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The problem of capillary transport in fibrous porous materials at low levels of liquid saturation
has been addressed. It has been demonstrated, that the process of liquid spreading in this type of
porous materials at low saturation can be described macroscopically by a similar super-fast, non-
linear diffusion model as that, which had been previously identified in experiments and simulations
in particulate porous media. The macroscopic diffusion model has been underpinned by simulations
using a microscopic network model. The theoretical results have been qualitatively compared with
available experimental observations within the witness card technique using persistent liquids. The
long-term evolution of the wetting spots was found to be truly universal and fully in line with
the mathematical model developed. The result has important repercussions on the witness card
technique used in field measurements of dissemination of various low volatile agents in imposing
severe restrictions on collecting and measurement times.

I. INTRODUCTION

Liquid distributions and transport in particulate
porous media, such as clay, loam and sand, at low satu-
ration levels was found to have very distinctive features
resulting in a special class of mathematical problems,
superfast non-linear diffusion [1–4]. It has been estab-
lished, both experimentally and theoretically, that any
time, any wetting liquid naturally (that is when there is
no force wetting regime involved) spreads in a dry (or a
nearly dry) porous particulate matrix, the moving front
dynamics follows, after some time, the power evolution
law dictated by the superfast non-linear diffusion mech-
anisms [1, 4].

The special character of this non-linear diffusion pro-
cess is caused by the loss of global, pore-scale connectiv-
ity at low levels of saturation. In this case, the liquid
transport only occurs over the surface elements of the
porous matrix, sand particles for example, while the liq-
uid is mostly located in the capillary bridges formed at
the point of particle contacts.

In terms of the mathematical structure, the superfast
nonlinear diffusion equation has the coefficient of diffu-
sion, which demonstrates nearly divergent behaviour as
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a function of the porous matrix saturation s, D(s) ∝
(s− s0)−3/2, leading to hyperdispersive character of the
spreading process [5]. This is in contrast to the math-
ematical formulations involving the standard porous
medium equation, where the coefficient of diffusion D(s)
is either a constant (leading to normal, Gaussian dis-
persive behaviour) or a monotonically decreasing func-
tion (D(s) ∝ sm,m > 0, leading to hypodispersive be-
haviour) [6]. The empirical models widely used in prac-
tice to simulate flow in various soils have much more
complicated algebraic structure, but do not describe low
saturation regime where the divergent behaviour is ex-
pected [7, 8].

Note, s0 is some minimal saturation level (s0 ≈ 1%),
which could be only achieved, hypothetically, in a state
when the liquid bridges completely cease to exist [1, 4,
9, 10]. Obviously, the liquid bridges always exist in the
simulation domain to enable the transport. Therefore,
condition s > s0 should be satisfied, and the singularity,
strictly speaking, does not exist, though s can come very
close to the minimal value s0 [1, 4].

For the first time, the diverging behaviour of the dif-
fusion coefficient D(s), named hyperdispersion, was pre-
dicted in the analysis of spreading in porous networks
driven by the disjoining pressure [11]. Later on, unusual
mathematical properties of the fast (−1 ≤ m < 0) and
superfast (m < −1) diffusion equations were noticed in
the analysis of various physical processes ranging from
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transport in hot magnetized plasmas to non-Markovian
effects taking place in some porous matrices [12, 13].

Apparently, liquid spreading in dry porous materials is
not just characteristic for particulate porous media, such
as sand, but also frequently occurs in other porous mate-
rials. Therefore, in this paper, the previously developed
model [1–4] is generalized to another fairly common type
of porous materials consisting of fibre elements, such as
papers and textiles, where a similar kind of non-linear
diffusion process is anticipated. We would like to un-
derstand how general and universal the superfast mech-
anism, first discovered in particulate porous media [1],
actually is. We note that this transport regime is impor-
tant for many medical applications, since it commonly
occurs in chromatographic flows and lateral flow test se-
tups widely used in the infectious disease testing [14–16].

II. MACROSCOPIC AND MICROSCOPIC
MODELS OF CAPILLARY TRANSPORT IN

FIBER POROUS MATERIALS

The structure of fibrous porous materials is quite dif-
ferent from that of particulate porous media [17–22]. Yet,
all the main elements of the superfast diffusion (SFD)
model can be identified here too.

At low saturation levels, the liquid is only located on
the surfaces of the fibres (including intrafibre pores) and
in the liquid bridges formed at the intersections of the
fibres [23–25]. The microscopic surface details, such as
roughness, generate the capillary pressure to drive the
liquid flow through the network, where the liquid bridges,
as in the case of particulate media, play the role of vari-
able volume reservoirs. We further assume that the liquid
at least partially wets the fibres, so that the contact angle
on the rough surfaces of the fibres would be small (close
to zero) or zero.

As in the previous case of particulate porous media [4],
we first consider the morphology of the liquid distribution
in fibrous materials at low saturation levels to formulate
a pressure-saturation relationship, which will be further
used to obtain a macroscopic, average model. The macro-
scopic model parameters will be assessed and analysed
with the help of a microscopic network setup, which, in
parallel, will serve to underpin and strengthen the macro-
scopic formulation and its hypothesis. In the end, we con-
sider a set of available experimental data, and compare
the general trends expected from the macroscopic for-
mulation with the experimental results. We will demon-
strate and discuss the weaknesses and shortcomings of
the previous measurements.

