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Abstract 1 

An important question in cancer evolution concerns which traits make a cell likely to successfully 2 
metastasise. Cell motility phenotypes, mediated by cell shape change, are strong candidates. We 3 
experimentally evolved breast cancer cells in vitro for metastatic capability, using selective regimes 4 
designed to simulate stages of metastasis, then quantified their motility behaviours using computer 5 
vision. All evolved lines showed changes to motility phenotypes, and we have identified a previously 6 
unknown density-dependent motility phenotype only seen in cells selected for colonisation of 7 
decellularized lung tissue. These cells increase their rate of morphological change with an increase in 8 
migration speed when local cell density is high. However, when the local cell density is low, we find the 9 
opposite relationship: the rate of morphological change decreases with an increase in migration speed. 10 
Neither the ancestral population, nor cells selected for their ability to escape or invade extracellular 11 
matrix-like environments, display this dynamic behavioural switch. Our results suggest that cells 12 
capable of distant site colonisation may be characterised by dynamic morphological phenotypes and 13 
the capacity to respond to the local social environment. 14 
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Main Text 34 
 35 
Introduction 36 
 37 
Metastasis is a form of long-range dispersal (1,2) and central to understanding how cancers 38 
metastasise is understanding how cells migrate (3,4). During migration, as cancer cells become 39 
more invasive and begin to migrate independently, they adopt an altered morphology, typically 40 
taking on elongated shapes characteristic of epithelial-mesenchymal transition (EMT) (5,6). This 41 
change in cellular morphology is an important marker of migratory state (7,8). Quantitative 42 
measures of cell morphology taken from static images have been shown to effectively 43 
differentiate between cancer cell lines with high and low metastatic potential (9,10). However, 44 
there are important aspects of migratory behaviour linked to metastasis that cannot be measured 45 
from static images.  46 

Successful metastasis requires a cell to navigate through a series of sequential steps known as 47 
the metastatic cascade. The cascade begins with a cell escaping from the primary tumour before 48 
migrating through the extracellular matrix (ECM) towards a nearby blood vessel. The cell must 49 
then intravasate into the blood before it is carried around the body. After reaching a distant site 50 
the cell then needs to extravasate from the blood and invade the foreign tissue. Finally, the cell 51 
must reinitiate aggressive proliferation enabling a secondary tumour to form (11). 52 

In addition to the cellular changes needed for metastatic success, environmental changes are 53 
also necessary for a cell to metastasise (12). This is evident at the onset of cellular dispersal 54 
where nearby collagen fibres are straightened perpendicular to the tumour boundary (13). The 55 
straightened fibres then act as a pathway for future migrants in turn improving their migratory 56 
success (14). This dynamic cell-environment interplay continues throughout the metastatic 57 
cascade. 58 

To identify the precise changes in cell phenotype that are associated with metastatic success, it is 59 
preferable to compare cell lines that differ only in their ability to metastasise. Experimental 60 
evolution (15), a powerful approach that has led to major advances in evolutionary biology, is now 61 
being applied to cancer evolution and provides the means to generate such cell lines (16,17). 62 
Initially identical populations of cancer cells can be selected in replicate for specific capabilities 63 
(18). We experimentally evolved populations of cancer cells using selective regimes 64 
corresponding to three separate stages of metastasis (19,20): escape from the primary tumour, 65 
invasion of foreign tissue, and distant site colonisation.  66 

Distant site colonisation, the rate-limiting step of metastasis (21), requires a cell to migrate 67 
through the unpredictable microenvironment of the primary tumour (22) and into the novel 68 
environment of the distant metastatic site (11). Success in both stages is achieved, in part, by the 69 
cell’s capacity to detect and respond to changes in the environment (23-26).  Cells selected for 70 
distant site colonisation might therefore be expected to be more reactive to environmental 71 
changes, and as such display a greater degree of morphological change in response. We would 72 
also expect morphological change to be positively correlated with migration speed in successfully 73 
metastasizing cells, because a faster-moving cell will experience a greater degree of 74 
environmental variation over a given time period, and therefore change its morphology more 75 
rapidly in response.  76 

