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Anthropogenic forcings have reduced the likelihood of heavy precipitation in 34 
southern China like the 2019 March-July event by about 60% 35 

 36 

 37 
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Introduction  39 

During March to July 2019, southern China witnessed an extraordinarily long rainy season that 40 

was the 3rd wettest on record with total precipitation (1,303 mm) exceeding the climatological 41 

(1961-2010) average by 281 mm (Fig. 1a). The so-called ‘first rainy season’ (FRS), normally 42 

spanning from April to June, is the main contributor (40%-50%) to annual precipitation totals 43 

over southern China and dominates in the rainfall variability there (Gu et al., 2018). Heavy 44 

precipitation can cause flooding and landslides, resulting in huge economic losses (Field C.B. 45 

et al., 2012).  46 

 47 

Southern China, home to the megacities like Guangzhou and Shenzhen, is highly populated, 48 

meaning a high exposure of population and infrastructure to precipitation extremes and 49 

resultant hydrological hazards (Burke and Stott, 2017; Li et al., 2018; Zhang et al., 2020). During 50 

6-13 June 2019, over 6 million people across several southern China provinces were affected 51 

by heavy rains, floods and landslides. These extremes caused at least 91 deaths, collapsed over 52 

19,000 houses, damaged around 83,000 houses, and affected 419,400 hectares of crops (China 53 

Ministry of Emergency Management, 2020). The direct economic loss was estimated to be 54 

more than 20 billion RMB (equivalent to 3 billion USD) (China Ministry of Emergency 55 

Management, 2020). Understanding the driver for precipitation extremes is a key step toward 56 

formulating adaptation and mitigation strategies. This study aims to shed light on this scientific 57 

question by addressing potential anthropogenic influences on the probability of extremely wet 58 

seasons similar to the March-July 2019 event in this region. 59 

 60 

Data and Methods: 61 

The March-July 2019 extreme precipitation event was bounded by 22°-28°N, 110°-120°E over 62 

southern China (Fig. 1a). Quality-controlled daily rainfall over 2,400 meteorological stations 63 

(Shen et al., 2010) during 1961-2019 were provided by the China National Meteorological 64 

Information Center. March-July 2019 precipitation at most rain-gauges in this region was 65 

around 150 mm (1mm/day) larger than normal (Fig. 1a). 66 

 67 

Raw gauge observations were interpolated onto the 0.56° x 0.83° (same as model resolution) 68 

by using bilinear interpolation. These gridded values were area-weight averaged to obtain 69 

regional seasonal total precipitation time-series. Then precipitation time-series anomalies 70 

were calculated and the positive anomaly of 1.84 mm/day for the March-July 2019 event was 71 

used as the threshold (Fig. 1b) for the subsequent attribution analyses. 72 
 73 
The HadGEM3-GA6 model (Ciavarella et al., 2018) at an N216 resolution of 0.56° x 0.83° was 74 

applied to investigate the role of anthropogenic forcings on the changing risks of the 2019-like 75 
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seasonal precipitation extremes over southern China. The model outputs include all-forced 76 

simulations (historical) conditioned on the observed sea surface temperatures (SST) and sea 77 

ice (HadISST (Rayner et al., 2003)) and natural simulations (historicalNat) with anthropogenic 78 

signals removed from observed SSTs and with preindustrial forcings. Both historical and 79 

historicalNat ensembles consist of 15 members during the historical period (1961-2013), and 80 

525 members for 2019. Accordingly, occurrence probabilities and resultant attribution 81 

conclusions are conditioned on the 2019 SST patterns. The 1961-2010 climatology was 82 

constructed from the 15-member ensembles.  83 
 84 
The Coupled Model Intercomparison Project Phase 5 (CMIP5) models were also included to 85 

further corroborate the attribution results. Since the historical runs terminate at the end of 86 

2005, the CMIP5 historical runs were extended through 2006 with the Representative 87 

Concentration Pathways 8.5 (RCP8.5) runs. This is because the projected greenhouse gas 88 

forcings of RCP8.5 is more consistent with the present realization than the other scenarios 89 

(Peters et al., 2013). RCP8.5 simulations for 2009–2028 are used as All and natural-only forcing 90 

runs for 1961-1980 are used as Nat (see Table. ES1 for more details). The selection of time 91 

periods for both CMIP5 All and Nat simulations is to avoid impacts from major volcano 92 

activates like 1991 eruption of Mount Pinatubo. Note that, unlike the HadGEM3-GA6 93 

simulations based on 2019 SSTs, the CMIP5 simulations encompasses a wide range of ocean 94 

states. Consequently, the event probabilities estimated hereafter are differently conditioned, 95 

such that the results from the two datasets will not be directly comparable. 96 
 97 
A Kolmogorov–Smirnoff (K-S) test was applied to test if the distributions of the observed and 98 

simulated precipitation anomalies during 1961-2010 are from the same population (Table. 99 

ES1). The occurrence probability of events with equivalent or heavier precipitation than the 100 

2019 event (anomaly of 1.84 mm/day with respect to the 1961-2010 climatology) in the entire 101 

HadGEM3-GA6 historical and historicalNat (or CMIP5 All and Nat) ensembles are indicated as 102 

PALL and PNAT respectively, and the risk ratio (RR) is computed from PALL/PNAT. The RR 103 

uncertainty with 90% confidence interval (90% CI) was estimated by identifying the empirical 104 

5th and 95th percentile amongst 1,000-times resampling of model ensemble members by using 105 

Monte Carlo bootstrapping procedure (Christidis et al., 2013). Doing each bootstrap, model 106 

ensemble simulations are randomly resampled with replacement to get a set of new data with 107 

the same length as the original. Note that precipitation anomalies estimated from each model 108 

were calculated with their own 1961-2010 climatology, serving to remove the model 109 

climatological mean bias (Zhang et al., 2020). 110 

 111 
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 112 
Fig 1: (a) Observed March–July 2019 precipitation anomalies (mm/5month) from rain gauges; 113 
(b) Time series of observations and simulated ensemble means of precipitation anomalies 114 
(solid lines), and uncertainty bounds of 15 members of HadGEM3-GA6 and 53 members of 115 
CMIP5 spread shown as pink and blue shading, respectively. (c) Probability density functions 116 
for the precipitation anomalies in the study region during March-July from 1961 to 2010 117 
constructed with data from the HadGEM3-GA6 historical experiments (red) and OBS (green). 118 
(d) SLP (shading) and 850-hPa wind (vector) anomalies from NCEP reanalysis in March–July 119 
2019. All anomalies are relative to 1961–2010 climatology. The grey box in (a) and (d) marks 120 
the study region. 121 
 122 

Results and Discussions:  123 

The domain-averaged seasonal precipitation during March-July 2019 was 1.84 mm/day larger 124 

than the 1961-2010 climatology (Fig. 1b), equivalent to a 1-in-28-yr event in the 1961-2019 125 

observations. This prolonged extreme seasonal precipitation event was mainly due to the early 126 

onset (by 28 days) and late cessation (by 22 days) of the first rainy season (CMA, 2020). 127 

 128 

The event was associated with an anomalous negative sea level pressure (SLP) covering 129 

southern China (Fig. 1d) and anomalous westerlies in the southwest of the center of the East 130 

Asian westerly jet stream at 200-hPa (Fig. ES1d), indicating an enhanced and southward 131 

displaced East Asian westerly jet stream in 2019. This anomalous circulation strengthens the 132 

high-level divergence and is conducive to the enhancement of deep convection and 133 

precipitation in southern China. The western Pacific subtropical high is enhanced and 134 
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extended to the southwest (Fig. ES1c). This is accompanied by 850-hPa westerly and 135 

southwesterly wind anomalies over southern China and the northeastern portion of Indochina 136 

Peninsula (Fig. 1d), which enhances the climatological mean southwesterlies in southern China 137 

(Fig. ES1f). The wind anomalies further enhance the water vapor transport from the Indochina 138 

Peninsula (Fig. ES1b). This produces anomalous moisture flux convergence over southern 139 

China (negative values in Fig. ES1e), providing a favorable moisture environment for abundant 140 

precipitation. Meanwhile, the anomalous southwesterlies advect warm air toward southern 141 

China. With more evaporation from land, increased water vapor is further enhanced. These 142 

conditions are consistent with previous studies finding that above-normal FRS precipitation is 143 

often associated with an enhanced and southwestward-extended western Pacific subtropical 144 

high and an enhanced Asian westerly jet (Zhang et al., 2009; