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Abstract  To manage agricultural landscapes more sustainably we must understand and quantify 28 

the synergies and trade-offs between environmental impact, production and other ecosystem 29 

services. Models play an important role in this type of analysis as generally it is infeasible to test 30 

multiple scenarios by experiment. These models can be linked with algorithms that optimise for 31 

multiple objectives by searching a space of allowable management interventions (the control 32 

variables). Optimisation of landscapes for multiple objectives can be computationally challenging, 33 

however, particularly  if the scale of management is typically smaller (e.g. field-scale) than the scale at 34 

which the objective is quantified (landscape scale) resulting in a large number of control variables 35 

whose impacts do not necessarily scale linearly.   In this paper, we explore some practical solutions to 36 

this problem through a case study. In our case study we link a relatively detailed, agricultural landscape 37 

model with a multiple-objective optimisation algorithm to determine solutions that both maximise on 38 

profitability and minimise greenhouse gas emissions in response to management. The optimisation 39 

algorithm combines a non-dominated sorting routine with differential evolution, whereby a 40 

“population” of 100 solutions evolve over time to a Pareto optimal front.   We show the advantages 41 

of using a hierarchical approach to the optimisation, whereby it is applied to finer scale units first (i.e. 42 

fields), and then the solutions from each optimisation are combined in a second step to produce 43 

landscape-scale outcomes. We show that if there is no interaction between units then the solution 44 

derived using such an approach will be the same as the one obtained if the landscape is optimised in 45 

one step. However, if there is spatial interaction, or if there are constraints on the allowable sets of 46 

solutions then outcomes can be quite different. In these cases, other approaches to increase the 47 

efficiency of the optimisation may be more appropriate – such as initialising the control variables for 48 

half of the population of solutions with values expected to be near optimal. Our analysis shows the 49 

importance of aligning a policy or management recommendation with the appropriate scale. 50 

   51 
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Introduction 54 

Agricultural landscapes provide our food, contribute to the way natural resources are managed, and 55 

provide areas for recreation and public wellbeing (Westmacott and Worthington 2006). Pressures to 56 

increase food production have led to many unsustainable agricultural practices which can degrade the 57 

soil, reduce water quality, increase the likelihood of flooding, impact biodiversity and result in the 58 

emissions of greenhouse gases (Bennett et al. 2009; Seppelt et al. 2016; Tilman et al. 2002). Mitigating 59 

anthropogenic impacts on the environment and global food security are hence two major challenges, 60 

and identifying and exploiting synergies between these should result in social, economic and 61 

ecological benefits (Cramer et al. 2017). Sound landscape management strategies are therefore 62 

essential for the long-term sustainability of agriculture, and so it is not surprising that there is an 63 

increasing amount of research into how we should manage agricultural landscapes to fulfil multiple 64 

objectives aligning to production and environmental quality (Kennedy et al. 2016; Groot et al. 2018; 65 

Verhagen et al. 2018; Fischer et al. 2017; O'Farrell and Anderson 2010).  This ambition, however, 66 

inevitably involves trade-offs between conflicting objectives (Howe et al. 2014).  67 

In much of the research done on landscape design and management, a recurring theme is the 68 

need to understand and quantify the synergies and trade-offs between environmental impact, 69 

production and other ecosystem services (Gourevitch et al. 2016; Howe et al. 2014; Kennedy et al. 70 

2016). Approaches that rely on data and measurement are hampered by the fact that it is often 71 

infeasible to experiment at the scales (both spatial and temporal) appropriate to how best to manage 72 

landscapes. Not surprisingly therefore, computer simulation models have an important role to play in 73 

filling the large gaps between what we need to know and what is available from measurements. Many 74 

approaches rely on scenario analysis whereby various management strategies or policies are tested 75 

through simulation. A second approach, which we explore here,  is to link  a model that describes the 76 

impact of management on an agricultural landscape with an optimisation algorithm, and so determine 77 

the sets of inputs to the model (known as “the control variables”) that maximise the desired outcomes 78 
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in the model.  These outcomes are framed as an “objective function” and could be any combination 79 

of profit and measures of environmental impact. The optimisation algorithm seeks to maximise (or 80 

minimise) the objective function by efficiently searching the allowable ranges of the control variables. 81 

Linking models of ecosystems services with optimisation algorithms to elucidate mechanisms to fulfil 82 

multiple objectives is becoming increasingly popular. Kennedy et al. (2016) used models of agricultural 83 

profit, biodiversity and freshwater quality linked to an optimisation algorithm to investigate trade-offs 84 

under various land use scenarios. Their objective function was formed from a weighted sum of the 85 

individual objectives. They demonstrate the advantages of considering multiple objectives when 86 

optimising landscape management strategies, over optimisation based on production or profit alone. 87 

Their analysis showed that through joint planning for economic and environmental goals at a 88 

landscape-scale, Brazil's agricultural sector could expand production and still meet regulatory 89 

requirements, while maintaining biodiversity and ecosystem service provision. Others have advocated 90 

the use of multi-objective optimisation, whereby the optimisation algorithm is used to determine 91 