To test these hypotheses, we have combined an experimental evolution framework with video 77 
microscopy and novel statistical analysis that quantifies morphological change in individual cells 78 
over time. This approach has identified unique cell behavioural phenotypes that may be 79 
advantageous for successful metastasis.  80 

Materials and Methods 81 
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Evolved population summary 82 

We used experimental evolution methods (15) on an initial population of MDA-MB-231 breast 83 
cancer cells (Figure. 1), subjecting them to three separate selective regimes. The experimental 84 
selective regimes were designed to be similar to those experienced whilst traversing the 85 
metastatic cascade (11). We also froze two biological replicate ancestor populations (Figure. 1) at 86 
the start of the experiment to act as a control for comparison with our evolved lines. 87 

We selected escape populations (Figure. 1) by tightly packing cells into a high density core of 88 
collagen and then allowing them to escape outwards into a low density collagen outer ring (27). 89 
After 10-14 days the cells that had escaped into the outer collagen ring were recovered from the 90 
matrix, expanded and then seeded back into a new collagen escape assay, completing one round 91 
of selection. In total, 7 rounds of selection were applied to each of four biological replicate escape 92 
populations. The high density collagen core and the low density outer collagen ring were both 93 
three-dimensional (3D) culture environments designed to be similar to those experienced during 94 
tumour dissemination. 95 

We selected invasion populations (Figure. 1) following a similar protocol to the escape 96 
populations whereby repeated consecutive rounds of selection were applied. In contrast to the 97 
escape assay, however, cells moved from a 2D to 3D environment, similar to the change in 98 
environment experienced during the arrest of a cell at a distant site. The cells were seeded 99 
around the outside of a Matrigel island - a synthetic basement membrane matrix widely used in 100 
cell culture - and left to invade. After 7 days the cells were collected from the Matrigel, expanded 101 
and seeded around the outside of another Matrigel island. This process was repeated 15 times 102 
for each of the four biological replicate populations over the course of the 6 month experiment.  103 

We selected colonisation populations (Figure. 1) by culturing cells on a piece of decellularized rat 104 
lung, which acted as a scaffold for growth similar to that experienced by cells colonizing a distant 105 
site (27). The protocol involved cells being seeded onto a decellularized scaffold and left to 106 
colonize over a 6 month period. Decellularized tissue is generated by removing all cells from a 107 
piece of tissue such that only the extracellular matrix is left. At the end of the experiment cells 108 
were released from the scaffold, ensuring that the population represented cells from within the 109 
tissue core as well as the edges. Again, this selection was applied to four biological replicate 110 
populations.  111 

Finally, all twelve experimentally evolved cell populations were frozen and then thawed alongside 112 
the ancestor populations prior to experimental analysis. This step ensured that any selective 113 
pressure from the freezing-thawing process was constant across all treatments and replicate 114 
populations.  115 

Experimental assays 116 

Escape Assay 117 

Initially, MDA-MB-231 cells (LGC) were encapsulated in a 2mg/ml collagen gel (rat-tail collagen 118 
type 1, First Link) and set into a 24-well plate which was used as a mould (750,000 cells per gel, 119 
Greiner Bio-One). The collagen gels were compressed for 2 minutes as described in (27), then 120 
set into a 1mg/ml low density collagen gel (rat tail collagen type 1, First Link). Once set, cell 121 
culture medium (Dulbeco’s Modified Eagles Medium (DMEM) supplemented with 10% Fetal 122 
Bovine Serum (FBS), and Penicillin 100 µg/ml, Streptomycin 100 U/ml (Gibco, Fisher Scientific)) 123 
was added over the top.  Medium was replaced every 3-4 days. After 10-14 days, the 124 
compressed collagen disc was separated from the low density collagen and collagenase type 1 125 
diluted in phospho-buffered saline solution (Gibco, Fisher Scientific) used to retrieve the cells 126 
from the collagen matrix, 200 U/ml for compressed collagen and 100 U/ml for low density 127 
collagen.  Cells in collagenase/PBS were incubated at 37oC in a stirred water-bath at 45 rpm for 128 
30-60 minutes, then washed in Phospo-buffered saline solution (PBS, Gibco Fisher Scientific). 129 
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Cells extracted from the compressed collagen were placed in liquid nitrogen storage and those 130 
collected from the low density collagen were seeded into 2mg/ml collagen gel with medium over 131 
for population expansion. Once expanded, cells were retrieved from collagen using collagenase 132 
in PBS then seeded into 2mg/ml collagen for compression or frozen at -80oC and transferred to 133 
liquid nitrogen for storage. 134 

