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Abstract

Convection schemes are a large source of error in existing climate and weather predic-
tion models, likely because most schemes are not scale aware and because net mass
transport by convection and convective memory are usually ignored. A relatively
new approach called the multi-fluid method may be able to address this issue by
modelling the convective updraft as a separate fluid from the rest of the atmosphere,
allowing convective plumes to be modelled prognostically at any resolution. In
this thesis, we investigate the properties of multi-fluid systems and create a 2-fluid
model for dry convection where the fluids are defined by the sign of the vertical velocity.

We derive and analyse 20 numerical schemes for transferring mass between fluids
(entrainment and detrainment). Two of these schemes, which transfer the mass and fluid
properties implicitly, are accurate, bounded, conserve momentum and do not increase
the total energy for any timestep. We also extend the stability analysis of Thuburn et al.
(2019), who showed that a Kelvin-Helmholtz-like instability exists in the 2-fluid incom-
pressible equations with a shared pressure. By using a pressure perturbation for each
fluid proportional to fluid convergence, we show that the instability is significantly sup-
pressed. Moreover, using transfer terms between fluids which are also proportional to
convergence, the instability can be removed. We also analyse a high resolution dry con-
vection test case and show that the convergence-based pressure and transfer assump-
tions are accurate. By using the transfer scheme and fluid pressure anomaly propor-
tional to velocity divergence, the 2-fluid scheme was able to transport heat more effec-
tively than the single-fluid scheme for multi-column grey-zone resolutions. Some errors
remain for the multi-column test cases because parameters were tuned for the single-
column set-up, for which the 2-fluid scheme is able to accurately model the dry rising
bubble test case.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Overview

The modelling of atmospheric convection is at the forefront of meteorological research
due to the large errors caused by current convection schemes (Arakawa, 2004; Holloway
et al., 2014; Yano et al., 2018). The inaccurate representation of cumulus convection is
responsible for errors in surface temperature distributions, vertical energy transport and
the water cycle, including the initiation and location of rainfall (Lean et al., 2008; Lancz
et al., 2018). Due to these errors and biases, forecasts of convective rainfall which are
more than 1-2 days in advance are typically inaccurate (Yano et al., 2018). It is crucial
that convective clouds and their associated couplings are modelled accurately (with
fewer assumptions than are currently used) in order to improve weather prediction and
climate models (Arakawa, 2004).

The horizontal grid spacing in models has historically been much larger than
the length-scales of convection, meaning convection could not be explicitly resolved
(Gregory and Rowntree, 1990). Instead, shallow and deep convection are usually
parameterised such that the collective effect of clouds within a column is approximated.
Although the absence of convection parameterisations can have little effect on the total
precipitation in climatological studies (Maher et al., 2018), the modelling of sub-grid
convective processes is important for obtaining accurate spacial and temporal distribu-
tions of rain. In recent years, we have reached an age in which improved computational
power allows convection to be partially resolved (Gerard et al., 2009). However, many
assumptions made for parameterisations on large-scale grids become increasingly
unrealistic at finer resolutions due to the increased significance of convective processes
at smaller scales (Kwon and Hong, 2017) - this is known as the grey zone of convection.

There is thus a demand for a convection scheme which can be used at grey zone
resolutions and performs better than the previous mass flux schemes designed for lower
resolutions. Although many schemes are aimed at modelling convective processes at
grey-zone resolutions (eg. Gerard and Geleyn, 2005; Kwon and Hong, 2017), there is
still a need for a convection scheme which treats resolved and sub-grid-scale convection
consistently, as most convection schemes do not converge at high resolutions. The
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multi-fluid approach, which uses conditional filtering to separate the atmosphere into
various fluid components (such as updrafts and downdrafts), is a potential candidate
for a scheme which makes few assumptions and is accurate across a large range of
resolutions (Thuburn et al., 2018). However, such a scheme is a significant departure
from existing parameterisations, as the convection is computed as part of the dynamical
core (Weller and McIntyre, 2019) and is not confined to a single vertical column,
unlike many traditional mass flux convection schemes (such as Arakawa and Schubert,
1974; Betts, 1986; Gregory and Rowntree, 1990; Lappen and Randall, 2001). As such,
an entirely new formulation of the numerics and closures are required to produce a
multi-fluid convection scheme.

1.2 Atmospheric convection and the grey zone

1.2.1 What is convection?

Convection is a natural process where mass and heat are transported due to the bulk
motion of molecules in response to anomalies in temperature or buoyancy (Schroeder,
2000). In the field of Meteorology, atmospheric convection is more specifically defined
as buoyancy-driven circulations due to unstable vertical distributions of mass (Emanuel,
1994). Anomalies in density (ρ) can be used to express the buoyancy (B) for a parcel of
air:

B = g
ρp − ρenv

ρenv

(
= g

θp − θenv

θenv
for dry air

)
, (1.1)

where g is the acceleration due to gravity, θ is the potential temperature and the sub-
scripts represent the parcel (p) and the surrounding environment (env) (Ambaum, 2010).
If a parcel of air has positive buoyancy it will rise and if it has negative buoyancy it will
fall. For a dry parcel displaced vertically by δz and assuming an ideal gas, the accelera-
tion of the parcel is given by

d2(δz)
dt2 = Bz

= −N2δz,
(1.2)

where Bz is the vertical component of the buoyancy, N2 = − g
θenv

θp−θenv
δz and N is known

as the Brunt-Väisälä frequency (Ambaum, 2010). Taking the limit where δz and the parcel
size tend to 0, we get

N2 =
g
θ

dθ

dz
. (1.3)
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Dry convection will occur if we have a region where dθ
dz < 0 (and therefore N2 < 0) - this

means the air is unstable and will rise.

1.2.2 Unstable modes due to dry convection

Equations 1.1 and 1.3 summarise the conditions for when convection should occur, but
they do not explain which scales are important when modelling convection. A linear
stability analysis of a simplified system can help inform us about which wavemodes
grow the fastest in an unstable convective system.

By combining examples from Chandrasekhar (1961), we will consider a system of
two incompressible fluids of different densities, with fluid 0 on top of fluid 1 (see figure
1.1). The incompressible, inviscid Navier-Stokes equations are given by

∇.u = 0 (1.4)

∂u
∂t

+ u.∇u = g − 1
ρ
∇p, (1.5)

where u is the velocity, t is the time, g = −gêz is the acceleration due to gravity (and êz

is the unit vector in the z-direction), ρ is the density and p is the pressure. For each fluid,
the subscript i = {0, 1} will be used to label the fluid variables.

The advection term can be rewritten as ui.∇ui = 1
2∇(ui.ui) + (∇ × ui) × ui. As-

suming that the the flow in each fluid can be approximated by a potential (valid only
for small perturbations of the fluid interface, figure 1.1), we can write ui = ∇Φi where
Φi is the velocity potential of fluid i. This means that∇× ui = 0 and that equation 1.5
reduces to

∇
[

∂Φi

∂t
+

1
2

ui.ui + gz +
Pi

ρi

]
= 0 (1.6)

∂Φi

∂t
+

1
2

ui.ui + gz +
Pi

ρi
= C, (1.7)

where C is a constant and equation 1.7 is the Bernoulli equation for an unsteady potential
flow. The mean flow for each fluid is in the x-direction (figure 1.1) such that

ui = ui + u′i (1.8)

= ui êx + u′i (1.9)

=⇒ Φi = uix + φ′i , (1.10)

where ui = |ui|, êx is the unit vector in the x-direction and the velocity perturbation

Chapter 1. Introduction
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(which is assumed to be small) is given by u′i = ∇φ′i . The mean velocity (ui) does not
change in time or space but the perturbation velocity (u′i) does. We can therefore linearise
equation 1.7 by neglecting second-order perturbation terms such that:

∂φ′i
∂t

+
1
2

u2
i + ui

∂φ′i
∂x

+ gz +
Pi

ρi
= C (1.11)

a) Unperturbed system b) Perturbed system

Figure 1.1: A system of two incompressible fluids on top of each other. Each fluid has its own
density and velocity. The interface between the fluids is given by f (x, t) which is a small pertur-
bation about z = 0.

Let us now consider the boundary between the fluids, which has a height as a func-
tion of x and t:

z = f (x, t). (1.12)

Given that equation 1.11 is constant, we can relate the fluid flow in the perturbed state
to the flow when f (x, t) = 0:

∂φ′i
∂t

+
1
2

u2
i + ui

∂φ′i
∂x

+ g f +
Pi

ρi
=

1
2

u2
i +

Pf

ρi
(1.13)

=⇒ ρi
∂φ′i
∂t

+ ρiui
∂φ′i
∂x

+ ρig f + Pi − Pf = 0, (1.14)

where Pf is the pressure at the fluid boundary in the unperturbed state. At the fluid
interface, the pressure is equal for both fluids (P0 = P1) which means we can write

ρ0
∂φ′0
∂t

+ ρ0u0
∂φ′0
∂x

+ ρ0g f = ρ1
∂φ′1
∂t

+ ρ1u1
∂φ′1
∂x

+ ρ1g f . (1.15)
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The rate of change of the fluid interface must also be considered:

Dz
Dt

=
D f (x, t)

Dt
(1.16)

∂z
∂t

+ ui.∇z =
∂ f
∂t

+ ui.∇ f (1.17)

∂φ′i
∂z

∂z
∂z

=
∂ f
∂t

+ (ui + u′i).∇ f . (1.18)

Assuming that the fluid boundary perturbation is small, and removing second-order
perturbation terms gives

∂φ′i
∂z

=
∂ f
∂t

+ ui
∂ f
∂x

. (1.19)

There are three equations (1.15 and 1.19) for three unknown perturbation variables
(φ′0, φ′1 and f ). One can solve the equation set be assuming solutions in the form

φ′0 ∝ GA(x)GB0(z)GC(t) (1.20)

φ′1 ∝ GA(x)GB1(z)GC(t) (1.21)

f ∝ GA(x)GC(t), (1.22)

where GA, GB and GC are functions. Wave-like solutions are assumed such that GA(x) =
eimx and GC(t) = e−iΩt, where m is the wavenumber and Ω is the angular frequency.
GB(z) is then constrained by equation 1.4:

∇.ui = 0 (1.23)

=⇒ ∇2φ′i = 0 (1.24)

∂2φ′i
∂z2 = −

∂2φ′i
∂x2 (1.25)

= m2φ′i , (1.26)

meaning that GBi(z) = Bi+emz + Bi−e−mz, where Bi+ and Bi− are constants and
|Bi+|2 + |Bi−|2 = 1. The vertical velocities must tend to zero at the top and bottom
boundaries (which adds the constraints u′0.êz → 0 as z → ∞ and u′1.êz → 0 as z → −∞)
meaning that GB0(z) = e−mz and GB1(z) = emz (Taylor, 1950; Chandrasekhar, 1961).

Substituting the wave-like solutions into equations 1.15 and 1.19 results in

−iΩρ0φ′0 + imρ0u0φ′0 + ρ0g f = −iΩρ1φ′1 + imρ1u1φ′1 + ρ1g f (1.27)

−iΩ f + imu0 f = −mφ′0 (1.28)

−iΩ f + imu1 f = −mφ′1. (1.29)

Chapter 1. Introduction
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Eliminating all perturbation terms results in a quadratic equation for the frequency,

(ρ0 + ρ1)Ω2 − 2m(ρ0u0 + ρ1u1)Ω +
[
m2(ρ0u2

0 + ρ1u2
1) + mg(ρ0 − ρ1)

]
, (1.30)

where the solution is

Ω =
ρ0u0 + ρ1u1

ρ0 + ρ1
m±

√
−ρ0ρ1(u0 − u1)2

(ρ0 + ρ1)2 m2 − ρ0 − ρ1

ρ0 + ρ1
mg. (1.31)

Unstable solutions occur when there is an imaginary component of Ω, which results in
an exponential growth of the wavemodes with time.

In the case where u0 6= u1 and (ρ0 − ρ1)mg = 0, we obtain the Kelvin-Helmholtz
instability which describes the growth of perturbations at the surface of two fluids
with wind shear parallel to the boundary (von Helmholtz, 1868; Thomson, 1871;
Chandrasekhar, 1961) - this is applicable to the edges of convective updrafts and will be
discussed further in chapter 2.

When there is no wind shear, the frequency reduces to

Ω = um±
√
−ρ0 − ρ1

ρ0 + ρ1
mg, (1.32)

which is known as the Rayleigh-Taylor instability when the density of the lower fluid
(ρ1) is smaller than the density of the upper fluid (ρ0) (Rayleigh, 1882; Taylor, 1950;
Sharp, 1983; Youngs, 1989). This is also consistent with the condition for convection
described in equation 1.1. The growth rate of the instability is proportional to the
square root of the wavenumber (m), meaning that the smallest scale modes (largest
m) grow the fastest - this would be the smallest scale available (the grid-scale) in any
atmospheric model. The linear instabilities grow exponentially until the interface and
velocity perturbations are no longer small relative to the domain and large-scale flow
(where the non-linear terms become significant).

In reality, viscous forces are also significant as they suppress the smallest scale
modes, resulting in a dominant wavemode which is not the largest scale or the smallest
scale (Chandrasekhar, 1961). When modelling dry convection, the grid scale must be
smaller than the length scale of the dominant wavemode, in order to prevent unrealistic
grid-scale oscillations.

Chapter 1. Introduction
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1.2.3 Moist convection and the need for parameterisation

Moist convection is a more complex process than dry convection due to latent heat
released by the condensation of vapour into liquid (or ice). As saturated air rises it cools
- some of the vapour condenses and releases latent heat, causing the air to cool more
slowly than a parcel of dry air. This latent heat release therefore produces warmer air
parcels and stronger updrafts - hence the largest convective processes all have saturated
levels of moisture within the plumes.

In the atmosphere, moisture-driven convection produces shallow and deep con-
vective clouds. Convective clouds are coupled to various processes in the atmosphere,
including vertical momentum, heat and moisture transport, radiative effects and
precipitation (Arakawa, 2004; Holloway et al., 2014). Convection is also responsible for
large-scale atmospheric circulations (Gregory and Rowntree, 1990) such as mesoscale
convective systems (∼ 100 km), tropical cyclones (∼ 1000 km) and the Madden-Julian
oscillation (∼ 10, 000 km). Deep convection, where the largest convective plumes can
reach the tropopause, can also produce extreme weather events such as heavy rain,
hail showers and lightning. With such a significant influence on the atmosphere, it is
important to have a realistic representation of convection in any weather or climate
model.

Atmospheric convection is currently a large source of error in numerical weather
prediction (NWP) (Lean et al., 2008; Holloway et al., 2014). This is predominantly due to
two factors:

• As convection is coupled to so many atmospheric processes, an error in a convec-
tion scheme will produce errors in all of the other processes to which it is coupled.

• The horizontal length scales of shallow and deep convective plumes are ∼ 100 m
and ∼ 1 km respectively. However, the horizontal grid spacing of local and global
models is usually in the range of 1− 100 km. Given that the resolutions of general
circulation models (the smallest scale) are typically larger than the dominant wave-
mode (the horizontal length scale of convection), the convection will alias onto the
grid scale which results in unrealistically large vertical mass fluxes (often referred
to as the conditional stability of the second kind which can produce unrealistic
grid-point storms: Charney and Eliassen, 1964; Han and Pan, 2011). This is a long-
standing issue in convection modelling for local and global forecasts (Betts, 1986;
Bechtold et al., 2001; Held et al., 2007). Parameterisations of convection must there-
fore accurately model sub-grid scale processes in order to remove the unrealistic
grid-scale circulations.

Accurate weather or climate models therefore require an accurate convection scheme,

Chapter 1. Introduction
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which in turn requires an accurate representation of sub-grid-scale processes.

1.2.4 Modelling sub-grid-scale processes

As the horizontal resolution of models has historically been too coarse to resolve convec-
tion, many convection parameterisations attempt to approximate the sub-grid-scale pro-
cesses including heat fluxes. Sub-grid-scale processes are often modelled using Reynolds
averaging which helps to quantify contributions from the resolved and sub-grid-scale
variables. Let us consider the budget equation for some mass-weighted variable φ in
flux form:

∂φ

∂t
= −∇.(φu) + fφ, (1.33)

where u is the velocity and fφ is a source/sink term which may represent a variety of
physical processes. We can decompose φ into an averaged mean value φ (which could
be over time, space or both) and a deviation from the mean φ′ such that φ = φ + φ′.
This is known as Reynolds decomposition in the time-averaging case (Stull, 1988). Time
averaging the velocity gives us u = u + u′ as well as

∂(φ + φ′)

∂t
= −∇.

(
φu
)
−∇.

(
φu′
)
−∇.

(
φ′u
)
−∇.

(
φ′u′

)
+ fφ. (1.34)

We Reynolds-average the equation by applying another time average to all terms. By
using a + b = a + b, (a) = a, a′ = 0, ab′ = ab′ = 0 and assuming the averages are
independent of derivatives (Stull, 1988), we get

∂φ

∂t
= −∇.

(
φu
)
−∇.

(
φ′u′

)
+ Fφ. (1.35)

where Fφ = fφ. The resolved transport of φ is represented by the∇.
(
φu
)

term whereas
φ′u′ is a contribution from the sub-grid-scale processes. φ′u′ is usually modelled as a
term proportional to the gradient of φ when the sub-grid-scale flow is turbulent, which
acts to diffuse φ (eddy diffusion; Siebesma et al., 2007).

Although convection is a large source of turbulence, it predominantly acts in the
z-direction due to vertical instabilies in the atmosphere. Convective circulations in the
atmosphere differ further from turbulence because updraft regions are much narrower
(with larger vertical velocities) than downdraft regions or regions of compensating
subsidence. Siebesma et al. (2007) note that eddy diffusion is not sufficient to accurately
model vertical heat fluxes meaning alternative assumptions (such as convective mass
fluxes; Siebesma et al., 2007; Arakawa and Wu, 2013) are needed to model sub-grid-scale
convection. Like Reynolds-averaged turbulence, these assumptions and parameterisa-
tions are only valid if the circulations are much smaller than the grid scale, which is
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assumed in Arakawa and Schubert (1974); Tiedtke (1989); Gregory and Rowntree (1990);
Kain and Fritsch (1990), for example.

The problem of modelling sub-grid convection is made more difficult because the
resolution of weather prediction models has increased in recent years, to the extent that
some of the largest convection-driven circulations are now partially resolved (Yano et al.,
2018). This means that convection should be partly represented via both the resolved
terms (φu) and sub-grid terms (φ′u′), but it is not always obvious how much each term
should contribute to the overall solution. The convective “grey zone” refers to this
transition where horizontal resolution is comparable to the length scales of convection
(Holloway et al., 2014). In the grey zone, many parameterisation assumptions used for
coarser resolutions are no longer valid and there is a risk of double-counting certain
processes which are represented by both the resolved and the sub-grid-scale flow
(Arakawa and Wu, 2013).

1.3 Numerical modelling of convection

In this section we summarise some of the most popular convection parameterisation
methods of past and present, as well as some new techniques which are currently being
developed.

1.3.1 Explicitly resolving convection

Perhaps the most intuitive approach to modelling convection is to explicitly resolve
it. Cloud-resolving models (CRMs) or global cloud resolving models (GCRMs) avoid
using any convection parameterisations by assuming that the resolved convective
circulations are represented by the dynamical core (Satoh et al., 2019). In order to
correctly resolve the most prominent features of convective plumes, the grid spacing
must be smaller-than (or equal-to) the length-scales of convective clouds (∼ 1 km
for deep convection and ∼ 100 m for shallow convection) in order to avoid spurious
features such as gridpoint storms - but just how fine do resolutions need to be in order
to produce accurate statistics and forecasts?

In order to resolve the smallest eddies present in convective clouds, grid spacings
down to the Kolmogorov scale would be required (the scale at which viscosity dom-
inates and turbulent kinetic energy is dissipated, of order ∼ 1 mm; Landahl et al.,
1989; Satoh et al., 2019). However, Mellado et al. (2018) showed that direct numerical
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simulations (DNSs) with grid spacings ∆x ∼ 1 m were sufficient for representing the
entrainment/detrainment at cloud boundaries. These results are promising but current
computational capabilities mean that regional or global models with these resolutions
are far out of reach (and such high resolution observational data for initialising these
simulations does not exist).

For the purposes of representing basic cloud structures, it is often sufficient to use
large eddy simulations (LESs) which resolve the largest turbulent eddies present in
convective clouds (Satoh et al., 2019). The required resolution for accurate LESs varies
between studies; Petch et al. (2002) achieved convergent convective initiation using
∆x ∼ 100 m, Matheou et al. (2011) show that convergence of LES schemes is achieved
with ∆x ∼ 20 m for non-precipitating cases, but Satoh et al. (2019) note that even
a spacing of 10 m is not sufficient for modelling more complicated cloud systems.
Although large eddy simulations are used to research the properties of convection, these
resolutions are still too fine for use in global or regional models.

Several meteorological institutions now use ∼ 5 km horizontal grid spacings in their
global models or plan to in the near future (Yano et al., 2018); for example, the European
Centre for Medium-range Weather Forecast (ECMWF) are aiming for a 5km global
resolution by 2025. At these resolutions, deep convection (which has horizontal length
scales of ∼ 1 km) is partially resolved.

Regional forecasts are computed at finer resolutions than global models. For
example, the Meteorological Services of Canada use a 2.5 km resolution over much of
Canada (Milbrandt et al., 2016) and the UK Met Office’s high resolution model (UKV)
runs at 1.6 km (Hanley et al., 2019). At these resolutions significant inaccuracies exist.
For example, the UKV currently produces too much heavy rain and not enough light
rain (Hanley et al., 2019). Even higher resolutions are being tested with the Met Office’s
London Model (Boutle et al., 2016) which uses a ∼ 300 m resolution over London within
a nested suite. Although some institutions are starting to explicitly resolve convection,
significant errors and biases still exist meaning convection parameterisations remain a
viable alternative.

1.3.2 Adjustment schemes

Some of the earliest attempts to model atmospheric convection involved relaxing grid-
scale variables to known stable profiles (Manabe and Strickler, 1964). Known as convec-
tive adjustment, these schemes typically adjust the vertical potential temperature and
moisture profiles towards pre-defined stable profile shapes over a given timescale (Betts,
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1986; Betts and Miller, 1986; Kain and Fritsch, 1990). Excess moisture falls as rain and
latent heat warms the temperature profile. This produces a similar effect to convective
clouds which also act to stabilise the atmosphere and release latent heat. The simplified
equations for convective adjustment typically take the form

∂φ

∂t
=

1
τ
(φS − φ), (1.36)

where φ is a grid-scale variable, φS is the reference profile structure/shape which
φ tends towards and τ is a timescale related to convective processes. Additional
complexity can be added to adjustment parameterisations, as done in the Kain and
Fritsch (1990) scheme (later modified in Kain and Fritsch, 1992) which is used in the
Canadian High Resolution Deterministic Prediction System (HRDPS) (Milbrandt et al.,
2016). Some extra modifications for modelling of deep convection in HRDPS have also
been made such as using a smaller cloud radius over oceans to match observations
(McTaggart-Cowan et al., 2019).

Convective adjustment schemes are simple to implement and computationally
cheap but the behaviour of the schemes are entirely dependent on the chosen relaxation
profiles which may not be valid everywhere on the planet. Although adjustment
schemes are able to replicate the general tendency of the atmosphere to stabilise (such as
adjusting towards a dry adiabat for dry convection), they often fail to produce accurate
spacial and temporal distributions of rainfall due to moist convection in both weather
and climate forecasts.

1.3.3 Bulk mass flux schemes

Most current convection schemes used in weather prediction are bulk mass flux param-
eterisations (Plant, 2010), such as Yanai et al. (1973), Tiedtke (1989) and Gregory and
Rowntree (1990). Bulk schemes are single-column models which typically assume that
many clouds exist per column, but they are modelled as a single entraining-detraining
plume (an ensemble). Like all parameterisations, bulk schemes use the grid-scale
variables (such as temperature, humidity, velocity and pressure) to deduce the net effect
of non-linear sub-grid-scale processes and circulations.

For a mass-weighted variable φ in a vertical column, the sub-grid-scale forcing from
equation 1.35 is assumed to be φ′w′ = Mφ′/ρ1 (the mass flux approximation; Swann,
2001), where w is the vertical velocity, ρ1 is the density of the updraft and M is the updraft
mass flux per unit volume. ∂φ′w′/∂z is therefore like an additional advection term which
transports mass upwards or downwards. Bulk schemes generally use a budget equation
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for the total convective mass flux similar to

1
M

∂M
∂z

= ε− δ, (1.37)

where z is the height coordinate, ε is the fractional entrainment rate and δ is the
fractional detrainment rate. The mass flux can be calculated by M = σ1ρ1w1 where
σ1, ρ1 and w1 are the area fraction, mean density and mean vertical velocity of the
convective updrafts. However, none of these variables are known so M is usually
diagnosed using other variables. As the mass flux equation is a differential with
respect to z, we only need to know M at one height in order to calculate M everywhere
else (if ε and δ are defined). Most schemes approximate the cloud-base mass flux
for their closure (including Bechtold et al., 2014) but some mass flux schemes use
the surface flux (Pergaud et al., 2009). Many schemes calculate the mass-flux closure
from the convective available potential energy (CAPE) (such as Bechtold et al., 2014),
which is a measure of how much energy a parcel of air would have if allowed to
convect. Various other energy and flux-based closures have also been used (eg Arakawa
and Schubert, 1974; Pergaud et al., 2009). Note that there is no time-dependence in
equation 1.37, meaning the mass flux at one timestep is independent of M at another
timestep. If the available energy is close to the level required for triggering convection,
mass flux schemes can exhibit intermittent behaviour where the convection scheme
switches on and off between timesteps in a non-physical way (Willett and Whitall, 2017).

The form of the fractional entrainment rate (ε) for bulk schemes and other mass flux
schemes has been the subject of debate of various studies and varies considerably when
different assumptions are made. These include:

• ε ∝ 1
R , where R is the plume radius (used in Simpson and Wiggert, 1969; Arakawa

and Schubert, 1974; Tiedtke, 1989; De Rooy et al., 2013).

• ε ∝ ρp, where p is the pressure (Gregory and Rowntree, 1990).

• ε ∝ 1
z , as often used in the dry convective boundary layer with tuning from LES

results (Soares et al., 2004; Siebesma et al., 2007).