Pareto optimal fronts of multiple objectives. The Pareto front describes the trade-off between 92 

objective variables such as yield and biodiversity where it is not possible to improve outcomes for one 93 

variable without impacting another adversely. For example, Verhagen et al. (2018) present a multi-94 

objective optimization of on- and off-farm agri-environment measures to maximise fruit production, 95 

potential habitats for endangered species, and landscape aesthetics whilst minimising loss of pasture 96 

production. The models that they use include lookup tables as well as more complex approaches. 97 

Groot et al. (2018) present a landscape modelling framework for multi-scale spatially explicit analysis 98 

of trade-offs and synergies among ecosystem services. They include a multiple objective optimisation 99 

to determine trade-offs between ecosystems services that may be estimated from simple 100 

relationships or more complex models. Teillard et al. (2017) apply multiple objective optimization to 101 

determine how the spatial planning of agricultural intensity allocation could improve on both food 102 

production and the diversity of farmland birds on a national scale. Their optimisation considers the 103 
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whole of France with control variables applied at the scale of small agricultural regions(590 regions 104 

were used in the analysis). 105 

A challenge that frequently arises in model-based optimisation of landscape management relates 106 

to the scale at which the control variables should be applied. Typically, decisions on landscape 107 

management are taken at relatively fine scale:  field scale or finer, whereas the objectives we wish to 108 

optimise are at the scale of the landscape.  This discrepancy in scale can lead to an intractably large 109 

number of control variables.   For example, if we consider the management of fertilizer on a field-by-110 

field basis across a landscape, (even without consideration of any other control variable), the number 111 

of fertiliser controls can be or the order of hundreds to thousands. This number of control variables  112 

makes convergence to an optimal solution unlikely.  In this study, we have explored some practical 113 

solutions to such problems where there is a discrepancy between the scale of implementation of a 114 

control and the scale of a desired outcome. To explore these, we linked a relatively detailed model 115 

that describes an agricultural landscape (Coleman et al. 2017) with a multiple objective optimisation 116 

algorithm. The example that we consider is how to manage a landscape for improved nutrient use 117 

efficiency (i.e. reducing nutrient losses through greenhouse gases and leaching whilst maintaining 118 

good productivity across the landscape).  Here we consider the implications of taking a hierarchical 119 

approach to this type of problem, whereby we optimise the management decisions made on a field-120 

by-field basis first, and then combine these in subsequent steps. We explore the conditions under 121 

which such an approach would be beneficial, and where it would not. We work with a simulated 122 

landscape based on a 1km x 1km square of arable land in the UK, and demonstrate that our approach 123 

can provide solutions to this large-scale problem. In particular, we explore the implications such an 124 

approach has when our landscape has substantial spatial interaction or when there are conditions (or 125 

constraints) on the allowable set of solutions. We also consider approaches that may improve on the 126 

rate of convergence of our optimisation. We conclude with some broad recommendations and discuss 127 

how more complex scenarios could be approached.   128 
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 129 

Method 130 

We linked the Rothamsted Landscape model (RLM) with a multiple objective optimisation algorithm 131 

to explore practical approaches to scaling up model-based optimisation of landscape management. 132 

We start by describing the model and case studies before going on to describe the optimisation 133 

algorithm and the strategies we investigated to more efficiently explore the search space for optimal 134 

management.  135 

 136 

Landscape model 137 

 138 

The Rothamsted Landscape model, RLM, (Coleman et al. 2017) simulates the effect of fertilizer 139 

management on profit (calculated as the difference between income from yield and the costs 140 

associated with fertilizer and its application), yield and the environment. This model operates at a 141 

daily time step and simulates the essential processes of soil, water, crop growth and biodiversity for 142 

agricultural landscapes in the UK (Fig. 1). The crop model is a generic plant growth model based on 143 

LINTUL (Wolf 2012; Shibu et al. 2010). The model has been parameterised for 20 crops including major 144 

cereal crops, grass, potatoes sugar beet, and onions. The RLM also has an arable weed component 145 

that simulates 136 weed species (Metcalfe et al. 2019). 146 

The simulation of soil-water dynamics uses a capacity based approach (Addiscott and Whitmore 1991) 147 

where the capacity of each layer depends on soil texture, soil organic matter and bulk density. Water 148 

is available for crop uptake and is lost through percolation, runoff, evaporation and transpiration. The 149 

soil organic carbon (SOC) dynamics are based on the Rothamsted carbon model, RothC, (Coleman and 150 

Jenkinson 2014)  Soil organic nitrogen (SON) and soil organic phosphorus (SOP) are modelled in a 151 

similar way to the SOC dynamics, both SON and SOP have the same pool structure as the active SOC 152 
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pools. Soil mineral nitrogen comprises ammonium (NH4
+) and nitrate (NO3

−) and is input through 153 

atmospheric deposition, and inorganic fertilizer application as well as mineralisation from soil organic 154 

matter.  When organic amendments are added, N enters the soil inorganic nitrogen pools by 155 

mineralisation. Mineral nitrogen may be taken up by the crop and is lost through runoff , leaching ( 156 

NO3
− only) and emissions from the soil. Mineral phosphorus is added as fertilizer may be taken up by 157 

the crop and can be lost through runoff. Full details are given in Coleman et al. (2017). 158 

  159 

 The RLM is spatially explicit. This is achieved by considering the area to be modelled as a grid 160 

of cells where each cell represents a field or part of a field (depending on the scale of interest). To 161 

initialise the landscape, soil properties are set in each cell and the soil water content of each cell is set 162 

to field capacity. Within each cell, we model crop growth, the dynamics of soil water, SOC, SON, SOP, 163 

changes in bulk density and nutrient (i.e. inorganic N and P) flows on a daily time step. Water and 164 

nutrients can move laterally between cells as runoff, as well as vertically though the soil profile, as 165 

drainage. The landscape model is modular with the main infrastructure (calls to subroutines and data 166 

handling) written in C++ and other modules (crop growth, soil and water processes, weed dynamics 167 

and livestock) written in either Fortran or C++. 168 

 169 

Modelled landscape scenarios 170 

 171 

To explore the basic principles of scaling up the optimisation to landscape scale, we considered three 172 

different scenarios. Each scenario was run over nine seasons. First, we considered a simple 1x2 grid 173 

with no spatial interaction and a crop of continuous winter wheat in both cells. We assumed each grid-174 

cell to be of size 100m x 100m (which equates to 1ha). The soil properties for each cell were based on 175 

the soil found in two fields in Silsoe, Bedfordshire, UK, which we examined in a previous study (Lark 176 
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et al. 2004). We chose these soils because they are contrasting yet found close to one another, making 177 

our simplistic scenario plausible yet diverse enough for optimal solutions to vary between cells. The 178 

soil conditions for the two fields are shown in Table 1. The model requires initial conditions for soil 179 

properties three layers deep, but we only had measurements for the top layer (Table 1). We based 180 

the soil conditions for the other two layers on some broad assumptions. We assumed that the sand, 181 

silt, clay, and pH took the same value throughout the three layers.  We assumed that the organic 182 

carbon in the second (23–46cm) and third (46–69cm) was 50% and 25% of the value for the top layer 183 

respectively. The bulk density for layers 2 and 3 was estimated using the (Rawls 1983) nomogram 184 

which uses values of texture and organic carbon to estimate bulk density. As our aim was to simulate 185 

plausible field conditions, and not specifically evaluate the two fields from Silsoe, we considered these 186 

assumptions acceptable. The second scenario was identical except that this time we assume that there 187 

is a 5% slope and that water and nutrients flow laterally from “Field 2” to “Field 1” from where it runs 188 

off and is accounted for in the drainage water. 189 

 In our third scenario, we consider a more realistic landscape using a larger 10x10 grid (cell size 190 

100m x 100m) which is based on a 1 km x 1 km area of the UK in cereal production.  For this scenario, 191 

we assume that each field is in a three-year or six-year rotation somewhat typical of a rotation found 192 

in the UK (wheat–beans–wheat–barley–wheat–oilseed rape or wheat–wheat–oilseed rape).  The 193 

point in the rotation that each field is started with varies across the landscape (see Fig. 2).  Although 194 

we had information on the topography of this area of the UK, we did not have detailed information 195 

on soil type. We therefore assumed that the soil properties had a similar range to those we used in 196 

our 1x2 grid and allowed the properties to vary in relation to elevation with lighter sander soils 197 

associated with higher cells  and heavier soils associated with lower points.   198 

 199 

The Optimisation Algorithm 200 

 201 
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We coupled the simulation model with an optimisation algorithm to determine Pareto optimal fronts 202 

between multiple objectives defined in terms of outputs from the model. For each management unit 203 

(e.g. field), the control variables comprised the amount of inorganic N-fertilizer applied, the amount 204 

of inorganic P- fertilizer applied and the amount of organic amendment, farmyard manure (FYM), 205 

applied.  Because these are control variables, we do not fix the amounts of fertilizer a- priori as one 206 

would in scenario analysis, rather we let the optimisation algorithm search the allowable space for the 207 

amounts that optimise the objective function. In the optimisation, fertilizer-N can be applied on any 208 

of nine dates starting from the sowing date or the 14th February (whichever is later) and then every 209 

ten days after. This is a pragmatic way to include variable timing in the optimisation, without explicitly 210 

adding timing as an additional control variable (Parsons and Beest 2004), as we expect that many of 211 

the nine application rates will be zero. The timings of fertilizer-P and FYM are fixed to a week before 212 

sowing and the sowing date, respectively. The N fertilizer variables were bounded between 0 and 300 213 

kg N ha-1 per application, P fertilizer between 0 and 100 kg P ha-1, and the FYM between 0 and 3 t C 214 

ha-1. So that our results are straightforward to interpret, we restrict the number of objectives to two: 215 

profit (£ ha-1) and nitrous oxide emissions (expressed in kg CO2-equivalent ha-1 year -1 where we 216 

assume a conversion factor of 298 CO2 to N2O).  217 

The profit function is calculated as sum of the yield multiplied by the price of the crop each 218 

season, minus the total cost of applying fertilizer, which is made up of an application cost (£ per 219 

application) and the price of the N and P applied (£).  This is divided by the number of seasons (9 as 220 

stated above) to give the average profit.  In the simulations shown here FYM is assumed to be free but 221 

does incur an application cost.  222 

The optimisation algorithm that we used combines a non-dominated sorting routine from 223 