Invasion Assay 135 

MDA-MB-231 cells (LGC) were re-suspended in PBS, and seeded around the outside of a 136 
5mg/ml set Matrigel island in a 6-well plate Matrigel (#35623, Corning), was diluted using DMEM 137 
without supplements. Cells were seeded in excess at the island margins, with around 40,000 cells 138 
seeded in 200µl per experiment for the initial set-up. Cells were left to settle and adhere to the 2D 139 
surface for 60 minutes then cell culture medium added over the top (DMEM supplemented with 140 
10% FBS,  and penicillin 100 µg/ml, streptomycin 100 U/ml). Medium was changed every 3-4 141 
days and cells were harvested after 7 days. Cells were retrieved from Matrigel using Cell 142 
Recovery solution (#354253, Corning) on ice for 45-60 minutes, washed with ice cold PBS then 143 
reseeded into Matrigel at 5mg/ml to expand cell numbers. After 7 days the cells were released 144 
from Matrigel using cell recovery solution as described above (typically 400,000 – 500,000 per 145 
gel), re-suspended in PBS and seeded in excess around the outside of a new Matrigel island 146 
(5mg/ml) for the next round of the 2D/3D invasion assay or cells were frozen at -80oC and 147 
transferred to liquid nitrogen for storage. 148 

Colonisation Assay 149 

Rat lung was retrieved from 9 week old Wistar rats (Envigo) and flash frozen. It was then thawed 150 
and decellularized using repeated rounds of treatment following an adapted version of the 151 
protocol published in (28). Briefly: frozen lung was thawed and cut into small pieces of around 152 
100mg, which were then placed into deionized water (ddH2O), stirred at 60 rpm for 16 hours at 153 
4oC. Lung tissue was treated with 0.02% trypsin/0.05% EDTA for 60 minutes at 37oC at 60 rpm, 154 
3% Triton-X 100/PBS for 70 minutes, 1M sucrose/PBS for 30 minutes, 4% deoxycholate/ddH2O 155 
for 60 minutes, 0.1% peracetic acid in 4% ethanol for 120 minutes, PBS for 5 minutes, and finally 156 
twice in ddH2O for 15 minutes. The tissue was washed thoroughly between each treatment with 157 
ddH2O. De-cellularization was checked between rounds using epifluorescence microscopy and 158 
staining with DAPI H1200 Vectashield (Vectorlabs) to identify whether cell nuclei remained within 159 
the matrix structure. Decellularized lung tissue was freeze-dried and stored in an airtight 160 
container. 161 