• ε ∝ RH, where RH is the relative humidity (Stirling and Stratton, 2012; Bechtold
et al., 2014).

• ε ∝ B1
w2

1
, which represents entrainment due to buoyant regions for dry convection

(B1 is the buoyancy of the updraft) (Pergaud et al., 2009).

• ε ∝ ∂w1
∂z , which assumes the convection attempts to maintain its area fraction

when accelerating (Houghton and Cramer, 1951, and personal communication
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with Whitall, 20171).

Models are extremely sensitive to the value of the entrainment rate (Knight et al.,
2007) but there is no unanimous agreement for its functional form. This is because
entrainment is a complex process which is completely dependent on the definition of
the plume-environment interface (De Rooy et al., 2013) as well as the structure of the
plume (Mellado et al., 2018; Satoh et al., 2019). The form of the fractional detrainment
rate usually takes a similar functional form to the entrainment rate in models (such as
Pergaud et al., 2009), although differences in the properties of moist plumes and the
surrounding environment mean that subtle changes are often made (and separate terms
are needed for cloud top detrainment).

The simplistic formulation and implementation of bulk schemes has made them
popular with model developers, and they are computationally cheap to run. However,
bulk mass flux schemes are known to underestimate vertical fluxes of momentum,
heat and moisture due to deep convection (Yano et al., 2004). Moreover, by assuming
many clouds per column and a small updraft area fraction, the method becomes
error-prone when column-widths comparable to the length scales of convective clouds
are used. A high spacial resolution is usually accompanied with a small timestep but
equilibrium and quasi-equilibrium assumptions are often made in bulk schemes. These
assumptions mean that an equilbrium is reached between convection and the large scale
flow/forcing within a single timestep or over some timescale (Yano and Plant, 2012) -
these assumptions may be valid for large timesteps but become increasingly unrealistic
in modern models (Holloway et al., 2014).

1.3.4 Spectral mass flux schemes

Like bulk schemes, spectral schemes also assume many plumes per column but do not
model them as a single entraining-detraining plume (Arakawa and Schubert, 1974; Plant,
2010). Instead, a spectral scheme may use several plume types which have different
properties (such as shallow vs deep convection). A particular plume type (with subscript
i) may have a mass flux budget according to

1
Mi

∂Mi

∂z
= εi − δi. (1.38)

Due to the added complexity of using many plumes, spectral schemes are not as easy
to implement as bulk schemes and are more computationally expensive (Gregory and

1http://www.ecmwf.int/sites/default/files/elibrary/2017/17786-new-stochastic-scale-aware-
convection-scheme-met-office-unified-model.pdf (Accessed: 17/02/2020)
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Rowntree, 1990). Entrainment and detrainment rates can have the same functional
form as bulk schemes (see section 1.3.3) but can also be tuned to each plume type.
Plant (2010) notes that this is one of the key advantages of spectral schemes; by using
simple entrainment functions tuned for each cloud type, the total entrainment rate for
the column will be a complicated function which is not trivial to model using a bulk
scheme. Similar advantages exist with the quasi-equilibrium assumptions, where the
timescales can be optimised for each type of convective cloud (Plant, 2010). However,
like most mass flux schemes, spectral schemes typically act on a single vertical column
and assume compensating subsidence occurs in the same column as an updraft. Spectral
schemes are therefore inaccurate in the grey zone.

1.3.5 Eddy diffusivity mass flux schemes

Eddy diffusivity mass flux (EDMF) schemes are an extension of traditional mass flux
schemes (Deardorff, 1966) and are often used in the convective boundary layer. Whilst
mass flux schemes quantify the net effect of the largest sub-grid eddies and thermals,
an eddy-diffusivity approximation can be used to represent the mixing effects due to
the smallest turbulent eddies - this contribution is assumed to be diffusive (Deardorff,
1966; Soares et al., 2004; Siebesma et al., 2007). The net effect of the sub-grid contribution
therefore becomes

φ′w′ = − K
∂φ

∂z︸︷︷︸
Eddy diffusivity

+
M
ρ1

(φ1 − φ)︸ ︷︷ ︸
Mass flux

, (1.39)

where K is a diffusion coefficient which is usually related to the turbulent kinetic energy
(Soares et al., 2004) or is instead set to vary with height (Siebesma et al., 2007). An
important part of an EDMF scheme is making sure that there is no double-counting be-
tween the “ED” and “MF” components of the parameterisation, which can be achieved
by using only the strongest updraft regions in the mass flux component.

EDMF schemes have been shown to yield improved transport properties, produce
more accurate temperature-velocity covariances in the boundary layer and can be
used for multi-plume systems (Siebesma et al., 2007). However, eddy diffusivity
schemes do not incorporate net mass transport by convection and, like most mass
flux approaches, the schemes do not converge at high resolutions. The EDMF ap-
proach has been used at ECMWF (Siebesma et al., 2007) as well as Météo France in the
AROME model (Application of Research to Operations at Mesoscale) (Lancz et al., 2018).
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1.3.6 Stochastic schemes

Stochastic schemes randomly sample statistical distributions of cloud properties in or-
der to model the variability and interactions of convective processes within a column -
in some cases these are calculated using Markov Chain Monte Carlo (MCMC) methods
(Khouider et al., 2010). These schemes help to address some limitations of traditional
mass flux schemes such as the underestimation of vertical fluxes and intermittency, by
sampling a range of possible states within a column. Many different types of stochastic
parameterisations exist, such as Plant and Craig (2008) who assume a probability dis-
tribution for cloud sizes/strengths, similar to spectral schemes. In the Plant & Craig
scheme, the distribution for the cloud base mass flux is given by:

P(M) dM =
1
M

exp
(
−M

M

)
dM, (1.40)

where P is the mass flux probability of a single cloud and M is the diagnosed mean mass
flux of that particular cloud type. By assuming that the clouds are randomly distributed
in space, a mean column mass flux is calculated which can be used as a closure for
existing bulk or spectral schemes (Plant and Craig, 2008). By sampling a large range of
sub-grid-scale distributions (instead of a single state), stochastic schemes are less likely
to be intermittent and can help initiate convection where other methods may fail to do so.

Alternative stochastic methods also exist such as the stochastic multi-cloud model
from Khouider et al. (2010), which divides a column into an N× N lattice, where N is an
integer and each lattice point labels a cloud type or clear sky. Each lattice state is given
a transition probability to change to a different cloud state which is calculated using
MCMC. For example, shallow convection is highly probable at a clear site if there is a
large amount of CAPE present, and deep convection can occur if the mid-troposphere is
also moist. As well as modelling the convective variability within a column, the scheme
can compute area fractions for each cloud type (i) using σi = Ni/N2, where Ni is the
number of lattice elements labelled as cloud type i.

Due to the statistical modelling of variability within a column, stochastic schemes
are a potential solution to the grey zone problem. For example, Grell et al. (2014) (which
is based on Grell and Dévényi, 2002) propose a stochastic scheme which is scale aware
and allows mass transport due to convection between columns. Moreover, the UK
Met Office are currently developing CoMorph (personal communication with Whitall,
20172) - a stochastic mass flux scheme which assumes sub-grid-scale variability in the
vertical velocity which informs what fraction of an updraft can overcome the energy

2http://www.ecmwf.int/sites/default/files/elibrary/2017/17786-new-stochastic-scale-aware-
convection-scheme-met-office-unified-model.pdf (Accessed: 17/02/2020)
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barrier for convection to occur (convective inhibition, CIN). The scheme assumes a
dynamical entrainment rate proportional to ∂w/∂z and can model shallow convection,
deep convection and congestus clouds (like a spectral scheme). Convective clouds can
also be initiated at any height.

Although stochastic schemes are more expensive than many bulk and spectral
schemes, their improved accuracy often justifies their use. However, stochastic schemes
are typically single-column models and do not incorporate net mass transport by
convection (Grell et al., 2014, is an exception).

1.3.7 Super-parameterisation

Another technique for representing sub-grid-scale convection is super-parameterisation
which involves running high resolution CRMs within each model column (Li et al.,
2012). Explicitly resolving the convective circulations is computationally expensive so
two-dimensional (2D) models are usually employed for the super-parameterisation,
although 3D versions have also been tested (Khairoutdinov et al., 2005). As well as
the high spatial resolution, a small timestep is also needed, such as Khairoutdinov and
Randall (2001) who use 180 sub-timesteps for each GCM timestep. The high resolution
CRM fields are initialised from the coarser GCM prognostic fields. At the end of
the CRM simulation, the fields within each GCM column are horizontally averaged
and are subsequently used to update the GCM. Similar to some stochastic schemes,
super-parameterisation can be used to calculate the updraft area fraction within a
column from the high resolution data and can be used to calculate radiative effects and
other cloud properties (Khairoutdinov and Randall, 2001).

The super-parameterisation technique is able to accurately simulate the vertical
transport properties of convective plumes (Khairoutdinov and Randall, 2001), repro-
duce large-scale organised convection in the tropics (Khairoutdinov et al., 2005) and
accurately model the intensity and spatial distribution of extreme precipitation events
(Li et al., 2012). However, the exceedingly high spatial and temporal resolutions
mean that super-parameterisations are significantly more expensive than any other
convection modelling method we have mentioned, with the exception of a global CRM.
Moreover, super-parameterisation acts on each column independently and therefore
does not model net mass flux by convection. Given that stochastic schemes such as
Khouider et al. (2010) also model columns independently and can approximate cloud
area fractions and other cloud statistics at a fraction of the computational cost, it is
perhaps more intuitive to use a cheaper parameterisation with a higher resolution GCM.
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1.3.8 Machine learning techniques

Machine learning (and deep learning) techniques have recently been considered for
improving the representation of sub-grid processes in models (Rasp et al., 2018; Bolton
and Zanna, 2019). The method involves using a neural network to learn tendencies and
patterns within a large amount of training data and apply the network to a new data
set to predict the output. In the case of convection (and once the network is trained),
we could ask: “Given the resolved pressure, temperature and velocity fields, what will be the
value of φ′w′?” Alternatively, we could simply enter our input fields and receive the
convection-adjusted output fields.

The input data and outputs are separated via “layers” of intermediate data points
known as “nodes” (Nielsen, 2015). Matrix convolutions are used to calculate the
subsequent layers of nodes - the matrix values represent the weights and biases
which connect nodes between layers. Figure 1.2 shows a diagram of the layers of
nodes/neurons between the input and output data sets.

Figure 1.2: A diagram of a neural network which converts input data into an output via matrix
convolutions to intermediate (hidden) layers. Each node in one layer is connected to each node
in the previous and subsequent layer. The weight of a neuron determines how strongly the nodes
are coupled.
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For a given training data set, the output can be compared with the observed
solution. By calculating the error relative to the observations, the weights and biases can
be adjusted to minimise the error - this is known as back-propagation (Nielsen, 2015).
Using large sets of training data ensures that the errors are minimised for a large range
of scenarios such as moist convection with wind shear and dry conditions, for example.

Machine learning could help to automatically represent processes and phenomena
not yet understood or observed as the algorithms will recognise patterns from hundreds
or thousands of sets of training data (instead of a handful of test cases analysed by
humans). To conduct this analysis, a large amount of computational resources are
required. However, once calculated, the convolution matrices are stored and the
parameterisation itself is relatively cost-effective to run.

There are some concerns for the use of machine learning in weather or climate mod-
elling:

• As the method works automatically, we have no knowledge of what the algorithm
is doing without an extensive analysis of the hidden layers and the convolution
matrices.

• The neural network has no concept of physics, meaning properties such as energy
conservation may not be obeyed which can be problematic for long-running clima-
tological simulations (Gentine et al., 2018). Energy conservation is also important
for model stability and for avoiding overly diffusive solutions in weather and cli-
mate forecasts.

• Training data is used to teach the neural network, but how will the scheme react to
situations which it has not encountered before (Bolton and Zanna, 2019)? This is a
concern for modelling a warmer atmosphere due to climate change.

• Stability issues can arise when coupling a machine learning parameterisation to
the dynamical core of a model (Rasp et al., 2018).

Although issues exist, progress has been made in recent years. Bolton and Zanna
(2019) used deep learning methods to predict the sub-grid-scale forcing terms for
coarse-grained ocean currents. Their methods accurately reproduced conservation
properties and low-energy flows when trained on the most turbulent regions, and was
also able to predict behaviour at different viscosity settings. However, Bolton and Zanna
(2019) did not couple their scheme to the model dynamics.

The deep learning algorithm from Rasp et al. (2018) models sub-grid-scale processes
in the atmosphere by learning from super-parameterised simulations. The scheme
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was able to approximately achieve moist static energy conservation without prior
programming and was able to run in a stable manner when coupled with the dynamical
core (but was not able to adapt to different climate conditions). This method could
therefore be a cheap alternative to running an expensive super-parameterisation scheme.

O’Gorman and Dwyer (2018) were also successful in stably running a global circula-
tion model (GCM) coupled to a neural network, which was trained with a variant of the
Arakawa-Schubert convection scheme (Arakawa and Schubert, 1974). The scheme was
energy-conserving and was able to accurately model warmer climates, but training the
neural network on parameterisations does not eliminate the existing errors and biases
in models.

Another option is to use machine learning to predict the individual closures instead
of the whole parameterisation (Schneider et al., 2017). This avoids conservation issues
and makes the output of the neural network simpler to analyse.

1.3.9 Summary of existing methods

There are many ways of parameterising convection, many of which approximate the
sub-grid-scale terms (such as φ′w′). There is currently no convection parameterisation
which is accurate and converges to the correct solution in the grey zone, and it is
unclear whether such a scheme will be produced before computational resources enable
convection to be explicitly modelled in NWP over limited areas.

It is clear that current convection schemes should make fewer assumptions
(Arakawa, 2004) and there is some consensus for the features needed for an accurate
convection scheme:

• Modern convection schemes should be based on non-equilibrium dynamics (Hol-
loway et al., 2014). Equilibrium-based assumptions mean that schemes do not con-
verge to the physical solution for high spacial/temporal resolutions.

• Net mass transport by convection is an important process as it distributes mass to
neighbouring columns and is a gravity wave source if a plume is of a similar scale
to (or larger than) the column width. Most parameterisations are single-column
models which assume that convective updrafts are balanced by subsidence in each
column which is a poor assumption at grey-zone resolutions. Convection schemes
should therefore avoid the single-column assumption.

• Schemes should also ideally use convective memory where the convective updraft
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properties (such as area fraction, temperature, velocity) are stored from the previ-
ous timestep to inform the new fields (such as prognostic schemes). Schemes like
Arakawa and Schubert (1974) and Siebesma et al. (2007) instead diagnose these
properties independently at each timestep which can lead to intermittency.

• It is also important to have separate information for the updraft and downdraft
components within a column as the mean grid-box vertical velocity is typically
zero for horizontal grid lengths greater than ∼ 1 km (Fitch, 2019).

• Convection schemes should be scale aware so that they automatically adjust to
different resolutions and treat resolved and sub-grid processes consistently (Hol-
loway et al., 2014). Arakawa (2004) notes that traditional cumulus convection pa-
rameterisations do not converge at high resolutions due to their statistical, large-
scale assumptions and that a completely new framework is required in order pro-
duce a scale-aware and consistent scheme.

A convection scheme which can incorporate the above features and is relatively inex-
pensive to compute may be able to break the convection modelling deadlock.

1.4 Modelling convection with the multi-fluid approach

We have discussed various techniques for modelling and parameterising convection
which generally either make the single-column assumption, use too much computa-
tional resources, or do not converge in the grey zone. For bulk mass flux schemes
in particular, the weaknesses originate from neglecting net vertical mass transport
by convection (due to the single-column assumption), neglecting non-equilibrium
dynamics, and not incorporating convective memory. It has been proposed that all of
these issues can be addressed by using conditional averaging (or conditional filtering)
and the multi-fluid approach (Thuburn et al., 2018).

Conditional averaging involves dividing space into various defined fluids (labelled
by i) and integrating over these regions (whether it be volume averaging or more
complicated techniques) to obtain the fluid properties (Thuburn et al., 2018). In the case
of convection, for example, one could use fluid 0 for the neutrally buoyant air, fluid 1
for the convective updraft regions, fluid 2 for the downdraft regions (see figure 1.3).
Each fluid has its own properties such as volume fraction, density, temperature and
velocity, and by calculating these fields prognostically we can model the sub-grid-scale
convection at any resolution - this is the multi-fluid approach.
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Figure 1.3: The multi-fluid approach aims to model the convective updrafts as a separate fluid
(fluid 1 in sketch) from the surrounding environment (fluid 0) and downdrafts (fluid 2). The solid
black lines indicate cloud boundaries and the dashed line represents the condensation level. Sij
represents the transfer rate of fluid i to fluid j. The multi-fluid method should allow convection
to transport mass vertically and between neighbouring columns (which have a horizontal grid
spacing ∆x), unlike most conventional parameterisations which are single-column models.

Conditional filtering has already been used in various fields of science and engi-
neering. Dopazo (1977) used conditional averaging for modelling turbulent flows and
Lappen and Randall (2001) used the technique to model cumulus convection, using an
updraft fluid and an environment fluid. However, the environmental fluid in that study
was assumed to subside in the same column as the updraft, meaning the scheme does
not incorporate net vertical mass transport by convection. The multi-fluid approach has
also been used in engineering fields such as Guelfi et al. (2007) who model a veriety
of flows for nuclear thermal hydraulics, Méchitoua et al. (2003) who use the technique
to simulate vapour-and-water flows in hot reactor pipes and Baer and Nunziato (1986)
who use a multi-phase model to simulate explosions. Although numerical schemes
are given in some of the above examples, there is little discussion of the behaviour of
their numerical implementation including their stability, boundedness and conservation
properties.
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More recently, Thuburn et al. (2018) described how to conditionally filter the fully
compressible Euler equations with the aim of representing sub-grid-scale convection
(and conservation properties were derived in Thuburn and Vallis, 2018). However,
no transfer terms between fluids were included and no numerical method was given.
Tan et al. (2018) present similar equations in their “Extended EDMF” with transfer
terms and closures for resolved and sub-grid scale quantities. However, they make
various assumptions such as neglecting horizontal variations in density and assuming
no turbulent fluctuations in the updraft or downdraft fluids. Tan et al. (2018) also do not
include net mass transport by convection in their numerical model, as they solve their
equations in a single column.

Following Thuburn et al. (2018), a fluid (i) is labelled at a point in space using Ii

which is equal to 1 when fluid i is present and 0 when it is not. In this thesis, we will
model dry convection with two fluids, where one fluid is descending or stationary (fluid
0), and the other fluid is rising (fluid 1). The fluid labels are therefore defined as

I0 =

1 for w ≤ 0

0 for w > 0
(1.41)

I1 = 1− I0, (1.42)

where w is the vertical velocity. A filter could also be chosen based on buoyancy, for
example. In the case of moist convection, the filter could also be based on moisture in or-
der to capture convective plumes, as in Couvreux et al. (2010) and Efstathiou et al. (2019).

The variables/fields (φ) are averaged such that

φ̃(x) =
∫

V
G(x− x′) φ(x′) dx′, (1.43)

where x is the spacial vector, V is the volume to be integrated, G is the filter (G = 1/V
within the volume V for volume averages) and the t̃ilde denotes that the filter has been
applied. If φ is proportional to the fluid label Ii (for example, φ = κ Ii where κ is an
arbitrary variable), then φ̃ will be the conditionally averaged version of φ because it
has only been averaged over regions where fluid i exists. As an example, the volume
fraction of a fluid is given by σi = Ĩi and the fluid density by ρi = Ĩiρ/σi.

The conditional filter can also be applied to the governing equations themselves to
obtain prognostic equations for each of the fluids. The full derivation of the multi-fluid
compressible Euler equations is given in Thuburn et al. (2018). Using notation from
Weller and McIntyre (2019), we define our prognostic variables as the fluid mass per
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unit volume (σiρi), the fluid potential temperature (θi) and the fluid velocity (ui). For
convenience, we also define ηi ≡ σiρi so that we have a single variable to represent the
fluid i mass. Using this notation, the multi-fluid compressible Euler equations in flux
form are given by the continuity equation,

∂ηi

∂t
+∇.(ηiui) = ∑

j 6=i
(ηjSji − ηiSij)︸ ︷︷ ︸
Mass transfers

, (1.44)

the potential temperature equation,

∂(ηiθi)

∂t
+∇.(ηiθiui) = ∑

j 6=i
(ηjθjSji − ηiθiSij)︸ ︷︷ ︸

Transfer mean temp.

− ηi ∑
j 6=i

Hij︸ ︷︷ ︸
Heat transfer

, (1.45)

and momentum equation for each fluid,

∂(ηiui)

∂t
+∇.(ηiuiui) = ηig − 2ηiΩ× ui︸ ︷︷ ︸

Coriolis

− cpηiθi∇π︸ ︷︷ ︸
Pressure

+ ∑
j 6=i

(ηjujSji − ηiuiSij)︸ ︷︷ ︸
Transfer mean velocity.

− ηi ∑
j 6=i

Dij︸ ︷︷ ︸
Drag

,

(1.46)
where Sij is the unidirectional mass transfer rate from fluid i to fluid j (Sij ≥ 0) and the
mean temperatures and velocities are assumed to be transferred between fluids. cp is the
heat capacity of dry air at constant pressure, Ω is the rotation rate of the domain and g is
the gravitational acceleration. π ≡ pκ/pκ

0 is the Exner pressure where p is the pressure,
p0 is the reference pressure at the surface, κ = R/cp and R is the gas constant of dry air.
Hij is the heat transfer between fluids i and j (which does not exchange mass between
fluids) and Dij is the drag between fluids i and j. Additionally, the equation of state for
dry air is used to relate the pressure and fluid temperatures:

p0π
1−κ

κ = R ∑
i

ηiθi. (1.47)

Note that the pressure in each fluid is the same but Thuburn et al. (2018) suggested that
the drag term could be used to parameterise pressure differences in the fluids.

A parameterisation of convection using the multi-fluid equations relies entirely on
formulating transfer terms that exchange mass and other properties between fluids. The
form of these transfer terms depend on the fluid definitions and the properties at the
cloud/fluid interfaces (De Rooy et al., 2013). As we have chosen to define our fluids
by the sign of the vertical velocity (equations 1.41 and 1.42), the transfer terms must
specifically represent the regions of air which have had a change in sign of vertical
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velocity. The form of the transfer terms would ideally be derived by conditionally
filtering the governing equations but this will not be done in this study as the resulting
terms include delta functions which cannot trivially be filtered (Weller et al., 2020).

The transfer terms are equivalent to entrainment, detrainment and the triggering of
convection (cloud-base mass flux) which may be adapted from existing schemes (such
as Gregory and Rowntree, 1990; Neggers et al., 2002; Siebesma et al., 2007; Pergaud
et al., 2009; Stirling and Stratton, 2012) if the fluid definitions are similar to the plume
definitions in the existing schemes. Sketches of the turbulent and dynamical mixing
processes are labelled as Sij in figure 1.3.

Regardless of how physical processes are modelled, solving the multi-fluid equa-
tions also requires a new numerical scheme which is stable with respect to gravity and
acoustic waves in all fluids and for strong updrafts. We must also address how the
multi-fluid method can combat the issues identified in section 1.3.9.

1.4.1 Net mass transport by convection

Many convection parameterisations are single-column models designed for horizontal
resolutions far larger than the horizontal length scales of convective plumes (for
example Arakawa and Schubert, 1974; Gregory and Rowntree, 1990; Kain and Fritsch,
1990). As such, it is often assumed that the circulations induced by convective clouds
are contained within a single column. However, modern resolutions are much closer to
the convective scales meaning convection may be the dominating driver of the vertical
motion. In these cases, it is unreasonable to assume that the compensating subsidence
only occurs in the same column as the updraft. This is an issue because it is important
to accurately model the vertical transport of mass (and its properties) by convection for
accurate models of the atmosphere (Arakawa, 2004; Grell et al., 2014).

There have been some attempts to incorporate the effects of mass transport by
convection, including: Grell et al. (2014), who demonstrated a parameterisation which
spreads subsidence over neighboring columns, Malardel and Bechtold (2019), who
implemented an adjustment to the updraft/downdraft properties for the integrated
forecasting system (IFS) at ECMWF, and Kuell and Bott (2008), who implemented
net mass transport by convection to the COSMO model (Consortium for Small Scale
Modelling).

The multi-fluid approach does not restrict the updraft/downdraft of a single
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convective plume to a single column, unlike traditional bulk, adjustment and stochastic
schemes. Instead, the fluid properties (including the convective fluid) are grid-scale
variables which are computed directly by the dynamical core (instead of being diag-
nosed each timestep by a modular parameterisation). A convective fluid in one cell can
therefore interact with neighbouring cells horizontally and vertically (as indicated in
figure 1.3). This means that pressure anomalies (such as those produced by the vertical
convergence of mass in a convective plumes) can push or pull mass to neighbouring
columns - hence, net mass transport by convection is a property of the multi-fluid
method.

1.4.2 Convective memory

Holloway et al. (2014) state that convective memory is important for accurate modern-
day parameterisations. However, many parameterisations initiate convection when a
specific condition is fulfilled (which is usually related to the level of CAPE or instability
present in a parcel). An unintended consequence of such closures is that intermittent
behaviour of the convection scheme can occur when close to the initiation condition -
a scheme which is convecting at some timestep may no longer fulfil the same discrete
condition at the next timestep. This becomes an issue when the timescales of convection
are comparable (or larger than) the timestep of the model where there should be some
correlation between convective activity at one timestep and the next. An example of
this issue is given by Willett and Whitall (2017), who note that the UK Met Office’s GA7
scheme produces intermittent entrainment rates (as well as intermittent precipitation).

A scheme has convective memory when the properties of a convective plume (such
as updraft temperature and vertical velocity) evolve from the values at the previous
timestep. This allows for smooth transitions of convective activity and thus removes
any intermittency. The multi-fluid method computes the convection in the dynamical
core meaning the convective fluid properties are stored as prognostic variables. As such,
a multi-fluid convection scheme has convective memory by default.