NSGA-II (Deb et al. 2002) with differential evolution (Storn and Price 1997). These algorithms were 224 

coded in C++ and linked directly to the RLM code. Our aim is to use the optimisation algorithm to 225 

define a Pareto front of optimal solutions. For this we maintain a population of 200 solutions. Initially, 226 



Environmental Monitoring and Assessment: Special Issue 

12 
 

the optimisation algorithm randomly generates values for the control variables for each member of 227 

the initial population. In our case this is 200 sets that define the rates on N, P and FYM fertilizer to be 228 

applied.  These management strategies are then implemented in the model resulting in 200 sets of 229 

values for the optimisation objective function (in our case profit and greenhouse gas emissions). The 230 

non-dominated sorting identifies the options that result in the ‘best’ 100 objectives, i.e. those that are 231 

non-dominated in the sense that no other point has both a greater profit and a lower rate of emissions. 232 

A point is said to be dominated by another if it is worse for every single objective (for example, for a  233 

two-dimensional Pareto front describing the trade-off between profit and greenhouse gas emissions 234 

a scenario whereby profit was 𝑝1and emissions were 𝑔1would be dominated by another if  𝑝2 > 𝑝1 235 

and 𝑔1 > 𝑔2 where  𝑝2 and  𝑔2 represent the profit and emissions from the second scenario). The 236 

differential evolution algorithm then combines aspects of the management options that led to non-237 

dominated objectives (i.e. takes two sets of control variables and swaps some of the elements 238 

between the two), along with some randomisation to identify new management options that could 239 

potentially perform even better and forms a new population of 200 from which the best 100 are again 240 

selected. The process is iterated in directions that the differential evolution algorithm suggests will be 241 

an improvement, until the results converge and produce a similar Pareto front with each iteration. 242 

 243 

Landscape optimisation Strategies  244 

 245 

We compared four strategies for optimising landscape units for our 1x2 grid scenarios. In the 246 

first approach (Strategy 1), we optimised the landscape units separately and produced Pareto frontiers 247 

for each landscape unit. These frontiers were then combined in a second step to produce an optimal 248 

frontier for the landscape (Todman et al. 2019) ). Any interaction between the two units was therefore 249 

neglected. In the second approach (Strategy 2), we assumed that the same fertilizer management 250 

should be applied to all landscape units and optimised accordingly (that is to say, the landscape was 251 



Environmental Monitoring and Assessment: Special Issue 

13 
 

optimised at a larger scale). In the third approach (Strategy 3), we optimised the landscape in one 252 

step, assuming that each unit was managed separately. For this third approach we started the 253 

optimisation with a population set where the control variables were generated randomly. In our 254 

fourth approach (Strategy 4)  we initialised half of the population of controls using the solutions 255 

generated when we optimised the units separately. In control theory terms, we “seeded” part of our 256 

population of controls with values likely to be near optimal.  We also explored the difference between 257 

sets of solutions generated using Strategies 1 and 3 when a condition that the amount on maximum 258 

amount of N that could leach (an arbitrarily set threshold of 20 kg N ha-1) was imposed on the 259 

allowable set of solutions.  For each approach, we determined the number of iterations before the 260 

solution converged and the time taken for convergence. Based on our findings from this investigation, 261 

we applied the optimisation to the larger more realistic 10x10 landscape.  262 

 263 

 Results 264 

 265 

Optimisation without condition on the maximum amount of N leached 266 

 267 

The number of iterations for the solutions to converge and the times taken are shown in Table 2. We 268 

note that the absolute times to converge depend on the computer hardware, but the relative lengths 269 

of timings are informative. The time taken for the two single fields to converge, was less than half of 270 

that taken for the two-cell grid to converge. When the population of solutions was partially initiated 271 

with solutions from the single cell optimisations this time reduced to be similar to that taken for the 272 

single cell optimisation.  However, the time to optimise the single cells should be also accounted for 273 

in this scenario.  274 
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There was no substantial difference in the time taken for the 1 x 2 grid with spatial interaction to 275 

converge compared with the time taken for the grid without spatial interaction.  276 

The time for the case where management is assumed to be the same across the 1x2 landscape was 277 

similar, to the single cell solutions. Based on these results we optimised our 10 x 10 cell landscape 278 

using solutions from single cell optimisations to initialise half the population of solutions. The other 279 

half of the population was initialised randomly. We found that the population of solutions were able 280 

to converge to a frontier, although this took a substantial amount of time (see Table 2).  281 

The optimised solutions for the two separate fields show distinct populations (Fig 3) that 282 

relate to various types of fertilizer treatments. In both fields, there is a population of solutions where 283 

only P fertilizer is applied (shown in green). These solutions are characterised by low profit and low 284 

emissions. In fact, in these solutions applying P fertilizer is not cost effective and only has advantage 285 

because the slight increase in yield that it causes results in more N going into the plant and so less lost 286 

as N2O emissions. The populations shown in blue related to solutions where only fertilizer-N is applied. 287 

Increasing N fertilizer results in larger and more profitable yield, but emissions of N2O increase. Field 288 

1 has an additional population of solutions (shown in orange) these relate to applications of FYM. This 289 

source of fertilizer is cheaper than mineral N so gives greater profit in Field 1 but also result in greater 290 

emissions. There are no equivalent sets of solutions for Field 2. This difference is due to the soil. The 291 

soil in Field 1 has a greater content of clay and so additions of FYM have greater impact on improving 292 

the bulk density of the soil and hence water holding capacity than Field 2. The crop, therefore, suffers 293 

less water stress. The optimised solutions for the 1x2 grids are shown in Fig. 4–6. Combining the two 294 

sets of optimal solutions shown in Fig. 3 gives the set of solutions shown in Fig. 4. If there is no 295 

interaction between fields, the Pareto optimal frontier of this set of solutions is the same that is given 296 

by optimising the landscape as a whole (shown by the black discs in Fig. 4) i.e. the solution of a problem 297 

with, in this case, twice as many control variables. If, however, there is interaction between the 298 

landscape units (i.e. fields) then the two-step optimisation process does not reach the same solution 299 
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as when the landscape is optimised in one stage (Fig. 5). We also  optimised the landscape with the 300 

assumption that management was uniformly applied (Fig 6). Not surprisingly, improvements in both 301 

emissions and profit can be made if the control is allowed to vary at the finer scale (single cell) rather 302 

than be uniformly applied across soils that are substantially different. The improvements, however, 303 

are small for the solutions that relate to mineral nitrate application (on average £30 ha-1 year-1 and 30 304 

kg CO2 eq ha-1 year-1) compared with the solutions where FYM or P-fertilizer is applied.  In particular, 305 

the two solutions with the largest emissions derive from occasions where FYM is applied in both fields.  306 

 307 

Optimisation with constraints 308 

When the constraint was imposed at the larger scale (i.e. when the cells were optimised together 309 

rather than separately and then the solutions merged) more solutions were viable (Fig. 7) as N leached 310 

in from one cell could be compensated for by smaller losses from the other cell. In particular, this 311 

affected the profitability that could be achieved with the given constraint.  312 

 313 

Optimisation of 10 x 10 cell landscape 314 

 315 

The 10 x 10 cell grid converged to a frontier with similar (but less distinct) populations of solutions to 316 

that observed for the 1x2 grid (Fig. 8). That is to say, there was a distinct set of solutions that related 317 

to P-fertilizer only, which were characterised by low emissions and small profit. A second cluster was 318 

characterised by moderate rates of N- and P-fertilizer but little to no FYM. The final set solutions 319 

comprised solutions with larger additions of all fertilizer types.  320 

 321 

Discussion 322 
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Optimisation of landscapes for multiple objectives is complex particularly if the management controls 323 

available are applied at fine scale, for example, field scale management. In such cases, the number of 324 

control variables can become infeasibly large and it may no longer be possible to use an optimisation 325 

algorithm. We have explored some practical solutions to approach such a difficulty.  326 

One way to reduce the number of control variables used in any single optimisation step is to 327 

take a hierarchical approach whereby the optimisation is applied to finer scale units, for example field 328 

scale, and then the solutions from each optimisation are combined in a second step. We show that if 329 

there is no interaction between units then the solution derived using such an approach will be the 330 

same as the one obtained if the landscape is optimised in one step, provided of course that neither 331 

approach gets stuck in a local minimum. A hierarchical approach could also be used if the number of 332 

control variables within each spatial unit is large. In this case the control variables could be grouped 333 

into sub-groups such that the expected interaction between the control variables within each sub-334 

group is large and the interaction between the sub-groups of control variables is minimal. The 335 

advantages of the hierarchical approach are clear: the number of control variables used to determine 336 

the solution of a single unit is far fewer and the search space is therefore far less complex meaning 337 

that the chances of getting stuck in a local minimum are greatly reduced. Secondly the process of 338 

optimising the landscape can be parallelised reducing the time taken to reach a solution.  339 

A second strategy is to apply the control variables at a larger scale than an individual unit. We 340 

showed that this had clear advantages in the time taken to converge to a solution and can reduce 341 

complexity enormously.  To use this strategy wisely, some form of pre-clustering algorithm should be 342 

applied to the landscape to group similar landscape units together and apply the controls at the scale 343 

of these groupings.  344 

The problem is less straightforward if there are interactions between cells. In these cases, the 345 

optimal solution discovered using the hierarchical approach is likely to come to a different solution 346 

compared with the one found when the landscape is optimised in one step. As we demonstrate, there 347 
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is also an issue with the hierarchical approach if we apply conditions on the set of allowable solutions 348 

at a scale greater than the size of the unit that we optimise. In the example that we consider, we 349 

imposed a condition that N leaching could not exceed a specified limit per hectare. If this limit is 350 

imposed at the scale of the field (or unit cell) then we miss solutions that exploit the opportunity to 351 

exceed the limit in certain cells, compensating for this by imposing much lower levels than the 352 

threshold in others. This is analogous to imposing a regulation on water quality at catchment scale 353 

despite the fact pollutants are generally managed at field scale.     354 

Where it is not possible to take a hierarchical approach to the optimisation, it may be 355 

advantageous to strategically “seed solutions". This is particularly appropriate with the genetic 356 

algorithm that we used as it is possible to pre-populate a proportion of the solutions leaving the 357 

remaining solutions random and hence maintaining the potential for a broad group of optimal 358 

solutions. In our case, we pre-seeded 50% of our controls with values that led to optimal solutions in 359 

the individual units. Because we seek to optimise multiple objectives, we needed to ensure that these 360 

composite sets were similarly sorted from objectives that favoured lower emissions to those that 361 

favoured profit so that the composite solutions were closer to the feasible frontier than one we might 362 

expect from random. This approach, admittedly has drawbacks. It is time consuming to set up the 363 

initial solution set, and such a construction is more likely to lead the algorithm to get stuck in local 364 

minima compared with truly random initial conditions. This risk, however, could be minimised by using 365 

different seeding strategies such as using a small percentage of seeded solutions, or seeded from 366 

partial solutions (e.g. with the controlss for one spatial unit, but with randomised controls for all other 367 

spatial units). Further options for this initial population could also be developed based on the ideas of 368 

stakeholders or by generating possible scenarios, as has been done elsewhere (Hu et al. 2015). Here, 369 

however, we demonstrated that a simple seeding approach can make it possible to optimise relatively 370 

large and complex landscape units.  371 
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In the case study we considered we looked at two objectives to simplify our exposition, 372 

however it is straightforward to include more. With this particular model we can include up to six. The 373 

objectives may be synergistic, whereby an improvement in one is positively correlated with another, 374 

or more interestingly there maybe trade-offs between pairs of objectives. The two that we chose to 375 

use demonstrate a trade-off between production and environment – with little obvious synergy. To 376 

increase profit we must fertilize (accepting there is some economic optimum) but this is often to the 377 

detriment of the environment. However, one interesting interaction picked up by the model was that 378 

if we increase P-fertilizer, potential yield can increase allowing more N to be taken up by the plant 379 

resulting in smaller N2O emissions; however, the application of P was not cost effective in this case.  380 

This relationship between yield potential and fertilizer demand is widely acknowledged (Kindred et al. 381 

2015). Hughes et al. (2011) observed that the use of crop protection chemicals reduces greenhouse 382 

gas emissions per unit N applied. The practical message for farmers is that alleviating limitations on 383 

yield potential increases nutrient use efficiency which can lead to larger yields and reduced N-losses.  384 

 Interestingly, the clustering solutions as described by Todman et al. (2019) shows that they 385 

fall into two or three different fertilization strategies (depending on soil type) that group somewhat 386 

along the trade-off curve (i.e. result in similar outcomes). This demonstrates the power of the 387 

optimisation approach, in that it elucidates clear patterns which are helpful when evaluating 388 

environmental response to management. In particular, we saw that on the clay soil additions of FYM 389 

can increase yield substantially but at the cost of increased emissions.  This highlights the potential for 390 

increasing the value of the objectives by allowing for finer-scale management solutions (as illustrated 391 

by Fig. 6), and the importance of aligning management recommendation with the appropriate scale. 392 

Indeed, there is potential for model-based optimisation (such as that presented here) to aid farmers 393 

in decisions related to resource allocation to maximise nitrogen use efficiency.   394 

We also showed that the scale at which a constraint or condition is applied can have a large 395 

impact on the sets of allowable solutions (Fig. 7). This has implications for policy as it demonstrates 396 
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the importance of aligning a policy with the appropriate scale. Policy-makers might relax the 397 

requirement for water draining from each field to be of satisfactory quality if aggregate water from 398 

several fields meets standards. In practical terms, our analysis revealed that there is potential value in 399 

devising policy restrictions where cooperation is both allowed and encouraged. Indeed, model-based 400 

landscape optimisation, offers a key tool for policy to determine where cooperation and more flexible 401 

approaches to regulatory mitigation strategies could enhance the multiple objectives we seek to fulfil 402 

with landscape management. 403 

The methodology described here can be extended to explore the implications of landscape 404 

management on wider sets of ecosystems services and natural capital: in particular provisioning (food 405 