A. Quasi-steady liquid distribution in fibrous
materials at low saturation levels

The morphology of the liquid structures formed be-
tween the crossing fibres (or nearly crossing fibres with

the shortest distance between them being smaller than
the fibre diameter) in the wetting case is found to be in
general more complex than that observed between the
particles [9, 10, 22–25].

In particulate porous media, isolated bridges only ex-
ist below a certain critical level of saturation s ≤ sc ≈
8− 10%, where the saturation s is defined as the ratio of
the liquid volume VL to the available volume of voids VE ,

s =
VL
VE

in a sample volume V . Above the critical level,

isolated bridges coalescence into larger clusters, such as
trimmers, pentamers and more complex agglomerates.
This trend has been observed for idealized systems con-
sisting of spherical grains and for non-spherical particle
media, like real sand [9].

In fibrous porous media, the liquid volume at the cross-
ing of two rigid fibres can take under the action of surface
tension forces several distinct morphologies depending on
the amount of the liquid VB , the separation distance and
the angle between the fibres θf . Namely, one may ob-
serve a long liquid column, a mixed morphology state
that consists of a drop on one side together with a small
amount of liquid on the other side and a drop or a com-
pact hemispherical drop or a pendular ring [23–25]. In
general, the elongated liquid columns are only formed at
small angles θf ≤ 20◦ between the crossing fibres [24]. So
that the predominant shape of the liquid volumes in ran-
domly oriented fibrous materials appears to be either a
drop or a pendular ring at small saturation levels s ≤ sc.

The shape of an isolated bridge (a pendular ring) can
be determined analytically in a closed form only in quasi-
static conditions and in a simplified geometry, for exam-
ple in the case of two spheres in contact or at small sep-
arating distances [26]. The analytic forms are lengthy,
but approximately results in the following scaling of the
capillary pressure in the liquid bridge p as a function of
its volume VB

p ≈ −p0

(
R3

VB

)γp
, γp ≈ 1/2. (1)

Here, the length scaling parameter R could be either the
diameter of the spherical particle (in particulate porous
media) or the characteristic fibre thickness, p0 = 4γ

R and
γ is the coefficient of surface tension of the liquid [1,
4, 9, 27]. The scaling law can be applied at low levels of
saturation s ≤ sc, even for particulate media consisting of
non-spherical particles, such as sand, before the capillary
pressure saturates at a universal critical value [9]. As a
result, in what follows, relationship (1) is taken as the
main pressure scaling law in capillary bridges at fibre
crossings in our model. The scaling law (1) is expected
to be violated only if the dominant morphology of the
liquid volumes would change from a drop (or a pendular
ring) to elongated columns.



3

B. Macroscopic and microscopic parameters of
fibrous materials

We note that the connectivity of fibres in a porous ma-
terial (the main morphology of the crossings) can be also
in a form of a branch, when each crossing has three links
coming out instead of four as in the case of a common
crossing, Fig. 1.

The porosity of fibrous materials φ is highly variable
(one can easily change paper porosity by applying mod-
erate mechanical pressure to a sample), and, in general,
it is much higher than that of particulate porous media.
The typical porosity values for most paper grades are
found to be around φ = 0.7 (sand porosity, in compari-
son, is around φ = 0.3) [21]. The larger porosity values
imply that overlapping (coalescence) of the liquid vol-
umes attached to different crossings (the effect observed
in particulate porous media [9, 22]) may only occur at
much larger values of saturation.

It is well known that the structure of fibrous materi-
als is effectively two-dimensional, that is the fibres are
roughly oriented in the paper sheet plane. The main
characteristics of the paper materials are therefore also
two-dimensional, such as the total length of fibres Lq per
unit area of a paper sheet. Typically, it takes the values
in between 200 ≤ Lq ≤ 400 mm−1 at the characteristic
paper thickness around 50µm [20]. Given the character-
istic fibre thickness R in the range 4µm ≤ R ≤ 10µm,
one can define the total length of fibres Le per unit area
in a layer of thickness R, which is expected in the range
of 16 ≤ Le ≤ 80 mm−1. The so-obtained typical range
is consistent with the typical paper porosity levels. In-
deed, φ = VE

V , that is φ = 1 − πLeR/4 in a sample
volume V of thickness R assuming circular fibre cross-
section area πR2/4. The estimate then gives φ ≈ 0.7, if
we take parameters in the middle of their expected, es-
timated intervals, that is Le = 50 mm−1 and R = 7µm.
This implies that parameters φ, Le and R characterising
porous network are always interrelated.

C. Macroscopic model

To characterise liquid distributions macroscopically,
one needs to introduce quantities averaged over a suf-
ficiently large volume element. In what follows, we will
briefly follow the procedure similar to that in [4], while
binding parameters to the specific case of fibrous mate-
rials and defining their characteristic values.

First, an average coordination number, that is the av-
erage number of crossings per unit volume Nc is to be
defined. The value of Le in a random paper network al-
lows to estimate the mean distance lf between the nearest
fibre crossings, as in [20], lf ≈ 2

πLe
. That is, typical val-

ues of lf are expected in the range 8µm ≤ lf ≤ 13µm.
Using R = 7µm and Le = 50 mm−1, one can obtain an
estimate of the coordination number with a typical value

Nc =
πL2

e

2R ≈ 5.6× 105 mm−3.

To parametrize saturation, we split, similar to [4], av-
erage liquid content in a sample volume V = S0R of
thickness R and surface area S0 into two parts: the liq-
uid contained on the rough surface of fibres and in the
intrafibre pores of volume Vr = LeS0δ

2
R and the liquid

contained in the capillary bridges at the fibre crossings
Vc = VBNc V .

The parameter δR has the dimension of length and
could be considered as the fitting parameter of the model.
It can be interpreted as the characteristic length scale of
the surface roughness (intrafibre pore size). We further
assume that the smaller details (on the length scale L�
R) of fibres are fully saturated, as it is commonly found
on the rough surfaces [28], such that the amount of the
liquid stored on the rough surface of fibres and in the
intrafibre pores is independent of the liquid pressure, that
is constant. This approximation is well fulfilled if the
capillary pressure is on the scale of p ≈ p0.

Combining both contributions, saturation

s =
Vc + Vr
φV

can be presented as

s = VBV
−1
0 + s0, V0 =

φ

Nc
, (2)

where

s0 =
Leδ

2
R

φR

is the saturation level when all liquid bridges cease to
exist. Note, within the wet area one has always that
VB > 0, so that s > s0.

Then, using (2), the average capillary bridge pressure
P =< p >l

P = −p0

(
R3

V0

)1/2
1

(s− s0)1/2
, (3)

where < ... >l= V −1
l

∫
Vl

dx1dx2dx3 is intrinsic liquid av-

eraging, Vl is liquid volume within the sample volume
V . Using Le = 50 mm−1, δR = 1µm, R = 7µm and
φ = 0.7 as the typical parameters, one can estimate that
the residual saturation level s0 ≈ 10−2, that is about 1%
as expected.

Consider now local transport on the surface of fibres
and in the intrafibre pores. The surface flux density q,
according to the previous study of liquid spreading on
rough surfaces made of microscopic grooves of various
shapes and dimensions [28], obeys a Darcy-like law

q = −κm
µ
∇ψ, (4)

where µ is liquid viscosity, ψ is local pressure in the liquid
averaged within the surface roughness and κm = κ0δ

2
R
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is the effective coefficient of permeability of the surface
roughness, which is proportional to the square of the
length scale parameter δR. In the assumption of fully
saturated fibres, κm = const.

According to the spatial averaging theorem [29], ap-
plying intrinsic liquid averaging < ... >l

−κm
µ

{
∇ < ψ >l +V −1

l

∫
Sl

ψ n dS

}
=< q >l, (5)

where Sl is the area of liquid interface with normal vector
n. The surface integral in the creeping flow conditions,
when the pressure variations across the liquid layer are
insignificant, can be neglected V −1

l

∫
Sl
ψ n dS ≈ 0 and

−κm
µ
∇ < ψ >l=< q >l . (6)

Now, one can cast the continuity equation, in the absence
of evaporation,

∂(φs)

∂t
+∇ ·Q = 0

into

∂(φs)

∂t
= ∇ ·

{
K

µ
∇P

}
. (7)

Here,

Q =
Se
S
< q >l, (8)

S is the surface area of the sample volume V with the
effective area of entrances and exits Se and coefficient
K = κm

Se

S . Also, it has been assumed that in the creep-

ing flow conditions P =< p >l≈< ψ >l. Note, that
the ratio Se/S is not strictly speaking just a geometric
factor. It is an average quantity defined by (8), which
incorporates connectivity and the shape of the surface
elements.

Assuming further that porosity φ is constant and using
expression (3) for the average pressure, one can trans-
form the governing equation (7) into a non-linear diffu-
sion equation for the saturation s(x, t)

∂s

∂t
= ∇ ·

{
D0∇s

(s− s0)3/2

}
, (9)

where

D0 =
1

2

K

µ

p0

φ

(
R3

V0

)1/2

.

The resultant non-linear diffusion equation (9) has a
similar form as that studied in [1, 4] in the case of par-
ticulate porous media. The main difference at this point
is that the equation in the bulk has a constant coefficient
of diffusion D0, which is defined by the connectivity of
the porous network of fibres, while in particulate porous

media, there is a weak logarithmic dependence on satu-
ration, and the diffusivity is driven by the shape of the
particles and their contact area, details can be found [1–
4]. In a way, the situation is simpler in the case of fibrous
materials than that in particulate media, since the con-
nectivity parameter can be quite accurately found via a
network model. This will be done in the next part of
this study. On the other hand, the question of the liquid
amount stored in the intrafibre space is still open, and
down to simplifying assumptions at this stage.

To address a moving boundary value problem set in an
open domain with a smooth boundary ∂Ω moving with
velocity v, the governing equation (9) can be comple-
mented with the boundary conditions

s|∂Ω = sf , sf > s0 (10)

and

v · n = −D0
n · ∇s

s(s− s0)3/2
, (11)

where n is the normal vector to the boundary ∂Ω.

D. The boundary value of saturation and steady
states

The existence of a sharp boundary during the wetting
of a dry porous material has been established experimen-
tally in the case of particulate porous media [1, 4], in the
experiments with the paper porous materials, a sharp
boundary was also observed, though there are some dif-
ferences discussed below.

