training any further. Hence, for training of
the further PLQ-CNNs, these balanced class weights
have been potentiated with the values 0.2, 0.4 and 0.6,
respectively to consider both, class imbalances and to
mitigate harmful effects for training.

The machine learning components of
APLASTIC-Q (figure 2) can be exchangedwithCNNs
of different architectures or training parameters or
with other machine learning methods. Besides the
described CNNs, we investigated the overall accuracy
on the PLD and PLQ datasets for three types of SVM
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Figure 3. Architecture of the plastic litter detection convolutional neural network algorithm.

kernels: radial basis function, polynomial and lin-
ear. Moreover, Random Forest classifiers with 100
estimators were examined. Our PLD-CNN and PLQ-
CNN have been compared with the aforementioned
machine learning methods, because they are the best
performing classification methods used in a marine
debris detection study on beaches (Acuña-Ruz et al
2018).

2.4. Final augmentations
The accuracy in counts from PLD-CNN and PLQ-
CNN was enhanced by considering the true flight
altitude at which imagery was collected. An altitude
correction factor (Fac) was derived as a ratio of the
true geo-spatial resolution (Truegsr): estimated geo-
spatial resolution (Estimatedgsr) of 0.002 m pixel−1

(equation 1).

Fac =
Truegsr2

Estimatedgsr
2 (1)

A corrected number of litter objects was then
derived by multiplying PLD-CNN counts as follows:
1.5 × litter-low and 3.5 × litter-high. Following our
threshold levels, litter-low had a limit of 2 items, thus
the average of 1 or 2 objects was 1.5 items per tile.

Litter-high was set for object counts of more than 3,
and we found out that each tile had a maximum of 4
visible items thus the average was 3.5 items per tile.
The PLQ-CNN algorithm involves an additional cor-
rection for the average size of objects in the identi-
fied pollutant classes. A tile of size 50× 50× 3 pixels
covered an area∼0.01m2. Thus, if an tile section con-
sists of a plastic bottle (size∼ 0.02 m) extending into
a second tile, and this bottle is also covered by some
other objects, it would be assumed to be half a bottle
after correction in one tile portion. These adjusted
counts of the 14 pollutant classes are partly translated
into the United States National Oceanic and Atmo-
spheric Administration agency classification system
(GESAMP 2019).

3. Results

3.1. Litter class distribution in datasets
PLD-CNN dataset was composed of 6892 tiles, a total
of 1905 tiles contained high amounts of plastic lit-
ter were grouped as litter-high. Other targets that
included building structure were found in a total of
357 tiles. The dataset of the PLQ-CNN had 6026 tiles.
Plastic bottleswere found inmost tiles (878), followed
by plastic bags, Styrofoam and polystyrene packaging

6
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Figure 4. Distribution of the total tiles for each class over the two datasets and the distribution of the tiles for the PLQ-CNN
classes which contain few samples only.

found in at least 400 tiles for each item class (figure 4).
Vegetation, sand and water were found in several
tiles consistent with the fact that the aerial images
were collected over waterways and beaches generating
more than 400 tiles for each class. During the creation
of both datasets, tiles have been selected to represent
the individual classes in varied shapes, sizes, and col-
ours. For example, the water class contains tiles which
cover different types of turbidity or contain sun glitter
and the Styrofoam class contains items with different
degrees of weathering and various shapes. However,
for underrepresented classes in the PLQ dataset, this
could not always be ensured. We believe more data
would be needed to improve identification and quan-
tification of the items with low counts such as shoes,
cans, plastic canisters, textiles, strings, cords and
cartons.
3.2. Performance assessment of PLD-CNN and
PLQ-CNN
Statistics derived from PLD-CNN suggested prom-
ising applications for general classification of floating
or washed ashore litter with a precision greater than
0.67 (table 1). Water, vegetation, sand and litter-high
were easy to identify due to their inherent abund-
ance, shape, form and colour which attributed to the
good statistical results obtained (precision, recall, F1-
score > 0.81).

We therefore assume that with moderate to high
amounts of plastic litter PLD-CNN will perform
with good accuracy and high recall. Although the
precision was lower for other classes and few litter
objects, our algorithm was still capable of identifying
the plastics with reasonable recall. Despite challenges
in differentiating between litter-high and litter-low,
PLD-CNNmanaged to correctly identify plastic litter
(figure 5).

Table 1. Precision, recall and F1-scores for each class of the
PLD-CNN.

Class Precision Recall F1-score Number of tiles

Water 0.82 0.98 0.89 208
Vegetation 0.95 0.91 0.93 368
Sand 0.81 0.91 0.86 120
Litter-high 0.83 0.92 0.87 381
Litter-low 0.68 0.52 0.59 229
Other 0.73 0.45 0.56 71

For each class, the PLD-CNN algorithm per-
formed with good accuracy, good precision and an
F1-score of at least 0.55 in discriminating the targets
into water, vegetation, sand, plastic litter, and others.
For both ‘pollution’ classes merged the precision was
high with 0.92. It was a similar scenario for the recall,
it was generally higher than 0.9 for all classes except
for ‘other’ (0.45) and litter-low (0.52). The overall
recall of both plastic classes is 0.77, indicating that a
large proportion of plastic in the images was detec-
ted. It indicated also that tiles polluted with plastic
were found at a precision of 0.92 and a recall of 0.77.
The low recall and precision values of class ‘other’
were presumed negligible in cases or scenarios of low
counts within this category.

The PLQ-CNNs with the class weight expo-
nents 0, 0.2, 0.4 and 0.6 achieved an overall
accuracy of 71%, 71%, 66% and 60% respect-
ively on the test dataset, the results are shown
in the supplementary material (available online
at stacks.iop.org/ERL/15/114042/mmedia). The
decrease of the overall accuracy with the increase
of the class weight exponent was expected. This is
because during training, the focus on classes with
many tiles shifts to classes with fewer tiles. Classes

7
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Figure 5. Confusion matrices for (a) Plastic Litter Detector and (b) Plastic Litter Quantifier convolutional neural network
algorithms within APLASTIC-Q system.

with few tiles did not achieve a better F1-score using
PLQ-CNN trained with an increased weight expo-
nent. The only exception is for weight exponent 0.2,
here some plastic litter types were classified with
slightly higher accuracy, showing the highest F1-
scores for plastic bags, plastic bottles and plastic
bowls. A potential reason for PLQ-CNNs not per-
forming better is the already high interdependency
of classes with high weights due to few training tiles
being available. Based on the overall accuracy and
F1-score metrics for classes, the PLQ-CNN with
class weight exponent 0 was selected. It achieved the
highest overall accuracy and outperformed the other
PLQ-CNNs on the F1-score for specific classes nine
times.

The selected PLQ-CNN managed to identify and
count the litter objects with a reasonable perform-
ance. It had a bias towards plastic bottles with
moderate precision = 0.55 and high recall = 0.83,
possibly due to overfitting as plastic bottles were com-
mon in over 878 tiles of the images analysed. Shoes,
textiles, plastic bowls and plastic cups were not detec-
ted likely due to the limited quantities in the collected
tiles. Additionally, many pollutant classes were not
always found by the algorithm as they shared some
resemblances in shape and form compared with other
pollution classes, such classes were often mixed up.
In some cases, plastic cups were classified as plastic
bottles whilst plastic bowls and Styrofoam were iden-
tified as polystyrene packing. Generally, tiles contain-
ing pollution types were rarelymixed upwith the four
pollution free classes (see figure 5).

3.3. Comparison with other machine learning
techniques
Both PLD-CNN and PLQ-CNN performed signific-
antly better than other machine learning techniques
which have been investigated in an anthropogenic

Table 2. Overall accuracy for alternative machine learning
techniques, including the PLD-CNN and PLQ-CNN.

Dataset PLD PLQ

PLD-CNN/PLQ-CNN 83% 71%
SVM radial 78% 50%
SVM polynomial 63% 46%
SVM linear 47% 40%
Random Forest 71% 53%

marine debris study via satellite imagery (Acuña-
Ruz et al 2018). The PLD-CNN achieved a 5%
higher overall accuracy than the next best performing
machine learning technique being SVM with radial
basis kernel (table 2). PLQ-CNN outperformed the
second best machine learning algorithm with 18%.
A similar trend was observed for the performance of
SVMs as in marine debris literature (Acuña-Ruz et al
2018): Radial basis function kernel achieved the best
results, linear kernel the poorest. However, the Ran-
dom Forest Classifier outperformed SVM with poly-
nomial kernel and linear kernel for the PLD data-
set and all SVMs in the PLQ dataset. The Random
Forest Classifier was 26 times faster compared with
PLD-CNN and and 14 times faster compared with
PLQ-CNN. This indicates that a future investiga-
tion into ensemble models may be promising, due
to being computationally more efficient than CNN
approaches.

3.4. Comparison with other automated marine
litter detection systems
The reported classification metrics are in line with
recent work on automated marine litter detection on
beaches of the Red Sea, the Maldives and Portugal
(Martin et al 2018, Fallati et al 2019, Gonçalves et al
2020). To put our work in context, we compared the
results of our PLD-CNN with aforementioned work.
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Table 3. Comparison among different automated litter detection algorithms; an extended table of Gonçalves et al (2020). The values for
Marine Litter, True Positive, False Negative and False Positive are the added values of our PLD-CNN results for the classes litter-high and
litter-low. The metrics for precision, recall and F1-score for our work are the weighted averages for the two PLD classes. Reprinted from
Gonçalves et al (2020), © 2019 Elsevier B.V. All rights reserved, with permission from Elsevier.

Marine True False False F1-
Reference Method Litter Positive Negative Positive Precision Recall score

Martin et al (2018) Random Forest
(HoG)

415 164 251 1941 0.08 0.40 0.13

Fallati et al (2019) CNN (pixelwise
classification)

132 57.9 74 48.9 0.54 0.44 0.49

Gonçalves et al (2020) Random Forest
(four colour
spaces)

159 118 41 44 0.73 0.74 0.75

Our work CNNs (tile wise
classification)

610 470 140 129 0.77 0.77 0.77

Table 4. Comparison of flight altitudes, camera resolution, drone models used and investigated scenes among these studies.

Reference Flight altitude Camera resolution Drone model Investigated scenes

Martin et al (2018) 10 m 12 MP DJI Phantom 4 Beach, Red Sea
Fallati et al (2019) 10 m 12 MP DJI Phantom 4 Beaches, Maldives
Gonçalves et al (2020) 20 m 20 MP DJI Phantom 4 Pro Beach, Portugal
Our work 6 m 20 MP DJI Phantom 4 Pro Beaches and riverine systems, Cambodia

We added the number of samples for litter-high and
litter-low which resulted in the Marine Litter samples
(table 3). Our results for True Positive, False Negat-
ive and False Positive were the added counts of these
metrics for Litter-high and Litter-low. This means if a
sample of Litter-high was misclassified as Litter-low,
or vice versa, this would be counted as False Positive.
Our results for precision, recall and F1-score are com-
puted through the weighted averages of these metrics
for litter-high and litter-low presented in table 1. The
comparison is displayed in table 3 which is an exten-
ded version of the table created by Gonçalves et al
(2020). The weighted average metrics for precision,
recall and F1-score of PLD-CNNoutperform the cur-
rent best performing automated plastic detection sys-
tems by 0.04 (precision), 0.03 (recall) and 0.02 (F1-
score). Moreover, compared with other work in the
literature, the number of samples available to the here
presented study is larger.

Nevertheless, we have to point out that such com-
parisons need to be viewed with caution because the
settings of the mentioned studies are different, mean-
ing that flight altitudes vary from 6 to 20 m and the
camera resolutions vary from 12 to 20 MP (table 4).
But most importantly, the investigated scenes in this
study comprise beaches, rivers and even plastic car-
pets and are therefore quite different from the stud-
ied scenes in the literature. On the one hand, the fact
that the scenes in our work are very diverse makes the
detection of plastics harder. This is because the classi-
fication algorithms need to learn feature representa-
tions for multiple environments. On the other hand,
the geo-spatial resolution used in this study was the
highest comparedwith studies in the literature, which
should generally help to ease the plastic detection.
Because of the many factors which need to be

considered when comparing different automated
detection systems, including performance metrics,
speed of algorithm, utilized imagery and geo-spatial
resolution or difficulties through environment, we
raise the need for a framework which enables a fair
comparison between works in this area.

