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Experimentally disambiguating models of sensory cue
integration

Peter Scarfe
Vision and Haptics Laboratory, School of Psychology and

Clinical Language Sciences, University of Reading,
Reading, UK

Sensory cue integration is one of the primary areas in
which a normative mathematical framework has been
used to define the “optimal” way in which to make
decisions based upon ambiguous sensory information
and compare these predictions to behavior. The
conclusion from such studies is that sensory cues are
integrated in a statistically optimal fashion. However,
numerous alternative computational frameworks exist
by which sensory cues could be integrated, many of
which could be described as “optimal” based on
different criteria. Existing studies rarely assess the
evidence relative to different candidate models,
resulting in an inability to conclude that sensory cues
are integrated according to the experimenter’s preferred
framework. The aims of the present paper are to
summarize and highlight the implicit assumptions rarely
acknowledged in testing models of sensory cue
integration, as well as to introduce an unbiased and
principled method by which to determine, for a given
experimental design, the probability with which a
population of observers behaving in accordance with
one model of sensory integration can be distinguished
from the predictions of a set of alternative models.

Introduction

Integrating sensory information

Humans have access to a rich array of sensory data
from both within and between modalities upon which
to base perceptual estimates and motor actions. These
data are treated as consisting of quasi-independent
sensory “cues.” Given a set of cues, the question then
becomes how information is integrated to generate a
robust percept of the world (Ernst & Bulthoff, 2004).
Mathematically, there are multiple ways in which this
could occur (Jones, 2016; Tassinari & Domini, 2008;
Trommershauser, Körding, & Landy, 2011), however,
currently the most popular theory is the minimum
variance unbiased estimator model (MVUE). MVUE
forms part of broader computation frameworks, such

as modified weak fusion (MWF; Landy, Maloney,
Johnston, & Young, 1995) and is related to Bayesian
models of sensory perception (Knill & Richards, 1996).
Indeed, sensory cue integration has been described
as the “… poster child for Bayesian inference in the
nervous system” (Beierholm, Shams, Körding, & Ma,
2009, p. 1).

InMVUE, given two cues, ŜA and ŜB, each corrupted
by statistically independent zero-mean Gaussian noise
with variances σ 2

A and σ 2
B, it can be shown, given

some additional assumptions, that the integrated cues
estimate, ŜC, is given by a simple weighted average
(for derivations see Cochran, 1937; Oruc, Maloney, &
Landy, 2003).

ŜC = wAŜA + wBŜB (1)

The weights are determined by the relativity
reliability of the cues (rA = 1/σ 2

A and rB = 1/σ 2
B) such

that wA = rA/(rA + rB) and wB = rB/(rA + rB) and the
standard deviation (sigma) of the Gaussian probability
density function representing the integrated cues
estimator is given by

σC =
√

σ 2
A ∗ σ 2

B

σ 2
A + σ 2

B
(2)

The key benefit of integrating cues in this way is that
the sigma of the integrated cues estimator is always
less than or equal to the sigma of the most reliable
of the individual sensory cues. As a result, MVUE
is often terms “optimal cue integration” (Rohde,
van Dam, & Ernst, 2016). Whereas there are clearly
multiple benefits of combining and integrating sensory
information (Ernst & Bulthoff, 2004), MVUE posits
that the optimizing criteria of sensory integration is to
maximize the precision of the integrated cues sensory
estimate. The maximum reduction in sigma (increase
in precision) is achieved when the two cues are equally
reliable (Figure 1). As the reliability of the cues becomes
unbalanced, the increase in precision rapidly diminishes
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Figure 1. (a) Shows a hypothetical example of integrating two cues (A and B) with identical reliabilities (for both cues σ = 1). In this
instance an observer would maximally benefit from integrating cues in accordance with Equation 2 and obtain a

√
2 reduction in

sigma. (b) Plots single cue sigmas and the integrated cues sigma associated with the two cues for a range of sigma ratios. A sigma
ratio of one indicates that the two cues are equally reliable (as in a). A value greater than one indicates that cue B is more variable
than cue A. The shaded region shows the increased precision afforded by integrating cues in accordance with Equation 2. The black
arrow shows the maximally achievable increase in precision shown in a.

(Figure 1b). Therefore, in terms of sensitivity, for an
organism to do better than simply choosing the most
reliable of the two cues, the cues must be approximately
matched in reliability.

Numerous studies purport to show that humans
combine cues in accordance with MVUE (Burge,
Girshick, Banks, 2010; Ernst, 2006; Ernst & Banks,
2002; Gepshtein, Burge, Ernst, & Banks, 2005;
Girshick & Banks, 2009; Glennerster, Tcheang, Gilson,
Fitzgibbon, & Parker, 2006; Helbig & Ernst, 2007;
Hillis, Ernst, Banks, & Landy, 2002; Hillis, Watt, Landy,
& Banks, 2004; Johnston, Cumming, & Landy, 1994;
Johnston, Cumming, & Parker, 1993; Knill & Saunders,
2003; Lovell, Bloj, & Harris, 2012; Saunders & Chen,
2015; Scarfe & Hibbard, 2011; Svarverud, Gilson,
& Glennerster, 2010; Watt, Akeley, Ernst, & Banks,
2005). However, for the MVUE model to apply, several
assumptions need to be met. Although acknowledged
across the literature, these assumptions are rarely

mentioned in experimental tests of MVUE and are
often simply assumed to have been met.

Assumptions of MVUE

To be integrated in MVUE, cues must be in common
units and these modeled units need to be equivalent to
the units that the observer is using to make perceptual
estimates. For example, if an observer is judging surface
“slant” from “disparity” and “texture” cues (Hillis et al.,
2004), however information from these cues is processed
in the brain, it has to result in a measure of “slant”
in the same units (e.g. degrees or radians). If it does
not, Equation 1 is meaningless as it will be averaging a
property in two different units. As a result, frameworks
which incorporate MVUE as a core component, such as
MWF, have a “cue promotion” stage prior to averaging
where cues are promoted so as to be in common
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units (Landy et al., 1995). Cue promotion, although
critical, is rarely directly studied (although see Burge,
Fowlkes, & Banks, 2010; Burge, Peterson, & Palmer,
2005). Whilst it is possible to experimentally evaluate
the units an observer is using to make perceptual
estimates, for example, Hillis et al. (2004) examined
whether their observers were estimating “slant”
from disparity, or simply doing the task based upon
disparity gradient, this is rarely carried out. Typically,
experimenters assume from the outset that cues are
in common units and that these units are equivalent
to those the observers are using to make perceptual
estimates.

Additionally, in MVUE, cues are integrated
regardless of their perceptual bias. By “bias” we mean
a difference between (a) the perceptual estimate of
a property of the world and (b) the actual physical
value of that property. This has been termed “external
accuracy” (Burge, Girshick, et al., 2010). Bias is a
problem, in part, because there is no reason to assume
that cues which are more reliable are also least biased.
As a result, there are a mathematically definable range
of circumstances where integrating cues in accordance
with Equations 1 and 2 results in perceptual estimates
which are more precise, but less accurate with respect to
the world (Scarfe & Hibbard, 2011). As experimenters
have no direct access to an observer’s internal perceptual
estimates, cues are generally assumed to be unbiased,
with any bias attributed to unmodeled cue conflicts or
response bias (Watt et al., 2005).

The assumption of unbiased estimates is problematic
given the large reproducible perceptual biases shown
in real world environments (Bradshaw, Parton, &
Glennerster, 2000; Koenderink, van Doorn, Kappers,
& Lappin, 2002; Koenderink, van Doorn, Kappers,
& Todd, 2002; Koenderink, van Doorn, & Lappin,
2000; Wagner, 1985), and in expertly controlled
experiments with computer generated stimuli (Watt et
al., 2005). These biases suggest that sensory cues are
not necessarily accurately calibrated with respect to the
world (Adams, Banks, & van Ee, 2001; Henriques &
Cressman, 2012; McLaughlin & Webster, 1967; Scarfe
& Glennerster, 2014; Welch, Bridgeman, Anand, &
Browman, 1993) and importantly, it has been shown
that the integration of sensory cues does not lead to
those same cues being accurately calibrated (Smeets,
van den Dobbelsteen, de Grave, van Beers, & Brenner,
2006). As a result, it is now becoming accepted that
bias in sensory estimates needs to be accounted
for in models of sensory cue integration (see Ernst
& Di Luca, 2011). Indeed, one can experimentally
examine the effects of discrepancies between cues
and model cue integration in terms of causal
inference, whereby the brain evaluates the probability
with which signals come from common or distinct
external causes and uses this to gate cue integration
(Beierholm et al., 2009; Gepshtein et al., 2005;

Körding, Beierholm, Ma, Quartz, Tenenbaum, &
Shams, 2007).

For Equations 1 and 2 to hold, each cue needs to be
well represented by a statistically independent Gaussian
probability density function (Cochran, 1937). A clear
case where this does not hold is for circularly distributed
variables, such as planar direction. With circularly
distributed variables the von Mises distribution should
be used, and equations similar to MVUE can be
derived with some additional assumptions (Murray &
Morgenstern, 2010). However, many studies simply
assume that over the stimulus domain tested, Gaussian
distributions provide a good enough approximation to
the underlying von Mises distributions (Hillis et al.,
2004). Similarly, when statistical independence does
not hold, corrections to the MVUE equations can
be derived to account for correlated noise (Oruc et
al., 2003), however, in virtually all studies, statistical
independence is assumed a priori or the correlation
assumed to be so small that MVUE provides a valid
approximation.

The final assumption we consider here is that, over
the domain being investigated, the perceptual scale
of the cues is linear. Perceptual scales are known
to be nonlinear (Rohde et al., 2016), so the domain
over which cue integration is investigated is typically
restricted and assumed to be a close approximation
to linear (e.g. Hillis et al., 2004). However, even in
these instances, it has been claimed that in some
circumstances observers may be making perceptual
estimates based upon confounding cues which are
nonlinear over the experimental domain and that as a
result the experimental methodology used to estimate
the precision of cues will misestimate the variance
of the underlying estimators (Todd, Christensen, &
Guckes, 2010; Todd & Thaler, 2010). This continues
to be a contentious area of active debate (Saunders &
Chen, 2015; Todd, 2015).

Experimentally testing MVUE

Testing MVUE equates to seeing if the numerical
predictions made by Equations 1 and 2 correspond with
observer behavior. Of the two predictions, Rohde, van
Dam and Ernst (2016, p. 7) describe Equation 2 as the
“essential prediction” of optimal cue integration. They
point out that seeing performance line with Equation 1
is “… by itself not sufficient to show that optimal
integration occurs” (Rohde et al., 2016, p. 7). As a
result, “(i)f one can show only a bias in the results
(Equation 1) but not a reduction in noise (Equation 2),
one cannot conclude that optimal integration occurred
…” (Rohde et al., 2016, p. 10. Note: equation numbers
have been changed to correspond to the equivalent
equations in the current paper and italics added.).

Downloaded from jov.arvojournals.org on 01/24/2022
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There are two key reasons for this. First, identical
predictions to Equation 1 can be made by alternative
models of perceptual processing, including those in
which cues are not integrated in any way. Second,
testing Equation 1 by adding an experimental cue
conflict through a “perturbation analysis” (Ernst &
Banks, 2002; Young, Landy, & Maloney, 1993) can
be severely disrupted if one or more of the perceptual
estimates is biased. To demonstrate this, following on
from the example above, we can experimentally add a
perturbation of value � to the cue ŜB, such that

ŜC = wAŜA + wB

(
ŜB + �

)
(3)

We can then ask what value of bias β in cue ŜA
would be required to eradicate any evidence of optimal
cue integration

ŜC = wA

(
ŜA + β

)
+ wB

(
ŜB + �

)
(4)

Recognizing that wA + wB = 1 and solving for β gives

β = −�
σ 2
A

σ 2
B

(5)

Thus, in a perturbation analysis, all signs of optimal
cue integration can be eliminated if one or more of the
perceptual estimates are biased and this depends on the
relative reliability of the cues and the magnitude of the
perturbation. Rohde et al. (2016) recommend that � be
1 to 1.5 (and no larger than 2) just noticeable differences
(JNDs), where a JND is given by σ

√
2, so as not to

elicit cue veto (Landy et al., 1995). Therefore, whereas
the ratio of cue variances being exactly that shown
in Equation 5 is unlikely, cues only need to be biased by
a small amount to significantly interfere determining
cue weights through a perturbation analysis. This,
coupled with identical predictions to Equation 1 being
made by alternative models, is why Equation 2 is seen as
the essential prediction of MVUE (Rohde et al., 2016).

Comparing models of cue integration

Although MVUE is the most widely accepted model
of cue integration, there are numerous alternatives,
many of which take into account the reliability of
sensory cues (Arnold, Petrie, Murray, & Johnston,
2019; Domini & Caudek, 2009; Jones, 2016; Rosas
& Wichmann, 2011; Tassinari & Domini, 2008).
Much of the difference between models comes down
to the computational architecture of the underlying
system (Beierholm et al., 2009; Körding et al., 2007;
Trommershauser et al., 2011). Therefore, as within any

area of science, the question comes down to designing
experiments which can distinguish between competing
models. However, until recently, very few papers
compared the predictions of MVUE to alternative
models in any rigorous fashion (for exceptions see
Acerbi, Dokka, Angelaki, & Ma, 2018; de Winkel,
Katliar, Diers, & Bulthoff, 2018; Lovell et al., 2012).
This has been recognized as a clear weakness in claiming
that cues are integrated in accordance with MVUE
(Arnold et al., 2019).

An additional problem is that readers are often
required to judge the fit of the data to MVUE “by
eye,” without any accompanying statistics detailing
the fit of the model to the data (e.g. Ernst & Banks,
2002; Hillis et al., 2004). A recent review has suggested
that the adherence to MVUE can be assessed visually
and has provided a visual taxonomy of “optimal,”
“suboptimal,” “ambiguous,” “near optimal,” and
“supra-optimal” performance (Rohde et al., 2016,
p. 23). This visual taxonomy, based on judging the fit
to the predictions of MVUE from visual inspection of
(1) the data, (2) the error bars around the data, and (3)
the predictions of MVUE, has started to be used by
researchers to assess the “optimality” of experimental
data (Negen, Wen, Thaler, & Nardini, 2018).

A visual taxonomy is problematic for many
reasons. First, across a range of disciplines, including
psychology, behavioral neuroscience, and medicine,
leading researchers have been shown to have
fundamental and severe misconceptions about how
error bars relate to statistical significance and how they
can be used to support statistical inferences from data
(Belia, Fidler, Williams, & Cumming, 2005; Cumming,
Fidler, & Vaux, 2007). Second, as will be seen,
alternative models of cue integration provide highly
correlated predictions with one another. Therefore,
“eyeballing” the fit to a single model based on visual
inspection is likely to lead to fundamental mistakes
in inferring the extent to which a given model fits the
data, especially when the literature in this area tends
to be focused upon verification, but not necessarily
falsification (Rosas & Wichmann, 2011). Finally, there
are techniques which can be easily used to assess the
fit of a set of candidate models to data in a far more
objective way.