1.4.3 Scale-awareness and the triggering of convection

A convection scheme should ideally work at any resolution (Holloway et al., 2014), but
many parameterisations are tuned to perform well for a specific grid spacing and a
specific model. This is often an issue for convection schemes which are single-column
models, or have discrete triggering functions which don’t automatically adapt for grey
zone resolutions. Lancz et al. (2018) note that the forcing from a convection parameter-
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isation must be regulated in the grey zone, but the threshold resolution for turning off
a parameterisation is still not well established (Yano et al., 2018). At high resolutions,
the model should also converge to the observed solution but convergence has long been
an issue for convection parameterisations (Arakawa, 2004). Several attempts to make
scale-aware schemes have been made, such as Arakawa et al. (2011) and Kwon and
Hong (2017) who attempt to transition between the parameterised sub-grid activity and
the resolved flow, depending on the resolution.

The multi-fluid scheme has the potential to be scale aware as the equations of motion
for the resolved flow are the same for the convective updrafts (making the scheme
consistent) - increasing column width will decrease the updraft volume fraction but the
same rising motion should take place. Moreover, when convection is fully resolved,
the multi-fluid equations essentially converge to the single-fluid compressible Euler
equations as the fluid volume fractions will approach 0 or 1 in every cell.

1.4.4 Computation time

For an N-fluid system, the computational cost will be less than N-times greater the
cost of a single-fluid dynamical core without a convection scheme (if there is only one
pressure equation). However, a multi-fluid scheme may have more restrictive timestep
contraints relative to a single-fluid dynamical core due to the fast updraft velocities
within convective plumes. Implicit advection schemes or sub-stepping (multiple
smaller timesteps for each model timestep) could be used to address this issue, but both
of these options are computationally expensive.

If the multi-fluid method is significantly more expensive than other parameterisa-
tions, then conventional convection schemes may be able to run at higher horizontal
resolutions for the same computational cost. However, as most parameterisations fail
to accurately model convection in the grey zone, a small increase in resolution may be
insignificant relative to the potential benefits of a multi-fluid model.

1.5 Summary, motivation and thesis outline

A common issue with convection parameterisations is their inability to accurately
represent shallow and deep convection in the grey zone, as they assume a horizontal
grid spacing far larger than the horizontal length scales of convection. A common
assumption involves ignoring the net mass transfer by convection which causes issues
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when convection is the dominant driver of the vertical motion. Most convection
schemes are also not scale aware and do not incorporate convective memory. As such,
these convection schemes lack consistency and do not converge at higher resolutions.
Some promising new techniques are being developed such as super parameterisation,
stochastic schemes and machine-learning which can help reduce the errors in convec-
tion parameterisations, but incorporating net mass transport by convection into these
schemes is not trvial.

The multi-fluid equations have been proposed for modelling convection accurately
and consistently across all resolutions because:

• A multi-fluid scheme is not a single-column model, meaning that convective cir-
culations can span multiple columns. This is important at grey zone resolutions
where convective elements have similar horizontal scales relative to the grid scale.
At coarse resolutions (where the scheme converges to a single-column model), a
multi-fluid scheme can prevent grid-scale instabilities (such as grid-point storms)
by allowing fluids to move in opposite directions at scales smaller than the grid
scale.

• A multi-fluid scheme treats the updraft area fraction, updraft velocity and other
updraft properties as prognostic variables (meaning the scheme has convec-
tive memory), instead of being diagnosed at each timestep like in most tradi-
tional parameterisations (using equilibrium assumptions). This is important when
the turnover time for convective circulations is comparable-to or larger than the
timestep of the model.

• A multi-fluid scheme uses the dynamical core to simulate convection at any reso-
lution. This means that the convection scheme should converge at high resolution.

The multi-fluid equations are a challenging departure from existing parameterisations
because:

• A new, multi-fluid dynamical core and numerical scheme is required. This means
that the convection scheme is not modular, and can not be easily replaced with
other convection schemes.

• The interaction of the fluids must be understood. This includes the differences in
fluid properties as well as entrainment/detrainment terms which depends on the
definition of the fluids.

• The scheme must perform better than existing parameterisations in the grey zone.

In this thesis, we aim to further the general understanding of the multi-fluid equa-
tions and demonstrate what is needed to produce a scale-aware multi-fluid dry convec-
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tion scheme. By predominantly focussing on a two-fluid system (defined by the sign of
vertical velocity), we will attempt to address the following issues:

1. Multi-fluid systems are known to be ill-posed when the fluids share the same pres-
sure (Stewart and Wendroff, 1984; Thuburn et al., 2019), but it is not known how
a two-fluid system for convection should be stabilised. Terms which stabilise the
equation set should be analysed and tested.

2. Accurate and stable numerical methods must be developed for the multi-fluid
equations, including for the fluid transfer terms which represent entrainment and
detrainment between the convective plumes and the surrounding environment.

3. The functional form of the entrainment and detrainment must be diagnosed so
that the fluid transfer terms are representative of the physical processes in the at-
mosphere. In order to be consistent with the fluid definitions, the transfer terms in
our two-fluid model should model when the sign of the vertical velocity changes.

In chapter 2, the stability of a two-fluid system with different pressures and transfer
terms between fluids is analysed, in an attempt to find terms which stabilise the system
(issue 1). Numerical analysis of the transfer terms (which exchange mass between the
fluids) is conducted in chapter 3 (issue 2). Finally, in chapter 4 we use a resolved dry
convection test case to diagnose fluid transfer and pressure terms (issue 3), and conduct
coarse 2-fluid simulations at various resolutions, including the grey zone.
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Chapter 2

Stability analysis of an incompressible

two-fluid system

Multi-fluid and multi-phase models have been used for many decades to simulate a
variety of systems including nuclear thermal hydraulics (e.g. Méchitoua et al., 2003;
Guelfi et al., 2007), combustion and explosion models (e.g. Baer and Nunziato, 1986;
Embid et al., 1992), compressible flows (e.g. Saurel and Abgrall, 1999), and more recently,
convective systems (e.g. Thuburn et al., 2018; Tan et al., 2018; Weller and McIntyre,
2019). In chapter 1, the multi-fluid compressible Euler equations were presented, which
use a shared pressure gradient term (which is also assumed in Thuburn et al., 2018; Tan
et al., 2018; Weller and McIntyre, 2019).

Stewart and Wendroff (1984) showed that multi-fluid equations with a shared
pressure are ill-posed in the sense that positive imaginary components of the phase
velocity exist which facilitate the exponential growth of certain modes. This behaviour
occurs when sub-filter-scale terms in the multi-fluid equations are neglected, or if poor
assumptions are made to represent them. Ideally, a multi-fluid convection scheme
should model all sub-filter scale variability mass exchanges to a high degree of accuracy
but further research is necessary to derive and test these terms.

Thuburn et al. (2019) analysed an incompressible, one-dimensional, two-fluid
system (with a shared pressure) for convection. They verified that an instability
exists in the form of a Kelvin-Helmholtz instability, which describes the growth of
perturbations in a system with shear - such an instability is expected in a convective
system because updrafts and downdrafts travel in opposite directions, and velocity
components perpendicular to the fluid interface will necessarily cause changes to the
updraft volume fraction (which may be classified as entrainment or detrainment).
Thuburn et al. (2019) showed that the smallest-scale modes (largest wavenumbers) grew
the fastest, but they did not derive any terms that could stabilise the system. Although
the Kelvin-Helmholtz instability is representative of real instabilities in the atmosphere,
the lack of a complete and accurate model for the sub-filter-scale physics (which would
prevent the instabilities from growing indefinitely) means that the unstable two-fluid
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model is not useful for modelling convection. It is therefore necessary to find terms
which stabilise the two-fluid system and provide smooth solutions for any initial
conditions. The suppression of the instability would then allow the model to represent
an average of the true solution, and would allow for a baseline two-fluid scheme where
additional complexity (such as more sub-filter-scale processes) can be added in future
studies.

In this chapter, we extend the analysis of the two-fluid incompressible equations
from Thuburn et al. (2019) to include differences in pressure and mass exchanges
between fluids. From this analysis, we will be able to decipher whether adding these
additional coupling terms can stabilise a two-fluid system.

2.1 The 2-fluid system analysis of Thuburn et al. (2019)

Thuburn et al. (2019) analysed the stability of a one-dimensional, two-fluid, incompress-
ible system with a shared pressure gradient:

σ0 + σ1 = 1 (2.1)

∂σ0

∂t
+

∂(σ0w0)

∂z
= 0 (2.2)

∂σ1

∂t
+

∂(σ1w1)

∂z
= 0 (2.3)

∂w0

∂t
+ w0

∂w0

∂z
+

∂p
∂z

= 0 (2.4)

∂w1

∂t
+ w1

∂w1

∂z
+

∂p
∂z

= 0, (2.5)

where σi and wi are the volume fraction and vertical velocity of fluid i respectively
(i ∈ {0, 1}), and p is the pressure. By linearising the governing equations and assum-
ing wave-like solutions proportional to ei(mz−Ωt) (where m is the wavenumber and Ω
is the angular frequency), Thuburn et al. (2019) derived the following relation for the
frequency:

Ω = (σ0w1 + σ1w0)m± im
√

σ0σ1(w0 − w1), (2.6)

where the overbars denote the mean variable states which don’t change in time or
space. Ω has an imaginary component, meaning that the solution takes the form
eRteim(z−wAt), where wA ≡ σ0w1 + σ1w0 and R is the growth rate which is equal to
±m
√

σ0σ1(w0 − w1). A positive value of R (which occurs for Im(Ω) > 0) ensures that
the amplitude of the wavemodes will increase exponentially with time. The growth rate
is also proportional to the wavenumber in this case meaning the smallest scale modes
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grow the fastest. Thuburn et al. (2019) noted that the growth takes the same form as
a Kelvin-Helmholtz instability, similar to equation 1.31 from chapter 1 when g = 0 m
s−2. The instability disappears only when there is no shear (when w0 = w1) or when
either volume fraction is zero. Similar instabilities in multi-fluid systems with a shared
pressure have been previously noted (e.g. Stewart and Wendroff, 1984). Mass exchanges
and different pressures for each fluid should therefore be considered in order to stabilise
this 2-fluid system.

2.2 Extending the Thuburn et al. (2019) analysis

By adding mass transfer terms to equations 2.2-2.5 as well as a pressure anomaly (pi) to
each fluid, the prognostic equations become:

σ0 + σ1 = 1 (2.7)

∂σ0

∂t
+

∂(σ0w0)

∂z
= σ1S10 − σ0S01 (2.8)

∂σ1

∂t
+

∂(σ1w1)

∂z
= σ0S01 − σ1S10 (2.9)

∂w0

∂t
+ w0

∂w0

∂z
+

∂p
∂z

+
∂p0

∂z
=

σ1

σ0
S10(wT

10 − w0)− S01(wT
01 − w0) (2.10)

∂w1

∂t
+ w1

∂w1

∂z
+

∂p
∂z

+
∂p1

∂z
=

σ0

σ1
S01(wT

01 − w1)− S10(wT
10 − w1), (2.11)

where Sij is the transfer rate from fluid i to fluid j and wT
ij is the vertical velocity of the

fluid transferred from i to j. The total pressure of a fluid is given by p + pi.

The linearised equation sets will be analysed with the following assumptions:

1. The pressure anomaly for each fluid is chosen to be

pi = −γ
∂wi

∂z
, (2.12)

which describes the increase of pressure in a fluid when it converges. The chosen
pressure term is similar to the pressure anomaly used by Weller et al. (2020), and
acts as a diffusion of vertical velocity in one dimension similar to Thuburn et al.
(2019). In both studies, stable simulations were conducted using these terms. As
noted be Weller et al. (2020), this pressure term does not conserve energy, but any
energy sinks can be used as a turbulent kinetic energy source in future multi-fluid
models.

2. Each variable is equal to the sum of a mean state (uniform in space and time, de-
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noted by an overbar) and a perturbation (denoted by a dash). Our variables there-
fore become:

σ0 = σ0 + σ′0 (2.13)

σ1 = σ1 + σ′1 (2.14)

w0 = w0 + w′0 (2.15)

w1 = w1 + w′1 (2.16)

p = p + p′. (2.17)

3. Second-order perturbation terms are assumed to be small and are neglected.

4. The perturbation terms are wave-like and are therefore proportional to ei(mz−Ωt),
where i =

√
−1, m is the wavenumber and Ω is the angular frequency.

5. The transfer rates are proportional to vertical velocity divergence:

S01 = α
∂w0

∂z
(2.18)

S10 = α
∂w1

∂z
, (2.19)

where α is a constant. This transfer describes mixing which occurs when a fluid
parcel accelerates or decelerates, and is similar to the dynamical entrainment de-
scribed in Houghton and Cramer (1951) and De Rooy et al. (2013). A similar trans-
fer term was also used in Weller et al. (2020), and was shown to produce accurate
volume fractions in 2-fluid simulations.

6. The interface vertical velocity is assumed to be zero, meaning wT
01 = wT

10 = 0. This
assumption is also made by Weller et al. (2020), as one fluid is defined as rising
air and the other as descending air. The velocity at the fluid interface is therefore
w = 0 ms−1.

7. The following definitions will be used for convenience:

w = σ0w0 + σ1w1 (2.20)

wA = σ1w0 + σ0w1 (2.21)

w2
B = σ1w2

0 + σ0w2
1 (2.22)

w∆ = w1 − w0 (2.23)

wσ = (σ1 − σ0)(w1 − w0). (2.24)

Substituting terms from assumptions 1, 2, 5 and 6 into the prognostic equations (2.7-
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2.11) and eliminating second-order perturbation terms gives the linearised equations:

σ0 + σ1 = 1 (2.25)

σ′0 + σ′1 = 0 (2.26)

∂σ′0
∂t

+ σ0
∂w′0
∂z

+ w0
∂σ′0
∂z

= ασ1
∂w′1
∂z
− ασ0

∂w′0
∂z

(2.27)

∂σ′1
∂t

+ σ0
∂w′1
∂z

+ w1
∂σ′1
∂z

= ασ0
∂w′0
∂z
− ασ1

∂w′1
∂z

(2.28)

∂w′0
∂t

+ w0
∂w′0
∂z

+
∂p′

∂z
− γ

∂2w′0
∂z2 = −α

σ1

σ0
w0

∂w′1
∂z

+ αw0
∂w′0
∂z

(2.29)

∂w′1
∂t

+ w1
∂w′1
∂z

+
∂p′

∂z
− γ

∂2w′1
∂z2 = −α

σ0

σ1
w1

∂w′0
∂z

+ αw1
∂w′1
∂z

. (2.30)

By further substituting the wave-like solutions proportional to ei(mz−Ωt), equations 2.27-
2.30 become:

−wpσ′0 + w0σ′0 + σ0w′0 = ασ1w′1 − ασ0w′0 (2.31)

−wpσ′1 + w1σ′1 + σ1w′1 = ασ0w′0 − ασ1w′1 (2.32)

−wpw′0 + w0w′0 + p′ − imγw′0 = −α
σ1

σ0
w0w′1 + αw0w′0 (2.33)

−wpw′1 + w1w′1 + p′ − imγw′1 = −α
σ0

σ1
w1w′0 + αw1w′1, (2.34)

where wp = Ω/m is the phase velocity. Equations 2.31 and 2.32 can be rearranged such
that

σ′0 =
(1 + α)σ0w′0 − ασ1w′1

wp − w0
(2.35)

σ′1 =
(1 + α)σ1w′1 − ασ0w′0

wp − w1
, (2.36)

and using σ′0 = −σ′1, the volume fraction perturbation terms can be removed:

(1 + α)σ0w′0 − ασ1w′1
wp − w0

= − (1 + α)σ1w′1 − ασ0w′0
wp − w1

(2.37)[
(1 + α)σ0(wp − w1)− ασ0(wp − w0)

]
w′0 = −

[
(1 + α)σ1(wp − w0)− ασ1(wp − w1)

]
w′1

(2.38)

=⇒ w′0 = −
(1 + α)σ1(wp − w0)− ασ1(wp − w1)

(1 + α)σ0(wp − w1)− ασ0(wp − w0)
w′1

(2.39)

= −
σ1(wp − w0) + ασ1w∆

σ0(wp − w1)− ασ0w∆
w′1, (2.40)
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where w∆ = w1 − w0.

Equations 2.33 and 2.34 can be combined to remove p′,

(wp − w0 + imγ)w′0 − α
σ1

σ0
w0w′1 + αw0w′0 = (wp − w1 + imγ)w′1 − α

σ0

σ1
w1w′0 + αw1w′1,

(2.41)
and by defining wA = σ1w0 + σ0w1 for convenience, the terms can be re-arranged for w0[

(wp − w0) +
α

σ1
wA + imγ

]
w′0 =

[
(wp − w1) +

α

σ0
wA + imγ

]
w′1 (2.42)

=⇒ w′0 =
(wp − w1) +

α
σ0

wA + imγ

(wp − w0) +
α
σ1

wA + imγ
w′1. (2.43)

Equating 2.40 and 2.43 removes w′0 and w′1:

(wp − w1) +
α
σ0

wA + imγ

(wp − w0) +
α
σ1

wA + imγ
= −

σ1(wp − w0) + ασ1w∆

σ0(wp − w1)− ασ0w∆
(2.44)

=⇒ w2
p − 2

[
wA − α

(
wA +

1
2

wσ

)
− 1

2
imγ

]
wp (2.45)

+
[
w2

B − α(w0 + w1)wA + α(σ0w1 − σ1w0)w∆ + imγ(αwσ − wA)
]
= 0 (2.46)

=⇒ w2
p − 2

[
wA −

α

2
(w0 + w1)−

1
2

imγ

]
wp (2.47)

+
[
w2

B − 2αw0w1 + imγ(αwσ − wA)
]
= 0, (2.48)

where wA = σ0w1 + σ1w0, w2
B = σ0w2

1 + σ1w2
0 and wσ = (σ1 − σ0)(w1 − w0).

With the help of equation 2.25, the solution for the quadratic equation for wp is:

wp = wA −
α

2
(w0 + w1)−

1
2

imγ

±

√[
wA −

α

2
(w0 + w1)−

1
2

imγ

]2

− w2
B + 2αw0w1 − imγ(αwσ − wA)

(2.49)

Using

w2
A − w2

B = (σ0w1 + σ1w0)
2 − (σ0w2

1 + σ1w2
0)

= (σ2
0w2

1 + 2σ0σ1w0w1 + σ2
1w2

1)− (σ0 + σ1)(σ0w2
1 + σ1w2

0)

= −σ0σ1(w1 − w0)
2,

(2.50)
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the phase velocity reduces to:

wp = (σ0w1 + σ1w0)−
α

2
(w0 + w1)−

1
2

imγ

±
{
−σ0σ1(w1 − w0)

2 +
1
4

α2 (w0 + w1)
2 − 1

4
m2γ2

−α (w1 − w0) (σ0w1 − σ1w0) + imαγ

[(
1
2
+ σ1 − σ0

)
w0 +

(
1
2
+ σ0 − σ1

)
w1

]} 1
2

.

(2.51)

2.2.1 Sanity checks

• In the single-fluid case (where σ0 = 1 or σ1 = 1 or w0 = w1) and in the absence of
pressure differences, the phase velocity reduces to wp = w.

• In the single-fluid case with pressure differences, the phase velocity reduces to
wp = w − imγ which is the solution for an advection-diffusion equation. The
wavemodes are proportional to e−m2γteim(z−wt) and therefore decay at a rate m2γ

where the small-scale modes (large m) are damped the most.

• In the 2-fluid case with no pressure differences or transfer terms, the phase velocity
reduces to that in Thuburn et al. 2019: wp = (σ0w1 + σ1w0)± i

√
σ0σ1(w0 − w1).

This phase velocity has a positive imaginary component which facilitates expo-
nential growth, meaning the system is unstable (a Kelvin-Helmholtz instability in
this case). wp (and therefore Ω) is only real if one of the volume fractions is zero
(1-fluid system) or if the mean fluid velocities are equal (same fluid properties→
1-fluid system). The instabilities grow fastest with the smallest scale modes (large
wavenumbers, m).

2.2.2 Using pressure perturbations without mass transfers

In the case where pressure differences between fluids exist (γ > 0) but no mass ex-
changes between fluids take place (α = 0, S01 = S10 = 0), the frequency, Ω = mwp is
given by

Ω = (σ0w1 + σ1w0)m− im

[
1
2

mγ±
√

σ0σ1(w0 − w1)2 +
1
4

m2γ2

]
. (2.52)
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In order to ensure modes are decaying only, we require that Im(Ω) ≤ 0, meaning

−1
2

mγ +

√
σ0σ1(w0 − w1)2 +

1
4

m2γ2 ≤ 0 (2.53)√
σ0σ1(w0 − w1)2 +

1
4

m2γ2 ≤ 1
2

mγ (2.54)

σ0σ1(w0 − w1)
2 ≤ 0, (2.55)

which is not true unless the system is single-fluid. This result implies that using
pressure differences proportional to convergence (or vertical velocity diffusion in the
case of Thuburn et al., 2019) cannot completely stabilise the 2-fluid equations on its own,
no matter the value of the coefficient (γ). However, it should be noted that using the
pressure perturbation term significantly reduces the growth rate of the instability due
to the negative imaginary component outside of the square-root in equation 2.52. This
reduction of the growth rate is shown in figure 2.1 for a large range mean velocities and
volume fractions.

2.2.3 Using mass transfers without pressure perturbations

When there are no pressure differences between the fluids but transfers between the
fluids exist, the phase velocity reduces to:

wp = (σ0w1 + σ1w0)−
α

2
(w0 + w1)

±
√
−σ0σ1(w1 − w0)2 +

1
4

α2 (w0 + w1)
2 − α (w1 − w0) (σ0w1 − σ1w0). (2.56)

In order for there to be no imaginary component, the sum of the terms inside the square
root must be positive:

−σ0σ1(w1 − w0)
2 +

1
4

α2 (w0 + w1)
2 − α (w1 − w0) (σ0w1 − σ1w0) ≥ 0. (2.57)

The 1
4 α2 (w0 + w1)

2 term is positive and helps stabilise the system. Assuming the worst
case scenario where this term is zero (w1 = −w0) and using max(σ0σ1) =

1
4 , the condi-
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tion becomes:

−4σ0σ1w2
1 − 2αw1 (σ0 + σ1) ≥ 0 (2.58)

α ≤ −2σ0σ1 (2.59)

α ≤ −1
2

. (2.60)

The two-fluid system is therefore unconditionally stable if α has a large-enough negative
value (i.e. if the mass transfers are large enough).

2.2.3.1 Comparing the transfer terms with Weller et al. (2020)

The mass transfer rate between fluids is given by

∂σ0

∂t

∣∣∣∣
transfers

= σ1S10 − σ0S01

= ασ1
∂w1

∂z
− ασ0

∂w0

∂z
. (2.61)

We know that ∇.u = 0 because we have assumed an incompressible system. By also
assuming uniform volume fractions with height, we get

∂

∂z
(σ0w0 + σ1w1) = 0

σ0
∂w0

∂z
= −σ1

∂w1

∂z
,

(2.62)

which means that

∂σ0

∂t

∣∣∣∣
transfers

= 2ασ1
∂w1

∂z
= −2ασ0

∂w0

∂z
(2.63)

∂σ1

∂t

∣∣∣∣
transfers

= 2ασ0
∂w0

∂z
= −2ασ1

∂w1

∂z
. (2.64)

If the transfer rates (Sij) are strictly defined to be positive (as in Weller et al., 2020), then
the transfer rates can be re-written as:

S01 = max
(

0, 2α
∂w0

∂z

)
, (2.65)

S10 = max
(

0, 2α
∂w1

∂z

)
. (2.66)
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For stability
(
α = − 1

2

)
, the transfer terms must therefore be

S01 = max
(

0,−∂w0

∂z

)
(2.67)

S10 = max
(

0,−∂w1

∂z

)
, (2.68)

which is the same form of the transfer terms used by Weller et al. (2020):

S01 = max (0,−∇.u0) (2.69)

S10 = max (0,−∇.u1) . (2.70)

Weller et al. (2020) showed that stable (and accurate) 2-fluid convection can be simulated
using these transfer terms, which is consistent with the result from equation 2.60.

2.2.4 Using pressure perturbations and mass transfers

In the case where we have pressure differences between fluids (γ 6= 0) and mass
exchanges between fluids (α 6= 0), the relation for the phase velocity (equation 2.51) has
an imaginary component within the square root. The phase velocity and frequency can
be evaluated numerically in order to find any positive imaginary components which
make the modes unstable. Figure 2.1.d shows the imaginary components of equation
2.51 using γ = 104 m2 s−1 and α = − 1

2 , for a range of values for the volume fractions,
wavemodes and velocities. All computed modes have zero or negative imaginary
components to within machine precision, meaning they are stable. This is, perhaps,
to be expected given that the transfer terms (without pressure differences) make the
equations unconditionally stable, and using the pressure differences (without transfer
terms) reduces the growth rate of the unstable modes.

2.3 Summary and conclusions

We have shown that the Kelvin-Helmholtz-like instability which exists in the incom-
pressible 2-fluids equations with equal pressures (Stewart and Wendroff, 1984; Thuburn
et al., 2019) can be suppressed by adding a suitable pressure perturbation term in each
fluid which is proportional to the convergence of velocity. The term is similar to a
viscosity in one dimension which damps the smallest scale modes the most. Similar
terms were used by Thuburn et al. (2019) and Weller et al. (2020) to help stabilise their
2-fluid models.
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Using mass transfer terms between fluids proportional to convergence makes the
2-fluid system from Thuburn et al. (2019) stable when the transfer coefficient fulfils
α ≤ − 1

2 . This transfer term is similar to the dynamical entrainment used by Houghton
and Cramer (1951) and De Rooy et al. (2013), and helps represent the averaged tendency
of the fluids. The transfers also create smooth volume fraction fields by transferring
regions where fluid is “bunching up”. The system is also stable when these transfer
terms are used in conjunction with the pressure perturbation terms. These results
are consistent with Weller et al. (2020), who’s 2-fluid Boussinesq model is stable and
accurate when using the convergence-based mass exchanges.