Using decellularized lung as a culture matrix: tissue was soaked in 70% ethanol, washed with 162 
PBS and then rehydrated in PBS pH 7.2 (Gibco) in a tissue culture incubator for 5 days, then 163 
soaked in cell culture medium (DMEM supplemented with 10% FBS and penicillin/streptomycin 164 
as described above) for 48 hours. Cells grown in 2D tissue culture flasks were trypsinized, re-165 
suspended in medium then 750,000 cells added in low volume of medium (100-150 µl) over the 166 
decellularized lung tissue in a 6-well plate and left to adhere for 2 hours.  Medium was then 167 
added over the top so that the decellularized lung rafts floated.  Rafts were transferred to new 168 
wells when the bottom of the well was confluent with shed and adhered cells. To feed the cells 169 
growing in/on the raft, ½ of the medium (2ml of 4ml) was aspirated and replaced every 2-4 days. 170 
After 140 and 189 days, rafts were retrieved from medium, washed with PBS and cells harvested 171 
by incubating in: collagenase I (170 U/ml, Gibco 17018-029), collagenase IV (170 U/ml, Gibco 172 
17104-019), elastase (0.075 U/ml, Sigma E7885) (based on the protocol described in (29)) 173 
incubated at 37oC 45rpm in a stirred water-bath, then washed twice with PBS before seeding in 174 
2D tissue culture plates for expansion. Expanded cells were then frozen at -80oC and transferred 175 
to liquid nitrogen for storage. 176 

Time-lapse microscopy 177 
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Cells were retrieved from liquid nitrogen, cultured in 2D tissue culture flasks (25cm2 or 75cm2 178 
Greiner bio-one), trypsinized and seeded into 6-well plates (Greiner bio-one) at 10-15% cell 179 
confluence. Time-lapse movies were made for 12 hour periods with images taken at 2 minute 180 
intervals, using a Nikon TiE phase contrast microscope with an environmental chamber (37oC) 181 
and moveable platform stage.  x10 Plan Apo DIC L Lens was used in conjunction with an 182 
intermediate magnification changer set to x1.5 to give x15 magnification.  NIS Elements software 183 
was used for image capture. 184 

Cell Tracking 185 

All cells that were present in each time-lapse video were tracked using the Usiigaci pipeline (30). 186 
The neural network was trained on 300 randomly selected images that were manually annotated 187 
using ImageJ (31). The manually annotated images were than randomly split so that 80% were 188 
used for training and a further 20% were used for testing, 240 images in the training set and 60 in 189 
the test set. The 240 training images were then further split for training and validation 90:10 so 190 
that 216 images were used for training and 24 for validation. We trained 3 neural networks using 191 
the same 240 images however different images were used for the training and validation stage 192 
each time. All hyperparameter settings were the same as Usiigaci protocol except the gradient 193 
clip norm was increased to 10. We trained the network on all layers over 300 epochs with the 194 
learning rate starting at 0.01 and decreasing by an order of magnitude every 100 epochs. 195 

Once the morphologies had been segmented we tracked them through time using the inbuilt 196 
semi-automated Usiigaci tracker. After tracking we manually checked the segmented 197 
morphologies and corrected any errors. We checked for cases whereby a cell had divided, been 198 
mis-identified or incorrectly segmented. Finally we excluded the 30 minutes prior to and after a 199 
cell division to remove the rounded morphologies typical of cell division from our analysis.   200 

Quantifying values 201 

All values were quantified using a custom-built pipeline in Python (32) that can be found on 202 
GitHub, https://github.com/george-butler/2d_microscopy, any reference to distance refers to the 203 
Euclidean distance. The morphology was quantified using the first 20 Zernike moments. Zernike 204 
moments capture the information that is encoded in a shape and translate it into a high 205 
dimensional vector, in a similar fashion to spatial location being represented by Cartesian 206 
coordinates. When taken to a high enough degree, Zernike moments are capable of representing 207 
every shape uniquely and are invariant to rotation, scale and translation (33). We followed the 208 
methods of (10) to pre-process the morphologies and make them invariant to scale and 209 
translation. We determined that 20 Zernike moments were adequate to quantify the morphology 210 
of each cell by plotting the mean squared error against the number of moments (34) and finding 211 
where the gradient approached 0. 212 

Statistical analysis 213 

All statistical analysis was performed in R (35) and Figures 3-5 were made using GGPlot (36). All 214 
code and corresponding data can be found on GitHub, https://github.com/george-215 
butler/2d_microscopy/tree/master/statistical_analysis . A cell needed to appear in at least 30 216 
frames to be included in our analysis and be present for at least 75% of the track. Some cells 217 
were not detected in a given frame or had to be removed due to being incorrectly segmented. 218 
Throughout our analysis we used linear mixed models to account for the differences between 219 
replicate populations within the four treatments (37). The mean rate of morphological change and 220 
the mean speed of migration were calculated through the use of an intercept only linear mixed 221 
population with independent intercepts for each treatment. The rate of morphological change 222 
model is defined below: 223 

https://github.com/george-butler/2d_microscopy
https://github.com/george-butler/2d_microscopy/tree/master/statistical_analysis
https://github.com/george-butler/2d_microscopy/tree/master/statistical_analysis
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Rate of morphological change = α + β1 (speed of migration) + β2 (distance to nearest 224 
neighbour) + β3 (speed of migration) * (distance to nearest neighbour) + (1|well id) 225 

 226 

The model was selected through forward selection whereby parameters were only included if they 227 
were significant at the 5% level. The marginal R2 values were calculated using the method 228 
detailed by (38). 229 

 230 

Results 231 
 232 

 233 

Quantifying dispersal in evolved populations 234 

To analyse their dispersal behaviour cells were placed onto 2D tissue-culture plates and their 235 
migration was recorded over a 12-hour period , with images taken at two-minute intervals. The 2D 236 
plastic environment was intentionally chosen as a neutral testing environment and to ensure that 237 
the morphology could be clearly seen without the use of fluorescent tags, a factor that might have 238 
applied an additional selective pressure (39). The cells were tracked through the use of a semi-239 
automated pipeline, Usiigaci (30), that combined a convolutional neural network with our own 240 
manually annotated images to trace the morphology of each cell at every time point (Figure. 2A).  241 

We extracted three quantitative measures  per cell per frame of time-lapse video: morphology, 242 
speed and the distance to the closest neighbouring cell. Morphology was quantified using Zernike 243 
moments. Zernike moments (33) have been used previously to quantify cancer cell morphology in 244 
fixed populations (10) and are a method that captures all of the morphological information 245 
available rather than needing to make a prior decision about which morphological features might 246 
be important i.e. the length of a cell. The rate of morphological change is then measured as the 247 
distance between the vector of moments in frame t and t+1 relative to the time between frames 248 
(Figure. 2B). Speed of migration was calculated from the change in spatial location between 249 
consecutive frames (Figure. 2C). The distance to the closest neighbour cell was calculated as the 250 
shortest distance from the edge of the cell contour to another neighbouring cell contour without 251 
crossing the body of the cell (Figure. 2D). Finally the average was calculated for each metric over 252 
the entire trajectory of the cell, providing a summary of the dispersal phenotype of each cell. 253 

After extracting these three metrics we sought to evaluate whether the rate of morphological 254 
change or the speed of migration was significantly different among the four treatments. We used 255 
an analysis of variance (ANOVA) to compare the mean rate of morphological change and the 256 
mean speed of migration across all populations; differences in wells were accounted for as a 257 
random effect. We found that there was significant variation among population in their mean rate 258 
of morphological change (p = 0.0296, N = 813). We then conducted  a post-hoc Bonferroni 259 
multiple comparison test to identify which populations were different, controlling for any possible 260 
between-replicate variation through the use of a random effect.  Escape populations had a 261 
significantly higher rate of morphological change compared with the invasion populations, (p = 262 
0.0152, N = 813; Figure. 3). There was no significant difference in the mean speed of migration 263 
among the four treatments. 264 

 265 

 Speed of migration predicts  rate of cell-morphological change in evolved populations 266 

Next we investigated how the morphological behaviour of a cell related to its speed  and its social 267 
environment. We fitted a linear mixed model across our data whereby the rate of morphological 268 
change is dependent on the speed of migration, the distance to the nearest neighbouring cell and 269 
the interaction of the two, as detailed in our Methods. We set treatment as a fixed effect and 270 



 

 