Outline of the current study

Here, we present a technique consisting of simulating
end-to-end experiments (behavior of observers in
an experiment, fitting of psychometric functions,
estimation of parameters from data, and final
statistical analysis), which can be used to determine
the probability with which a population of observers
behaving in accordance with one model of sensory cue
integration can distinguished from the predictions of a
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set of alternative models. Given its ubiquity, we focus
on the extent to which the predictions of MVUE can be
distinguished from two popular alternative models, (a)
choose the cue with the minimum sigma (MS), and (b)
probabilistic cue switching (PCS). There are numerous
other models which could have been chosen for
comparison (Jones, 2016), however, these two models
have the benefits of (1) being conceptually similar to
MVUE, (2) require experimental estimation of the
same parameters, and (3) are reducible to comparably
simple equations. They have also been compared to the
predictions of MVUE in previous papers.

Methods and results

Correlated predictions of alternative models

When choosing the cue with the MS, the sigma of
the integrated cues estimator is simply the sigma of the
most reliable cue. Therefore, when the reliabilities of the
two cues are imbalanced MS provides highly similar
predictions to MVUE. This can be seen in Figure 2
where we re-plot discrimination thresholds for the
visual, haptic, and integrated cue estimators from Ernst
and Banks (2002) (see Supplementary Figure S1). For
the 0, 67, and 200% noise conditions, the discrimination
threshold for the integrated cues estimator is visually

Figure 2. Replot of the threshold data from Ernst and Banks
(2002) Figure 3d (see Supplementary Figure S1 for details). The
threshold is defined as the difference between the 84% and
50% point of the underlying psychometric cumulative Gaussian
function. Thus, smaller thresholds represent more precise
perceptual estimates. Thresholds are plotted against the
percentage of noise in the visual modality stimulus (see Ernst &
Banks, 2002 for full details). The only datapoint which can
clearly distinguish MVUE from MS is the 133% noise level
stimulus (grey rectangle).

indistinguishable from the threshold of the most
reliable of the individual cues (visual or haptic). Thus,
the only condition in this paper where MS and MVUE
make clearly different predictions is the 133% noise
condition where the reliabilities of the two cues are
nearly identical (grey rectangle).

Although one could argue the 133% datapoints
distinguish models, there are a few complications in
making this inference, as there are no statistics reported
to assess this difference and it is not stated what the
error-bars (calculated over four observers) show. As a
result, the reduction in sigma for the 133% condition is
a visual judgment on the part of the reader. As detailed
above, leading researchers have been shown to have
fundamental misconceptions about visual judgments
about statistical significance from visual inspection
(Belia et al., 2005; Cumming et al., 2007). Although
attaching a “p value” to a result is clearly not the
only way in which to make inferences from data (and
can be highly problematic; Kruschke, 2010, 2011). It
is acknowledged that more rigorous methodologies
are required to distinguish between competing cue
integration models (Acerbi et al., 2018).

PCS (Byrne & Henriques, 2013; de Winkel et al.,
2018; Nardini, Jones, Bedford, & Braddick, 2008;
Serwe, Drewing, & Trommershauser, 2009) proposes
that observers do not integrate cues to form a single
perceptual estimate, rather, they use a single cue
at a given time and switch between cues with the
probabilities pA and pB (where pA + pB = 1). The mean
and sigma of the integrated cues estimator is given by

ŜC = pAŜA + pBŜB (6)

and

σC =

√√√√√σ 2
Aσ 2

B

(
Ŝ2
A − 2 ∗ ŜAŜB + Ŝ2

B + 2 ∗ (
σ 2
A + σ 2

B

))
(
σ 2
A + σ 2

B

)2 (7)

When ŜA = ŜB, Equation 7 simplifies further to

σC =
√
2

√
σ 2
A ∗ σ 2

B

σ 2
A + σ 2

B
(8)

The similarities between (Equations 6) and
(1), and (Equations 8) and (2) are clear. Note
that (Equations 6) and (1) provide identical predictions
when pA = wA and pB = wB. In other words, for the
mean of the integrated cues estimator, a model in which
cues are not integrated and instead used completely
independently can produce identical predictions to
MVUE. Throughout the paper where PCS is modeled,
we have set pA = wA and pB = wB, so as to be consistent
with previous research where these parameters are
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Figure 3. Shows the integrated cues sigma, for a range of two-cue sigma values under our three models of cue integration, (a) MVUE
(Equation 2), (b) MS, and (c) PCS (Equation 8). (d) Plots the difference in integrated cues sigma predicted by MS versus MVUE and
(e) PCS versus MVUE. In these two plots green symbols show the sigma values from Figure 3d in Ernst and Banks (2002) for the
perception of object height. Cyan and grey symbols show sigma values from Figure 11 in Hillis, Watt, Landy and Banks (2004) for the
perception of surface slant (cyan symbols observer JMH and grey symbols observer ACD).

estimated and modelled (e.g. Byrne & Henriques, 2013).
However, it is true that in reality pA, pB, wA, and wB
could be determined by more than simply the relative
reliability of cues as measured with a 2AFC forced
choice experiment that experimenters typically adopt
to estimate these parameters (see Jacobs, 2002 for an
extended discussion).

Figures 3a to c plots the predictions for the sigma
of the integrated cues estimator under MVUE, MS,
and PCS for a range of cue relative reliabilities. For
PCS, the two cues have been set to have the same
mean (i.e. Equation 8). The three models provide
highly correlated predictions. Figures 3d and 3e take
the difference in the predictions of the models. MS
and PCS both provide maximally different predictions
from MVUE when the sigma of the individual cues
is identical (positive diagonal), and the absolute
magnitude of this difference increases with the sigma of
the two cues (compare the bottom left to top right in
each plot). Also plotted are data points from two of the

most widely cited papers on optimal cue integration,
Ernst and Banks (2002) and Hillis, Watt, Landy and
Banks (2004) (method as in S1). Whereas some of
these datapoints lay near the positive diagonal, many
datapoints fall into areas of the parameter space, which
poorly distinguished MVUE from MS and PCS.

The correlated predictions of models of cue
integration are a known problem (Arnold et al., 2019;
de Winkel et al., 2018). Indeed, the explicit aim of
some of the key earlier studies in the area was to
distinguish between models. For example, Ernst and
Banks (2002) aimed to distinguish between MVUE and
the prevailing wisdom that vision dominated haptics
when the modalities were in conflict (for an extended
discussion see Rohde et al., 2016). Subsequent studies
have focused on examining areas of the parameter
space which maximally distinguish between models,
such as MVUE and MS (e.g. Takahashi, Diedrichsen,
& Watt, 2009) and more rigorous model comparison
approaches have been adopted (Acerbi et al., 2018;
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Lovell et al., 2012), however, this is not the norm. As a
result, if the aim is to distinguish between models, there
are many things that could be improved upon in this
area.

General methods

All simulations were carried out inMATLAB (2020a;
MathWorks, Natick, MA, USA) on an 8-Core Intel
Core i9 processor in a MacBook Pro running macOS
10.15. The simulations reported were computationally
expensive, so where possible they were distributed
over the computer’s CPU cores using MATLAB’s
Parallel Processing Toolbox. The Palamedes toolbox
was used to parametrically simulate observers and fit
psychometric functions (Kingdom & Prins, 2010, 2016;
Prins & Kingdom, 2009, 2018).