It should be noted that these results do not guarantee stability in a compressible
2-fluid system with buoyancy, but similar pressure and transfer terms should be trialled
for their effectiveness and accuracy (see chapter 4). Moreover, the 2-fluid system defined
in this study represents the average tendencies of the fluids (as the fluids are defined by
averaging over pre-defined volumes). Future studies should therefore focus on building
upon the stable two-fluid scheme by accurately representing the sub-filter-scale physics
in each fluid.
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a) γ = 0 m2 s−1, α = 0 b) γ = 104 m2 s−1, α = 0

c) γ = 0 m2 s−1, α = − 1
2 d) γ = 104 m2 s−1, α = − 1

2

Growth rate, R (s−1)

Figure 2.1: The maximum growth rate (equal to the imaginary component of the frequency Ω)
for a range of values of the mean volume fraction and wavenumbers. Each data point is sampled
over w0, w1 ∈ [−100, 100] m s−1, each incremented by 10 m s−1. Results which are stable (R ≤ 0)
to within machine precision are shown in white. Panel a shows the unstable system analysed in
Thuburn et al. (2019). Panel b shows how the pressure perturbation term significantly damps the
unstable modes, by up to four orders of magnitude in the given parameter space. Panels c and
d show the cases where mass transfers proportional to velocity convergence are used, which are
both stable to within machine precision.
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Chapter 3

Numerical methods for entrainment

and detrainment in multi-fluid

convection

The results from this chapter have been published in the Quarterly Journal of the Royal
Meteorological Society (McIntyre et al., 2020).

Entrainment and detrainment are key in the interaction of convective clouds and
their environment (De Rooy et al., 2013). Transfer terms that exchange mass and other
properties between fluids are also crucial for formulating a parameterisation of convec-
tion in a multi-fluid model. These transfer terms are equivalent to entrainment (in-
cluding cloud base entrainment) and detrainment which may be adapted from exist-
ing frameworks such as Arakawa and Schubert (1974), Betts and Miller (1993), Neggers
et al. (2002) and Siebesma et al. (2007). Weller and McIntyre (2019) proposed a numerical
scheme for transfers in a multi-fluid model, but only one transfer scheme was considered
in which the numerical treatment of the mass transfer is explicit which may not be suit-
able for fast transfers. The numerical transfer scheme in Weller and McIntyre (2019) also
used an unintuitive combination of explicit and implicit terms in the transfer scheme (as
using only explicit or implicit terms produced a non-conservative scheme). This moti-
vates us to present a range of possible mass transfer schemes and analyse their numerical
properties to obtain the most desirable numerical solutions. For use in a multi-fluid con-
vection model, the numerical solutions for the transfer schemes must:

• Maintain positivity of mass (noted as a numerical stability condition in Weller and
McIntyre, 2019).

• Keep velocities and temperatures bounded to prevent new extrema.

• Conserve momentum.

• Conserve energy where possible.

• Never cause increases in total energy to prevent numerical instabilities.

• Be as accurate as possible.

41



42

In this chapter, we analyse the numerical properties of the transfer terms between
fluids for the multi-fluid compressible Euler equations (defined in section 3.1). We for-
mulate 20 possible numerical schemes and analyse their properties in section 3.2. We
then apply the transfer terms to well-resolved two-fluid dry convection test cases in sec-
tion 3.3.

3.1 Governing equations

The multi-fluid compressible Euler equations were derived in Thuburn et al. (2018) and
were presented in flux form in chapter 1. Using the notation convection from Weller
and McIntyre (2019), we will use three prognostic equations for each fluid including the
continuity equation,

∂ηi

∂t
+∇.(ηiui) = ∑

j 6=i
(ηjSji − ηiSij)︸ ︷︷ ︸
Mass transfers

, (3.1)

the potential temperature equation in advective form,

∂θi

∂t
+ ui.∇θi = ∑

j 6=i

(
ηj

ηi
Sji(θj − θi)

)
︸ ︷︷ ︸

Transfer mean temp.

−∑
j 6=i

Hij︸ ︷︷ ︸
Heat transfer

, (3.2)

and the momentum equation in advective form,

∂ui

∂t
+ ui.∇ui = g − cpθi∇π︸ ︷︷ ︸

Pressure gradient

+ ∑
j 6=i

(
ηj

ηi
Sji(uj − ui)

)
︸ ︷︷ ︸

Transfer mean velocity.

−∑
j 6=i

Dij︸ ︷︷ ︸
Drag

, (3.3)

where i is the label for fluid i. Our prognostic variables are the fluid mass per unit
volume (ηi), the fluid potential temperature (θi) and the fluid velocity (ui). We have
defined ηi ≡ σiρi, where σi is the fluid volume fraction and ρi is the density of fluid i.
Sij is the unidirectional mass transfer rate from fluid i to fluid j (Sij ≥ 0). cp is the heat
capacity of dry air at constant pressure and g is the gravitational acceleration. π ≡ pκ/pκ

0

is the Exner pressure where p is the pressure, p0 is a reference pressure, κ = R/cp and
R is the gas constant of dry air. Hij is the heat transfer between fluids i and j (which
does not exchange mass between fluids) and Dij is the drag between fluids i and j - these
exchange terms will not be used in this study. Additionally, the equation of state for dry
air is used to relate the pressure and fluid temperatures:

p0π
1−κ

κ = R ∑
i

ηiθi. (3.4)
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The total energy of the multi-fluid system is given by

E = EP + EI + EK (3.5)

where EP is the potential energy, EI is the internal energy and EK is the kinetic energy,
defined respectively as:

EP = ∑
i

ηi|g|z, (3.6)

EI = ∑
i

ηiθicvπ, (3.7)

EK = ∑
i

1
2

ηiui.ui, (3.8)

where z is the height coordinate and cv =
cp
γ is the heat capacity of dry air at constant vol-

ume and γ is the heat capacity ratio. These energies will be used to assess the numerical
stability of the transfer schemes.

3.2 Fluid transfer schemes

In convection modelling, entrainment and detrainment are both mass exchanges be-
tween the updraft and surrounding environment. It is therefore important that the nu-
merical implementation of these transfer terms for a multi-fluid system have accurate
conservation properties and that they do not produce new extrema. For accuracy, mass
and momentum should be conserved. For stability, the fluid mass (ηi) must remain posi-
tive and velocities should be bounded. For accuracy and stability, potential and internal
energy should also be conserved. In addition, the kinetic energy should not increase as
resolved kinetic energy decreases when two fluids of differing velocity mix. In reality,
any sink of grid-scale energy should be a source of turbulent kinetic energy which, in
turn, may be a source of internal energy - as we are not modelling sub-filter-scale vari-
ability in this study, we will be ignoring these effects. In this section, we demonstrate the
conservation and boundedness properties of the mass transfer terms for the multi-fluid
equations and present solutions of the multi-fluid Euler equations with these transfers.

3.2.1 Notation and numerics

In our governing equations, we have assumed that mass transferred between fluids will
take its associated mean properties from the original fluid. Refinement of the transfer
terms to incorporate sub-filter-scale variation will not form part of this study. For a
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mean fluid property φi ∈ [θi, ui], the governing equations can be generalised as

∂φi

∂t
+ ui.∇φi = Fi + ∑

j 6=i
Sji

ηj

ηi

[
φj − φi

]
, (3.9)

where Fi contains right-hand-side terms such as the pressure gradient term. Applying
this to the temperature and momentum equations we get:

• Momentum equation: φi = ui, Fui = −cpθi∇π + g.

• Temperature equation: φi = θi, Fθi = 0.

We will assume that the transfer terms are operator split such that other processes
(advection and Fi) act on the prognostic variables first, followed by the transfers:

φm
i = φn

i − (1− α)∆t [ui.∇φi − Fi]
n + α∆t [ui.∇φi − Fi]

m , (3.10)

φn+1
i = φm

i + ∆t ∑
j 6=i

Sji
ηj

ηi

[
φj − φi

]
, (3.11)

where n is the time-level (t = n∆t), m is the time-level after applying the advection
and Fi terms, and α is the Crank-Nicolson off-centering coefficient. The numerical
treatment of the transfer terms will be discussed in section 3.2.3. The mass transfers
are then based on the most up-to-date states (m) rather than the previous time-level
(n). This allows the transfer terms to be independent of the numerical properties of the
advection and Fi terms. For each momentum equation, the total momentum should
be equal before (m) and after (n + 1) mass transfer such that: ∑i ηn+1

i un+1
i = ∑i ηm

i um
i .

The internal energy should also be conserved by the temperature equation transfers:
cvπ ∑i ηn+1

i θn+1
i = cvπ ∑i ηm

i θm
i .

As the transfer terms involve a division by ηi, we will replace 1/ηi with
1/max(ηi, 10−16kg m−3) in any numerical method to avoid issues when one fluid van-
ishes.

3.2.2 Transferring mass

When transferring mass, we must ensure that mass is conserved and all ηi remain posi-
tive. The mass in each fluid at the end of the timestep (ηn+1

i ) is given by the mass after
advection (ηm

i ) plus the discretised transfer term integrated over time ∆t:

ηn+1
0 = ηm

0 − ∆t
[
(1− αC) ηm

0 + αC ηn+1
0

]
S01 + ∆t

[
(1− αC) ηm

1 + αC ηn+1
1

]
S10,

ηn+1
1 = ηm

1 − ∆t
[
(1− αC) ηm

1 + αC ηn+1
1

]
S10 + ∆t

[
(1− αC) ηm

0 + αC ηn+1
0

]
S01,

(3.12)
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where αC determines the numerical treatment of transfer terms in the continuity equa-
tion: transfers are conducted explicitly if αC = 0 and implicitly if αC = 1. Re-arranging
these equations for ηn+1

i , we get

ηn+1
0 = (1− λC01)η

m
0 + λC10 ηm

1 ,

ηn+1
1 = (1− λC10)η

m
1 + λC01 ηm

0 ,
(3.13)

where

λAij ≡
∆tSij

1 + αA∆t(Sji + Sij)
(3.14)

and A is a label used to identify the coefficients α and λ. We use A = C in the
continuity equation (mass transfers) and we will later use A = M and A = T for
momentum and temperature transfers respectively. The total mass is clearly conserved
as ∑i ηn+1

i = ∑i ηn
i and the total potential energy is also conserved. λij is between 0 and

1 for all αA when ∆tSij ≤ 1, meaning η0 and η1 remain positive. When αA = 1, any
positive ∆tSij > 0 may be used.

3.2.3 Transferring fluid properties - Method 1

We must also model the transfer of velocity and temperature associated with the re-
labelling of mass between fluids described in section 3.2.2. The new value of the vari-
able φi ∈ [θi, ui] should be bounded by the old values of fluids i and j (at time level m)
so that new extrema are not generated. Also, momentum should be conserved and en-
ergy should not increase. Assuming operator-split transfers, the new fluid properties for
fluids 0 and 1 are written as

φn+1
0 = φm

0 − (1− αA)∆t
η

q
1

ηr
0

S10(φ
m
0 − φm

1 )− αA ∆t
η

q
1

ηr
0

S10(φ
n+1
0 − φn+1

1 ),

φn+1
1 = φm

1 − (1− αA)∆t
η

q
0

ηr
1

S01(φ
m
1 − φm

0 )− αA ∆t
η

q
0

ηr
1

S01(φ
n+1
1 − φn+1

0 ),

(3.15)

where φm
i are the values after advection. If αA = 0, then φi is treated explicitly and

αA = 1 means φi is treated implicitly. Note that these equations have additional degrees
of freedom in the time-level choice for ηi, where q and r are the time level choices for the
numerator and denominator respectively. A is the label for each governing equation. For
the momentum and temperature equations, we will use A = M and A = T respectively.
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Rearranging for φn+1
i , we obtain

φn+1
0 = (1− ν

q,r
A10)φ

m
0 + ν

q,r
A10φm

1 ,

φn+1
1 = (1− ν

q,r
A01)φ

m
1 + ν

q,r
A01φm

0 ,
(3.16)

where

ν
q,r
Aij =

∆tSij
η

q
i

ηr
j

1 + αA∆t
[

Sij
η

q
i

ηr
j
+ Sji

η
q
j

ηr
i

] . (3.17)

With two degrees of freedom in each of αC, αA, q and r, a total of 16 different transfer
schemes exist using this method. In appendix A.1, we derive the momentum/internal
energy conservation properties for the following four schemes:

1. αC = 0, αM = αT = 0 with q = m, r = n + 1.

2. αC = 0, αM = αT = 1 with q = m, r = m.

3. αC = 1, αM = αT = 0 with q = n + 1, r = n + 1.

4. αC = 1, αM = αT = 1 with q = n + 1, r = m.

The other 12 schemes do not conserve momentum/internal energy - we prove this
by presenting numerical analysis of the conservation properties. The relative momen-
tum changes (∆FREL ≡ (Fn+1 − Fm)/F0) due to the transfer schemes are calculated
using initial conditions which cover a large parameter range, including conditions
observed in convective clouds. The transfer schemes were initiated with ηm

0 = 1 kg m−3,
um

0 = 1 ms−1, θm
0 = 300 K, θm

1 = 301 K, S01 = 1 s−1. We also use ∆t in the range [0, 5] s,
ηm

1 in the range [10−8, 2] kg m−3, um
1 in the range [−150, 150] ms−1 and S10 in the range

[0, 1] s−1 - each uniformly discretised 50 times. For a given timestep, 1.25× 105 transfers
are therefore tested and the range of the relative momentum change for each scheme is
plotted. This is shown in figure 3.1. These results confirm the momentum conservation
analysis of schemes 1-4 (the relative momentum change for these schemes is always
zero). The other 12 schemes do not conserve momentum (or internal energy) and will
not be analysed further.

Note that the schemes that treat all prognostic variables explicitly (αC = 0,
αM = αT = 0, q = m, r = m) or implicitly (αC = 1, αM = αT = 1, q = n + 1, r = n + 1)
are not among the conservative schemes. It was because of this that scheme 2 was
chosen in Weller and McIntyre (2019).

Boundedness is also an important property for a stable numerical scheme. φ will
remain bounded if ν

q,r
ij ∈ [0, 1] which is guaranteed if αA = 1 (see appendix A.2),

Chapter 3. Numerical methods for entrainment and detrainment in multi-fluid convection



47

a) q = m and r = n + 1, including scheme 1

b) q = m and r = m, including scheme 2

c) q = n + 1 and r = n + 1, including scheme 3

d) q = n + 1 and r = m, including scheme 4

Figure 3.1: The range of momentum changes (relative to initial conditions) of the 16 transfer
schemes for method 1. For each scheme, we conduct transfers with initial parameters which
include conditions expected in the atmosphere. Schemes are momentum conserving if the rela-
tive momentum change due to the transfer is always zero, as indicated by the dotted white line.
Schemes which conserve momentum are shown with solid lines whereas dashed lines are used
for non-conserving schemes. The conserving schemes are scheme 1 (panel a, grey), scheme 2
(panel b, blue), scheme 3 (panel c, red) and scheme 4 (panel d, black). Square-root scales are used
for both axes. They grey and red profiles in panels b and d overlap with the red profile shown
on top.

meaning schemes 2 and 4 are bounded. A special case also exists for scheme 1 which
ensures values of φ remain bounded for ∆tSij ≤ 1. Figure 3.2.a shows the relative
energy changes (∆EREL ≡ (En+1 − Em)/E0) of schemes 1-4 over the same range of
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parameter space used in figure 3.1. Schemes 2 (blue) and 4 (black) do not increase the
total kinetic energy of the system for any ∆tSij > 0 and scheme 1 (grey) for ∆tSij ≤ 1.
Scheme 3 (red) may produce large energy increases for any ∆tSij due to unbounded
velocities which cause increases in kinetic energy. The energy analysis comprehensively
samples the parameter-space which is useful for convection modelling, but these
results do not concretely prove that schemes 2 and 4 are always energy diminishing.
We should therefore also consider other transfer methods with known energy properties.

a) Method 1 named schemes

b) Method 2 named schemes

Figure 3.2: The range of relative energy changes of schemes 1-4 (panel a) and schemes 5 & 6
(panel b). The minimum and maximum energy changes are calculated using the same parameter-
space range as figure 3.1. Schemes are energy-diminishing if the relative energy change due to the
transfer is never above zero, indicated by the dotted white line. Energy diminishing and energy
producing schemes are shown with solid and dashed lines respectively. Scheme 2 (panel a, blue),
scheme 4 (panel a, black) and scheme 6 (panel b, black) are energy diminishing. Scheme 1 (panel
a, grey) and scheme 5 (panel b, grey) also have energy-diminishing properties for ∆tSij ≤ 1.
Although schemes 2 and 4 behave similarly for ∆tSij ≤ 1, the profiles are not identical. Square-
root scales are used for both axes.
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3.2.4 Transferring fluid properties - Method 2 (Mass-weighted transfers)

Transfer terms can also be obtained by considering the flux form equations,

∂(ηiφi)

∂t
+∇.(ηiφiui) = ηiFi + ∑

j

[
Sjiηjφj − Sijηiφi

]
, (3.18)

which are obtained by combining the continuity equation 3.1 and equation 3.9 with the
chain rule. These transfers unconditionally guarantee the conservation of ηiφi (momen-
tum and internal energy) as with the mass transfers seen in section 3.2.2. By defining our
mass-weighted quantity as Φi ≡ ηiφi, we get:

Φn+1
0 = Φm

0 − ∆t
[
(1− αA) Φm

0 + αA Φn+1
0

]
S01 + ∆t

[
(1− αA) Φm

1 + αA Φn+1
1

]
S10,

Φn+1
1 = Φm

1 − ∆t
[
(1− αA) Φm

1 + αA Φn+1
1

]
S10 + ∆t

[
(1− αA) Φm

0 + αA Φn+1
0

]
S01.

(3.19)

These transfers take a similar form to (3.12), meaning we get the solution,

Φm
i ≡ ηm

i φm
i

Φn+1
0 = (1− λA01)Φm

0 + λA10 Φm
1 ,

Φn+1
1 = (1− λA10)Φm

1 + λA01 Φm
0 ,

φn+1
i =

Φn+1
i

ηn+1
i

.

(3.20)

We have proposed this alternative method as we can demonstrate that the total kinetic
energy of the system never increases when αC = αA (see appendix A.3). In appendix
A.2, we also show that φi is bounded when mass and momentum transfers are treated
consistently (αC = αA) - we will therefore not consider schemes where αC 6= αA. Using
purely explicit or purely implicit treatments, we therefore have 2 more viable transfer
schemes for the multi-fluid equations:

5. αC = 0, αA = αM = αT = 0.

6. αC = 1, αA = αM = αT = 1.

Note that schemes such as [αC = 0.5, αA = 0.5] can also be used but there is no increase
in order of accuracy as the scheme is operator-split and thus the time level m is not
that of the previous timestep. Using time level n instead of m introduces instabilities
into the numerical method as updates from the prognostic equations such as advection
will be ignored in the transfer scheme. Figure 3.2.b shows the relative energy changes
of schemes 5 and 6 over the same parameter space range used for method 1 schemes.
The energy changes are consistent with the analysis in appendix A.3, whereby scheme 5

Chapter 3. Numerical methods for entrainment and detrainment in multi-fluid convection



50

never increases in energy for ∆tSij ≤ 1 and scheme 6 for ∆tSij > 0.

3.2.5 Transfers on a staggered grid

So far, we have assumed that our mass transfers are conducted in the same location,
i.e. on a co-located grid (A-grid). But how do the numerical methods change when
using staggered grid? Following the 2D C-grid setup used in Weller and McIntyre
(2019), we keep our prognostic mass and temperature defined at cell centres and
define our velocities on cell faces. Henceforth, a cell-centred variable (µ) which is
linearly-interpolated onto cell faces will be denoted by [µ] f and a variable defined on
cell faces will be denoted by [µ]c when it is interpolated onto the cell-centres.

The numerical transfer schemes for the mass and potential temperature remain the
same, but some adjustments must be made for the velocity transfers (method 1):

un+1
0 =

(
1− [ν

q,r
M10] f

)
um

0 + [ν
q,r
M10] f um

1 ,

un+1
1 =

(
1− [ν

q,r
M01] f

)
um

1 + [ν
q,r
M01] f um

0 .
(3.21)

[ν
q,r
M10] f has various degrees of freedom in the choice of interpolations, such as [Sij] f

[η
q
i ] f

[ηr
j ] f

or
[

Sij
η

q
i

ηr
j

]
f
, for example. We will use [Sij η

q
i ] f

[ηr
j ] f

, once again following Weller and McIntyre

(2019). The momentum transfers for method 2 become

Nn+1
0 ≡

(
1− [λC01] f

)
[ηm

0 ] f + [λC10] f [η
m
1 ] f ,

Nn+1
1 ≡

(
1− [λC10] f

)
[ηm

1 ] f + [λC01] f [η
m
0 ] f ,

Fm
i ≡ [ηm

i ] f um
i

Fn+1
0 =

(
1− [λM01] f

)
Fm

0 + [λM10] f Fm
1 ,

Fn+1
1 =

(
1− [λM10] f

)
Fm

1 + [λM01] f Fm
0 .

un+1
i =

Fn+1
i

Nn+1
i

,

(3.22)

where [λAij] f =
∆t[Sij] f

1+αM∆t([Sji ] f +[Sij] f )
. Ni is the fluid mass calculated by conducting the

mass transfers on the cell faces - this aids in a consistent and accurate conversion of the
mass flux to the fluid velocity. With velocities defined on cell faces, the kinetic energy is
calculated on the faces and then interpolated back onto the cell centres:

En+1
K = ∑

i

1
2

[
Nn+1

i (wn+1
i )2

]
c

. (3.23)
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This interpolation method ensures kinetic energy is conserved when converting to the
cell centre values (Ringler et al., 2010).

3.2.6 Summary of proposed transfer terms

We have presented 6 numerical transfer schemes which maintain positivity of mass and
conserve mass, momentum, potential energy and internal energy for ∆tSij ≤ 1. These
schemes are presented in table 3.1.
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Schemes 2, 4, 5 and 6 keep the fluid temperatures and velocities bounded, although
schemes 2 and 5 only do this for ∆tSij ≤ 1. Only schemes 2, 4 and 6 are kinetic-energy-
diminishing for all timesteps meaning schemes 1, 3 and 5 can cause numerical instabili-
ties if ∆tSij is large. From our analysis, we recommend scheme 4,

ηn+1
i =

(
1−

∆tSij

1 + ∆tSji + ∆tSij

)
ηm

i +
∆tSji

1 + ∆tSji + ∆tSij
ηm

j

φn+1
i =

1−
∆tSji

ηn+1
j
ηm

i

1 + ∆tSij
ηn+1

i
ηm

j
+ ∆tSji

ηn+1
j
ηm

i

 φm
i +

∆tSji
ηn+1

j
ηm

i

1 + ∆tSij
ηn+1

i
ηm

j
+ ∆tSji

ηn+1
j
ηm

i

φm
j ,

(3.24)

and scheme 6,

ηn+1
i =

(
1−

∆tSij

1 + ∆tSji + ∆tSij

)
ηm

i +
∆tSji

1 + ∆tSji + ∆tSij
ηm

j

φn+1
i =

(
1− ∆tSij

1+∆tSji+∆tSij

)
ηm

i φm
i +

∆tSji
1+∆tSji+∆tSij

ηm
j φm

j

ηn+1
i

,

(3.25)

as they are fully implicit and fulfil all the numerical criteria we have set. Scheme 2 is
also a viable scheme if the transfer rate is limited to ∆tSij ≤ 1 to maintain positive mass.
Section 3.3 will test these schemes on 2D staggered grids.

3.3 Rising bubble test cases

In order to test the properties of the various transfer schemes on a staggered grid, we
have implemented them into the multi-fluid fully compressible Euler equation solver
from Weller and McIntyre (2019) using operator splitting. We will run test cases adapted
from the single-fluid rising bubble test case (defined in Bryan and Fritsch, 2002) where
an initially stationary temperature anomaly rises and generates resolved circulations (see
figure 3.3). The domain extends to x ∈ [−10, 10] km and z ∈ [0, 10] km with uniform
grid spacings ∆x = ∆z = 100 m and wall boundaries on all sides (where zero-gradient
fields are imposed and no fluxes perpendicular to the boundaries). A uniform potential
temperature field of θ = 300 K is initially chosen with the system in hydrostatic balance
and zero velocity. A warm temperature perturbation is then applied at t = 0 s:

θ′ = 2 cos2
(π

2
L
)

. (3.26)

The perturbation is only applied for L ≤ 1 where L ≡
√

x−xc
xr

+ z−zc
zr

, xc = 10 km,
zc = 2 km and xr = zr = 2 km. For the 2-fluid experiments the warm anomaly will be
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applied to θ1 only, whereas fluid 0 will remain initialised as θ0 = 300 K.

We use a 2D C-grid with ηi and θi defined at cell centres and the normal component
of ui defined at cell faces. The time-stepping is centred Crank-Nicolson with a timestep
of ∆t = 2 s. A van-Leer advection scheme is chosen to maintain positivity of the mass
of each fluid. All details of the numerical setup and the numerical solvers used are
described in Weller and McIntyre (2019), with the exception of a numerical adjustment
which must be made for an operator-split Crank-Nicolson multi-fluid scheme (described
in appendix B).

Full bubble test case, potential temperature
θ, t = 0 s θ, t = 1000 s

min = 300    max = 301.994
0

2500

5000

7500

10000

−5000 −2500 0 2500 5000

min = 300    max = 301.433
0

2500

5000

7500

10000

−5000 −2500 0 2500 5000

θ(K)

Figure 3.3: The temperature profile evolution of the full bubble test case, which has the same
analytical solution as the single-fluid test case from Bryan and Fritsch (2002). The warm anomaly
rises and induces large-scale resolved circulations. The black arrows give the relative magnitudes
and directions of the velocity vectors.

3.3.1 Full bubble test case

The first test case is initialised with all mass in fluid 1: σ0 = 0, σ1 = 1. The transfer rate
is chosen to transfer a large quantity of fluid 1 to fluid 0:

S01 = 0, (3.27)

S10 =
1

∆t ηm
1

max (0, σminρm
0 − ηm

0 ) , (3.28)
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where σmin = 0.1. This means that the explicit schemes will transfer 10% of the mass in
the first timestep (and none thereafter). As fluid 0 initially has no mass, it should inherit
the properties of fluid 1 when mass is transferred. We therefore expect the solution to be
the same as the single-fluid test case shown in figure 3.3.