As we have shown previously, the boundary value of
saturation sf is defined by the capillary pressure devel-
oped at the moving front, which in turn is conditioned
in particulate porous media by the formation of bottle-
neck regions at the point of particle contacts [4]. In the
fibrous porous media, such clear separation of the length
scales generating the capillary pressure is not expected
in a general case. Indeed, while the contact area between
two particles vanishes when the bridge size shrinks and
bottleneck regime of the contacts is achieved, the con-
tact area between the fibres is expected to be still of the
order of the fibre diameter R. In particulate porous me-
dia, this leads to a sharp cut off when propagation of the
moving front practically stops. In the fibrous materials,
this transition should be smoother, when the transport
will be mostly conditioned by the smaller details of the
fibres, for example intrafibre pores or other smaller el-
ements of a fibre. For the first time, the absence of a
clear cut off in the propagation dynamics was observed
in the experiments on spreading of low vapour pressure
liquids [30].

Further in the model development, we consider only
the regime when the liquid bridges still exist, so that the
minimal level s0 is defined by fully saturated intrafibre
structure. The boundary value then is always supposed
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to be larger then the minimal value sf > s0 and should
be defined by the length scale of the fibre details, δR.

To get an estimate of the typical values of the boundary
pressure and the saturation, we assume that the pressure
is generated by the capillaries with characteristic size of
the order of δR. Then, for example for water, taking
characteristic value of the surface tension γ = 72 mN/m
at 25◦ C, one can obtain that at δR = 1µm the capillary

pressure P =
2γ

δR
≈ 1.4 × 105 Pa. As a result, from

(3), taking typical parameter values Le = 50 mm−1, R =
7µm and φ = 0.7, parameter sf = 0.022, that is sf ≈
2.2 s0 at similar values of parameters.

One needs to note though, that in general the capillary
pressure at the moving front may be generated by the
fibre irregularities of smaller length scale than the average
typical values responsible for the liquid accumulation in
the fibres, that is contributing into the value of parameter
s0. So that parameters sf and s0 strictly speaking can
be regarded as independent.

E. Microscopic model

To increase the predictive power of the macroscopic
model and understand its range of parameters, one needs
to turn to a microscopic view. Indeed, as it follows from
the macroscopic formulation (9), to accurately predict
liquid spreading at low saturation levels, one needs to
know the main parameter K = κm

Se

S contributing into
the diffusivity, which, in turn, is defined by the connectiv-
ity of the porous paper network, that is by the parameter
Se/S. Connectivity is essentially a microscopic quantity,
which can be only obtained using a microscopic network
model.

The need to consider that microscopic dynamics be-
comes more apparent if we take into account that real
porous materials are never absolutely homogeneous. So
this would be informative to establish the sensitivity of
the connectivity factor Se/S to the conducting properties
of the fibres and their distribution.

On the side, while modeling the transport in porous
media using network models has shown, in general, that
the methodology is stable and reliable, and is able to
converge to the macroscopic results [31], the SFD has
anomalous properties, such as a divergent coefficient of
diffusion, so that this would be interesting and informa-
tive to compare the macroscopic and microscopic formu-
lations in this special case.

The microscopic network model, we use here, is based
on some simplifying assumptions. First of all, the micro-
scopic network is essentially two-dimensional and consists
of two elements: randomly placed nodes corresponding to
the liquid bridges at the paper fibre crossings or at the
branch points and the links corresponding to the fibres
connecting the bridges, see Fig. 1. The random distribu-
tion of nodes has been generated using Voronoi algorithm
and Delaunay triangulations [31, 32], when the original

domain of simulations is tessellated into either triangles
(three neighbours per node) or quadrilaterals (four neigh-
bours per node), Fig. 1. At this stage, we are not going
to engage the detailed pore-scale modelling, such as, for
example, utilized in [33–37]. Such a simplification is fully
justified since the flow at low saturation levels is predom-
inantly over the surface elements, and there is no flow on
the pore-scale level. Therefore, if we disregard the inter-
nal fibre structure or simply average, the network model
appears to be exact. One needs also to take into con-
sideration the cost of the low level simulations, which,
to fully benefit, require high-resolution imaging of the
porous system to make any tuning of the model and any
comparison reasonable.

Fibre 
crossing

Liquid 
bridge

m

n
I mn

pm
pn

 Fibre 
branch

θ f

V B

FIG. 1. Illustration of the microscopic network model config-
urations and parameters.

To obtain an equivalent to a three-dimensional case
distribution of nodes in the two-dimensional network,
the total number of nodes per unit area Ns in the two-
dimensional case is set to be the same as the total number
of crossings per unit area in a porous layer of thickness
R, that is Ns = NcR.

In what follows, we will use non-dimensional forms
by normalizing distance, pressure, flux density and flux
by R, p0, q0 = δR

R
κmp0
µR and I0 = πδR

κmp0
µ respec-

tively. Then in non-dimensional form, designating non-
dimensional variables by a bar, N̄s = N̄c = 8

π (1− φ)2.

We further assume, according to (1), that at any node
the liquid pressure is defined by the amount of the liquid
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in the bridge, that is

p̄m = −
(

1

V̄ mB

)1/2

, (12)

where V̄ mB is the normalized liquid volume at node m.
At the same time, at non-equilibrium, the liquid flux be-
tween the nodes connected through the links is defined
by the pressure difference. That is the liquid flux from
node m to node n connected by the filament of length
L̄mn is proportional to the pressure difference between
the nodes

Īmn = −αmn
p̄n − p̄m
L̄mn

. (13)

Such a relationship reflects the fact that the transport
happens due to the surface flows in particular within the
irregularities [28].