8 

 

allowed intercepts and slopes to vary between treatments. The significant parameters were then 271 
used to fit a reduced model to the ancestor, escape and invasion populations (Figure. 4).  272 

In the ancestor populations neither the speed of migration nor the distance to neighbouring cells 273 
significantly affected the rate of morphological change. We proceeded by fitting an intercept only 274 
model to our data (Figure. 4). However, the intercept model explained only a small proportion of 275 
the variance, (marginal R2 = 0). This might suggest that the rate of morphological change is highly 276 
stochastic, or that it depends on factors not included in our model.  277 

In contrast, in both escape and invasion populations, the rate of morphological change is 278 
significantly positively correlated with the speed of migration, (β = 0.680 and 0.319 respectively: 279 
Figure. 4). Furthermore, the escape and invasion models both explain a significant proportion of 280 
the variation (marginal R2 = 0.347 and 0.099 respectively). To ensure that our results were  not 281 
affected by a small cluster of potential outliers we repeated the same analysis after having 282 
removed  influential data points, defined by a Cook's distance > (4 / N) where N is the sample 283 
size (40).  284 

The  slope of the relationship is steeper for escape than for invasion populations suggesting that 285 
selection for escape  may favour cells that can change their morphology rapidly when migrating at 286 
a high speed. This might be a result of the collagen escape assay being a 3D to 3D environment 287 
compared with the 2D to 3D environment of the Matrigel invasion assay. However, this also could 288 
be due to the different number of rounds of selection between the two assays, or difference in the 289 
strength of selection within each. 290 

 291 

Spatial density  affects morphological dynamics 292 

The colonisation populations displayed a complex morphological behaviour dependent on the 293 
speed of migration, the distance to the nearest neighbouring cell and the interaction of the two: as 294 
the distance between neighbouring cells increases, the relationship between the rate of 295 
morphological change and the speed of migration becomes negative (Figure. 5A). When close to 296 
a neighbouring cell, the rate of morphological change is positively correlated with the speed of 297 
migration: a faster speed of migration results in a higher rate of morphological change. However, 298 
when the distance between neighbouring cells is large and a cell is isolated, the rate of 299 
morphological change is negatively correlated with the speed of migration: a faster speed of 300 
migration has a lower rate of morphological change. We repeated the same analysis after the 301 
removal of any influential data points and found that the interaction term was still significant in 302 
these colonisation populations (Fig. S1). We also found that the colonisation model explained a 303 
significant proportion of the variation in the rate of morphological change (marginal R2 = 0.236). 304 

Next we sought  to determine whether the switch in morphological behaviour with distance was 305 
gradual or sudden. To investigate this hypothesis, we centred the nearest neighbour data at a 306 
distance x and then refitted the same morphological change model. After fitting the model, we 307 
evaluated whether the speed of migration was significant in the model. If the speed of migration is 308 
not significant then we know that at a distance x there is not a significant difference in the rate of 309 
morphological change for cells migrating at different speeds. We can then repeat the same 310 
method for different values of x to find a range of distances over which the speed of migration is 311 
not significant. The smaller the range the more sudden the switch. 312 

 313 
We found that for nearest neighbour distances between 57.9µm and 147.2µm the speed of 314 
migration is not significant in our model, as seen by the shaded region in Figure. 5B. Therefore, at 315 
distances < 57.9µm or > 147.2µm the speed of migration is significantly related to the rate of 316 
morphological change. The small range of distance values suggests that the cells have a high 317 
degree of sensitivity to the location of neighbouring cells. Interestingly, the range of distance 318 
values coincides with values from the literature whereby cells within a tumour core have been 319 
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seen to display a correlated mode of migration at spatial distances < 50µm compared with 320 
distances greater than 250µm (41).   321 
 322 
Discussion  323 
 324 