Simulation Set 1: Effects of relative
reliability and number of observers
in an experiment on distinguishing
between candidate models

Methods

Simulating observers
Observers were assumed to have access to two cues

(ŜA and ŜB) from which to make an integrated cues
perceptual estimate (ŜC) about a property of the world.
The mean of the cues prior to any perturbation was
the same (55 mm as in Ernst and Banks (2002)). Cue
A always had the same sigma (σA = 4.86), which is
approximately that of the haptic cue in Ernst and
Banks (2002). Cue B had a sigma given by σB = σAr
where r varied between 1 and 4 in 27 linearly spaced
steps. Although it has been suggested that to test
for optimal cue integration, the sigma ratio should
be no larger than 2 (Rohde et al., 2016, p. 15), it is
evident that experimenters go beyond this reliability
ratio (see Figure 3). Thus, in the simulations presented
we go beyond a ratio of 2 to be consistent with the
experimental literature. For each reliability ratio, we
simulated experiments where there were 4 through 30
(in steps of 1) participants. Cue integration experiments
normally have few observers per experiment, but a
substantial amount of data collected per observer
(Rohde et al., 2016). For example, Ernst and Banks
(2002) and Hillis, Watt, Landy and Banks (2004), each
used four observers. Our highest observer number
therefore represents an upper limit to the observers
one might reasonably expect to see in a cue integration
study.

The procedure described was repeated for three levels
of cue conflict and four data collection regimes. The
simulated conflicts, �, were 0, 3, and 6 mm (as in Ernst
& Banks, 2002). Conflicts were added by perturbing
each cue by opposite amounts equal to half of the total
cue conflict, that is SA = 55 + �/2 and SB = 55 − �/2.
Estimated from the data of Ernst and Banks (2002),
the above zero conflicts represented approximately
0.8 and 0.4 JNDs, which is around the recommended
magnitude of cue conflict to use in a perturbation
analysis (Rohde et al., 2016). In Ernst and Banks (2002)
there were conditions with equal and opposite cue
conflicts applied in order avoid perceptual adaptation.
We did not replicate this here as our simulated observers
have no mechanisms of adaptation.

We simulated performance and estimated three
psychometric functions for each observer in each
experiment. Two single cue functions, corresponding
to the stage at which an experimenter estimates single
cue sensitivities and an integrated cues condition
where observers behaved in accordance with MVUE.
Observers were simulated with a Cumulative Gaussian
function consistent with the underlying mean and
sigma of the Gaussian probability density function
representing the internal estimator. Functions were
sampled with the method of constant stimuli, under
four data collection regimes. The method of constant
stimuli was selected as this is the most widely used
procedure for estimating a psychometric function.
Rohde, van Dam, and Ernst describe it as “… the
simplest and least biased method to measure a complete
psychometric function” (p.15).

The sampling space over which the psychometric
function was estimated was set to 20 mm (based
upon that of Ernst and Banks (2002)) and was always
centered upon the true mean of the psychometric
function. Centering on the true mean represents
a best-case scenario for estimating the (normally
unknown) function parameters. In terms of sampling
density, Rohde et al. (2016) conclude that “(i)n most
cases a fixed set of seven or nine comparison stimuli can
be identified that suits most observers” (p. 14). Here, we
adopt the upper of these suggestions and spaced the
stimuli linearly across the sampling range.

It is an open question how many times each stimulus
should be sampled. Rohde, van Dam, and Ernst (2016)
suggest that when the mean and slope of the function
need to be estimated around 150 trials should be used.
Kingdom and Prins (2010) suggest that “400 trials is
a reasonable number to aim for when one wants to
estimate both the threshold and slope of the PF” (p. 57.
PF, being Psychometric Function). In a simulation
study, Wichmann and Hill (2001a) found that for some
of their simulated sampling schemes, 120 samples in
total per function was often “… too small a number
of trials to be able to obtain reliable estimates of
thresholds and slopes …” (p. 1302). Therefore, here, in
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separate simulations, we examined sampling with 10,
25, 40, and 55 trials per stimulus level, giving us 90, 225,
360, and 495 trials per function.

Piloting showed that throughout the present study,
these parameters resulted in well fit psychometric
functions (see S2 and the criteria adopted for rejected
functions detailed below). Although not as widely
used, we could have used an adaptive method by which
to sample the psychometric function (Leek, 2001).
We opted not to do so (a) to be consistent with the
most widely used psychophysical methods used in the
literature (Rohde et al., 2016), (b) to avoid decisions
related to which method to use (Kingdom & Prins,
2016; Kontsevich & Tyler, 1999; Pentland, 1980; Prins,
2013; Watson, 2017; Watson & Pelli, 1983), and (c) to
avoid the issue to the adaptive method getting “stuck”
in uninformative regions of the parameter space (see
Prins, 2013). Additionally, adaptive procedures are
often used when the experimenter does not know the
parameters of the underlying functions, which was not
the case here.

Fitting functions
With the above permutations, for the first set of

simulations, we simulated 27 (reliability ratios) × 27
(number of observers / experiment) × 4 (data collection
regimes) × 3 (cue conflicts) × 100 (repetitions of
experiment) = 874,800 experiments. In total, these
experiments contained 14,871,600 simulated observers.
Simulated data were fit with Cumulative Gaussian
functions by maximum likelihood using the Palamedes
toolbox. Although other fitting methods could be
used, for example, fitting based on a Bayesian criterion
(Kingdom & Prins, 2010; Kuss, Jakel, & Wichmann,
2005; Schütt, Harmeling, Macke, & Wichmann, 2016),
fitting by maximum likelihood is currently the most
widely used technique in the literature (Kingdom &
Prins, 2010; Wichmann & Hill, 2001a; Wichmann &
Hill, 2001b). For all simulations, we modeled observers
as making zero lapses, so when fitting functions, we
fixed the lapse rate to be zero (Prins, 2012; Wichmann
& Hill, 2001a, 2001b).

For our simulated observers each perceptual
judgment is statistically independent of all others.
Therefore, there was no need here to correct for
“non-stationarity” in observers’ behavior during the
fitting process (Fründ, Haenel, & Wichmann, 2011;
Schütt et al., 2016). This is clearly not the case in an
experimental setting, where there is clear evidence that
the decisions made by an observer on a given trial can
be influenced by previous decisions the observer has
made (Fischer & Whitney, 2014; Fründ et al., 2011;
Kiyonaga, Scimeca, Bliss, & Whitney, 2017; Lages &
Jaworska, 2012; Liberman, Fischer, & Whitney, 2014;
Liberman, Manassi, & Whitney, 2018; Liberman,
Zhang, & Whitney, 2016; Xia, Leib, & Whitney, 2016).

The mean and standard deviation of the fitted
functions were taken as the experimental estimates
of the observers’ true internal parameters. In cases
where a function could not be fit due to the simulated
data being (1) at or around chance performance
across all stimulus levels, or (2) a step function, the
data for that simulated observer were removed from
the analysis (see also S2). Overall, this represented
0.047% of the data. The removed observers for each
number of “trials per psychometric function” were: 90
trials/function= 0.183%, 225 trials/function= 0.0025%,
360 trials/function = 0.00006%, and 495 trials/function
= 0%. An alternative analysis where poorly fit functions
are replaced by a newly simulated observer results
in identical conclusions being made throughout the
paper.

Comparing the data to alternative models
For each simulated observer, the mean and sigma

of the single cue function with the lowest sigma was
taken as the experimental prediction for MS. For PCS,
the mean and sigma of the single cue functions were
entered into Equations 6 and 7 to provide predictions
for the integrated cues function, with pA = wA and pB =
wB. Dividing sigma’s by

√
2, as in a typical two interval

forced choice procedure (Green & Swets, 1974), was not
needed as the functions were parametrically simulated.
For each simulated experiment, the MVUE data were
entered into a one-sample within-subjects t-test and
compared to the point predictions of MS and PCS. The
mean value of the alternative model prediction across
observers was taken as the point prediction for each
model.

Our simulated data are measured on a ratio scale
and all observations are independent of one another,
however, we do not know that the data are normally
distributed and that parametric statistical tests are
appropriate. Examining the literature, it is clear that
where statistical tests are run, data normality is typically
not reported, but parametric statistical tests are used.
Indeed, given the small number of observers in a
cue integration experiment, it would be difficult to
reliably estimate the normality of the data. Adopting
parametric tests was therefore considered a reasonable
choice (using a nonparametric Wilcoxon signed
rank test results in the same conclusions being made
throughout). We adopted the standard (but arbitrary)
p < 0.05 level for “statistical significance”.

Group analysis: Integrated cues sensitivity
First, we examined the extent to which MVUE,

MS, and PCS can be distinguished based on the
sensitivity of the integrated cues estimator. In Figure 4
the shading of each pixel represents the percentage
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Figure 4. Shows the percentage of experiments in which the sigmas of the Cumulative Gaussian functions fit to our simulated
population of MVUE observers could be statistically distinguished from the experimentally derived prediction of MS (a–d) and PCS
(e–h). Pixels in the images show this percentage (as calculated across 100 simulated experiments) for a given sigma ratio and number
of participants. This is shown for a and e 10, b and f 25, c and g 40, and d and h 55, simulated trials per stimulus level on the
psychometric function.

of simulated experiments in which the results of a
population of observers behaving in accordance with
MVUE could be statistically distinguished from the
numerical predictions of MS and PCS. Consistent
with the correlated predictions of candidate models
(see Figure 3), as the sigma of the individual cues
becomes unbalanced it becomes progressively more
difficult to experimentally distinguish between MVUE
and MS. This is especially apparent with the low
number of observers that characterize typical cue
integration experiments. As would be expected, when
more data are collected per function, models can be
more easily distinguished. MVUE observers can be
easily distinguished from the sigma value predicted
by PCS across all sigma ratios and data collection
regimes, as would be expected from Equations 2
and 8.

Many of the experiments shown in Figure 4 contain
an unrealistically high number of observers per
experiment. Therefore, Figure 5 plots the results for
both comparisons, for the simulated experiments with
four observers (as in Ernst & Banks, 2002 and Hillis et
al., 2004). The vertical grey line shows the maximum
recommended sigma ratio to use in cue integration
experiments (Rohde et al., 2016), whereas the dashed
grey line shows the point at which there is a 50%
chance of distinguishing models. It is clear that with
a representative number of observers in a typical cue
integration experiment, to have any reasonable chance
of distinguishing MVUE and MS, one needs to collect

a large amount of data per participant and very closely
match cue reliabilities. Collecting 150 trials per function
across four observers with a sigma ratio of 2 would
result in an approximately 25% chance of distinguishing
these models, suggesting that existing guidelines (Rohde
et al., 2016) may need to be improved upon. In contrast,
even with four observers, PCS can be well distinguished
from MVUE, for all but the lowest data collection
regime.

Group analysis: Integrated cues percept
Next, we examined the extent to which MVUE can

be distinguished from MS and PCS based upon the
predicted integrated cues percept when a discrepancy
is experimentally introduced between cues (Young et
al., 1993). With zero cue conflict the only differences
in ŜA, ŜB, and ŜC will be due to chance, so any
statistical differences will represent “false positives” (see
Supplementary Figures S3, S4). The false positive rate
was approximately 16% for MS (for 10, 25, 40, and 55
repetitions per function, the percentages are 15.99%,
16.09%, 16.21%, and 15.83%) and approximately
14% for PCS (for 10, 25, 40, and 55 repetitions, the
percentages are 13.62%, 13.69%, 13.82%, and 13.57%).
The difference between the false positives for MS
and PCS is due to the effect that the sigma of the
simulated function has on the inferred mean of the
function across participants. Although the mean
and sigma of a Cumulative Gaussian functions are
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Figure 5. Plots the percentage of experiments in which the sigmas of the Cumulative Gaussian functions fit to a simulated population
of four MVUE observers could be statistically distinguished from the experimentally derived prediction of (a) MS and (b) PCS. The
dashed grey line represents the point at which there is a 50% chance of distinguishing the data from the predictions. The vertical grey
line shows the maximum recommended sigma ratio to use in cue integration experiments (Rohde et al., 2016).

Figure 6. Shows the percentage of experiments in which the mean of the Cumulative Gaussian functions fit to our simulated
population of MVUE observers could be statistically distinguished from the experimentally derived prediction of MS with
experimental cue conflicts of 3 mm (a–d) and 6 mm (e–h). This is shown for a and e 10, b and f 25, c and g 40, and d and h 55,
simulated trials per stimulus level on the psychometric function.

mathematically independent, our ability to infer these
parameters by fitting psychometric functions to data
is not.

Figure 6 show the data for the 3 mm and 6 mm cue
conflicts when comparing to the predictions of MS. As
with distinguishing models based on the sigmas, the
ability to distinguish between models is strongly affected
by the relative reliability of the cues and the data

collection regime. As would be expected, the probability
of distinguishing between models is greater with a
larger cue conflict. Due to PCS and MVUE providing
identical predictions regardless of the experimental
cue conflict, the only times a population of MVUE
observers are distinguishable from the predictions of
PCS again represent false positives (Supplementary
Figures S5, S6).
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Figure 7. Plots the percentage of experiments in which the PSEs of the Cumulative Gaussian functions fit to a simulated population of
four MVUE observers could be statistically distinguished from the experimentally derived prediction of MS. The dashed grey line
represents the point at which there is a 50% chance of distinguishing the data from MS. The vertical grey line shows the maximum
recommended sigma ratio to use in cue integration experiments (Rohde et al., 2016).

In Figure 7 we show the ability to experimentally
distinguish between MVUE and MS based upon
the integrated cues percept for just the simulated
experiments with four observers (Ernst & Banks, 2002;
Hillis et al., 2004). With no cue conflict (Delta of 0)
the false positive rate is approximately 12% across all
data collection regimes and sigma ratios. For both cue
conflicts (Delta of 3 and 6 mm), the closer the reliability
of cues is matched, and the more data collected, the
better one can discriminate our population of MVUE
observers from the predictions of MS. For a Delta of
3 mm (see Figure 7b), the ability to distinguish models
rapidly drops off within the range of sigma ratios
acceptable for a cue integration experiment (Rohde et
al., 2016), such that with a sigma ratio of 3 and above,
performance is comparable to that of the false positive
rate (see Figure 7a). By comparison, with a Delta of
6 mm, within the range of sigma ratios acceptable for
a cue integration experiment the ability to discriminate
between models is good, with performance dropping
substantially for only the most minimal data collection
regime.

One of the most striking things about the analysis
presented is just how rapid the drop-off is in an
experimenter’s ability to distinguish a population of
MVUE observers from the predictions of MS, as
the reliability of cues becomes unmatched. MVUE
observers are easily distinguished from PCS in terms of
the cue reliability, but impossible to distinguish based
upon the integrated cues percept. MVUE observers
can be more easily distinguished from MS based upon
the integrated cues percept, but only dramatically so
for larger cue conflicts. However, distinguishing models
based upon the integrated cues percept alone is not
sufficient to demonstrate that observers are behaving in
accordance with MVUE (Rohde et al., 2016).

Simulation set 2: Using variation
across experimental observers to
distinguish between models

In the second set of simulations, we examined the
case where individual observers in an experiment had
different relative cue reliabilities. This is a weaker
form of testing MVUE as data collection can occur
in regions of the parameter space which poorly
distinguishes between models (see Figure 3), but it
is more representative of a typical cue integration
experiment where there may be variation in cue
reliabilities across observers (Hillis et al., 2004; Scarfe
& Hibbard, 2011) and properties of the stimuli may
naturally (Hillis et al., 2004) or artificially (Ernst &
Banks, 2002; Helbig & Ernst, 2007) be used to modulate
the relative reliability of cues.

Methods

For these simulations, we focused on comparing
MVUE and MS, as these models can be distinguished
based upon both the integrated cues percept and its
precision. Observers were simulated as having access
from two cues (ŜA and ŜB) from which to make an
integrated cues perceptual estimate (ŜC). These cues
were in conflict such that SA = 55 + �/2 and SB
= 55 − �/2 (in separate experiments, � was either
3 or 6 mm). ŜA always had the same sigma σA =
4.86, which is approximately that of the haptic cue in
Ernst and Banks (2002), whereas ŜB had a randomly
determined sigma of σB = σAr where, consistent
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with the recommendations of Rhode et al. (2016),
r ∈ [0.5, 2]. To select values with equal probability
between these limits, for each observer we generated a
random number xi ∈ [ − 1, 1], and set r = 2xi . Separate
simulations were run with 4, 12, and 36 observers
per simulated experiment, and for 10, 25, 40, and 55
trials per stimulus level. For each combination of (a)
data collection regime, (b) number of observers per
experiment, and (c) cue conflict (4 × 3 × 2), we
simulated 1000 experiments (i.e. 32,000 experiments
with 416,000 observers in total).

With a heterogenous population of observers the
relationship between predicted and observed data are
often compared using a linear regression analysis. For
example, Burge, Girshick, and Banks (2010) examined
the perception of slant from disparity and haptic cues
and reported an R2 of 0.60 (significance not stated) for
predicted versus observed integrated cues sensitivity.
Knill and Saunders (2003) also examined the perception
of slant, but from disparity and texture cues, and
reported R2 values between around 0.15 and 0.46 (p <
0.05) for the predicted and observed cue weighting for
different base slants. Svarverud et al. (2010) examined
“texture-based” and “physical-based” cues to distance
and reported R2 values of about 0.95 (p < 0.001) for
predicted and observed cue weights. The median R2

value in these studies is 0.53 and in all instances the
authors concluded that observers were combining
cues optimally in accordance with MVUE. Following
these studies, a regression analysis was adopted
here.

For each experiment, the data from the population
of observers behaving in accordance with eitherMVUE
or MS were plotted against the predictions of each of
the two candidate models. Data were fit with a first
order polynomial by least squares and an R2 value
for the fit of each model to the data calculated. Thus,
there were four possible regression comparisons: (1)
“MVUE versus MVUE” – predictions of MVUE,
plotted against data from a population of observers
behaving in accordance with MVUE; (2) “MS versus
MS” – predictions of MS, plotted against the behavior
of a population of observers behaving in accordance
MS; (3) “MVUE versus MS” – predictions of the
MVUE model, plotted against the data of a population
of observers behaving in accordance with MS; and (4)
“MS versus MVUE” – predictions of the MS model,
plotted against the data of a population of observers
behaving in accordance with MVUE. We will refer to
(1) and (2) as “consistent” predicted and observed data
as the simulated data and predictions are from the same
model, and (3) and (4) as “inconsistent” predicted and
observed data as the simulated data and predictions
arise from different models.

A set of example data (PSE and sigma) from 36
observers behaving in accordance with MVUE (with
55 samples per stimulus value and a delta of 3 mm)

is shown in Figure 8a to d for the “MVUE versus
MVUE” and “MS versus MVUE” comparisons. This
example represents the upper limit of observers and
data collection in a typical cue combination experiment
(Kingdom & Prins, 2016; Rohde et al., 2016). Figure 8a
and b plot the PSE data from the MVUE observers
against the experimentally derived predictions of
the two candidate models, with the green and red
dashed lines show the true underlying PSE for each
cue. Figure 8c and d plot the observed sigma data
from the MVUE observers against the experimentally
derived predictions of the two candidate models, here,
the dashed red line shows the fixed sigma of cue A and
the green dashed line the minimum possible sigma for
cue B.

What is most striking from this example is that the
observed R2 values for both PSE’s and sigmas are
directly comparable to those found in the literature
(and even better) regardless of whether the data from
a population of MVUE observers were fitted with a
regression against the predictions of either MVUE or
MS. Figure 8e and f shows histograms of the observed
R2 values for the same example, but across all 1000
simulated experiments. The raw histograms are shown
overlaid with smooth kernel distributions, given by

F̂X (x) = 1
nh

∑n

i=1
K

(
x − xi

h

)
(9)

Here, K is a Gaussian kernel function, xi ∈ [0, 1]
(i.e. the domain of the R2 value is 0 to 1), and F̂X is the
estimate of the unknown probability density function
Fx. The key parameter of interest is the extent to which
these distributions overlap, as this determines the extent
to which an R2 value from fitting predicted to observer
data can be used to distinguish between candidate
models of cue integration. The overlap of two smooth
kernel distributions F̂X and F̂Y can be estimated via
numerical integration (Pastore & Calcagni, 2019)

η̂ (X,Y ) =
0
∫
1
min

(
F̂X (z) , F̂Y (z)

)
dz (10)

Numerically the overlap value lays between 0 (no
overlap) and 1 (full overlap). This is shown inset
in Figures 8e and f. As can be seen there is substantial
overlap in the distribution of R2 values, especially so for
the predicted and observed PSEs.

Data across all comparisons for both PSE and
sigma are shown in Figures 9, 10, and 11. As one
would expect, with more data collected per function
and more observers per experiment the R2 values
improve, with a maximal median of approximately 0.7
to 0.8. Problematically, this pattern is present regardless
of whether one is plotting consistent predicted and
observed data (MVUE versus MVUE and MS versus
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Figure 8. (a) through (d) show an example linear regression analysis where the data from 36 observers behaving in accordance with
MVUE (with 55 samples per stimulus value and a delta of 3 mm) are plotted against the predictions of the two candidate models
(MVUE a and c, and MS b and d), for both PSE a and b and Sigma c and d. The least squares first order polynomial is shown as the
solid line, with the dashed lines and shaded region showing the 95% confidence bounds around the fit. In a and b the dashed red line
shows the true underlying PSE for cue A, and the green dashed line shows the true underlying PSE for cue B. In c and d the red dashed
line shows the (fixed) sigma for cue A, and the dashed green line the minimum possible sigma for cue B (which varied across
simulated observers). (e) and (f) show the full distributions for the R2 value across all 1000 simulated experiments for e PSE and f
sigma. Data are shown as bar histograms and as smoothed histograms (smoothed Gaussian kernel distribution; Equation 9). Red data
are from MVUE observers plotted against the predictions of MVUE; blue data are from MVUE observers plotted against the
predictions of MS. The median for each data set is shown in the graphs. The inset graph shows the overlap of the smoothed
histograms (Equation 10). Note that the axes of the inset graphs are smaller to ensure clarity of the overlapping region.

MS), or inconsistent predicted and observed data
(MVUE versus MS and MS versus MVUE). Across all
plots, there is the large overlap in the distributions of
R2 values when plotting “consistent” and “inconsistent”
predicted and observed data. With fewer observers per
experiment (4 and 12 versus 36) the overlap increases
greatly, to the extent that with four observers per
experiment the data have near complete overlap.