production and fresh water), regulating services (climate, flood, pest and disease regulation, and 406 

pollination), and biodiversity. We can capture these facets as objectives in our optimisation producing 407 

a multidimensional surface on which each point represents a set of management options that are 408 

optimal in some way. Whilst, infield management of crop pests might aim to reduce some aspects of 409 

biodiversity (for example weed control), at the larger landscape scale we typically aim to enhance 410 

biodiversity. Indeed, there is a growing interest in the role of biodiversity and the services it generates 411 

such as natural crop protection as well as its role in cultural ecosystems service provision (Letourneau 412 

et al. 2009).   413 

Crop choice (including grazing systems) and the associated concepts of in-field rotation are 414 

the key drivers of landscape outcomes (production and environmental impacts) and so offers an 415 

obvious yet complex set of control variables (Dury et al. 2012; Sethi et al. 2006). Varying crops 416 

intelligently in the landscape, including some sort of set-aside to enhance biodiversity, should work 417 

well cooperatively where a high-yielding but polluting crop is matched with poorer-yielding but 418 

cleaner companion.  This concept sits uncomfortably with modern pressures and ways of working, 419 

however, such as block cropping and contract management that deliver economies of scale.  In 420 

practice, rotation may remain a stratagem that continues to deliver sustainability over time. Model-421 
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based optimisation of such a problem could offer great insights but the complexity is enormous and 422 

so developing a hierarchical approach, similar to that described here would almost certainly be 423 

essential.  424 

 425 

Conclusion  426 

Model-based landscape optimisation is hampered by the fact that management interventions occur 427 

at a relatively fine-scale meaning that the number of control variables can become intractably large. 428 

We show that if there is limited interaction between spatial units (e.g. fields) then a hierarchical 429 

approach, whereby the optimisation is applied to finer scale units before being combined in a second 430 

step, can be used to advantage. If there are spatial interactions between units or constraints are 431 

applied at the landscape scale, then this approach may not be appropriate. Model-based landscape 432 

optimisation can reveal opportunities for more efficient management by farmers and for 433 

improvements to policy interventions aimed at mitigating the environmental impacts of landscape 434 

management.   435 

 436 
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Table 1 Soil properties for the topsoil (0-23cm) of the fields 1 and 2. Here sand has a particle size 549 

distribution between 2000-60 µm, silt is between 60-2 µm, and clay is <2 µm. 550 

 Soil - type Texture Organic C pH Bulk density 

  
Sand Silt Clay 

   

  
% % % %  (g cm-3) 

Field 1 Clay 9.8 14.3 75.8 2.49 7.6 1.231 

Field 2 Sandy loam 68.0 17.9 14.2 0.96 6.0 1.337 

 551 

  552 
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Table 2 Time taken for the optimisation to converge and the number of iterations before convergence 553 

was achieved. Scenario 1 is a 1x2 grid of cells with no spatial interaction, Scenario 2 is a 1x2 grid of 554 

cells with lateral flow (i.e. spatial interaction), Scenario 3 is a 10x10 grid with spatial interaction. 555 

Strategy 1 is where the optimisation is applied to individual cells and solutions combined post-hoc, 556 

Strategy 2 assumes that management (controls) is applied uniformly across all cells, Strategy 3 557 

optimises the whole grid assuming that management may vary from cell to cell and Strategy 4 is the 558 

same as Strategy 3 but with the initial conditions of the control variables partially defined by the 559 

results from single cell optimisations.  560 

 Number of 

control variables 

Number of iterations 

to convergence 

Time taken to 

converge 

Single cell field 1 11 48 32 mins, 16 secs 

Single cell field 2  11 70  46 mins, 27 secs 

Scenario 1 with Strategy 1  22 85 1 hr, 50 mins 

Scenario 1 with Strategy 2  11 30 41 mins, 45 secs 

Scenario 2 with Strategy 3  22 77 1 hr, 40 mins 

Scenario 2 with Strategy 4  22 24 33 mins, 1 sec 

Scenario 3 with Strategy 4  4752 1760 64 days, 8 hrs 

 561 

  562 
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Figure Captions 563 

Fig. 1 A schematic of the landscape model showing the processes that are simulated and how they 564 

interact.  565 

Fig. 2 (a) A 1km x 1km landscape in East Anglia, UK (b) A map of the elevation of that landscape (c) 566 

the course representation of the landscape in the model with each cell (100 m x 100m). The grey 567 

areas represent non-agricultural areas (buildings or woods), the coloured squares indicate the 568 

rotation that cell is run with. Yellow, light green, dark green and light blue cells are in a six-year 569 

rotation of wheat–beans–wheat–barley–wheat–oilseed rape. Each colour starts at a different point 570 

in the rotation. The dark blue and orange cells, are in a wheat–wheat–oilseed rape rotation.  571 

Fig. 3 Phosphorus fertilizer only (green), mineral fertilizer and no FYM (blue) and FYM only (orange). 572 