The test case is run for all 20 transfer schemes, including the non-conservative
schemes. For each scheme we calculate the relative energy change from the single fluid
test case:

∆En
RSF =

En
MF − En

SF

E0
SF

, (3.29)

where En
SF and En

MF are the total energies at timestep n for the single-fluid and multi-
fluid simulations respectively. With a float precision up to 16 decimal places, we expect
fluid 0 to inherit the density, velocity and temperature of fluid 1 to machine precision.
A relative energy change of ∆En

RSF ∼ 10−15 is therefore reasonable for an energy
conserving scheme.
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The energy changes for all schemes are shown in table 3.2 as well as the root-
mean-squared (RMS) errors for the potential temperature and vertical velocity fields.
All six conservative schemes produce small energy decreases after one timestep with
the implicit mass schemes (3, 4 and 6) producing the smallest energy changes with
∆E1

RSF = −1.18× 10−15 as they have not transferred the full 10% of the mass in the first
timestep (unlike schemes 1, 2 and 5). The relative energy changes of schemes 1-6 remain
of the order 10−15 by t = 1000 s with schemes 5 and 6 having the smallest errors. Many
of the non-conservative schemes produce large energy increases due to lack of internal
energy conservation and unbounded velocities. Some of these schemes become unstable
before the end of the test case at t = 1000 s. Note that two of the non-conservative
schemes behave similarly to Schemes 1-6, but internal energy and momentum are not
conserved exactly.

The smallest RMS error in potential temperature (at t = 1000 s) is obtained by scheme
4, followed by schemes 1 and 3. The RMS error of the fully-implicit scheme 6 is more than
two orders of magnitude larger than that of scheme 4. However, the method 2 schemes
(5 and 6) produce the smallest RMS error in vertical velocity, although the error from all
method 1 schemes is within an order of magnitude. Averaging over both temperature
and velocity field errors, scheme 2 is the most accurate.

3.3.2 Half-bubble test case

We have already shown solutions for transfers to an empty fluid. But how do the
schemes behave when transferring between fluids with comparable mass and different
properties? For this we use a 2-fluid test case from Weller and McIntyre (2019), where
half the mass is initialised with the warm anomaly (fluid 1) and the other half without
(fluid 0):

σ1 =

{
0.5 for L < 1,

0 otherwise,

σ0 = 1− σ1.

(3.30)

The 2-fluid equations with different fluid properties require some form of stabiliza-
tion (Weller and McIntyre, 2019; Thuburn et al., 2019). We will use a diffusive mass
transfer to couple the fluids:

Sij =
1
2

Kσ

ηi
max

(
0, ∇2(ηj − ηi)

)
, (3.31)

where Kσ = 200 m2 s−1 is a large-enough diffusion coefficient to maintain numerical
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stability for this test case (as shown in Weller and McIntyre, 2019).

a) Half-bubble test case, potential temperature
θ0, t = 1000 s θ1, t = 1000 s

min = 300    max = 300.827
0
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7500

10000

−5000 −2500 0 2500 5000

min = 300    max = 300.985
0

2500

5000

7500

10000

−5000 −2500 0 2500 5000

θ(K)

b) Half-bubble test case, volume fraction
σ1, t = 0 s σ1, t = 1000 s

min = 0    max = 0.5
0
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min = 1e−09    max = 0.828156
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σ1

Figure 3.4: The temperature (a) and volume fraction (b) profiles of the half-bubble test case using
scheme 2. The black arrows give the relative magnitudes and directions of the velocity vectors.
As the warm anomaly is initially only in half the fluid, the distributions differ from the single-
fluid case in figure 3.3, including a slower circulation over the domain.

The temperature and volume fraction distributions for this test case are shown
in figure 3.4 - slower circulations form compared with the full bubble test case due
to the lower mean temperature anomaly. The energy changes of all schemes relative
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to the initial conditions are shown in figure 3.5. Dashed lines represent negative
energy changes and solid lines show positive energy changes. Schemes 1-6 follow
similar energy evolutions, where energy decreases relative to the initial conditions.
The non-conservative schemes (light grey) exhibit various behaviours; many blow up
within the first timesteps and produce large energy increases whereas some schemes
(which use implicit transfers) follow similar energy evolutions to the conservative
schemes. Note that energy changes due to other aspects of the numerical scheme (eg the
non-energy-conserving van-Leer advection scheme) are far larger than changes due to
the transfer schemes - hence all conservative schemes appear to behave similarly.

Relative energy change from initial conditions

Figure 3.5: The relative energy change from the initial energy for all of the transfer schemes for
the 2-fluid rising bubble test case. The solid and dashed lines represent positive and negative en-
ergy differences respectively. Dotted lines represent the transition between positive and negative
energy changes. Schemes 1-6 are given by the black lines, while the remaining non-conservative
schemes are given by the light grey lines.

These simulations on a staggered grid are consistent with the analysis of the transfer
schemes in section 3.2 as schemes 1-6 conserve mass, momentum, internal energy and
potential energy and are stable for the given test cases with no positive increases in total
energy.
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3.4 Conclusions

Transfer terms between the fluid components in the multi-fluid equations can be used
to couple the fluids, represent physical exchanges and stabilise the equations, but the
numerical treatment of the transfer terms must be stable. We have presented various
numerical methods for treating the transfer terms between the fluids. These schemes
are applicable to any multi-fluid equation set where the mean properties of a fluid are
transferred with its mass. We have shown that some of the transfer schemes maintain
positive mass, keep prognostic variables bounded, conserve momentum, potential &
internal energy and are kinetic energy diminishing. These properties help to keep the
overall numerical scheme accurate and stable on co-located and staggered grids.

Of the six conservative schemes, we have shown that scheme 3 can produce energy
increases (figure 3.2). We have also shown that schemes 5 and 6 do not increase energy
for ∆tSij ≤ 1 and ∆tSij > 0 respectively. We have not proved this for schemes 1, 2 and
4 but have thoroughly explored the relevant parameter space for convection and have
not found any instances of kinetic energy increases (other than scheme 1 for ∆tSij > 1).
The fully implicit schemes (schemes 4 and 6) automatically handle large mass transfers
and scheme 6 also produces the smallest energy changes in the full bubble test case.
The fully-implicit scheme 6 fulfils all of the aforementioned conservation requirements
but produces the largest temperature inaccuracies in the full bubble test case. Our
numerical analysis suggests that scheme 4 is an ideal transfer scheme and that scheme
2 is useful if the transfer is limited so that mass positivity is maintained. Both schemes
also produced accurate temperature and velocity fields, meaning that they are the most
suitable for representing entrainment and detrainment in the multi-fluid equations
can be conducted in a numerically stable manner. The physical form of the entrain-
ment and detrainment transfer terms for dry convection will be investigated in chapter 4.
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Chapter 4

Building a two-fluid dry convection

scheme for the grey zone

The results from sections 4.1 and 4.2 were used to inform the closures for the 2-fluid Boussinesq
scheme in Weller et al. (2020). The rising bubble test case results from section 4.3 (compressible
2-fluid equations) were replicated for the incompressible two-fluid model in Weller et al. (2020).

The multi-fluid equations have been proposed for the modelling of grey zone con-
vection due to their potential for representation of net mass transport by convection and
non-equilibrium dynamics (Thuburn et al., 2018; Weller and McIntyre, 2019). Thuburn
and Vallis (2018) derived conservation properties of the multi-fluid equations and found
their normal modes. Thuburn et al. (2019) analysed their stability and presented a
numerical method of a stabilised version of the equations for a single-column model.
Weller and McIntyre (2019) presented a numerical method of the fully compressible
multi-fluid Euler equations. In chapter 3, we presented stable and conservative numeri-
cal schemes for exchanges between the fluids (see also McIntyre et al., 2020). However,
little has been done to represent grey zone convection with the multi-fluid equations.
Moreover, we have a limited understanding of how entrainment and detrainment
should be parameterised in the multi-fluid framework.

In this chapter we use the single fluid rising bubble test case from Bryan and Fritsch
(2002) and attempt to reproduce it using a coarse 2-fluid scheme. In section 4.1, we use
a fluid filter based on the vertical velocity to diagnose the expected properties of each
fluid from the resolved single fluid test case, as well as the form of the entrainment
and detrainment terms. In section 4.2, we present and analyse different methods for
transferring the fluid temperatures which assume sub-filter-scale variability - unlike the
schemes from chapter 3 which always transfer the mean potential temperature. We will
also investigate which schemes most accurately reproduce the expected temperature
fields in entraining and detraining regions. Finally, we will use our analyses from sec-
tions 4.1 and 4.2 to set up and test a two fluid scheme over a large range of resolutions
(including the grey zone) in section 4.3.
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4.1 Single-fluid rising bubble test case analysis

4.1.1 Test case and performance with resolution

We will use the same (full) single-fluid rising bubble test case for our “truth” solution as
defined in chapter 3.3 (as well as Bryan and Fritsch, 2002), including the same numerical
scheme. The solution for the potential temperature is shown in figure 3.3, with a
horizontal resolution of 100 m (200 columns). However, horizontal resolutions in global
models are typically far coarser at scales ∆x ∼ 10 km. But what happens to the rising
bubble if the test case is run at these coarser resolutions? The horizontally averaged
temperature profile of the single-fluid rising bubble test case is shown in figure 4.1
(200 columns), as well as the solutions using different horizontal resolutions. Figure
4.1 emphasises the issues with modelling coarse dry convection using a single-fluid
dynamical core. The results show the inhibited ability of the warm perturbation to rise
at lower resolutions, to the extent that there is no movement from the initial conditions
in the single column case - this is because there are no neighbouring columns for
horizontal convergence/divergence and only one vertical velocity vector per grid box,
meaning the fluid cannot rise as any movement would create a vacuum-like effect
where empty space cannot be filled due to continuity. Convection parameterisations
are needed to transport heat vertically in this case. Using the two-fluid approach,
movement will be allowed in the single-column case due to the presence of a second
velocity field. This would allow for one fluid to rise as the other descends. As such, it
is not fair to make comparisons with the single-column, single-fluid scheme without a
convection parameterisation.

Figure 4.1: Horizontally-averaged temperature distributions for the single-fluid rising bubble
test case at various resolutions (black). The grey lines show the horizontally averaged profile for
the 200 column test case.
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4.1.2 Diagnosing updraft and downdraft fluids

By horizontally averaging the well-resolved single-fluid rising bubble test case, we know
what the mean temperatures/velocities should be after t = 1000 s. But to help analyse a
2-fluid scheme, we must first define our fluid filter and then apply it to our single-fluid
solution. We choose to label a grid cell according to its vertical velocity such that the
fluid label is

I1 =

{
1 for w > 0,

0 for w ≤ 0,
(4.1)

and I0 = 1− I1, where fluid 0 is defined as the downdraft fluid and fluid 1 as the updraft
fluid. Alternative fluid filters also exist including Couvreux et al. (2010) and Efstathiou
et al. (2019) who also use other variables in their filter such as liquid water content,
height relative to cloud base and tracer concentrations. Changes in sign of vertical
velocity will need to be modelled by the mass transfer terms, which will be investigated
in section 4.1.4.

Figure 4.2 shows the vertical velocity field of the well-resolved single-fluid case at
t = 1000 s which will be used to filter the field into two fluids. The dotted contour
shows the boundary where the vertical velocity is zero which is the interface between
the two fluids. From this we can see that the volume fraction for the updraft will be
σ1 ∼ 0.25 when averaging over a 20 km wide column. This is somewhat consistent with
studies which assume a uniform volume fraction for all heights (such as Siebesma et al.,
2007).

We use the velocity filter to extract the horizontally-averaged (HA) volume fraction
and mass quantities via conditional averaging:

σHA,i ≡
1

x2 − x1

∫ x2

x1

Iidx, (4.2)

ηHA,i ≡
1

x2 − x1

∫ x2

x1

Iiρ dx, (4.3)

where x1 = −10 km and x2 = 10 km. Other conditionally averaged mean variables are
obtained via

φHA,i =
1

ηHA,i

1
x2 − x1

∫ 10km

−10km
Iiρφi dx, (4.4)

and variances via

φ′HA,i
2
=

1
ηHA,i

1
x2 − x1

∫ 10km

−10km
Iiρ(φi − φi,HA)

2 dx. (4.5)

Vertical profiles of these averages are presented in figure 4.3. When conducting coarse
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Vertical velocity, t = 1000 s

w (ms−1)

Figure 4.2: The well resolved vertical velocity field of the single-fluid rising bubble test case at t =
1000 s. Positive and negative vertical velocities are shown by red and blue regions respectively,
where the dotted line shows the w = 0 m s−1 contour. The grey contour lines show the potential
temperature field, contoured at 300.5 K and 301 K.

2-fluid simulations, it is these profiles which we aim to reproduce.

Figure 4.3: The horizontally averaged variables from the well-resolved, single-fluid rising bub-
ble test case after 1000 s. Fluid 0 features are represented in blue and fluid 1 features in red.
Solid lines show the mean quantities and the transparent shaded zones show the one-standard-
deviation regions.
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The horizontally averaged potential temperature profile has 2 sets of local maxima:
one at z ≈ 7.5 km where the hottest anomalies have been concentrated and another at
z ≈ 5 km where the large-scale circulations have caused entrainment of warm regions
which were previously detrained (according to our fluid definitions). The latter set
of peaks may be difficult to reproduce in single-column simulations as they require
modelling of sub-grid-scale processes. Also shown are the horizontally averaged
profiles of our filtered fluids: updrafts (red) and downdrafts (blue), with shaded regions
representing the standard deviation range. The mean updraft fluid temperature is hotter
than that of the downdraft fluid but there are various instances below z = 7 km where
the sub-filter temperatures overlap, as indicated by the shaded regions. This is due to
the large-scale circulations which bring hot air into the downdraft fluid and vica versa.
The mean vertical velocity is zero and the individual fluid velocities have opposite signs
due to our filter condition. Unlike the temperature distributions, the shaded regions for
the velocity profiles do not overlap which is a consequence of our choice of fluid filter
where w = 0 m s−1 is the fluid interface.

4.1.3 Analysis of the pressure field

Thuburn et al. (2019) demonstrated that the 2-fluid incompressible equations with a
shared pressure gradient generate a Kelvin-Helmholtz-like instability. This is consistent
with Weller and McIntyre (2019), who needed drag or mixing between fluids for stable
simulations - but the fluids became too strongly coupled as a result. In chapter 2,
we showed that a pressure perturbation term for each fluid (proportional to velocity
convergence) significantly damped the unstable modes. In this section we compare this
pressure perturbation term with high resolution data.

We can use the well-resolved single-fluid test case, in-combination with our choice
of filter, to examine the pressure differences that exist. Figure 4.4 shows the pressure
anomalies with respect to the horizontal mean (π − πHA) at t = 500 s. Differences in
pressure between fluids clearly exist, most notably at z ≈ 3 km and z ≈ 5 km. These
pressure anomalies are responsible for the horizontal divergence above the bubble and
horizontal convergence below the bubble. It may therefore be reasonable to assume that
there exists a pressure anomaly (π′i) such that π′i ∝ ∇.ui. By adding this term to the
momentum equation, we get

∂ui

∂t
+ ui.∇ui = −cpθi∇(π + π′i)− 2Ω× ui + g + ∑

j 6=i

[
ηj

ηi
Sji(uj − ui)− Dij

]
, (4.6)

where π′i = −γ∇.ui and γ is a positive constant. This choice of stabilization is consistent
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π′ = π − πHA

Figure 4.4: The anomalies of the Exner pressure relative the the horizontally averaged profile
at t = 500 s. In the resolved profile (left), brown and purple regions indicate positive and neg-
ative pressure anomalies respectively. The grey contours show the potential temperature field,
contoured at 300.5 K, 301 K and 301.5 K. The dotted line shows the w = 0 m s−1 interface. The
horizontally-averaged fluid 0 pressure anomaly is given in blue, and fluid 1 in red (right). The
dashed lines show the convergence of the horizontally averaged velocity field multiplied by −γ
where γ = 0.02 s.

with Thuburn et al. (2019), who demonstrate that a vertical velocity diffusion term is
sufficient to suppress the Kelvin-Helmholtz-like instability present in the multi-fluid
equations in a one column model. In a single column, both∇2ui and∇(∇.ui) reduce to
∂2wi
∂z2 . Note that, in well resolved systems∇(∇.ui) becomes negligible whereas velocity

diffusion does not. In order to use π′i = −γ∇.ui, we must use a sensible value for γ.
Weller et al. (2020) conducted a scale analysis of the multi-fluid equations to diagnose
γ. By assuming the circulation is driven by buoyancy, they found the relationship
γcpθi ∼

√
BL

3
2 , where B is the magnitude of the buoyancy anomaly and L is the length

scale of the anomaly. Using B = g 2K
300K m s−2 and the bubble radius L = 2× 103 m, we

get γ ∼ 0.2 s. Figure 4.4 shows the π′i with γ = 0.02 s (dashed lines). The term shows
good concordance with the filtered single-fluid pressure anomalies for z > 5 km and
the correct sign below z = 3 km. It should be noted that the additional π′i term breaks
energy conservation when summed over all fluids, although the energy loss is not
significant in short simulations like the rising bubble test case. Deriving a conservative
pressure perturbation term will be a topic of future research. For the remainder of
this chapter, we will use the π′i = −γ∇.ui pressure perturbation term to stabilise the
multi-fluid equations.
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4.1.4 Diagnosing entrainment and detrainment

The horizontal differences in pressure between the fluids suggest that fluxes over the
fluid boundaries exist; entrainment and detrainment in the form of mass transfers
between fluids. Many different numerical transfer schemes for the multi-fluid equations
have already been proposed in chapter 3. But we must also diagnose the expected trans-
fer distribution for the rising bubble test case in order to accurately model convection in
a coarse 2-fluid model.

For the resolved single fluid test case, the change in the mass field (per unit volume)
over one timestep is given by

ηn+1 − ηn

∆t
+ [∇.(ηu)]n = 0, (4.7)

meaning the new filtered horizontally averaged profile is

ηn+1
HA,i =

{
ηn − ∆t [∇.(ηu)]n

}
HA,i

= ηn
HA,i − ∆t [∇.(ηu)]nHA,i .

(4.8)

The change in the fluid i mass for the single-column 2-fluid case is given by

ηn+1
i − ηn

i
∆t

+ [∇.(ηiui)]
n = ∑

j 6=i

(
Sjiηj − Sijηi

)
. (4.9)

We want the single-column 2-fluid simulation to accurately represent the resolved sin-
gle fluid test case. By equating ηn+1

i and ηn+1
HA,i, we can re-arrange to get an expression

to diagnose what the mass transfer terms should be for consistency with the resolved
simulation:

∆t ∑
j 6=i

(
Sjiηj − Sijηi

)
= ηn

HA,i − ηn
i + ∆t [∇.(ηiui)]

n − ∆t [∇.(ηu)]nHA,i . (4.10)

If we also initialise the 2-fluid simulation such that ηn
i = ηn

HA,i then the transfer terms
can be diagnosed through the difference in advection terms of the single-column 2-fluid
and resolved single fluid simulations:

S01η0 − S10η1 = [∇.(η1u1)]
n − [∇.(ηu)]nHA,1 . (4.11)

This will be used to diagnose the entrainment and detrainment terms. We will also
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compare the diagnosed transfer to four possible models for mass transfer (MT):

• MT1: Diffusion of σi

ηm
i Sij =

1
2 Kσmax

[
0,∇2(ηm

j − ηm
i )
]

This mass transfer term was proposed in Weller and McIntyre (2019) for the multi-
fluid equations. The transfer acts to smoothen and diffuse the volume fraction
field. We will use Kσ = 2× 103 m2s−1.

• MT2: Laplacian of θi

ηm
0 S01 = 1

2
Kθ
θ0

max
[
0,−∇2θ0

]
ηm

1 S10 = 1
2

Kθ
θ1

max
[
0,∇2θ1

]
This mass transfer term was also proposed in Weller and McIntyre (2019) for the
multi-fluid equations. This term transfers regions of fluid 0 with positive tempera-
ture anomalies to fluid 1 and regions of negative temperature anomalies in fluid 1
to fluid 0. We will use Kθ = 5× 105 m2s−1.

• MT3: Velocity convergence
ηm

i Sij = ηm
i max [0,−∇.ui]

We noted in section 4.1.3 that pressure differences between the fluids exist. These
pressure anomalies will cause horizontal convergence/divergence and therefore
mass fluxes between the fluids. We therefore propose this transfer term which is
proportional to the velocity convergence (ie. when a fluid “bunches up”, the fluid is
“pushed” into the neighbouring fluid). This is similar to the dynamical entrainment
described in Houghton and Cramer (1951), and is equivalent to the transfer term
used in chapter 2 and Weller et al. (2020).

• MT4: Entrainment based on w1/R
ηm

i Sij = ηm
i max

[
0, 0.2wj

R

]
This transfer is based on a commonly used term to model entrainment in mass flux
schemes (De Rooy et al., 2013): entrainment, ε = 0.2

R . The transfer of fluid 0 to fluid
1 is proportional to the (positive) vertical velocity of fluid 1. We will use R = 2 km,
the initial radius of of the bubble.

We will compare these mass transfers at various time steps using the same multi-
fluid scheme described in chapter 3 and Weller and McIntyre (2019). For the 2-fluid test
case we will use a single column which is 20 km wide, instead of the 200-column set-up
used in the resolved single-fluid test case in figure 4.2. We initialise the 2-fluid 1-column
scheme at a given time level n with the filtered, horizontally averaged profiles from the
single-fluid resolved simulation. For example, if we initialised at t = 1000 s, the fields
for each fluid would look like those in figure 4.3. We run the model for one timestep
only (∆t = 1 s); we conduct the advection (to get us to time level m) and subsequently
perform the mass transfers.
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In appendix D, we note that using the fluid filter from equation 4.1 produces
excessive noise in our mass transfer analysis due to the discrete switching of the vertical
velocity sign between timesteps. We derive an approximation for the volume fraction
when the w = 0 m s−1 fluid interface intersects a cell. This smoother filter will be used
for analysis of the transfer terms in the remainder of section 4.1.4 as well as section 4.2.5.

Figure 4.5 shows the diagnosed mass transfer (left) and the behaviour of the four
mass transfer types at t = 100 s (a), t = 500 s (b) and averaged over all timesteps (c). In
figure 4.5.a, we diagnose that entrainment should occur for z < 2 km and detrainment
for 2 km< z < 4 km - this is due to the upwards advection of fluid 1 in the two fluid
scheme, which corresponds to [∇.(η1u1)]

n in equation 4.11. This mass transfer is well
represented by the convergence-based mass transfer scheme (MT3). The diagnosed
entrainment and detrainment above z = 5 km is due to the movement of the fluid
interface in the resolved single fluid simulation (∆t [∇.(ηu)]nHA,i in equation 4.11) - this
is not well represented by any of the parameterisations.

At t = 500 s (figure 4.5.b), we diagnose entrainment to fluid 1 below the center of
the warm anomaly (z ≈ 4 km) and detrainment to fluid 0 above the warm anomaly -
this is analogous to the horizontal convergence/divergence associated with the largest
circulation seen in the resolved single-fluid test case. The velocity convergence transfer
(MT3) is the only transfer term which captures this behaviour. This concordance is also
present in the mass transfer profiles averaged over all timesteps (0 s≤ t ≤ 1000 s) in
figure 4.5.c. The entrainment-based MT4 gives some resemblance below z = 4 km but
continues to entrain air above this height. Both Laplacian-based transfers (MT1 and
MT2) do not present any correlation with the diagnosed mass transfer.

It should be noted that the mass transfer types may perform better or worse
for different test cases. Moreover, a different choice of fluid filter will significantly
alter the form of the diagnosed mass transfer terms. As we have chosen to filter
our fluid based on the vertical velocity, it makes sense to use a velocity-dependent
mass transfer term. If we instead use a buoyancy-based filter, perhaps MT2 would
prove more useful in transferring buoyant or negatively-buoyant regions between fluids.

Our results suggest that the divergence transfer term is realistic for a coarse
two-fluid scheme when using a fluid filter based on vertical velocity. The transfer
term successfully emulates the horizontal convergence/divergence which occurs in
the resolved test case. Additional transfer terms may be needed to represent cloud
base mass flux (where warm anomalies are moved into fluid 1). We will also need to
analyse how the temperature and velocity fields evolve in a coarse 2-fluid simulation
relative to the resolved case. If we can implement realistic transfer terms for the fluid
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a) Mass transfers, t = 100 s

b) Mass transfers, t = 500 s

c) Mass transfers, mean over all timesteps

Figure 4.5: The mass transfers for fluid 1 produced by MT1-MT4 over one timestep (∆t = 1 s)
at various times (right four columns). Also shown are the transfers needed to obtain the masses
from the resolved filtered single-fluid test case (left). Gains in mass for fluids 0 and 1 are given
by the blue and red regions respectively. Panel a shows the mass transfers at t = 100 s, panel b
at 500 s and panel c shown the transfers averaged over 1000 timesteps.

properties (as well as the fluid mass), then an accurate 2-fluid scheme could be produced.
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4.2 Derivation and analysis of transfer terms for the fluid proper-

ties

In chapter 3, we derived a set of numerical schemes which transfer the mean fluid prop-
erties when fluids are mixed. This assumes that the temperature or velocity distributions
of the fluid transferred are delta functions, centred at the mean. But we have shown
in figure 4.3 that various temperatures and velocities exist in a conditionally averaged
fluid. This calls into question whether using mean transfers is a valid assumption. Fitch
(2019) argues that using delta functions to represent the updraft and downdraft velocity
probability density functions (PDFs) is not sufficient for an accurate convection scheme.
This is because turbulent vertical velocity fluctuations are a significant process within
clouds and the boundary layer as they are one of the main mechanisms for the vertical
transport of heat, moisture and momentum in the atmosphere (Fitch, 2019). Knowledge
of the temperature and velocity variance can also inform us of the intensity of the
turbulence present within a cell as well as which regions of a PDF should be entrained
or detrained. Various studies have demonstrated that information of subgrid-scale
velocities is necessary for better cloud modelling (Lohmann et al., 1999; Donner et al.,
2016; Fitch, 2019). Other studies have also used potential temperature PDFs (Mellor,
1977; Sommeria and Deardorff, 1977; Guo et al., 2015). However, it should be noted
that any improvement in accuracy due to the representation of sub-grid (or sub-filter)
variability should be judged relative to the increase in computational cost (Yano et al.,
2018).

The combined grid-box velocity profile can be approximated via first-to-fourth
order moments (mean, variance, skewness and kurtosis respectively) - although, even
higher-order moments are required to exactly define the subgrid behaviour (Shohat and
Tamarkin, 1943). An alternative to a fourth-order moment scheme is to assume two
Gaussian distributions (one representing the turbulence properties of the updraft and
one the properties of the downdraft) which can represent features such as skewness
and kurtosis when the two profiles are summed together. This representation is espe-
cially applicable to convective clouds who’s grid cell PDFs are strongly non-Gaussian,
whereas stratocumulus clouds are Gaussian as there are no concentrated updraft regions
(Fitch, 2019). We will therefore consider alternative transfer schemes to those in chapter
3 which assume sub-filter scale variability.

For a given fluid property φ, the budget equation when transferring non-mean fluid
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properties in flux form is given by

∂(ηiφi)

∂t
+∇.

(
φiui

)
= ηiFi + ∑

j 6=i

[
ηjSjiφ

T
ji − ηiSijφ

T
ij

]
, (4.12)

where Fi contains additional physics terms and φ
T
ij is the transferred quantity. In advec-

tive form the equation becomes

∂φi
∂t

+ ui.∇φi = Fi + ∑
j 6=i

[
Sji

ηj

ηi
(φ

T
ji − φi)− Sij(φ

T
ij − φi)

]
. (4.13)

Note that the mean transfer equation from chapter 3 is recovered by using φ
T
ij = φi.

By using φ
T
ij 6= φi, we assume that there is some sub-filter scale variability in each

fluid and that specific regions of the PDF are transferred. In our two fluid scheme, we
will assume that the mass entrained or detrained from one fluid to another should carry
the properties of the fluid interface. From our definition of 2-fluid scheme in 4.1, we
know that the vertical velocity (w) is zero at the interface. By assuming that the horizon-
tal velocities at the interface are equal to the mean fluid velocities, we get

uT
ij =

ui

vi

0

 , (4.14)

where ui and vi are the mean velocities in the x and y directions respectively. We do not
know the values of the potential temperature at the fluid interface so we must test and
analyse different assumptions for the temperature at the fluid interface.

In this section we present and discuss four transfer methods for the potential
temperature, three of which do not transfer the mean fluid properties and therefore
assume sub-filter-scale variability within each fluid. Each method will use different
transferred temperatures (θ

T
ij). We analyse which methods best reproduce the diagnosed

velocity and temperature fields for the rising bubble test case.

4.2.1 TT1: Transferring the mean temperature of each fluid

Our first transfer type (TT) involves the transfer of the mean potential temperature of
each fluid, where θ

T
ij = θi. This is the same transfer method used in chapter 3.
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4.2.2 TT2: Transferring the total mean temperature over all fluids

In this transfer scheme we assume that the interface temperature is equal to the mean
potential temperature over all fluid components:

θ
T
ij = θ

m

=
∑i ηm

i θ
m
i

∑i ηm
i

.
(4.15)

The transferred temperature differs from Thuburn et al. (2019), who instead use a
linear combination of fluid temperatures without mass weighting: θ

T
ij = aθi + (1− a)θ j,

where a is a constant. Without mass weighting, the temperature transferred will depend
on the temperature of a fluid which may not always exist.

We will use a conservative numerical implementation of this scheme for TT1 and TT2
which follows Weller et al. (2020):

[
θ0

θ1

]n+1

=
1

1 + ∆tS01
ηm

0
ηm

1
+ ∆tS10

ηm
1

ηm
0

×

1 + ∆tS01
ηm

0
ηm

1
∆tS10

ηm
1

ηm
0

∆tS01
ηm

0
ηm

1
1 + ∆tS10

ηm
1

ηm
0

 (1 + ∆tS01)θ
m
0 − ∆tS01θ

T
01 + ∆tS10

ηm
1

ηm
0
(θ

T
10 − θ

m
1 )

(1 + ∆tS10)θ
m
1 − ∆tS10θ

T
10 + ∆tS01

ηm
0

ηm
1
(θ

T
01 − θ

m
0 ).


(4.16)

Note that the numerical scheme reduces to scheme 2 from chapter 3 for the TT1
(mean) transfers.

4.2.3 TT3: Transfers using variance properties and Gaussian profiles

With TT2, we assumed sub-filter variability but did not define the potential tem-
perature PDF. For this transfer scheme, we model the temperatures as Gaussian
profiles, motivated by Fitch (2019) who demonstrate that the velocity field distributions
for convection can be decomposed into a Gaussian for the updraft and a separate
Gaussian for the surrounding environment (including the compensating downdraft).
In this section, we derive transfer terms for the potential temperature based on these
profiles, where the hottest regions of fluid 0 and coldest regions of fluid 1 are transferred.

Imagine we have a 2-fluid system with masses ηi ≡ σiρi, mean temperatures θi and
temperature variances of θ′i

2. We assume the fluid temperatures are normally distributed
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at some time level n by

Θn
i ≡ N

(
θ, θ

n
i , θ′i

n
)
=

1√
2πθ′i

n exp

[
− (θ − θ

n
i )

2

2(θ′i
2)n

]
. (4.17)

ηn
i Θn

i is therefore the mass-weighted distribution which gives the fluid mass when
integrated. We will once again perform our transfers from time-level m (after advection
and other processes) in order to get to time-level n + 1, like in chapter 3.

We expect that the updraft fluid should contain the highest temperatures in any
given cell. Moreover, we expect some transition between the location of the most
buoyant regions (in the updraft fluid) and the most negatively-buoyant regions (in the
downdraft fluid). When transferring mass between the fluids, we therefore want the
largest temperatures to be transferred out of the downdraft fluid and vice versa for
the updraft fluid (see figure 4.6). We will therefore assume that the largest parts of the
fluid 0 PDF and the smallest regions of the fluid 1 profile are more likely to be transferred.

The integral of a Gaussian with a mean θ and variance θ′2 is

∫ ∞

−∞

1√
2πθ′

exp

[
− (θ − θ)2

2θ′2

]
dθ =

1
2

[
1 + erf

(
θ − θ√

2θ′

)]
, (4.18)

where erf is the error function. This function, which is 0 as θ → −∞ and 1 as
θ → ∞ (see figure 4.6), can be used to determine which regions of the fluid temper-
ature PDF are transferred. Let us first consider the transfer of fluid 0 to fluid 1. To
help diagnose which PDF regions to transfer, we define a reference profile ΘREF,01 where
ΘREF,ij = N

(
θ, θ

n
ij, θ′ij

n
)

is a Gaussian, θ
n
ij is the mean of the reference profile and θ′ij

n

is the standard deviation. By multiplying
∫ ∞
−∞ ΘREF,01dθ by the fluid 0 profile, we get a

continuous region to transfer from fluid 0 to 1 (shown in red, figure 4.6):

ηm
0 Θ01 = ηm

0
1
2

[
1 + erf

(
θ − θ01√

2θ′01

)]
1√

2πθ′0
exp

[
− (θ − θ

m
0 )

2

2(θ′0
2)m

]
. (4.19)

It follows that the fraction of the mass transferred (which is also equal to ∆tSij) is given
by the integral of Θ01. Using appendix C.1 (where we integrate an error function times a
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Figure 4.6: An arbitrary example of how the reference profile (ΘREF,01) and transfer rate (S01) are
related. The reference profile (a) can be integrated (b) and multiplied by the fluid 0 blue profile
Θm

0 (c) to get the region to transfer to fluid 1 (red). θ01 is the mean of the reference profile and θ
T
01

represents the mean value of the transferred region. Note that θ
T
01 is slightly to the right of the

peak of the transferred region because Θ01 is not a Gaussian.

Gaussian), we get

∆tS01 =
∫ ∞

−∞
Θ01 dθ

=
1
2

1 + erf

 θ
m
0 − θ01

√
2
√
(θ′0

2)m + (θ′01
2)

 .
(4.20)

The unknown variables are θ01 and θ′01
2 as we have already defined Sij in section 4.1.4.

By assuming the transfer variance (θ′01
2) is some predefined value, equation 4.20 can then
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be rearranged to find θ01:

θ01 = θ0 −
√

2
√
(θ′0

2)m + (θ′01
2) erf−1 (2∆t S01 − 1) . (4.21)

When transferring from fluid 1 to fluid 0, we want to remove the lowest temperatures
so we instead get:

∆tS10 =
∫ ∞

−∞
Θ10 dθ

=
∫ ∞

−∞

1
2

[
1− erf

(
θ − θ10√

2θ′10

)]
1√

2πθ′1
exp

[
− (θ − θ

m
1 )

2

2(θ′1
2)m

]
dθ

=
1
2

1− erf

 θ
m
1 − θ10

√
2
√
(θ′1

2)m + (θ′10
2)

 ,

=⇒ θ10 = θ1 +
√

2
√
(θ′1

2)m + (θ′10
2) erf−1 (2∆t S10 − 1) .

(4.22)

Figure 4.7 shows the transfer region of fluid 1 to fluid 0 (blue-shaded region) for an
arbitrarily-chosen transfer rate of ∆tS10 = 0.2.

The new mean temperature of fluid 0 is given by the first order moment of the new
fluid 0 profile:

ηn+1
0 θ

n+1
0 = ηm

0

∫ ∞

−∞
θΘm

0 dθ︸ ︷︷ ︸
Original mean

−ηm
0

∫ ∞

−∞
θΘm

01dθ︸ ︷︷ ︸
Red region mean (fig. 4.7)

+ηm
1

∫ ∞

−∞
θΘm

10dθ︸ ︷︷ ︸
Blue region mean

= ηm
0 θ

m
0 − ∆t S01 ηm

0 θ
T
01 + ∆t S10 ηm

1 θ
T
10.

(4.23)

For fluid 1, we get:

ηn+1
1 θ

n+1
1 = ηm

1 θ
m
1 + ∆t S01 ηm

0 θ
T
01 − ∆t S10 ηm

1 θ
T
10. (4.24)
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a) TT3 scheme using θ′ij
2 = 0

b) TT3 scheme using θ′ij
2 = θ′j

2

Figure 4.7: The profiles of 2 fluids which initially have identical mean and variance values (left).
By arbitrarily prescribing ∆tS01 = 0.4 and ∆tS10 = 0.2, we get the intermediate profiles (dashed)
and the new Gaussian profiles (solid) on the right-hand-side panels. By using θ′ij

2 = 0 (a), the

largest fluid 0 regions and the smallest fluid 1 regions are transferred. Using θ′ij
2 = θ′j

2 (b) pro-
duces far smoother intermediate profiles and makes the Gaussian assumption for timestep n + 1
more accurate.

θ
T
01 and θ

T
10 are the mean values of the transfer regions such that,

θ
T
01 =

1
∆tS01

∫ ∞

−∞
θΘ01dθ

=
1

∆tS01

1
2

θ
m
0

1 + erf

 θ
m
0 − θ01

√
2
√
(θ′0

2)m + (θ′01
2)m


+ θ′0

m 1√
2π

√√√√ (θ′0
2)m

(θ′0
2)m + (θ′01

2)m
exp

[
−1

2
(θ

m
0 − θ01)

2

(θ′0
2)m + (θ′01

2)m

] ,

=⇒ θ
T
01 = θ

m
0 +

(θ′0
2)m

∆tS01
N
(

θ01, θ0,
√
(θ′0

2)m + (θ′01
2)m
)

,

(4.25)
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and

θ
T
10 = θ

m
1 −

(θ′1
2)m

∆tS10
N
(

θ10, θ1,
√
(θ′1

2)m + (θ′10
2)m
)

, (4.26)

which were derived using appendices C.2 and C.4. Figure 4.6 illustrates the loca-
tions of θ

T
ij for a given example where ∆tS01 = 0.26, and figure 4.7 shows θ

T
ij for

different transfer rates. Given that θ′2N is positive, fluid 0 will transfer a tempera-
ture larger than (or equal to) its own mean which will cool fluid 0. The opposite is
true for fluid 1. Also note that the total internal energy will clearly be conserved as
ηn+1

0 θ
n+1
0 + ηn+1

1 θ
n+1
1 = ηm

0 θ
m
0 + ηm

1 θ
m
1 .

In order to calculate the Gaussian profiles at time level n + 1, we must also calculate
the new values of the fluid variances. For convenience, we define ζm

i =
[
(θ′i

2)m + (θ
m
i )

2
]
.

With the help of appendices C.1, C.2, C.3 and C.5, we calculate ζn+1
i using:

ηn+1
0 ζn+1

0 = ηm
0

∫ ∞

−∞
θ2Θm

0 dθ − ηm
0

∫ ∞

−∞
θ2Θm

01dθ + ηm
1

∫ ∞

−∞
θ2Θm

10dθ

= ηm
0 ζm

0 − ∆t S01 ηm
0 ζT

01 + ∆t S10 ηm
1 ζT

10,
(4.27)

and

ηn+1
1 ζn+1

1 = ηm
1 ζm

1 + ∆t S01 ηm
0 ζT

01 − ∆t S10 ηm
1 ζT

10, (4.28)

where

ζT
01 =

1
∆tS01

∫ ∞

−∞
θ2Θm

01dθ

=
1

∆tS01

1
2

ζ
m
0

1 + erf

 θ
m
0 − θ01

√
2
√
(θ′0

2)m + (θ′01
2)m


+ θ′0
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[
2θ

m
0 − (θ

m
0 − θ01)

(θ′0
2)m

(θ′0
2)m + θ′01

2

]
1√
2π

exp

[
−1

2
(θ

m
0 − θ01)

2

(θ′0
2)m + (θ′01

2)m

]}

= ζm
0 +

(θ′0
2)m

∆tS01

[
2θ

m
0 − (θ

m
0 − θ01)

(θ′0
2)m

(θ′0
2)m + θ′01

2

]
N
(

θ01, θ0,
√
(θ′0

2)m + (θ′01
2)m
)

,

(4.29)
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and

ζT
10 =

1
∆tS10

∫ ∞

−∞
θ2Θm

10dθ

=
1

∆tS10

1
2

ζ
m
1

1− erf

 θ
m
1 − θ10

√
2
√
(θ′10

2)m + (θ′1
2)m


− θ′1
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2)m

θ′10
2 + (θ′1

2)m
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1√
2π
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−1

2
(θ

m
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2

(θ′10
2)m + (θ′1

2)m
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= ζm
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(θ′1
2)m

∆tS10
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2θ

m
1 − (θ

m
1 − θ10)
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θ′10
2 + (θ′1

2)m
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N
(

θ10, θ1,
√
(θ′10

2)m + (θ′1
2)m
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.

(4.30)

We then calculate the new fluid variance (θ′i
2)n+1 using ζn+1

i −
(

θ
n+1
i

)2
. Note that

the signs of the variance correction terms appear to suggest that the fluid 1 variance
will tend to increase whilst the fluid 0 variance decreases. However, given that(

θ′i
2
)n+1

= ζn+1
i − (θ

n+1
i )2 and that θ

n+1
1 − θ

m
1 ≥ θ

n+1
0 − θ

m
0 , this effect is directly can-

celled out resulting in equal treatment of the fluid variances - i.e. if the fluid variances
are initially equal and if S01 = S10, then they will be identical after the transfer has taken
place.

We are now ready to use the TT3 scheme but we have not yet chosen a value for the
reference profile variance, θ′ij

2. We propose the following two choices:

• θ′ij
2 = 0

With zero variance, the reference profile (ΘREF,ij) becomes a delta function and the
integral becomes a step function. This means that all of the largest fluid 0 tempera-
tures are transferred for a given Sij and all of the smallest fluid 1 temperatures (see
figure 4.7.a). But this also means that the intermediate profiles are not continuous
meaning the Gaussian assumption for time level n + 1 is questionable. This gives
us:

θ
T
01 = θ

m
0 +

(θ′0
2)m

∆tS01
N
(
θ01, θ0, θ′0

m) ,

θ
T
10 = θ

m
1 −

(θ′1
2)m

∆tS10
N
(
θ10, θ1, θ′1

m) ,

ζT
01 = ζm

0 +
(θ′0

2)m

∆tS01

(
θ

m
0 + θ01

)
N
(
θ01, θ0, θ′0

m) ,

ζT
10 = ζm

1 −
(θ′1

2)m

∆tS10

(
θ

m
1 + θ10

)
N
(
θ10, θ1, θ′1

m) .

(4.31)
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• θ′ij
2 = θ′j

2

With a finite variance, the largest fluid 0 temperatures are more likely to be trans-
ferred to fluid 1 and vice versa for the transfer from fluid 1 to 0. The resulting
intermediate profiles are continuous (see figure 4.7.b). This gives us:

θ
T
01 = θ

m
0 +

(θ′0
2)m

∆tS01
N
(

θ01, θ0,
√
(θ′0

2)m + (θ′1
2)m
)

,

θ
T
10 = θ

m
1 −

(θ′1
2)m

∆tS10
N
(

θ10, θ1,
√
(θ′0

2)m + (θ′1
2)m
)

,

ζT
01 = ζm

0 +
(θ′0

2)m

∆tS01

[
2θ

m
0 − (θ

m
0 − θ01)

(θ′0
2)m

(θ′0
2)m + (θ′1

2)m

]
N
(
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√
(θ′0

2)m + (θ′1
2)m
)

,

ζT
10 = ζm

1 −
(θ′1

2)m
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2θ

m
1 − (θ

m
1 − θ10)

(θ′1
2)m

(θ′0
2)m + (θ′1

2)m

]
N
(

θ10, θ1,
√
(θ′0

2)m + (θ′1
2)m
)

.

(4.32)

We will compare the performance of these methods in sections 4.2.4, 4.2.5 and 4.3.

4.2.4 Summary of potential temperature transfer types

Without advection or other processes, the transfers for the potential temperature in a
two fluid system (i and j) are

∂θi

∂t
= Sji

ηj

ηi
(θ

T
ji − θi)− Sij(θ

T
ij − θi). (4.33)

We have discussed four different forms of the transferred potential temperature θ
T
ij :

• Scheme TT1: Transfer the mean temperature of the fluid:
θ

T
ij = θi,

• Scheme TT2: Transfer the temperature at the fluid interface:
θ

T
ij =

(
ηm

i θm
i + ηm

j θm
j

)
/
(

ηm
i + ηm

j

)
,

• Scheme TT3 (with θ′ij
2 = 0): Assume Guassian potential temperature PDFs. Trans-

fer the hottest temperatures from fluid 0 and the coolest temperatures and veloci-
ties from fluid 1:
θ

T
01 = θ

m
0 +

(θ′0
2)m

∆tS01
N
(
θ01, θ0, θ′0

m),
θ

T
10 = θ

m
1 −

(θ′1
2)m

∆tS10
N
(
θ10, θ1, θ′1

m).
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• Scheme TT3 (with θ′ij
2 = θ′j

2): Assume Guassian potential temperature PDFs.
Transfer the hottest temperatures from fluid 0 with higher probability and vice
versa for fluid 1:
θ

T
01 = θ

m
0 +

(θ′0
2)m

∆tS01
N
(

θ01, θ0,
√
(θ′0

2)m + (θ′1
2)m
)

,

θ
T
10 = θ

m
1 −

(θ′1
2)m

∆tS10
N
(

θ10, θ1,
√
(θ′0

2)m + (θ′1
2)m
)

.

Figure 4.8 shows how the mean temperatures evolve for the four transfer methods
in two test cases where advection and other processes are not present. In figure 4.8.a,
fluid 0 is initialised with a larger temperature than fluid 1 (both with close-to-zero
variance). The transfer rate in both directions is Sij = 0.1 s−1 with a timestep of
∆t = 1 s. By transferring the mean fluid temperatures, the TT1 scheme (solid lines)
converges to the mean temperature of the system - this is undesirable in a 2-fluid
system as the fluid properties should be different. The TT2 scheme (dashed lines)
transfers the mean temperature of the system (θ = 301 K) which means that the fluids
are transferring the same properties to each other. As there is an equal mass exchange
between the two fluids, the temperatures remain the same. Only the TT3 schemes
(dot-dashed and dotted lines) successfully swap the the fluid properties so that fluid
1 is hotter than fluid 0. The θ′ij

2 = 0 method converges the fastest of the two TT3 schemes.

Figure 4.8.b shows a test case where the temperature of both fluids is initially zero,
but the temperature variance is non-zero. The TT1 (θ

T
ij = θi) and TT2 (θ

T
ij = θ) transfer

schemes do not alter the fluid properties. Both TT3 schemes are able to transfer hot
temperatures to fluid 1 and cold temperatures to fluid 0.
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a) Different temperatures: θ
0
0 = 302K, θ

0
1 = 300K, (θ′i

2)0 = 10−8K2

b) Equal temperatures: θ
0
i = 301K, (θ′i

2)0 = 0.5K2

Figure 4.8: The mean potential temperature evolution over 25 timesteps using the four transfer
schemes, with initial conditions of η0

i = 0.5 and transfer rates of ∆tSij = 0.1. The fluids in panel a
are initialised with different temperatures and small variances whereas the fluids in panel b start
with the same temperature and large variances. Fluid 0 is given by the blue lines and fluid 1 by
the red lines. The variance-based schemes allow fluid 1 to be hotter than fluid 0. Note that the
blue and red lines for the TT1 and TT2 schemes remain at 301 K throughout the simulation in
panel b.

4.2.5 Analysis of the temperature transfer types for dry convection

In section 4.1.4, we diagnosed the mass transfer distributions needed for the 2-fluid
1-column test case by comparing the dynamics to the resolved single-fluid simulation at
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a given timestep. By doing this, we were able to identify that the velocity-convergence-
based mass transfer term was suitable for representing entrainment and detrainment in
our 2-fluid system. Using a similar approach, we will attempt to diagnose the best fluid
property transfer methods for the potential temperature.

As the TT3 transfer scheme from section 4.2.3 requires information of the temperature
variances, we will include them as prognostic variables in our numerical scheme. We
will advect the variance terms according to

∂θ′i
2

∂t
+ ui.∇θ′i

2
= 0, (4.34)

from time level n to time level m using the same numerical method used for θi from
Weller and McIntyre (2019). The variances are initialised by conditionally averaging the
resolved fields according to equation 4.5 and the transfers for the variance terms will
then be conducted from time level m.

4.2.5.1 Potential temperature transfers

We will analyse the temperature transfers in a similar way to the mass transfers in section
4.1.4. For the resolved single fluid test case, the change in the potential temperature is
given by

θn+1 − θn

∆t
+ [u.∇.θ]n = 0, (4.35)

meaning the new filtered horizontally averaged profile is

θn+1
HA,i =

{
θn − ∆t [u.∇.θ]n

}
HA,i

= θn
HA,i − ∆t [u.∇.θ]nHA,i .

(4.36)

The change in the potential temperature of fluid i for the single-column 2-fluid case
is given by

θn+1
i − θn

i
∆t

+ [ui.∇θi]
n = ∑

j 6=i
Sji

ηj

ηi

(
θj − θi

)
,

=⇒ θn+1
i = θn

i − ∆t [ui.∇θi]
n + ∆t ∑

j 6=i
Sji

ηj

ηi

(
θj − θi

)
.

(4.37)

Like with the mass transfers in section 4.1.4, we want the single-column 2-fluid sim-
ulation to accurately represent the resolved single fluid test case. By equating θn+1

i and
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θn+1
HA,i, we can re-arrange to get an expression to diagnose what the temperature transfer

terms should be for consistency with the resolved simulation:

∆t ∑
j 6=i

Sji
ηj

ηi

(
θj − θi

)
= θn

HA,i − θn
i + ∆t [ui.∇θi]

n − ∆t [u.∇θ]nHA,i . (4.38)

Initialising such that θn
i = θn

HA,i for a two fluid system, we get our diagnosed solution
for the potential temperature transfers:

Sji
ηj

ηi

(
θj − θi

)
= [ui.∇θi]

n − [u.∇θ]nHA,i . (4.39)

For transfer schemes TT1, TT2 and TT3, we will use the exact solution for the
mass transfer rates from section 4.1.4 to represent entrainment and detrainment (see
figure 4.5). Using these transfer rates, we independently apply the transfer schemes
to the potential temperature fields at time level m. Figure 4.9 shows the diagnosed
temperature transfers needed for consistency with the single-fluid well-resolved test
case, as well as the behaviour of four transfer methods.

In the early stages of the test case (figure 4.9.a), the temperature of fluid 1 decreases
where entrainment is occurring - this is due to the cooler fluid 0 entering fluid 1. Where
there is detrainment, fluid 1 increases in temperature. This is because the coolest parts of
fluid 1 are leaving the fluid meaning the mean temperature increases. Entrainment and
detrainment occurs above the warm anomaly (z > 4 km), but the temperatures do not
change as both fluids have θi = 300 K in this region. All transfer schemes successfully
capture the cooling of fluid 1 for z < 2 km. Because the TT1 scheme transfers the mean
temperature, the properties of the fluid which is losing mass do not change - hence the
scheme does not capture the increase in temperature of fluid 1 for 2 km< z < 4 km.

At t = 500 s (figure 4.9.b), the warm anomaly has risen to z ≈ 5 km and the hottest
regions have become concentrated towards the top of the bubble. This causes the
change in shape of the diagnosed temperature transfer from figure 4.9.a. Scheme TT1
once again fails to accurately represent the change in temperature of the fluids. The TT2
(θ

T
ij = θ

m
) and TT3 (Gaussian) schemes predict the temperature change in detraining

regions but not the cooling of fluid 1 in the entraining regions. The TT3 scheme which
assumes a reference profile variance of θ′ij

2 = θ′j
2 gives the best agreement with the

diagnosed result at this timestep.

The time-averaged transfers (figure 4.9.c) suggest that schemes TT2 and TT3 (with
θ′ij

2 = 0) best represent the temperature change properties for the rising bubble test case.

The alternative TT3 method (with θ′ij
2 = θ′j

2) also generally produces the correct sign
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a) Potential temperature transfers, t = 100 s

b) Potential temperature transfers, t = 500 s

c) Potential temperature transfers, mean over all timesteps

Figure 4.9: The mass transfer at a given timestep (left), the diagnosed temperature transfers
needed for consistency with the resolved simulation (second-left), and the temperature changes
due to the four transfer methods. Transfers are shown at t = 100 s (panel a), t = 500 s (panel b)
and averaged over one thousand timesteps (panel c). Changes in temperature to the downdraft
fluid are given by the blue lines and those for the updraft fluid by the red lines. The dashed lines
show the diagnosed potential temperature changes.

of the temperature change but over-estimates it in some scenarios. However, we know
from chapter 3 that the TT1 scheme is bounded, whereas schemes TT2 and TT3 are not.
This may cause other issues in the two-fluid model which we will discuss in section 4.3.
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4.2.5.2 Summary of temperature transfer analysis

We have described and analysed four potential temperature transfer methods. The
TT1 scheme transfers the mean temperature and therefore assumes no sub-filter-scale
variability. The TT2 scheme assumes that the temperature at the fluid interface is equal
to the mean temperature of the fluids. This assumes sub-filter-scale variability but does
not specify the exact form of the temperature distribution. The TT3 scheme assumes
that the temperature profiles of each fluid are Gaussian, and that hotter regions of fluid
0 are transferred to fluid 1 and cooler regions of fluid 1 are transferred to fluid 0. By
assuming θ′ij

2 = 0, the very hottest and coldest regions of fluids 0 and 1 respectively

are transferred. Assuming θ′ij
2 = θ′j

2, the hottest/coldest regions are more likely to be
transferred than other regions of the temperature PDF.