Figure 12 shows the overlap (Equation 10) for the
distributions where a population of observers behaving
in accordance with MVUE or MS were compared to
the experimentally derived predictions of MVUE and
MS. As expected, (1) the distribution overlap decreases
with increasing amounts of data collected per function,
(2) for the PSE distributions, the distribution overlap is
less with a � of 6 mm versus 3 mm, and (3) the delta

magnitude has no effect on the overlap of the sigma
distributions. Problematically the distribution overlap
is greater than 50% for virtually all conditions. This
strongly questions one’s ability to use R2 to assess
the extent to which a set of data are consistent with
the predictions of MVUE. The precise amount of
quantitative overlap acceptable for an experiment
would be a judgment on the part of the experimenter.

An additional problem is that the R2 statistic that
experimenters report does not measure the deviation
of the data from the predictions of a cue integration
model (even though it is often stated in this way),
rather, the R2 statistic gives a measure of the fit of the
polynomial. The predicted values of a cue integration
model could be off by any arbitrary amount or have the
opposite relationship between predictions and data, and
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Figure 9. Box and whisker plots showing the distribution of R2 values for all conditions and comparisons in which there were 36
simulated observers per experiment for the 3 mm (a and b) and 6 mm (c and d) cue conflict (delta) conditions. The central box line
shows the median (also shown as a line connecting the boxes), the limits of the boxes show the 25% and 75% quantiles and the limits
of the bars (whiskers) show the maximum and minimum values. Also shown are all 1000 datapoints per condition (dots). For
increased clarity the dots have been randomly jittered laterally.

experimenters could still obtain an R2 close to 1. Thus,
a regression analysis negates one of the key benefits of
MVUE (and other cue integration models), which is the
ability to predict the absolute value of the integrated
cues percept and its reliability and then compare this
to that observed experimentally. Tests do exist to
determine whether the intercept and slope differ from
predicted model values, but these are rarely reported
and are definitively not shown by the R2 statistic alone.

Discussion

In any area of science, it is the job of a scientist to
design experiments which can best distinguish between
alternative models of the underlying phenomena.
Unfortunately, in the area of cue integration, this is
rarely done. There are a wide range of competing
models for how human observers might integrate

information from sensory cues (Beierholm et al., 2009;
Jones, 2016; Körding et al., 2007; Mamassian, Landy,
& Maloney, 2002; Trommershauser et al., 2011), but
in many instances the results of an experiment are
simply visually inspected relative to the predictions of
the experimenters preferred model (Negen et al., 2018;
Rohde et al., 2016). This is problematic due to the
small benefit accrued by models such as MVUE, the
highly correlated predictions provided by alternative
candidate models, and the fundamental misconceptions
researchers have about how error bars relate to
statistical significance (Belia et al., 2005; Cumming et
al., 2007).

Although the numerous assumptions the MVUE
model (and others) are known, these are rarely tested,
instead experimenters typically assume that the
assumptions are met and claim support for MVUE,
often in the absence of statistical analysis and/or
sufficient model comparison. The present paper aimed
to draw attention to the assumptions of MVUE and to
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Figure 10. Box and whisker plots showing the distribution of R2 values for all conditions and comparisons in which there were 12
simulated observers per experiment for the 3 mm (a and b) and 6 mm (c and d) cue conflict (delta) conditions. The format is the same
as Figure 9.

introduce a principled method by which to determine
the probability with which a population of observers
behaving in accordance with one model of cue
integration can be experimentally distinguished from
the predictions of alternative models. This showed that
the experimental approach taken in many studies results
in a poor ability to distinguish between alternative
models (and thus the claim support for MVUE). At
all decision points the simulations were designed to be
(1) consistent with published guidelines stating how to
test models of cue integration (Rohde et al., 2016), (2)
consistent with the existing literature (Ernst & Banks,
2002), and (3) consistent with best practice as regard to
experimental methods (Fründ et al., 2011; Kingdom
& Prins, 2016; Prins, 2012, 2013; Rohde et al., 2016;
Wichmann & Hill, 2001a, 2001b).

Additionally, many of the nuisance parameters
which would impede an experimenter’s ability to
distinguish between models were not simulated. For
example, for our simulated observers there was (1)
statistical independence between trials, with no learning
or boredom effects (Fründ et al., 2011), (2) a known

generative function underlying behavior (Kingdom
& Prins, 2016; Murray & Morgenstern, 2010), (3) no
perceptual bias (Scarfe & Hibbard, 2011), (4) stimulus
values for the psychometric function were centered
on the true mean of the psychometric function, (5)
simulated observers exhibited no lapses (Prins, 2012;
Wichmann & Hill, 2001a, 2001b), (6) the simulated
data were not contaminated by the effect of decisional
(or other sources of) noise (Hillis et al., 2004), (7)
cues were statistically independent from one another
(Oruc et al., 2003), and (8) there were no conflicting
sources of sensory information (Watt et al., 2005). As
a result, the simulations presented are highly likely to
overestimate one’s ability to experimentally distinguish
between models. These nuisance factors are known
problems across all types of behavioral experiment, so
are likely to be present to some extent in most studies.
As a result, experimenters have designed experiments
to eliminate them as best as possible, or where this is
not possible, examined the effect they could have on the
data (see Hillis et al., 2004; Oruc et al., 2003; Watt et al.,
2005).
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Figure 11. Box and whisker plots showing the distribution of R2 values for all conditions and comparisons in which there were four
simulated observers per experiment for the 3 mm (a and b) and 6 mm (c and d) cue conflict (delta) conditions. The format is the same
as Figures 10 and 11.

Controlling for the effects of conflicting cues
when measuring “single cue” sensitivities

A grounding assumption of the cue integration
literature is that there exist separable sources of sensory
information which provide independent perceptual
estimates about properties of the world (Ernst &
Bulthoff, 2004). In practice, it rapidly becomes apparent
just how difficult it is to experimentally isolate sensory
cues and to eliminate alternate cues which are not of
interest (Watt et al., 2005; Zabulis & Backus, 2004). In
many instances, it remains possible that observers are
utilizing sensory cues that the experimenter was not
intending to be available (Ho, Landy, & Maloney, 2006;
Saunders & Chen, 2015; Todd, 2015; Todd et al., 2010).
Even more problematically, some experiments measure
“single cue” sensitivities in the presence of a known
conflicting sensory cue held constant (Murphy, Ban,
& Welchman, 2013; Svarverud et al., 2010). Here, we
examine the consequences of this.

Let’s assume that an experimenter is using a
two-interval forced choice experiment to measure

the sensitivity of a cue SA for judgments of size. On
each trial, in one interval, the experiment presents
a “standard” stimulus and in the other interval a
“comparison” stimulus, the difference between these
being �SA. The observer must signal in which interval
the “larger” stimulus was presented. Next, let’s assume
that this is done in the presence of a conflicting
“nuisance” cue, SN, which is constant and signals that
the stimulus is unchanged across intervals. This means
that the “single cue” stimulus is in fact an integrated
cues stimulus and can be described as

�Sc = wA�SA + wNSN (11)
For each stimulus value �Sc(i), the experimenter

measures p (“larger”|�Sc (i)) and (with the assumption
that the “standard” and “comparison” stimuli can
be represented by Gaussian probability density
functions) maps out a psychometric function by
plotting p (“larger”|�Sc (i)) against �SA(i), then fits
a Cumulative Gaussian to the data (blue data and
function in Figure 13). Clearly, the experimenter will
incorrectly estimate σA from this fitted function. More
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Figure 12. Overlap of the smooth kernel distributions of R2 value values produced from fitting a first order polynomial to observed
data from observers behaving in accordance with MVUE against the experimentally derived predictions of MVUE and MS (PSE in
(a) and Sigma in (b)), and a set of observers behaving in accordance with MS against the experimentally derived predictions of MVUE
and MS (PSE in (c) and Sigma in (d)). Red lines are for the 3 mm cue conflict and blue lines are for the 6 mm cue conflict. “OB” is the
number of observers in each simulated experiment and “D” the magnitude of the cue conflict in mm. An overlap value of 1 (upper
solid grey line) means that the distributions (examples shown in Figures 8e and f) completely overlap and are “fully confusable” and
overlap of 0 means that the distributions do not overlap at all and are thus “not confusable.” The dashed grey line shows the case
where the distributions overlap by 50%.

specifically, they will overestimate σA because each
stimulus that they present is in fact an attenuated
version of that which they intended (i.e., �Sc(i)
< �SA(i)). The extent to which the experimenter
misestimates σA will be a function of wN (the weight
given to the nuisance cue SN, which is signally no change
across intervals). As σN → ∞, the weight given to the
nuisance cue will approach zero (wN → 0) and σA will
be estimated accurately. However, for any non-infinite
value of σN, the experimenter will misestimate σA.

In effect, what one needs to do is “warp” the x-axis
of the measured psychometric function such that
one is plotting p (“larger”) against �Sc(i) instead
of �SA(i) (red data and function in Figure 13). To
determine this “warping,” we can ask, what scale factor,
k, would we need to apply to �SA such that in all
cases �Sc = �SA. Given wN = 1 − wA, we can write
this as
�SA = �Sc = wA(SN + (�SA ∗ k)) + (1 − wA)SN (12)
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Figure 13. An experimenter presents a range of stimuli �SA and
for each of these measures the probability of a “larger”
response (“Measured Data,” shown as blue points). This is done
in the presence of a conflicting cue, SN, which signals no change
across intervals. For this visual example, σ A = 1 and σN = 0.5,
therefore wA = 0.2 and wN = 0.8. The experimentally
measured points are consistent with a measured psychometric
function (blue Cumulative Gaussian function (given by Equation
16)). This function has a standard deviation σ̂A = σA

wA
= 5. In

reality, each stimulus �SA(i) is in fact cue conflict stimuli �SC(i)
(given by Equation 11), thus the data should be shifted along
the x-axis toward �SA = 0 (black by arrows) to accurately plot
the function. These shifted points (“Transformed Data,” shown
as red points, Equation 12) are consistent with the true
underlying psychometric function for the cue SA (red
Cumulative Gaussian function (given by Equation 15)). This
function is steeper than the (measured) blue function because
for a measured p(larger), the �SA was in fact smaller than the
experimenter had planned (due to the cue conflict).

Recognizing that SN = 0 and solving for k, we get

k = 1
wA

(13)

Intuitively we can see that this makes sense, as
when wA = 1, no scaling is required to combat the
attenuation caused by SN, because it receives zero
weight, however, as soon as wA < 1, scaling is needed
(i.e. k > 1). Next, we can ask, given the true value of
σA, what would be our estimate, σ̂A, of this be in the
presence of the conflicting nuisance cue. To do this,
we recognize that for a probability density function of
a random variable X distributed according to FX(x),
the probability density function of a variable Y = g(X)
is also a random variable. If g is differentiable and
g : R → R is a monotonic function, we can then use a

change of variables to transform between probability
density functions.

FY (y) = FX (x)
∣∣∣∣dxdy

∣∣∣∣ (14)

Here, (x) = g−1(y) and the support of Y is g(x)
with the support of X being x (Blitzstein & Hwang,
2015). For our example, the Gaussian probability
density function representing our cue SA (red function
in Figure 13) can be written as

FX (x) = 1
σA

√
2π

e
− (μ−x)2

2σ2A (15)

This function has a mean of μ and standard deviation
of σA. From Equation 13, using the transform x*k, a
change of variables gives

FY (y) = wA

σA
√
2π

e
− (μ−wA∗x)2

2σ2A (16)

This represents our experimentally inferred
probability density function for cue SA (blue function
in Figure 13). The standard deviation of FY(y) is given
by

σA
′ = σA

wA
(17)

When weighting is given to the nuisance cue, wA < 1,
we overestimate the sigma of the underlying estimator,
σA

′>σA.
We can now determine the consequences this has

for measuring the relative reliability of cues, which is
the key variable needed for testing MVUE. Let’s say
we have two cues SA and SB with standard deviations
of σA and σB signalling a property of interest, S. We
measure “single cue” sensitivity functions for each
cue while holding the other cue constant. Because
1/σ 2

A + 1/σ 2
B is a constant, c, the weights given to

each cue are wA = 1
c∗σ 2

A
and wB = 1

c∗σ 2
B
, and given in

Equation 17, our experimental estimates of the true
underlying standard deviations are given by σ̂A = c ∗ σ 3

A
and σ̂B = c ∗ σ 3

B. These are each larger than the true
underlying values as they have been measured in the
presence of a cue signally no change (see Figure 13).
The ratio of these estimates is given by

σ̂A

σ̂B
= σ 3

A

σ 3
B

(18)
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Thus, the ratio of the underlying sigma’s, which is
the property we wish to estimate, is given by

σA

σB
= 3

√
σ̂A

σ̂B
(19)

Therefore, if we infer from our experiment that
σA/σB = 1/27 the true sigma ratio is in fact 1/3 and
we experimentally misestimate σA/σB by a factor of
approximately 9. Studies which have measured the
reliability of cues in the presence of a secondarily
constant conflicting cue (e.g. Murphy et al., 2013 and
Svarverud et al., 2010), will therefore have significantly
overestimated the true cue relative reliabilities. As such,
the data in these studies cannot be used to accurately
test MVUE, without some form of correction. This
analysis shows the critical importance of being able to
isolate singles cues satisfactorily, or if one is not able to,
correct for their influence when inferring relative cue
reliabilities.

Conclusion

The simplicity of the MVUE equations for cue
integration is deceptive. A model’s simplicity is
generally correlated with the number of assumptions it
makes about the underlying phenomena. With more
assumptions and a simpler model, there is a greater
chance that the assumptions of the model will not
be met. This will impact an experimenter’s ability to
accurately test the predictions of the model. Even if one
can be satisfied that the assumptions of MVUE hold in
an experimental situation, MVUE provides correlated
predictions with many other cue integration models
(Arnold et al., 2019; Beierholm et al., 2009; Jones,
2016). Here we considered two such models, MS and
PCS. It was shown that even when adopting published
criteria describing how to best test the predictions of
MVUE (Rohde et al., 2016), it could be very difficult
to experimentally disambiguate among MVUE, MS,
and PCS. The analysis presented is only scratching the
surface, as there are many ways in which sensory cues
could be integrated (Jones, 2016), some of which may
be even more difficult to disambiguate from MVUE.

Many studies claiming to support MVUE fail to
consider alternative models satisfactorily, sample
areas of the parameter space which poorly distinguish
between competing models, and provide no statistical
analysis related to the fit of MVUE to the data, or the
relative fit of other alternative models. This questions
the ability of these studies to conclude that sensory cues
are integrated in accordance with MVUE. Although
one could interpret the results presented here in a
pessimistic fashion, the opposite is true. The results
show clear, simple, and computationally attainable

ways in which experimenters can correctly measure
the variables needed to test models of cue integration
and determine the probability with which a population
of observers behaving in accordance with one model
of sensory cue integration can be experimentally
distinguished from the predictions of alternative
models. Furthermore, it can be argued that the focus
should not be upon attempting to prove that cues are
integrated “optimally” based upon some criterion, but
rather to simply focus on the factors that influence how
cues are integrated (Rosas & Wichmann, 2011).

Keywords: sensory cue integration, Bayesian,
modelling, sensory cue combination
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