Note that, as increases in nitrous oxide emissions are a negative environmental impact, the y-axis 573 

shows values increasing downwards resulting in a convex frontier. 574 

Fig. 4 Comparing the results from optimising the landscape in one stage (black open discs) with the 575 

two-stage optimisation, where the results from optimising Field 1 are combined with the results 576 

from optimising Field 2 (the frontier of the closed discs).  The green discs result from simulations 577 

where fertilizer P is applied to both fields, the grey discs indicate solutions where fertilizer P is 578 

applied in one field and fertilizer-N or FYM is applied in the other. The blue discs indicate solutions 579 

where fertilizer-N is applied in both fields and the orange where FYM applied in Field 2 and fertilizer-580 

N in Field 1. 581 

Fig. 5 The optimisation results from the 1x2 cell optimisation with spatial interaction (blue solid 582 

discs) compared with the results where there is no interaction (black open discs).  In the case where 583 

there is spatial interaction nutrients and water flow from Field 1 to Field 2 due to an elevation 584 

gradient between the two fields.   585 
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Fig. 6 The optimisation results from the 1x2 cell optimisation assuming uniform management across 586 

the landscape (red solid discs) compared with the results where the control (fertilizer application) 587 

can vary between fields (black open discs).   588 

Fig. 7 Comparing the results from optimising the landscape in (a) one stage with the (b) two-stage 589 

optimisation, where the results from optimising Field 1 are combined with the results from optimising 590 

Field 2.  The black solid discs relate to solutions that comply with the constraint, whereas the red solid 591 

discs do not and so the N-leaching limit is exceeded.  592 

Fig. 8 Green P-fertilizer applied to wheat and oilseed rape only, lower levels of mineral N- and P- 593 

fertilizer on all crops and lower levels of FYM  applied to oilseed rape (blue) and larger levels of 594 

mineral fertilizer with FYM (orange). Note that, as increases in nitrous oxide emissions are a negative 595 

environmental impact, the y-axis shows values increasing downwards resulting in a convex frontier 596 

 597 

 598 

 599 

 600 
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 601 

Fig. 1 A schematic of the landscape model showing the processes that are simulated and how they 602 

interact.  603 

  604 
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 605 

 606 

Fig. 2 (a) A 1km x 1km landscape in East Anglia, UK (b) A map of the elevation of that landscape (c) 607 

the course representation of the landscape in the model with each cell (100 m x 100m). The grey 608 

areas represent non-agricultural areas (buildings or woods), the coloured squares indicate the 609 

rotation that cell is run with. Yellow, light green, dark green and light blue cells are in a six-year 610 

rotation of wheat–beans–wheat–barley–wheat–oilseed rape. Each colour starts at a different point 611 

in the rotation. The dark blue and orange cells, are in a wheat–wheat–oilseed rape rotation.  612 

 613 
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Fig. 3 Green P fertilizer only, mineral fertilizer FYM (blue) and FYM only (orange). Note that, as 

increases in nitrous oxide emissions are a negative environmental impact, the y-axis shows values 

increasing downwards resulting in a convex frontier. 
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 618 

 619 

Fig. 4  Comparing the results from optimising the landscape in one stage (black open discs) with the 620 

two-stage optimisation, where the results from optimising Field 1 are combined with the results 621 

from optimising Field 2 (the frontier of the closed discs).  The green discs result from simulations 622 

where fertilizer P is applied to both fields, the grey discs indicate solutions where fertilizer P is 623 

applied in one field and fertilizer-N or FYM is applied in the other. The blue discs indicate solutions 624 

where fertilizer-N is applied in both fields and the orange where FYM applied in Field 2 and fertilizer-625 

N in Field 1. 626 
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 628 

Fig. 5  The optimisation results from the 1x2 cell optimisation with spatial interaction (blue solid 629 

discs) compared with the results where there is no interaction (black open discs).  In the case where 630 

there is spatial interaction nutrients and water flow from Field 1 to Field 2 due to an elevation 631 

gradient between the two fields.   632 
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 634 

 635 

Fig. 6  The optimisation results from the 1x2 cell optimisation assuming uniform management across 636 

the landscape (red solid discs) compared with the results where the control (fertilizer application) 637 

can vary between fields (black open discs).   638 
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 640 

  

Fig. 7 Comparing the results from optimising the landscape in (a) one stage with the (b) two-stage 641 

optimisation, where the results from optimising Field 1 are combined with the results from optimising 642 

Field 2.  The black solid discs relate to solutions that comply with the constraint, whereas the red solid 643 

discs do not and so the N-leaching limit is exceeded.  644 

  645 
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 646 

Fig. 8 Green P-fertilizer applied to wheat and oilseed rape only, lower levels of mineral N- and P- 647 

fertilizer on all crops and lower levels of FYM  applied to oilseed rape (blue) and larger levels of mineral 648 

fertilizer with FYM (orange). Note that, as increases in nitrous oxide emissions are a negative 649 

environmental impact, the y-axis shows values increasing downwards resulting in a convex frontier. 650 
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