All of the schemes conserve internal energy and momentum but only TT1 can guar-
antee bounded temperatures (as discussed in chapter 3 and derived in appendix A.2).
However, the temperatures converge to the total fluid mean temperature (shown in
figure 4.8.a) and the scheme had the worst concordance with the diagnosed temperature
changes in section 4.2.5.

The TT2 scheme can prevent the fluid properties from converging (unlike TT1), but
the scheme requires correct initialisation of the fluid properties (meaning the hottest
regions must be in fluid 1). If this is not done then the fluid 1 temperature will always
be equal or less than the fluid 0 temperature, as demonstrated in figure 4.8. Using the
correct initial conditions in section 4.2.5, TT2 was able to represent the temperature
changes of the rising bubble test case well.

The Gaussian-based TT3 scheme can ensure that fluid 1 is the hotter fluid if enough
entrainment and detrainment occurs. Both versions of the scheme (θ′ij

2 = 0 and

θ′ij
2 = θ′j

2) accurately represented the temperature changes in figure 4.9. The mean
temperatures in the TT3 scheme are unbounded when the variances are non-zero
but this happens because temperatures hotter and colder than the mean exist in each
fluid. This is not an issue as the scheme is merely relabelling these regions and the
total temperature variance within a cell is conserved. This is particularly useful for
separating the fluids when their mean temperatures are identical (which can not be
achieved with schemes TT1 and TT2). However, the TT3 scheme requires an additional
budget equation for the variance of each fluid which results in more computational cost.

Chapter 4. Building a two-fluid dry convection scheme for the grey zone



87

4.3 Two-fluid dry convection simulations

So far, we have decided how a 2-fluid rising bubble test case should be defined (figure
4.3), identified the need for different pressures in each fluid (section 4.1.3) and analysed
how the transfer schemes behave over a single timestep (section 4.2.5). We will now
conduct full rising bubble simulations using coarse 2D 2-fluid set-ups.

4.3.1 Initial conditions

The rising bubble test case from Bryan and Fritsch (2002) has a hot anomaly (defined
in chapter 3) which is initially at rest. To initialise the two-fluid test case we need to
conditionally average the initial fields, but the velocity is zero at t = 0 meaning we
cannot initialise based on equation 4.1. We instead analyse the velocity field after the
first timestep of the resolved single-fluid simulation, shown in figure 4.10. We observe
that the w = 0 m s−1 boundary lies at x ≈ ±1.2 km. We therefore choose to horizontally
average the initial resolved field such that

I1 =

{
1 for |x| ≤ 1.2km,

0 otherwise,
(4.40)

and I0 = 1− I1. This is an approximation of the fluid filter described in equation 4.1
and is chosen for simplicity. We note that the w = 0 m s−1 boundary diverges from
x ≈ ±1.2 km above the bubble - but as all fields are horizontally homogeneous above
z = 4 km it does not matter how these regions are initialised.

By conditionally averaging the resolved fields according to equations 4.2-4.5, we
obtain initial conditions for the fluid volume fractions, fluid mean properties and
variances which will be the initial conditions for the 2-fluid 1-column scheme. These
initial profiles are shown in figure 4.11.

4.3.2 Using the pressure perturbation term

In section 4.1.3, we identified that a pressure perturbation term proportional to the
velocity divergence was a realistic stabilsation for the multi-fluid equations. Figure 4.12
shows the final profiles for the two-fluid one-column model (t = 1000 s), using the
pressure perturbation term with γ = 0.02 s and no mixing (Sij = 0). The scheme clearly
exhibits some vertical heat transport (unlike the one-fluid one-column case, figure 4.1),
but the temperature anomaly only reaches ∼ 7 km rather than the 8 km achieved by the
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θ (K)

Figure 4.10: The potential temperature field of the single-fluid rising bubble after one timestep
(t = 1 s). The dotted line shows the w = 0 m s−1 contour. The region inside x ≈ [−1.2, 1.2] km is
ascending and the regions outside the dotted lines are descending.

well-resolved single-fluid scheme (see greyed-out profiles). Also note that unphysical
spikes exist in the velocity profiles. One reason for this behaviour is the convergence to
a one-fluid system at z ≈ 2.5 km, where σ1 → 1. We have already seen in figure 4.1 that
a one-column one-fluid system cannot move due to continuity. The dominance of fluid
1 in this region therefore acts like a barrier, inhibiting the fluids from rising/descending
past this region. Such a build up of fluid 1 occurs due to the convergence of the updraft
fluid, where buoyant parcels catch up to slightly-less-buoyant parcels. The lack of any
transfer terms between the fluids therefore proves critical here, as updraft convergence
is often associated with entrainment/detrainment processes.
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Figure 4.11: The initial conditions of the one-column two-fluid system, diagnosed by filtering the
well-resolved bubble according to temperature and subsequently horizontally averaging. Fluid
0 features are represented in blue and fluid 1 features in red. Solid lines show the mean quan-
tities and the transparent shaded zones show the one-standard-deviation regions. Both fluids
are initially at rest. Note that that the volume fraction of fluid 1 is given by the black line (left
panel) whereas the fraction of each fluid present in a given layer is represented by the opaque
blue (fluid 0) and red (fluid 1) regions.

Figure 4.12: The two-fluid system after 1000 s using the pressure perturbation term as stabiliza-
tion (γ = 0.02 s). Fluid 0 features are represented in blue and fluid 1 features in red. Solid lines
show the mean quantities and the transparent shaded zones show the one-standard-deviation
regions. Discontinuities in the velocity profiles appear where the updraft fluid volume fraction
approaches 1.

4.3.3 Pressure perturbation term + convergence-based mass transfer

In section 4.1.4, we identified a velocity-convergence-based transfer term (MT3) which
accurately represents the entrainment and detrainment processes which exist in the
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rising bubble test case. Without entrainment or detrainment, we get a “bunching up” of
fluid like in figure 4.12.

We have not yet diagnosed an exact value for γ, the timescale which determines the
magnitude of the fluid pressure anomaly term (π′i = −γ∇.ui). Figure 4.13 shows the
root-mean-squared (RMS) error of the temperature distributions (relative to the single-
fluid θ) at t = 1000 s for a range of values for γ, where the error is given by

εRMS =

√
1

VTot

∫ 10km

0km

(
θ

1000 − θ
1000
HA

)2
A dz, (4.41)

A is the cross-sectional area of the column and VTot is the total volume of the column.

Figure 4.13: The RMS Error of the two-fluid potential temperature distributions after 1000 s
for various values of γ. The two-fluid scheme is using the pressure perturbation and the
convergence-based mass transfer. The minima of the rms errors for each scheme are indicated by
the location of the dashed lines.

The RMS error is minimised when γ = 0.04 s for TT1, γ = 0.06 s for TT2 and
γ = 0.055 s for both TT3 schemes. In section 4.1.3, we showed that the derived value of
γ based on the scale analysis was 0.2 s - within an order of magnitude but approximately
four times greater than the optimum values according to figure 4.13. But the buoyancy
anomaly and length scale used in the scale analysis are based on the initial conditions
and these values differ later in the test case. We will use the γ values which correspond
to the minimum RMS error for our 2-fluid simulations.
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Figure 4.14 shows the 2-fluid test case using the pressure perturbation term and
the velocity-convergence mass transfer term with the TT1 scheme which transfers the
mean fluid temperatures (figure 4.14.a) and the TT2 scheme which transfers the mean
potential temperature of the whole cell (figure 4.14.b).

a) 2-fluid single-column, using γ = 0.04 s and TT1 (θ
T
ij = θ

m
i ), t = 1000 s

b) 2-fluid single-column, using γ = 0.06 s and TT2 (θ
T
ij = θ

m
), t = 1000 s

Figure 4.14: The two-fluid system after 1000 s using the pressure perturbation and divergence
transfer terms. Fluid 0 features are represented in blue and fluid 1 features in red. Solid lines
show the mean quantities and the transparent shaded zones show the one-standard-deviation
regions. Panels a and b show the results using temperature transfer schemes TT1 and TT2 re-
spectively.

The 2-fluid scheme performs well with the addition of entrainment and detrainment
terms. Using the optimum pressure perturbation magnitudes from figure 4.13, both the
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TT1 and TT2 schemes are able to transport the hot anomaly to z = 8 km. The mean
temperature profiles show similar features to the horizontally averaged single-fluid
test case with a maximum at z ≈ 8 km and a trailing tail. The peak temperature is
greater using the TT2 scheme as less of the hot anomaly has been left behind in the
2 km< z < 4 km region. The individual fluid temperatures from the TT1 scheme
match closely to the diagnosed solution, whereas the TT2 fluid 1 temperature is 1 K
too large. Note that the mean temperature profile for the TT2 scheme is greater than
300 K everywhere despite being an unbounded transfer scheme, but the scheme may
not be bounded for other test cases. The fluid 1 vertical velocities deviate from the
single-fluid case with lower vertical velocities in the 2 km< z < 6 km region - this is
partly the source of the errors in potential temperature in this region. Both TT1 and
TT2 schemes keep the initial temperature variance from the initial conditions in the
0 km< z < 4 km region. This is because these schemes do not use a transport equation
for the temperature variance.

Figure 4.15 shows the 2-fluid simulation results using the two TT3 temperature
schemes, which assumes that the temperature profiles are Gaussian in each fluid. Both
methods produce similar temperature profiles at t = 1000 s, where the peak temper-
atures are between those from the TT1 and TT2 schemes from figure 4.14. As well as
the variance sources and sinks derived in section 4.2.3, the variance fields are advected
according to equation 4.34. Note that both of the TT3 schemes produce temperatures
below 300 K at z ≈ 1 km as the transfers are not bounded. This is a consequence of
variance in fluid 0 which implies that the fluid contains temperatures less than 300 K
which is not the case in our initialisation. This is undesirable and reduces the accuracy
of the scheme, but this does not cause any stability issues in the 2-fluid rising bubble
test case. The issue could be addressed by incorporating skewness into the potential
temperature profiles but we will not refine the TT3 method in this study.
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a) 2-fluid single-column, using γ = 0.055 s and TT3 (θ′ij
2 = 0), t = 1000 s

b) 2-fluid single-column, using γ = 0.055 s and TT3 (θ′ij
2 = (θ′j

2)m), t = 1000 s

Figure 4.15: The two-fluid system after 1000 s using the pressure perturbation and divergence
transfer terms. Temperature transfers are performed using the TT3 scheme which assumes that
the temperature profiles in each fluid are Gaussian. Fluid 0 features are represented in blue and
fluid 1 features in red. Solid lines show the mean quantities and the transparent shaded zones
show the one-standard-deviation regions.

4.3.4 Performance with resolution

We have shown that the two-fluid model can accurately represent dry convection in a
single-column, but how does the scheme compare with the single-fluid model across
a wider range of resolutions?. We saw in figure 4.1 that the single-fluid equations
(without a convection parameterisation) are ineffective in simulating the rising bubble
at coarse resolutions, including the grey zone (∆x ∼ [1, 100] km). With the multi-fluid
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scheme, we want to achieve a better-or-equal representation of the heat transport for
each resolution, but it should be noted that this is an unfair comparison. In particular,
one cannot make any direct comparison with the single-column, single-fluid scheme
(without parameterisation) because the hot anomalies are not able to move from their
initial conditions. This is not representative of global circulation models without
convection parameterisation, where convection is allowed to manifest at the grid scale
which transports heat vertically (albeit with unrealistic vertical fluxes; Bechtold et al.,
2001; Han and Pan, 2011). Any single-column two-fluid simulations should therefore be
compared with the multi-column cases with a single fluid.

Figure 4.16 shows the 2-fluid mean temperature profiles at t = 1000 s using the TT1
(mean) transfer scheme across a wide range of resolutions. This includes well-resolved,
grey-zone and single-column simulations.

2-fluid test case using TT1 (θ
T
ij = θ

m
i ), t = 1000 s

Figure 4.16: The mean temperature profiles (black) of the 2-fluid simulations with TT1 transfers
over various resolutions. The grey line shows the temperature profile of the single-fluid scheme
with a resolution of ∆x = 0.1 km. The dashed line shows the performance of the 1-fluid scheme
at the labelled resolution.

The 2-fluid scheme performs similarly or better than the single-fluid simulations.
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We note that there are small discrepancies with the single-fluid results with 200 columns
where they should ideally be identical. These differences are caused by the pressure
perturbation term as the velocity divergence is not exactly zero. The 2-fluid scheme
performs far better at all grey-zone resolutions relative to the single-fluid scheme, with
improved heat transport properties. This is because the two fluids are able to move past
each other which is particularly important in the single-column case. Nevertheless, the
warm bubble falls 1− 2 km short of the z = 8 km target at resolutions ∆x = [1, 6.7] km.
The 2-fluid scheme yields the greatest improvement using a single-column set-up as we
have tuned our scheme according to single-column analysis in sections 4.1.3, 4.1.4 and
4.2.5. Greater heat transport is observed using wider column widths (∆x > 20 km) but
similar effects are observed using wider domains in the resolved single-fluid test case.

2-fluid test case using TT2 (θ
T
ij = θ

m
), t = 1000 s

Figure 4.17: The mean temperature profiles (black) of the 2-fluid simulations with TT2 tem-
perature transfers over various resolutions. The grey line shows the temperature profile of the
single-fluid scheme with a resolution of ∆x = 0.1 km. The dashed line shows the performance of
the 1-fluid scheme at the labelled resolution.

Figure 4.17 shows the potential temperature profiles using the TT2 transfer method
for potential temperature. By using the TT2 scheme for the potential temperature,
potential temperature maximum is noticeably larger than resolved single fluid test case
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(also shown in figure 4.14.b). The scheme produces unbounded temperatures in the
5-column and 10-column cases where θ < 300 K.

2-fluid test case using TT3 (θ′ij
2 = 0), t = 1000 s

Figure 4.18: The mean temperature profiles (black) of the 2-fluid simulations with TT3 tem-
perature transfers over various resolutions. The grey line shows the temperature profile of the
single-fluid scheme with a resolution of ∆x = 0.1 km. The dashed line shows the performance of
the 1-fluid scheme at the labelled resolution.

The mean potential temperature profiles for the TT3 (θ′ij
2 = 0) scheme are shown in

figure 4.18. The profiles are similar to the TT1 and TT2 simulations for high resolutions,
although unbounded temperatures exist for all simulations coarser than ∆x = 2 km.
Unlike schemes TT1 and TT2, the TT3 (θ′ij

2 = 0) achieves heat transport beyond z = 7 km
for the 3-column simulation, making it the best-performing scheme at this resolution.

Figure 4.19.a shows the RMS error of the temperature profiles relative to the resolved
single-fluid temperature (θHA) at t = 1000 s for all temperature transfer methods. The
RMS error of the single-fluid scheme relative to highest resolution single-fluid simula-
tion (∆x = 100 m) is shown by the thick black line. All of the 2-fluid schemes have a
smaller RMS error relative to the single-fluid scheme for coarse resolutions (less than 20
columns). We note a sharp decrease in accuracy of all schemes as they approach the grey
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a) RMS errors of 2-fluid schemes, t = 1000 s

b) Heat transport differences, t = 1000 s

Figure 4.19: The RMS errors of the mean temperature profiles relative to the resolved single-fluid
θ at t = 1000 s (panel a) and the heat transport difference relative to the resolved single-fluid case
(panel b). The thick black line shows the RMS error of the single-fluid scheme over the range
of resolutions. The grey region indicates the approximate grey-zone of the test case which is an
order of magnitude greater and smaller than the largest circulation (10 km).

zone (defined as an order of magnitude above and below the largest circulation in the
test case which is 10 km). As we have tuned the pressure perturbation constant (γ) for
the 20 km-wide single-column, the error is larger for wider single-column simulations
due to overshooting the 8 km level - although the heat transport properties are very sim-
ilar. To illustrate this, we also present a measure of the heat transport in figure 4.19.b
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which we define as

εHTD =

∣∣∣∣ 1
VTot

∫ 10km

0km
zθ

1000
A dz− 1

VTot

∫ 10km

0km
zθ

1000
HA A dz

∣∣∣∣ , (4.42)

which measures the heat transport difference relative to the resolved single fluid
simulation (θ

1000
HA ). This metric is similar to the time integral of the traditional measure of

heat transport (
∫

w′θ′dV) and better showcases the advantages of the 2-fluid schemes.
In particular, the 2-fluid single-column set-ups perform better than the single-fluid
scheme at any grey-zone resolution. The TT1 scheme (mean temperature) has the
best heat transport properties across most single-column set-ups and the TT3 scheme
(Gaussian-based with θ′ij

2 = 0) performs best at multi-column grey-zone resolutions.

The 2-fluid schemes are also successful in approximately maintaining the heat
transport properties above ∆x = 104 km, suggesting that the scheme is scale aware
to some extent. But as we have seen in figures 4.16 and 4.17, the accuracy and heat
transport properties still need drastic improvement in the 5-20 column range. Moreover,
additional constraints should be added so that the scheme exactly approaches the
single-fluid solution for high resolution.

These results demonstrate that a 2-fluid scheme can be used to simulate dry con-
vection over a wide range of resolutions, although further work can still be done to
improve the heat transport in multi-column grey-zone set-ups.

4.4 Summary and conclusions

We have demonstrated the need for a convection scheme or parameterisation due to
the poor performance of the single-fluid scheme in the grey zone for the rising bubble
test case (figures 4.1 and 4.19). By applying a conditional filter to the resolved fields
(w ≤ 0 m s−1 and w > 0 m s−1 for fluids 0 and 1 respectively), we were able to average
over updraft and downdraft regions to analyse their properties (figure 4.3). These condi-
tionally averaged profiles were used to identify differences in the fluid pressures (figure
4.4) - this can be partially modelled using a fluid pressure anomaly term proportional
to the velocity divergence. We also compared various mass transfer parameterisations
to model entrainment and detrainment and found that the velocity-convergence-based
transfer effectively represented the circulations present in the rising bubble test case
(figure 4.5).

We performed a similar analysis for the transfer of fluid properties in entraining and
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detraining regions and decided that we should transfer the fluid properties at the fluid
interface. This is straightforward for the velocity transfers as we defined the interface at
w = 0 m s−1. As we do not know the values of the potential temperature at the fluid
boundary, we proposed three temperature transfer types:

• TT1, which assumes that the mean temperature of each fluid is transferred (as in
chapter 3), meaning the fluid temperature profiles are delta functions and have no
sub-filter-scale variability. We noted that the mean fluid property transfers from
chapter 3 cause the individual velocities and temperatures to converge to the total
mean cell temperature (if large transfers occur for a long period of time, as in figure
4.8). The scheme also performed poorly in representing the diagnosed temperature
transfers in our analysis from section 4.2.5. However, the scheme still managed to
replicate the heat transport properties of the single-fluid test case (see figures 4.14
and 4.19).

• TT2, which assumes that the mean temperature of the entire cell is transferred - an
approximation for the interface temperature. This scheme assumes some sub-filter-
scale temperature distribution but does not define what this profile looks like. The
scheme gave better concordance with the diagnosed temperature transfers than
the TT1 scheme, especially when you average over all timesteps (figure 4.9.c). The
scheme also performs well in the 2-fluid rising bubble simulations but produces
significantly higher temperature maxima than the horizontally-averaged resolved
test case. TT2 is also unbounded and produces undesirable artefacts in the temper-
ature profile at some resolutions.

• TT3, which assumes Gaussian temperature profiles for each fluid. The regions of
the temperature profiles transferred are dependent on a Gaussian reference profile
with mean θij (determined by the transfer rate, Sij) and variance θ′ij

2. We proposed
two variations of this scheme which assign different values of the reference profile
variance:

– θ′ij
2 = 0: This means that the reference profile is a delta function located at

θij. Anything above θ01 is transferred from fluid 0 to 1 and anything below θ10

is transferred from fluid 1 to 0. These transferred profiles are not continuous
which means that approximating the new profiles as Gaussian’s is inaccurate
(figure 4.7.a). This transfer method gave good concordance with the diag-
nosed temperature transfer in figure 4.9.c and yielded satisfactory tempera-
ture profiles in the 2-fluid simulations. This 2-fluid scheme was also the only
one to transport the heat anomaly above 7 km in the three-column model.

– θ′ij
2 = (θ′ij

2)m: This means that the reference profile can have a non-zero vari-
ance which means that the hottest fluid 0 regions and the coolest fluid 1 re-
gions are more likely to be transferred. This produces a much smoother trans-
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ferred profile, as shown in figure 4.7.b. The scheme produced the best concor-
dance with the diagnosed temperature transfers in figures 4.9.b and 4.9.c, and
performed similarly to the other 2-fluid schemes for the rising bubble test
cases showcased in figure 4.19.

Both of the TT3 schemes produce unbounded temperatures but the total tempera-
ture variance over all fluids is conserved. The TT3 schemes also require knowledge
of the temperature variance, the variance must either be treated as a prognostic
variable or diagnosed each timestep. We have chosen to treat the variance prog-
nostically by advecting it with the velocity field but this adds extra computational
cost to the 2-fluid scheme.

By using the pressure perturbation term from section 4.1.3 to stabilise the 2-fluid
equations and the velocity-convergence mass transfer from section 4.1.4 to represent en-
trainment and detrainment, the 2-fluid scheme outperforms the 10-column single-fluid
scheme for all grey-zone resolutions.

It is not yet clear which temperature transfer method is better for a 2-fluid model
as each scheme has its advantages. As all tranfer schemes generally yield similar
results, the TT1 and TT2 schemes work best relative to their computational cost. The
Gaussian-based TT3 scheme may become more accurate if variance source and sink
terms are included which conserve the total temperature variance over the domain (as
in Tan et al., 2018). The TT3 scheme may be particularly useful in modelling the rising
bubble test case in the multi-column grey zone set-ups.

This study has demonstrated that the two-fluid scheme is capable of modelling dry
convection, but further studies must be completed before the scheme can be used in
weather and climate models. Greater consistency for the heat transport at multi-column
grey-zone resolutions must be achieved. The inclusion of moisture is also critical in or-
der to model convective clouds - the moist rising bubble test case described in Bryan
and Fritsch (2002) could be used as a benchmark for a moist 2-fluid model. The resulting
multi-fluid scheme must then be tested, tuned and compared with existing convection
parameterisations over a large sample of test cases, and must fulfil the following require-
ments in future studies:

• When confined to a single column, multi-fluid convection should perform as well
as existing parameterisations when using a coarse resolution (multiple convective
plumes per column) and large timestep (longer than the circulation turnover time).
This was the case in Tan et al. (2018) and Thuburn et al. (2019), where both schemes
were compared to existing EDMF schemes. No studies have thus far simulated
multi-fluid, moist, deep convection in a single column. In the case where there
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are clusters of convective plumes in a column as well as large areas of (initially)
stable atmosphere, the multi-fluid scheme should accurately model the compen-
sating subsidence over regions where there is no convection. This may require
an accurate model of the sub-filter-scale variability to determine the number of
convective plumes per column and their horizontal distributions. Alternatively,
assuming that the downdraft fluid subsides uniformly (like in figure 4.14) may be
sufficient in most circumstances.

• Multi-fluid convection schemes should perform better than existing parameterisa-
tions when:

– The timestep is comparable to (or smaller than) the convective circulation
turnover time.
In this case, the convective memory of the multi-fluid scheme will allow for
the accurate evolution of convective plumes (which is not present in tradi-
tional parameterisations).

– The multi-fluid scheme is not restricted to one column.
This means that compensating subsidence is not confined to one column and
convective plumes can propagate to adjacent columns. This effect is signif-
icant when the horizontal length scale of convection is comparable to (or
greater than) the column width.

As an example, the multi-fluid method should show superior performance for
moist deep convection when ∆x < 5 km (using the ARM1 case; Stokes and
Schwartz, 1994, for example), and for shallow convection when ∆x < 0.5 km (using
the BOMEX2 case study; Holland and Rasmusson, 1973, for example).

• Convergence should be achieved at high resolution, which is a common issue in
existing parameterisations (Arakawa, 2004; Holloway et al., 2014). A moist multi-
fluid scheme should converge to the real solution at high resolution, much like the
dry convection case presented in figure 4.16.

• Multi-fluid schemes should accurately maintain the labelling of the fluids accord-
ing to their definition. In our case, this means ensuring falling air is always labelled
as fluid 0 and rising air as fluid 1 (like in figures 4.14 and 4.15). This may help to
accurately model the life cycle of clouds, as well as oscillating air in the form of
gravity waves.

1Atmospheric Radiation Measurement
2Barbados Oceanographic and Meteorological Experiment
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Chapter 5

Summary and Conclusions

5.1 Summary

Atmospheric convection is parameterised in most operational weather and climate
models because the horizontal length scales of convective clouds have historically
been much smaller than the grid spacing. Recent advances in computational power
have allowed models to run at higher resolutions such that the grid lengths are within
an order of magnitude of the widths of shallow and deep convective clouds in some
cases. This is the convective modelling grey zone, where the resolution is still too
coarse to fully resolve the clouds, but also too fine to make common parameterisation
assumptions such as neglecting net mass transport by convection. In chapter 1, we
summarised some common and some new parameterisation techniques such as bulk
and stochastic schemes. A common issue with these schemes is the lack of mass
transport by convection, as well as no convective memory or scale awareness.

The multi-fluid technique (which uses conditional filtering) is a potential candidate
for improving the representation of convection in models. The method separates
regions of the atmosphere into different fluid components (updraft and downdraft
regions in this case), each with their own prognostic equations. All fluids are therefore
treated consistently and are defined everywhere, which means that convection is always
simulated by the dynamical core and the convective fluid is not restricted to a single
column (unlike most parameterisations). Net mass transport by convection is therefore
represented with the multi-fluid method.