3.5. Prospects of machine learning in monitoring
plastic litter
Our novel APLASTIC-Q system consisting of PLD-
CNN and PLQ-CNN components is capable to
identify and quantify litter objects with high preci-
sion. In polluted tiles PLQ-CNN was able to detect
five major pollutant classes (i) plastic bag—large,
(ii) plastic bag—small, (ii) plastic bottles, (iv) poly-
styrene packaging and (v) Styrofoam. These top five
litter items were very common in the imagery col-
lected during the survey (figure 4). The results of
our APLASTIC-Q system complemented by coordin-
ated scientific field survey and clean-up efforts could
produce benchmark information crucial for poli-
cymakers and stakeholders to pinpoint problematic
plastic types polluting the natural environment. Con-
current field surveys have been conducted to this
drone survey, however these were not always aligned
with the drone surveys. Therefore, results of the field
survey, which investigated 1 m2 in regular intervals,
could not be used as ground truth since the examined
sections of the images could not be clearly assigned.
We plan overcome these issues in future survey pro-
jects. Furthermore, the counts can be used for oper-
ational monitoring, including installed cameras, and
creating baseline parameters for measuring the effic-
acy of waste and plastic management policies.

We encountered shadows in captured imagery
that introduced biases in our PLQ-CNN algorithm. It
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was biased towards plastic bag—large, plastic bag—
small, plastic other or plastic bottle. However, in the
bright sections of the shadowed image, the PLQ-CNN
was more inclined to classify litter as polystyrene
packaging or Styrofoam. These two classes consisted
of white coloured items that could have played a role
in biasing the algorithm. As for PLD-CNN, in tiles
identified as litter-low we observed more items than
prescribed in the thresholding steps. Fortunately, an
additional run of the tiles marked as litter-low in
PLQ-CNN proved to resolve this problem.

Training neural networks with imagery con-
taminated with shadows or surface reflected glit-
ter has been considered problematic (Martin et al
2018, Fallati et al 2019). We therefore recommend
imagery collection during optimal meteorological
weather conditions and nadir viewing angles to
avoid glitter and shadows. Inevitable shadow could
be mitigated in imagery by applying filters such as
gamma correction or statistical algorithms (Silva et al
2018, Xue et al 2019). Additional metadata (flight
height, humidity, temperature, aerosol content, wind
speed, geolocation) would also be useful to improve
atmospheric correction of images and to accurately
determine geo-spatial resolution. Future surveys are
expected to provide more data to better train our
APLASTIC-Q system thus improving its accuracy and
prospective application in different regions of the
world.

Although, RGB true colour images have shown
benefits in automated monitoring of plastic litter,
we propose to further explore the value in multis-
pectral imaging technologies. Multispectral sensors
with wavebands in the near infrared spectrum could
further improve the identification of plastics in the
natural environment. Already, studies using hyper-
spectral sensor technologies have confirmed dia-
gnostic wavebands of plastics in the near to short-
wave infrared spectrum (Kühn et al 2004, Garaba
et al 2018, Garaba and Dierssen 2020). We assume
that with these additional vectors of information
from multispectral imagery, APLASTIC-Q can bet-
ter differentiate litter in comparison with the three
waveband RGB imagery. Furthermore, ocean colour
remote sensing approachesmight benefit especially in
discriminating bright targets such as whitecaps, sea
foam and breaking waves from plastics (Martínez-
Vicente et al 2019, Dierssen andGaraba 2020). There-
fore, future research is expected to explore various
CNN architectures and involve hyper-parameter tun-
ing. We suggest future works to explore benefits of
tailored loss functions that could penalize more if
pollution classes get mixed up with non-pollution
classes and less if non-pollution classes get mixed up.
Moreover, we echo the need for standardized data
acquisition guidelines for UAS surveys to mitigate the
challenges highlighted in our study.

4. Conclusions

We presented a novel machine learning system that
performed reasonably well in identifying and quanti-
fying floating andwashed ashore plastic litter in terms
of covered areas and counts of litter items. Our auto-
mated detection and quantification algorithms con-
tribute towards monitoring strategies that comple-
ment counts from net trawl, field surveys, clean-up
efforts and numerical distribution solutions. Com-
bining the end-products of APLASTIC-Q, we believe
we add value to scientific evidence-based knowledge
that is important in the decision-making and legisla-
tion by policymakers, stakeholders including citizens
in improving the blue economy as well as health of the
blue planet. Litter estimates fromour algorithms echo
the need for upscaling monitoring efforts in develop-
ing nations. The vertical distribution of the plastic lit-
ter especially in the aquatic environment cannot be
easily resolved from our algorithm. However, extra-
polating the horizontal distributions of litter in differ-
ent locations can be applied if basin types and prior
in situ surveys are conducted, an important source of
information urgently required in regions with plastic
river carpets. There is a need to expand the cap-
abilities of our algorithms to satellite imagery from
very high geo-spatial resolution capable missions
such as PlanetScope, Skysat, Pleiades and WorldView
missions.
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