We have conducted novel phenotypic analysis across experimentally evolved populations of 325 
MDA-MB-231 breast cancer cells to investigate their behaviour during dispersal. Combining 326 
experimental evolution with computer vision we have generated a multidimensional data set that 327 
quantifies single cell dispersal dynamics within each population. In turn we have built a 328 
continuous data driven morphological model that has uncovered fundamental dispersal behaviour 329 
at a cellular level and is capable of distinguishing cells selected for colonisation.  330 

The flow of migratory cells through the microenvironment creates a landscape that is 331 
heterogeneous both spatially and temporally (42). This landscape variability might in turn explain 332 
the correlation between the rate of morphological change and the speed of migration for both the 333 
escape and invasion populations (Figure 4). The collagen escape and Matrigel invasion assays 334 
used to select the escape and invasion populations are porous and complex (43) but yet they are 335 
also malleable. The malleability of these two environments means that large structural changes 336 
can occur and thus migration routes that were previously accessible may become blocked. 337 
Therefore, a cell may need to respond to its environment by changing its morphology to ensure 338 
that it can continue to migrate and does not become trapped. Likewise, as the speed of migration 339 
increases, an increase in the rate of morphological change might be necessary to ensure that the 340 
cells aren't temporarily stuck by any potential obstacles. This would also explain why there is no 341 
correlation in the ancestor populations where the environment remains constant and there would 342 
therefore be no selective advantage to this behaviour.  343 

Distant-site colonisation requires a cell to switch from a mode of long-range dispersal and focus 344 
on re-initiating aggressive proliferation; the subsequent increase in local cell density may reduce 345 
available space and thus intensify competition. A similar selective pressure can be seen in our 346 
experimental assays. In contrast to the ancestor, escape and invasion populations, where cells 347 
are periodically moved to a new expansive environment, the colonisation population remain fixed. 348 
As such in addition to the structural changes that occurred in the microenvironment there was a 349 
high density of cells migrating locally so cells themselves could block potential migration routes, 350 
and therefore might explain the significance of the neighbour location in our model. This 351 
hypothesis would also explain the interaction that is observed between neighbouring cells. If a 352 
cell is migrating at a high speed and is close to other neighbouring cells, then changing its 353 
morphology rapidly might be necessary to avoid other cells that are changing location 354 
dynamically. However, when isolated the location of neighbouring cells is no longer of concern 355 
and thus a reduction in the rate of morphological change might allow a cell to conserve  356 
resources.  357 

The significance of the neighbour sensitivity may also suggest that the ability of a cell to sense 358 
contact has been re-acquired within the colonisation population. A loss of contact inhibition is 359 
seen as one of the earliest developments in cancer progression as it allows aggressive 360 
proliferation to ensue, which in turn gives rise to the formation of a primary tumour (44). However, 361 
the high degree of neighbour sensitivity seen in Figure. 5 questions whether contact sensing is in 362 
fact lost, or instead down-regulated earlier in the metastatic cascade. If true, this could suggest 363 
that cells selected for distant-site colonisation are able to vary their own contact sensing ability 364 
dependent on the exogenous environmental stresses they encounter. 365 

 366 
In summary, we have shown that evaluating cell morphology as a dynamic process provides 367 
novel insight into the behaviour of  breast cancer cells, and furthers our understanding of the 368 
phenotypic route to metastasis. A pivotal next step will be evaluating morphological dynamics 369 
within a native 3D environment (45) and in the vicinity of stromal cells such as a fibroblasts which 370 
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are known to have a critical role in metastasis (46). The presence of stromal cells might also 371 
change the relationship seen within our escape and invasion populations, as cells would then be 372 
able to interact via matrix metalloproteinases. Thus, rather than needing to change their 373 
morphology quickly to prevent being trapped, they could exploit the matrix metalloproteinases to 374 
cut them free, as seen previously during metastatic dispersal (47). It would also be of value to 375 
subject multiple starting cell lines to a similar selective regimes, in case the MDA-MB-231 line 376 
used here behaves atypically. However, we believe that this work highlights the power of 377 
phenotypic analysis in discovering the complex emergent behaviours that would  not have been 378 
apparent from genetic data .  379 
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Figures  495 
 496 

 497 
 498 
Figure 1. Experimental evolution of cancer cell populations. Ancestor populations were kept 499 
frozen throughout. Escape populations were placed in a high density collagen matrix  the 500 
surrounded by a low density outer collagen ring: after 10-14 days cells that had escaped into the 501 
outer ring (shown in blue) were released, expanded and reseeded back into a new high density 502 
collagen core; this process was repeated 7 times over the course of 6 months.  Invasion 503 
populations were seeded around a Matrigel island; after 7 days cells that had invaded the 504 
Matrigel (shown in blue) were released, expanded and reseeded around a new Matrigel island 505 
this was repeated 15 times over the course of 6 months. Colonisation populations were seeded 506 
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onto a piece of decellularized rat lung which acted as a novel scaffold for colonisation and left to 507 
establish for 6 months. Four replicate lines were maintained for each treatment. 508 

 509 
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 512 
 513 
Figure 2. Quantifying dispersal from time-lapse videos. (A) Cells were tracked over a 12 hour 514 
period with images taken at two minute intervals using phase contrast time-lapse microscopy to 515 
generate movies from which morphology could be segmented through the use of a convolutional 516 
neural network. (B) The rate of morphological change was recorded as the distance between 517 
Zernike moments in consecutive frames. (C) The speed of migration is calculated as the distance 518 
between the spatial location of cells in consecutive frames. (D) The distance between 519 
neighbouring cells is quantified as the shortest distance between the contour of one cell and the 520 
contour of another. The direction of the arrow points from a given cell to the point on the contour 521 
of the closest neighbouring cell. 522 
 523 
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 525 

Figure 3. Comparing the mean rate of morphological change among the four treatments. A 526 
plot of the natural log-transformed rate of morphological change for each of the four treatments. 527 
The centre dot signifies the mean rate of morphological change with errors bars signifying 95% 528 
confidence intervals. The escape populations had a significantly faster rate of morphological 529 
change compared with the invasion populations, p = 0.0152 (N = 813). The mean, standard error 530 
and number of observations for each population can be found in Table S1. 531 
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Figure 4. The rate of morphological change against the speed of migration. The natural log-534 
transformed rate of morphological change plotted against the natural log-transformed speed of 535 
migration. The straight lines represent the reduced model for each treatment using only 536 
parameters that are significant at the 5% level. The ancestor populations have an intercept-only 537 
model fitted (N = 88). The speed of migration is the only significant variable in the escape (N = 538 
230, p = 1.765 x10-3) and invasion (N = 283, p = 0.018) populations. For both escape and 539 
invasion populations the rate of morphological change is positively correlated with the speed of 540 
migration, the faster the speed of migration the higher the rate of morphological change. 541 

 542 
Figure 5. A dynamic switch in the morphological behaviour within cells selected for 543 
colonisation. Data points have been removed to highlight the behaviour of the model, the same 544 
model with data points can be seen in Fig. S2. The speed of migration (p = 5.418 x10-14), the 545 
distance to the nearest neighbouring cell (p = 2.207 x10-10) and the interaction of the two (p = 546 
2.219 x10-11) was significant in the colonisation population (N = 212). (A) The predicted natural 547 
log-transformed rate of morphological change against the natural log-transformed speed of 548 
migration. The shaded lines indicate the natural log transformed nearest neighbour percentile. 549 
The lighter the line, the further away from a neighbouring cell with distance values ranging from 550 
2µm - 477µm. (B) The predicted natural log-transformed rate of morphological change against the 551 
natural log-transformed nearest neighbour distance. The shaded lines indicate the speed of 552 
migration percentile. The lighter the line the faster the speed of migration. The shaded region 553 
indicates the range of distances over which there is no significant relationship in the rate of 554 
morphological change and the speed of migration when the data is centred at these distances, 555 
between 57.9µm and 147.2µm. 556 
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