The coefficient of proportionality αmn is a non-
dimensional adjusting parameter, which takes into ac-
count the average shape of the fibres and their average
ability to transport the liquid. The distribution of the fi-
bre permeability is largely unknown, and this is not part
of the current study. Therefore, to understand the im-
pact of this distribution on macroscopic properties, pa-
rameter αmn in our simulations was either a constant,
αmn = 1, or was a random number uniformly distributed
in the interval 0 ≤ αmn ≤ 1, such that the average
< αmn >= 1/2. Note, if all links would be of a cylin-
drical shape of diameter D̄R = 1 having a uniform liquid
layer of thickness δR/R carrying the liquid flux, then all
αmn = 1.

Liquid saturation can then be calculated as an aver-
age over some representative (that is containing many
nodes) surface element with surface area S̄0. Since our
prime concern here is permeability of the network, we
will neglect the amount of the liquid stored in the links.
That is,

s =

∑
k V̄

k
B

φS̄0
,

where the summation is over all nodes within the surface
element.

In a non-equilibrium state, the distribution of liquid in
the network evolves in time with a time step ∆t chosen
to achieve numerical stability. After each time step, the
total amount of the liquid at every node is calculated
according to the mass balance, that is the mass change
due to the total flux through the links connected to the
node (13) and the amount at the previous time step.

Our prime concern here is a steady state when the flux
density is constant. To obtain the macroscopic parame-
ters, we setup a quasi one-dimensional problem, which is
simulated using both the network model and an equiva-
lent macroscopic model. This way, we are able to define
macroscopic parameters, but also, as a side-product, to
underpin the macroscopic model.

In the microscopic setup, the two-dimensional square
area (side size X̄ = 100) is divided into equidistant strips
in the x-direction (the direction of the diffusion) of a fixed
width ∆x = 2.5. The nodes in the first and in the last
strip are kept at a fixed liquid volume to emulate fixed
boundary saturation levels. In the y-direction, zero flux
boundary condition is set.

Equivalent macroscopic problem formulation

From the macroscopic point of view, the setup is sup-
posed to be equivalent to a one dimensional problem for
(9) with Dirichlet type boundary conditions, that is in a
steady state

d

dx̄

{
ds

dx̄
s−3/2

}
= 0, x ∈ (0, X̄) (14)

s(0) = s1 ≥ sf , s(X̄) = s2 ≥ sf .

The differential equation (14) has a general solution

s =
1

(C̄0 + C̄1x̄)2
, (15)

where

C̄0 =
1
√
s1
, C̄1 =

1

X̄

(
1
√
s2
− 1
√
s1

)
.

The constant flux density then

q̄s = −D0φ

q0R

1

s3/2

ds

dx̄
= C̄1

R

δR

Se
S

√
N̄c
φ

(16)

If the flux density is known in a steady state, the coeffi-
cient of diffusion can be obtained by fitting the observed
profiles of s(x̄) to get C̄1. So that the ratio of the area of
entrances and exits Se/S, the main connectivity param-
eter, is parametrized by the non-dimensional parameters
δR/R and φ, since N̄c = N̄c(φ).

Steady state distributions and the network connectivity factor

In the simulations, the quasi one-dimensional net-
work setup corresponding to the macroscopic model (15)
evolved in time till the flux density arrived at a uniform
distribution in the bulk within the tolerance of 5− 10%.
We used different total number of points in the fixed sim-
ulation domain (side size X̄ = 100) nT and two types of
networks, with three neighbours (triangular tessellation)
and four neighbours (quadrilateral tessellation) per each
node, namely, nT = 2300, N̄c = 0.23 and φ = 0.7, and
nT = 6400 , N̄c = 0.64 and φ = 0.5. The boundary
values of saturation have been set to s1 = 0.1% and to
s2 = 20% to cover the whole range, where the superfast
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Number of nodes nT αmn φ N̄c q̄s Se/S

6400 1 0.5 0.64 −0.15± 0.008 0.49 δR
R

6400 Random 0.5 0.64 −0.056± 0.005 0.17 δR
R

2300 1 0.7 0.23 −0.038± 0.004 0.25 δR
R

2300 Random 0.7 0.23 −0.015± 0.001 0.1 δR
R

TABLE I. Simulation results in the steady state of the quasi-one-dimensional microscopic network model with triangular
tessellation (three neighbours per a node) at different node densities, total number of nodes nT . The saturation levels at the
interval ends are fixed at s1 = 0.1% and s2 = 20%. All data has been averaged over five independent simulations.

Number of nodes nT αmn φ N̄c q̄s Se/S

6400 1 0.5 0.64 −0.27± 0.01 0.88 δR
R

6400 Random 0.5 0.64 −0.11± 0.005 0.36 δR
R

2300 1 0.7 0.23 −0.075± 0.004 0.49 δR
R

2300 Random 0.7 0.23 −0.03± 0.002 0.19 δR
R

TABLE II. Simulation results in the steady state of the quasi-one-dimensional microscopic network model with quadrilateral
tessellation (four neighbours per a node) at different node densities, total number of nodes nT . The saturation levels at the
interval ends are fixed at s1 = 0.1% and s2 = 20%. All data has been averaged over five independent simulations.

regime may be expected. We have also used two different
models for the link permeability parametrised by the non-
dimensional coefficients αij , when either all αij = 1 or
they were randomly, but uniformly distributed in the in-
terval 0 ≤ αij ≤ 1, such that the average < αij >= 1/2.

What do we observe in simulations with the micro-
scopic model? After reaching a steady state, when the
flux density is constant in the flow domain, the distri-
bution of pressure as a function of saturation, Fig. 2,
was found to be in very good agreement with that an-
ticipated in the macroscopic model (3), which is in a
non-dimensional form

P̄ = −

√
N̄c
φ

1√
s
. (17)

As one can observe, Fig. 3, the saturation profiles s(x̄)
are in accord with those anticipated from the macro-
scopic model (15). One can conclude that on average
the behaviour of the network model can be adequately
described by the macroscopic equations.

The results of simulations involving network models
with different parameters are summarized in Tables I and
II. The connectivity factor Se/S obtained in the simula-
tions strongly depends (non-linearly) on the assumptions
made about the conductivity of the links αmn and, of
course, on the node density N̄c, that is on the porosity
φ. In general, the lower the porosity, the larger the con-
ductivity, since more links are available to transfer the
liquid.

The non-trivial behaviour is observed when at a fixed
value of N̄c, the conductivity of the links becomes a ran-
dom distribution. One can see from the tables, that while
the mean value of < αmn >= 0.5, the connectivity factor
Se/S changes almost three times. Natural paper mate-
rials have rather random structures on the microscopic

10-3 10-2 10-1
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FIG. 2. Averaged, reduced capillary pressure |P |/p0 as a
function of saturation s in the model set-up with three nodal
neighbours at s1 = 0.001 and s2 = 0.2, and at different values
of N̄c, φ = 0.5, N̄c = 0.64 and φ = 0.7 and N̄c = 0.23, and
different distributions of αij . The numerical data are shown
by symbols and the solid lines (brown) indicate the fitting

function |P |
p0

= Afs
−1/2, Af =

√
N̄c
φ

.

level, so that such changes should be taken into account.
The result also implies that a small number of impurities
obstructing the capillary flow may substantially reduce
permeability of textured materials, as the SFD mech-
anism is particularly sensitive to the tortuosity of the
pathways.

At the same time, the scaling factor of about 2, which
is expected to occur in different microscopic connectivity
models, that is when changing from the triangular tessel-
lation (three neighbours per a node) to the quadrilateral
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one (four neighbours per a node), is clearly observed in
the average flux density values, Tables I and II.
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FIG. 3. Average saturation s−1/2 as a function of the reduced
distance x̄ = x/R in the model set-up with three nodal neigh-
bours at s1 = 0.001 and s2 = 0.2, and at different values of N̄c,
φ = 0.5, N̄c = 0.64 and φ = 0.7 and N̄c = 0.23, and different
distributions of αij . The numerical data are shown by sym-
bols and the solid lines (brown) indicate the fitting function

s−1/2 = As+Bsx̄ at As = 29.2±0.2 and Bs = −0.27±0.004.

III. OBSERVATION OF LIQUID SPREADING
IN PAPER POROUS MATERIALS

A. Experimental procedures

The experiments were designed to study interaction of
a single liquid drop with a porous matrix, its subsequent
penetration and spreading in the porous material within
the framework of the witness card technique, which is
widely used for accurate determination of the particle size
distributions to assess the effectiveness of spraying in ap-
plications [38]. The emphasis in the current research was
on the analysis of the general trends of liquid spreading
at low saturation levels.

Our previous study of liquid dispersion in particulate
porous media has shown that evolution of the wetting
front in the later stages of the symmetric spreading, when
the saturation level is below a critical value sc ≈ 10%,
follows a universal power law, when the wetting spot di-
ameter X(t) as a function of time t obeys X(t) ∝ tβ ,
where the time is measured from the onset of the low
saturation regime and the exponent β = 1/(Nd + 1) is
a function of the dimension Nd of the spreading domain
only, that is independent of other parameters [4]. In par-
ticular, in our case, the spreading geometry in papers is
symmetric and two-dimensional, Nd = 2, so that it is
anticipated that β = 1/3.

To understand the origin of the universal exponent β,
we consider a compactly supported symmetric spreading

domain, which can be characterized by a single length
scale parameter X(t), for example the radius of a circle
(in a two-dimensional geometry with Nd = 2) or of a
sphere in a three-dimensional case at Nd = 3. Then,
the total flux Π(t) at the moving front X(t) should be
proportional to the moving front velocity and the radius
X in a certain power related with the geometry of the
domain, that is

Π(t) ∝ XNd−1 dX

dt
. (18)

The second, non-trivial scaling

Π(t) ∝ 1

X(t)
. (19)

comes from the asymptotic analysis of the SFD model
described by (9)-(11). The result is directly related with
the Mexican hat distribution of saturation, Fig. 4, which
is the typical solution of the SFD equation in a domain
with a moving boundary, see details in [4].

Combining (18) and (19), one gets that

XNd
dX

dt
= const

and

X(t) ∝ t1/(Nd+1). (20)
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FIG. 4. Typical saturation distribution with a moving front
s = s(r, t) as a function of the reduced radius r/r0 (r0 is
some initial length scale) obtained numerically at some t > 0
from the SFD model (9)-(11) in a symmetric two-dimensional
geometry at sf = 0.5% and s0 = 0.46%.

We note here that the power law dependence (20) has
been clearly observed in both experiments in particu-
late porous media (in 1D and 3D symmetric setups) and
numerical simulations of the SFD model with a moving
boundary (in 1D, 2D and 3D symmetric formulations) [4].
It was found, the exponent is a very good indicator, which
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is independent of the SFD model parameters, such as sf
and s0. One can easily distinguish between the power
law expected in fully saturated porous matrices and that
in the case of the superfast diffusion at low saturation
values. For example, β = 1/2 is predicted and observed
in two-dimensional fully saturated cases [39].

Therefore, the power law dependence with the expo-
nent β = 1/(Nd + 1) is very characteristic for the low
saturation regime of spreading [4]. Consequently, obser-
vation of the wetting spot evolution can reveal, in prin-
ciple, the character of the diffusion process, and indicate
that the diffusion process at low saturation levels in fi-
brous materials is also driven by the SFD mechanisms,
as that in the particulate porous media.

On the other hand, as previous studies of liquid spread-
ing in particulate porous media had clearly demon-
strated, any detailed quantitative characterisation of
the dispersion process at low saturation levels requires
very detailed information about the porous media struc-
ture [2–4]. Therefore, detailed characterisation of the
paper material, such as the micro-structure, and its rela-
tion with the transport properties will be the subject of
future research, which may require a completely different
approach.

In the experiments, a single liquid drop of a controlled
volume (2.2µL) has been dispatched from the drop gen-
erator whose position was adjustable. After separation
from the generator head, the drop was accelerated by
gravity up to its terminal velocity in the air. The vari-
able positioning of the drop generator allowed for easy
control of the drop impact velocity. The process of
the falling drop splashing and spreading over the sub-
strate was recorded by a high-speed video camera with
the frame rate up to 20000 fps and a spatial resolution
50 pixel/mm. The recording was synchronized with a
system of drop detection, which also made it possible
to accurately measure the velocity at the time of the im-
pact, Fig. 5. In the current study, we used two char-
acteristic values of the impact velocity u = 0.2 m/s and
u = 3.1 m/s. To avoid any interference from a contact
with a solid substrate, the paper sample was hanging on
supporting rails in air.

The test liquid (2.2µL drop) was neat tributyl phos-
phate (TBP, molar weight 266.32 g/mol), a low-volatility
organophosphate compound dyed with Calco red or blue
oil at different concentrations (0.11% − 0.5% mass con-
centration respectively) to test fidelity of visualization.

This was important that the experimental liquid had
extremely low equilibrium vapour pressure (Pev = 1.5×
10−1 Pa at 20◦ C [40]) to eliminate evaporation effects
during the spreading. To introduce non-Newtonian ef-
fects and variations of viscosity, the neat (dyed) TBP
solution was mixed with 3.8% (mass concentration) of
Poly(Styrene-Butyl Methacrylate) (PSBMA).

The neat TBP solution has liquid viscosity µ =
3.88 mPa · s and surface tension γ = 28 ± 1 mN/m mea-
sured in our laboratory at 20◦ C. The addition of the
polymer into the pure TBP liquid resulted in substantial

increase in the liquid viscosity µP ≈ 340 mPa ·s at practi-
cally identical values of the surface tension γ ≈ 27 mN/m,
basically introducing non-Newtonian behaviour during
the first, short lasting stage of the impact to avoid for-
mation of satellite droplets, the so-called corona of the
splashing droplet, Fig. 5. The details of the properties
of the polymer solution, also used in viscoelastic aero-
breakup studies, can be found in [41].

In all experiments, the visualization of the wet colored
spot was performed in a regular white light, but with
the contrast being sufficiently enhanced to resolve the
low saturated tail of the distribution, Fig. 4. Indeed,
in a separate set of long-term (about 6 hours) sensitiv-
ity experiments with pure TBP liquid dyed with blue oil
on Whatman Grade 1 filter paper (nominal basis weight
87 g/m2, porosity ≈ 80% and thickness ≈ 180µm), we
were able to follow the spot to a state of rest, when the
saturation value s ≈ 3% was achieved on average (based
on the assumption of the uniform distribution of the liq-
uid within the spot), which is in accord with our theo-
retical estimate sf ≈ 2.2%. To enhance the contrast of
the images, they were post-processed by normalising the
pixel intensity by that of the background (used for earlier
times t ≤ 1000 s) or, for longer times, by normalising the
pixel intensity by that of the earlier images to see how
the liquid is propagating with time, Fig. 6.

Qualitatively, as one can observe, there is a propa-
gating tail, resembling the theoretical predictions of the
SFD model, as in Fig. 4. But, this observation should be
taken with caution, since the spot brightness may not be
directly proportional to the saturation at low levels. The
quantitative characterisation of the substrate saturation
may require a completely different approach to obtain
reliable measurements.

(a) (b)

FIG. 5. Drop (volume 2.2µL) impact at t = 1.6 ms after the
initial contact at the impact velocity 3.1 m/s: (a) neat TBP
(b) TBP with 3.8% of PSBMA.
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X=15.1 mm X=21.9 mm

(a) T=600 s (b) T=9000 s

Neat TBP on filter paper

FIG. 6. Illustration of the wetting spots of the dyed (blue oil)
neat TBP (2.2µL drop) on Whatman Grade 1 filter paper
in visible light at (a) t = 600 s and (b) at t = 9000 s. To
enhance the contrast of the wetting spots, the first image (a)
had been post-processed by normalising the pixel intensity
by the background value and the second image (b) had been
post-processed by normalising the intensity by that of the
image taken at an earlier moment at t = 900 s.
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FIG. 7. The spot diameter X as a function of the reduced
time t/t0. Experimental data are shown by symbols at dif-
ferent impact velocities (u = 0.2 m/s and u = 3.1 m/s), for
different liquids (neat TBP and TBP with 3.8% PSBMA),
different dyes (the Calco blue and red oils at 0.5% and 0.11%
mass concentrations respectively) and different paper matri-
ces (Epson, Filter and Watercolor papers). The solid line
(brown) is the power-law fit (X − X0)3 = A3(t/t0 − tC) at
A = 0.16 mm, tC = 103 andX0 = 5.2 mm. The data collapsed
into a master curve by using the characteristic time scale: for
the Filter paper and TBP+PSBMA t0 = 1/9 ± 0.01 s, the
Watercolor paper and TBP+PSBMA t0 = 2 ± 0.1 s, for the
Epson paper and TBP+PSBMA t0 = 1 s and for the Filter
paper and neat TBP t0 = 1/900 s.

B. Results and discussions

As we have already discussed, the detailed description
of the liquid dispersion processes in paper porous materi-
als, which requires microscopic information on the porous
matrix, will be the subject of future research, so that
here, we only analyse the general trends by observing
the wetting spot diameter X(t) as a function of time.
Our prime concern is the long-time evolution of the spot
diameter, which is shown in Fig. 7, when the spreading
process is two-dimensional, that is when the spot diam-
eter (X ≥ X0 ∼ 5mm) is much larger then the typical
paper thickness (50− 180µm).

In the experiments, all drops were of a fixed volume of
2.2µL. There were three different fibrous substrates: Ep-
son paper (80 g/m2), Watercolour paper (300 g/m2) and
Filter paper (70 g/m2). It appears, though not surpris-
ingly, that the long-time evolution of the wetting spot
diameter (after some initial relaxation time tC , that is
at t/t0 > tC) on all samples in different conditions can
be effectively reduced to a single master curve by re-
normalizing time t/t0, where the characteristic time t0
only depends on the liquid viscosity and the substrate
material, Fig. 7, but, essentially, is independent of the
initial conditions, such as the impact velocity, and the
visualization materials (red or blue oils).

As one can clearly see from the figure, the spreading
law X(t/t0) ∝ (t/t0−tC)1/3 is well observed at t/t0 ≥ tC
indicating that indeed the spreading process after some
initiation time tC follows the superfast non-linear dif-
fusion model. As one can also observe, the long-time
evolution characteristic behaviour (the exponent β) is in-
sensitive to the impact drop velocity, the type and con-
centration of the visualization liquid (red or blue Calco
dyes), the substrate and liquid properties despite obvious
difference in the initial conditions, Fig 5. That is, it is
indeed universal, which is fully in line with the numer-
ical simulations of the moving front in the SFD model,
where parameter β in symmetric cases was seen to be
only defined by the domain geometry.

One may also note that in spite of the non-Newtonian
character of the polymer solution, the observed effect
while switching from the neat TBP to its 3.8% polymer
solution is simply down to the change in the zero shear
rate viscosity from µ = 3.88 mPa · s to µP ≈ 340 mPa · s,
corresponding to the change in t0 from t0 = 1/900 s to
t0 = 1/9 s, assuming t0 ∝ µ according to (9).

A comparison with persistent liquids spreading

If one compares our observations with previous stud-
ies of persistent liquids spreading in paper materials,
our data are in contrast to those observations. In two-
dimensional cases, a different scaling law X ∝ t1/6 was
observed instead of X ∝ t1/3 anticipated in the SFD
model [30, 42]. Experiments in one-dimensional geome-
try [30] revealed X ∝ t1/3, while the SFD model predicts
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the scaling X ∝ t1/2.

Despite different exponents, there is no contradiction,
in our view. The main fundamental difference, we spec-
ulate, may come from the definition of the wetting spot
area, and therefore the position of the moving front. To
illustrate this point, consider the typical (in any geom-
etry) distribution of the SFD model, which is shown in
Fig. 4 in a two-dimensional case. In the previous stud-
ies, the boundary position was likely to be ascribed to
the base of the distribution (based on the visualization
method), where the saturation drops down to a very low,
but still a finite value, while we followed, to some extent,
the tip of the tail. So that experimentally, within certain
accuracy, it could be possible to define the moving front
position in that way, but this would lead to misinterpre-
tation of the driving mechanism of the spreading. It is
informative to note, that in numerical simulations of the
SFD model, the dynamics of the base of the distribution
was indeed found to be much slower and indeed to follow
a scaling law close to X ∝ t1/6 in a two-dimensional case
and X ∝ t1/3 in a one-dimensional geometry.

We believe that it was essential that we were able to
observe the wider wet region including the distribution
tail, Fig. 4, otherwise the measurements would result
in underestimation of the wet area [4]. This is another
example of the peculiar fundamental properties of the
superfast diffusion, which must be taken into account
when dealing with this phenomenon.

CONCLUSIONS

In conclusion, the diffusion process at low saturation
levels in fibrous porous materials is shown to be fully
compatible with that anticipated from the macroscopic
SFD model. The long-time behaviour is well consistent
with the model predictions, but further work is required
to link microscopic parameters of the fibrous porous ma-
trix with the macroscopic parameters of the evolution to
enhance the predictive power of the model.

What is important for applications is that the long-
time behaviour is insensitive to the initial conditions (im-

pact velocity and the character of the initial splash), but
only depends on the liquid properties (viscosity) and the
properties of the substrate through a single parameter t0.

It is also important, that the character of the evolution
law is universal, such that the exponent β = 1/3, and it
can only be influenced by the geometry of the diffusion
domain, its dimension Nd, β = 1/(Nd + 1).
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