The multi-fluid equations are known to be unstable if they share the same pressure
(Stewart and Wendroff, 1984). Thuburn et al. (2019) noted that the instability takes
the form of a Kelvin-Helmholtz instability in the incompressible 2-fluid equations for
convection. In chapter 2, we extended their analysis and found that using pressure
differences proportional to velocity convergence (also used in chapter 4) significantly
damped the unstable modes. The instability was completely removed by using transfer
terms between fluids which are also proportional to convergence.
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In chapter 3, we derived and analysed various numerical schemes for transferring
mass between fluids for regions of entraining or detraining air. We assumed that the
mass transferred carries the mean temperature and velocity of the fluid from which
it originated. From a total of twenty numerical schemes, an implicit scheme was
found to have all of the stated desirable numerical properties: positive mass, bounded
velocities and temperatures, potential and internal energy conservation, and kinetic
energy diminishing for all timesteps. Another scheme which conducted mass transfers
explicitly (but velocity/temperature transfers implicitly) was also found to have these
properties when the mass fraction transferred was limited to be less than one - this is
the scheme used in Weller and McIntyre (2019).

In chapter 4, we conditionally averaged the single-fluid rising bubble test case using
a vertical velocity filter to get the diagnosed vertical profiles for our 2-fluid system
(where fluid 0 is the downdraft fluid and fluid 1 is the updraft fluid). These condition-
ally averaged profiles were used to show that differences in pressure between the two
fluids exist, which can be approximated by modelling a pressure perturbation in each
fluid with π′i = −γ∇.ui. We also diagnosed where (and how strongly) entrainment
and detrainment should occur by comparing the movement of the fluid interface in the
resolved single-fluid test case with the advection of the single-column 2-fluid scheme
(for a given timestep). We found that a transfer proportional to the velocity convergence
was an accurate representation of the entrainment and detrainment but additional
transfers may be required to move buoyant air into the updraft fluid. Similar analyses
were performed for the the transfer of potential temperature in regions of entrainment
and detrainment. The performance of the scheme which transfers mass with the mean
fluid temperature (from chapter 3) was compared with three other methods which
assumed sub-filter variability within each fluid - these three schemes performed best in
the analysis of the rising bubble test case when compared with the diagnosed potential
temperature transfer terms.

Using the schemes from chapters 3 and 4, we simulated the two-fluid rising bubble
test case over a wide range of resolutions. All 2-fluid schemes performed better than the
single-fluid scheme in the grey zone (less than twenty columns). The 2-fluid schemes
accurately transported heat for the single-column simulations, which can be partly
attributed to the tuning of parameters to single column cases. Vertical heat transport
was less accurate for the multi-fluid grey-zone simulations, but the use of two fluids
was an improvement over the single-fluid scheme in the grey zone.
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5.2 Conclusions, implications and future work

In this thesis, we set out to create a two-fluid model of dry convection, and to understand
the challenges involved in creating a multi-fluid convection scheme. In this section we
will discuss the various challenges in multi-fluid convection modelling which we have
addressed, as well as the hurdles which must be overcome for an operational multi-fluid
convection model for weather and climate forecasts.

5.2.1 Stability of the multi-fluid equations and the single pressure assumption

Multi-fluid systems with a shared pressure are known to be unstable (Stewart and
Wendroff, 1984). In an incompressible, two-fluid system, the instability takes the form
of a Kelvin-Helmholtz instability (Thuburn et al., 2019), similar to the form of equation
1.31. Additional coupling terms which represent sub-grid- and sub-filter-scale motions
are therefore needed to stabilise the multi-fluid equations.

Thuburn et al. (2018) suggested that drag can be used to parameterise pressure dif-
ferences but Weller and McIntyre (2019) noted that drag coupled the fluids too strongly,
forcing the fluids to move as one. Thuburn et al. (2019) diffused the vertical velocity to
stabilise their 2-fluid convective boundary layer scheme, but this method can generate
large errors in high resolution simulations. In chapter 2, the two-fluid stability analy-
sis from Thuburn et al. (2019) was extended using pressure differences between fluids
proportional to convergence. The additional pressure term was shown to significantly
suppress the Kelvin-Helmholtz-like instability, although it did not completely eliminate
it. Chapter 4 helped clarify why this may be the case:

• Figure 4.4 showed that significant pressure differences between fluids exist for the
rising bubble test case. Using a pressure perturbation proportional to velocity con-
vergence (π′i = −γ∇.ui) was shown to be a good approximation for the condition-
ally averaged pressure differences.

• When using this pressure approximation without mass transfers, the fluids begin
to “bunch up” near the boundaries which causes discontinuities to form where the
fluid volume fraction tends towards one (figure 4.12).

By adding a mass exchange term which is also proportional to convergence, the
two-fluid scheme in section 4.3 was stable and prevented the build up of fluid in one
location. This allowed the fluids to move past each other. This transfer term was shown
to fully stabilise the incompressible 2-fluid system in chapter 2, as well as accurately
represent the fluid-relabelling in the rising bubble test case (section 4.1.4) and radiative
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convective equilibrium test cases (Weller et al., 2020).

The chosen stabilisation techniques have been largely successful for the two-fluid
model presented in this thesis. However, different stabilisation terms should be tested
when different fluid definitions are adopted. It should also be noted that an exact com-
parison between the stability analysis from chapter 2 and simulations in chapter 4 cannot
be made. Not only does chapter 2 analyse an incompressible system, but there is also no
dependence on buoyancy which may affect stability. Moreover, the proposed pressure
perturbation term for each fluid does not conserve total energy. In future studies, energy
sinks due to the pressure term should be a source for turbulent kinetic energy (as noted
in Weller et al., 2020), which will also aid in the accurate modelling of sub-filter-scale
variability.

5.2.2 Entrainment and detrainment in multi-fluid convection

An accurate representation of entrainment and detrainment is needed for a multi-fluid
convection scheme. In chapter 2, we showed that transferring mass when a fluid is
converging stabilises the system. Moreover, the mass transfer diagnosis in chapter 4
showed that entrainment into fluid 1 should occur when∇.u0 < 0 and detrainment out
of fluid 1 should occur when∇.u1 < 0. These transfer rates are similar to the dynamical
entrainment described in studies such as Houghton and Cramer (1951) and De Rooy
et al. (2013), where the entrainment is proportional to ∂w1/∂z in a single column
set-up. The convergence based transfer rate for the multi-fluid equations is also used in
Weller et al. (2020). However, this parameterisation for entrainment and detrainment
does not capture all of the diagnosed behaviour in the rising bubble test case when
comparing against the movement fluid interface in the resolved single-fluid simulation.
The transfer terms should also move buoyant air into the updraft fluid and negatively
buoyant air into the downdraft fluid, which was not necessary in this study because
we initialised the hottest regions in the updraft fluid. It should also be noted that the
entrainment and detrainment parameterisations change with different definitions of the
fluids, meaning new diagnostics should be performed if a different fluid filter is chosen.

The way in which the fluid properties are transferred in entraining or detraining
regions also needs to be considered. In Weller and McIntyre (2019) and Thuburn
et al. (2019), transferred mass takes the mean temperature of the fluid from which it
originated (known as the upwind approximation; De Rooy et al., 2013). Weller and
McIntyre (2019) also transfer the mean velocity whereas Thuburn et al. (2019) detrain
the mean fluid 1 vertical velocity but entrain 1

2 (w0 + w1) which can be close to zero.
The velocity transferred in chapter 4 is similar to Thuburn et al. (2019), but we have
specifically chosen to transfer w = 0 ms−1 in both fluids as this is the value defined at the
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fluid interface. We tested a variety of potential temperature transfer methods in chapter
4, including transferring the mean of each fluid, transferring the mean temperature of
the cell, and using transfers based on Gaussian temperature pdfs for each fluid. The
schemes which performed well in the temperature transfer analysis (section 4.2.5) did
not yield an obvious benefit in the 2-fluid simulations (section 4.3). Thuburn et al.
(2019) also reported that using the potential temperature transfers which were most
consistent with their LES diagnostics produced large errors in their temperature profiles
- transferring the mean temperatures yielded more consistent results. It is therefore
difficult to conclude which temperature transfer method is best for the multi-fluid
equations. Transferring the mean temperature was adequate in the rising bubble test
case, but more transfer analyses should be conducted over a broader set of test cases as
well as over a greater range of grey zone resolutions.

Our results in chapter 3 also showed that the numerical implementation of a
multi-fluid transfer scheme should be carefully considered. Only a small subset of the
possible numerical schemes are conservative and numerically stable. It may be intuitive
to implement a transfer scheme in which all prognostic variables are treated explicitly or
all terms treated implicitly, but these schemes are among those which are not conserva-
tive and cause increases in the kinetic energy. Chapter 3 (as well as McIntyre et al., 2020)
describes the numerical schemes which should be used for accurately modelling the
rising bubble test cases, but more test cases with analytic solutions should be analysed
in order to better understand which scheme is generally the most accurate. It should be
noted that the aforementioned schemes can also be adjusted for transferring non-mean
quantities, used in chapter 4 as well as Weller et al. (2020).

5.2.3 Multi-fluid scheme performance in the grey zone

In chapter 4, we were successful in accurately modelling dry convection in a single-
column 2-fluid scheme in the grey zone, and Thuburn et al. (2019) also modelled the
dry convective boundary layer using a single-column 2-fluid scheme. In chapter 4 we
found that tuning parameters for a single-column 2-fluid scheme is not sufficient for an
accurate 2-fluid model across all resolutions. This suggests that the assumptions for the
pressure differences and mass transfer terms are not giving a complete representation
of the sub-grid-scale physics or are not accurately labelling the fluids. For example,
there may be regions of the updraft fluid moving downwards (or the downdraft fluid
moving upwards) in the multi-column case. Additional assumptions for entrainment,
detrainment and sub-filter-scale variability may therefore be needed for consistent
behaviour across coarse and fine resolutions.
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Future studies should therefore focus on building multi-fluid convection schemes
which are accurate for multi-column grey-zone resolutions. Additional analysis should
be conducted, focussing on why the 3-column and 5-column set-ups in chapter 4 (for
example) do not perform as well as the single-column case.

5.2.4 Other challenges for multi-fluid convection

As well as the main challenges discussed in this thesis, there are other aspects of the
multi-fluid framework which must be addressed in order to produce an operational
multi-fluid scheme for weather forecasting and climate modelling:

• How do we deal with the large Courant number velocities in the z-direction?
In single-fluid dynamical cores, the mean vertical velocity for a cell is usually small,
as stationary air and downdrafts tend to cancel out the large vertical velocities in
convective updrafts. But in our 2-fluid framework, fluid 1 only contains regions of
air which are rising, resulting in velocities with large Courant numbers in the ver-
tical. A separate advection scheme which can handle fast velocities may therefore
be needed in the z-direction. Implicit advection and semi-Lagrangian advection
are potential candidates.

• How will moisture be modelled?
We have not conducted moist multi-fluid convection simulations in this study,
and it is not yet clear how moisture will be incorporated into a multi-fluid scheme.
Although it would be logical to have all liquid water in the updraft fluid for
convective clouds, it would not be a valid assumption for stratiform clouds.
A variety of prognostic multi-fluid moisture schemes should be tested in future
multi-fluid convection studies. The performance of these schemes can be tested
using the moist rising bubble test case (Bryan and Fritsch, 2002) as well as test
cases based on field studies such as BOMEX (the Barbados Oceanographic and
Meteorological Experiment, Holland and Rasmusson, 1973). By analysing moist
convection for such test cases, it will be possible to determine which moisture
schemes most accurately model convective clouds and other processes in a
multi-fluid framework.

• To what extent should sub-filter-scale variability be modelled?
We have discussed the effect of assuming sub-filter variability in the fluid potential
temperature distributions for the transfer terms, which yielded no obvious bene-
fit in the 2-fluid rising bubble simulations in section 4.3. This may be because
we did not include turbulent sources and sinks in the budget equations for the
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temperature variance. It is unclear how much benefit a scheme with sub-filter-
scale variability (e.g. double-moment) would provide or how accurate we can ex-
pect a single-moment multi-fluid scheme to be. Perhaps a double-moment multi-
fluid scheme would drastically improve the heat transport properties for the multi-
column grey-zone set-ups, but any improvement from such a scheme must be mea-
sured relative to the increase in computational cost (as stated by Yano et al., 2018).
As a multi-fluid scheme is already more expensive than a single-fluid dynamical
core, improvements from a double-moment scheme may be limited relative to the
computational cost.

• Is the w = 0 ms−1 fluid filter the best definition for multi-fluid convection?
In chapter 4, we decided to conditionally average based on the sign of the vertical
velocity, but there are other ways of filtering the atmosphere (such as Efstathiou
et al., 2019, who include moisture in their filter). Different fluid filters should be
tested, especially once moisture is incorporated into the multi-fluid scheme.

• Is the multi-fluid method worth the cost and resources?
We have already discussed how a multi-fluid scheme is more expensive than tra-
ditional dynamical cores, but also how the 2-fluid dry convection scheme provides
considerable improvements in accuracy across the grey zone (section 4.3). Another
issue is the need to overhaul existing code infrastructures to implement multi-
fluid convection, unlike conventional convection parameterisations which are of-
ten modular and can therefore be replaced more easily. With computational power
continuously improving with time, modelling convection explicitly (described in
section 1.3.1) may become the preferred method before an operational multi-fluid
convection model has been produced, which would allow for the existing models
to remain largely unchanged.

All of these issues should be addressed in future studies.

5.2.5 Final remarks

The results presented in this thesis have demonstrated that multi-fluid schemes have
the potential to improve grey-zone convection modelling. By analysing simplified
equation sets, producing numerically stable schemes for entrainment and detrainment,
and analysing conditionally averaged test cases, we have been able to produce a 2-fluid
dry convection scheme which transports heat more accurately than a single-fluid model
in the grey zone.

We have only analysed dry systems and have not compared the dry multi-fluid
scheme with existing parameterisation techniques. We have, however, identified
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various issues and challenges which must be addressed for an operational moist
multi-fluid convection model such as handling large Courant numbers and modelling
sub-filter-scale variability.

Overall, our results show that the multi-fluid method is an exciting new field of
convection modelling which could accurately model dry, shallow and deep convection
in a single framework and over a large range of resolutions.
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Appendix A

Numerical properties of transfer

schemes

Here we derive the conservation, boundedness and energy properties of the transfer
schemes analysed in chapter 3. These properties are important for a stable numerical
method.

A.1 Conservation properties

By multiplying equations 3.13 by 3.16 and summing over both fluid components we get
the total mass-weighted properties:

ηn+1
0 φn+1

0 + ηn+1
1 φn+1

1 = ηn+1
0

[
(1− ν

q,r
A10)φ

m
0 + ν

q,r
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1

[
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m
1 + ν
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1 − N01φm
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(A.1)

where
Nij ≡ λCijη

m
i − λCjiη

m
j + ν

q,r
Ajiη

n+1
i − ν

q,r
Aijη

n+1
j . (A.2)

For conservation of internal energy/momentum, we require that N01φm
0 + N10φm

1 = 0.
As φm

0 and φm
1 are independent, we additionally impose that Nij = 0 for conservation.

Setting αA = 0 and r = n + 1
By using αA = 0 and r = n + 1, ν

q,r
Aijη

n+1
j becomes ∆tSijη

q
i which gives us

Nij = λCijη
m
i − λCjiη

m
j + ∆tSjiη

q
j − ∆tSijη

q
i . (A.3)
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Setting αC = 0 and q = m means that λCij = ∆tSij which results in Nij = 0, meaning
scheme 1 is conservative. If instead we use αC = 1 and q = n + 1 (scheme 3), we get

Nij = λCijη
m
i − λCjiη

m
j + ∆tSji

[
(1− λCji)η

m
j + λCij ηm

i

]
− ∆tSij

[
(1− λCij)η

m
i + λCjiη

m
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m
i
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(A.4)

Setting αA = 1 and r = m
By instead using αA = 1 and r = m (and expanding the ηn+1

i terms in equation A.2 to
get ηm

i terms), we get
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The terms in the parentheses are the same as equation A.3. This means that Nij = 0 if
αC = 0 and q = m (scheme 2) or if αC = 1 and q = n + 1 (scheme 4).

A.2 Boundedness properties

For a 2-fluid system, bounded velocity transfer terms can be generalised by

un+1
0 = (1− β10)um

0 + β10um
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un+1
1 = (1− β01)um

1 + β01um
0 ,

(A.6)

where 0 ≤ βij ≤ 1 ensures the new velocities are bounded. Method 1 has βij = ν
q,r
Mij (de-

fined in equation 3.17). ν
q,r
Mij is clearly positive given positive mass and transfer rates. To

investigate whether ν
q,r
Mij ≤ 1, we make the denominator small (the worst case scenario)

such that Sji = 0 s−1. This gives
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(A.7)

This boundedness condition is guaranteed if αM = 1. A special case also exists for
scheme 1 where αC = αM = 0, q = m, r = n + 1 and the boundedness condition is
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∆tSijη
m
i /ηn+1

j ≤ 1. Given that ηn+1
j = (1− ∆tSji)η

m
j + ∆tSijη

m
i ≥ ∆tSijη

m
i , the scheme is

bounded for ∆tSij ≤ 1.

When αM = αC, method 2 has βij =
λCijη

m
i

λCijη
m
i +(1−λCji)η

m
j

which is bounded if 0 ≤ λCij ≤ 1.

This is always true for ∆tSij ≤ 1, although boundedness is also guaranteed for ∆tSij > 1
when αC = αM = 1.

A.3 Energy properties

For method 2, the total momentum is conserved if the new momenta (Fn+1
i ) satisfy
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(A.8)

where Fm
i ≡ ηm

i um
i . The new kinetic energy after transfers have been applied is found by

multiplying equations A.6 and A.8 and summing over all fluids:
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where ∆K ≡ 1
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When µ01 = µ10 and µ01 ≥ 0, the kinetic energy will never increase. For method 2
(and when αC = αM), µij is given by
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which is symmetric and always positive meaning this scheme never produces positive
energy changes.

Such a proof is less trivial for method 1 as these schemes conserve momentum
differently compared to equation A.8 - η0u1 and η1u0 terms are also present with method
1. Instead, the energy changes are calculated over a large range of parameter space and
are shown in figure 3.2.a.
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Appendix B

Numerical adjustments for an

operator-split Crank-Nicolson

multi-fluid scheme

The numerical multi-fluid scheme used for this study follows the implementation by
Weller and McIntyre (2019), with the exception of operator-split transfers. For a fluid
property such as temperature or velocity (φ) the solution for the Crank-Nicolson scheme
(before transfers) is given by

φm
i = φn

i + ∆t
[
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, (B.1)

where α is the off-centering coefficient and the ∂φi/∂t terms represent the advection and
Fφ in equation 3.10. As

(
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is stored from the previous timestep, we must ensure that

it remains consistent with the fluid properties when transfers are made. This is done by
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for method 1 schemes and
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for method 2 schemes. (∂φi/∂t)n+1 is therefore stored for the next timestep (and is not
used to calculate φn+1

i ). Absence of these terms lead to errors in the numerical solution
when using operator-split transfers, especially when a fluid has a small volume fraction
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or if large transfers are conducted. These terms are not necessary if the Crank-Nicolson
off-centering coefficient is set to α = 1 but the scheme will be limited to first-order accu-
racy in time.
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Appendix C

Integrals for Gaussian-based potential

temperature transfers between fluids

In chapter 4, we derive transfers for the potential temperature in entraining and
detraining regions which assume a Gaussian temperature distribution in each fluid.
This allows the hottest air to be transferred out of fluid 0 and the coolest air out of fluid
1. In this section, we present the integrals of the temperature distributions needed for
the derivation in chapter 4.

C.1 Error function times Gaussian

By integrating

I = A
∫ ∞

−∞
exp

(
−Bx2) erf (Cx + D) dx, (C.1)

where A, C, D and E are constants, we get

I = A
√

π

B
erf

(
D
√

B
B + C2

)
. (C.2)

Therefore, when we have
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we can make the substitution θ ≡ θ0 − θ0, giving us
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Here we have A = 1
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C.2 Mean of error function times Gaussian

We have the integral

I = A
∫ ∞

−∞
x exp

(
−Bx2) erf (Cx + D) dx, (C.6)

where A, C, D and E are constants. Ng and Geller (1969) provides integral tables for
error functions, including one for the above integral if E = 0. But no integral is given for
the full integrand. Moreover, we can not use integration by parts due to ambiguity of
the integration constant from

∫
exp

(
−Cx2) erf (Dx + E) dx. We therefore use the below

method.

Let us define
y = e−Bx2

erf (Cx + D) . (C.7)

Using the product rule, the differential is
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where F = B + C2, G = CD
B+C2 and H = BD2

B+C2 . This gives us an expression for our desired
integrand:
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Integrating over all space we get
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As a sanity check, this solution reduces to that of Ng and Geller (1969) when D = 0.

When we have B = 1
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C.3 Second-order moment of error function times Gaussian

We have the second-order moment integral given by
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∫ ∞
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where A, C, D and E are constants. Using the same method as section C.2, we define
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By differentiating, we get
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Integrating over all space therefore gives us
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C.4 Integrals for the mean fluid properties

The integrals necessary for finding the new mean potential temperature (θ
n+1
i ) in section

4.2.3 are presented here. The mean potential temperature of the region transferred from
fluid 0 to fluid 1 is given by
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By making the substitution θ0 = θ − θ
m
0 , I1 becomes

I1 =
∫ ∞
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Using identities C.2 and C.10 (in appendices C.1 and C.2 respectively), we get
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We can now write the mean of the transferred region as
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Applying the same procedure to the region transferred from fluid 1 to fluid 0 gives us:
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C.5 Integrals for the fluid variances

The integrals necessary for finding the new potential temperature variance ((θ′i
2)n+1)

in section 4.2.3 are presented here. The potential temperature variance of the region
transferred from fluid 0 to fluid 1 is given by
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By making the substitution θ0 = θ − θ
m
0 , I2 becomes

I2 =
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By using identities C.2, C.10 and C.16 (in appendices C.1, C.2 and C.3 respectively), we
get
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Integral C.22 is therefore given by
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By applying the same methods, we can also calculate the potential temperature variance
of the region transferred from fluid 1 to fluid 0
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By making the substitution θ1 = θ − θ
m
1 , I3 becomes
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By using identities C.2, C.10 and C.16 (in appendices C.1, C.2 and C.3 respectively), we
get
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Integral C.26 is therefore given by
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Appendix D

Conditionally averaging high

resolution data

By conditionally averaging resolved fields at cell centre values (based on the w = 0 ms−1

fluid filter from equation 4.1, for example), we get a “zig-zag-like” boundary between
fluids (see figure D.1.a). For the rising bubble test case in section 4, the resolved
simulation has 200 cells in the horizontal, meaning the volume fraction (σi) will be
incremented by factors of 1/200 between vertical levels. These discontinuous jumps in
volume fraction can cause noise in other fields, especially if these fields are dependent
on the gradient of the mass or volume fraction. Here we propose a method for approx-
imating the volume fraction for cells which intersect the fluid interface for smoother
conditionally averaged volume fraction fields.

Let us assume that we have a cell with cell-centre position xc, vertical velocity wc

and gradient∇w. The cell also has vertices xv,k, where k is the vertex index.

For a point on the surface of the fluid interface, xw, the following statement for the
vertical velocity is true:

w(xw) = (xc − xw).∇w = 0. (D.1)

The above equation is satisfied using

xw = xc − wc
∇w
|∇w|2 . (D.2)

The vertical velocities at the cell vertices are:

w(xvk) = (xv,k − xw).∇w. (D.3)

If the product of any two vertex vertical velocities is negative (meaning a positive and
negative w) then the fluid interface intersects the cell.

122



123

We calculate the distance of each vertex to the fluid interface using

dk =

∣∣∣∣(xv,k − xw).
∇w
|∇w|

∣∣∣∣ . (D.4)

The mean distance of vertices with negative vertical velocities to the fluid interface is
then

Dw− =
1

Nw−
∑

k where w(xvk )≤0
dk, (D.5)

and the mean distance of vertices with positive vertical velocities is

Dw+ =
1

Nw+
∑

k where w(xvk )>0
dk, (D.6)

where Nw− and Nw+ are the number of vertices with negative and positive vertical ve-
locities respectively. We can then use these mean distances to approximate the volume
fraction of the cell:

σ0 =
Dw−

Dw− + Dw+
, (D.7)

σ1 =
Dw+

Dw− + Dw+
. (D.8)

Note that this is much simpler than calculating the volume each side of the interface for
an arbitrary shaped cell.

Figure D.1 shows how the filter using equation D.7 (figure D.1.b) improves the
smoothness of the conditionally averaged volume fraction field relative to the basic fluid
filter from equation 4.1 (figure D.1.a). Figure D.2 compares the mass transfer analyses
defined in section 4.1.4 using the standard w = 0 ms−1 filter (a) and the smoother filter
(b). We note that there are sharp spikes in the diagnosed mass transfer profile in figure
D.2.a (left). These spikes occur when a cell in the resolved simulation switches sign of the
vertical velocity from time level n to n + 1, which causes a switch in fluid label for that
cell. As there are only 200 cells in a horizontal layer, the change in the volume fraction
is ∆σi = ±1/200. This is a significant change when observing changes of the order 10−3

like in figure D.2.a. To counter this issue, we apply the smoother conditional averaging
condition at the fluid boundaries using equation D.7 (figure D.2.b). The spikes above
z = 5 km are no longer present, but the diagnosed transfer terms are still able to capture
the movement of the fluid interfact in this region. Note that higher resolution single-
fluid simulation could also be used for smoother conditionally averaged variables, but
this would require a considerable increase in computational cost to achieve switches of
σi less than 10−3.
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Volume fraction profiles at t = 100 s
a) Without smoothing b) With smoothing

Figure D.1: The volume fraction fields for the conditionally averaged rising bubble test case
at t = 100 s, where the downdraft volume fraction is given in blue and the updraft volume
fraction in red. Panel a shows the volume fractions by using the w = 0 ms−1 filter only whereas
smoothing has been applied in panel b (according to equation D.7) by approximating where the
interface intersects the cells.
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Mass transfers, t = 100 s

a) Using sharp fluid interface at w = 0 ms−1

b) Using smooth fluid interface with∇w

Figure D.2: The mass transfers for fluid 1 produced by MT1-MT4 over one timestep (∆t = 1 s) at
various times. Also shown are the transfer needed to obtain the masses from the resolved filtered
single-fluid test case (left). Gains in mass for fluids 0 and 1 are given by the blue and red regions
respectively.
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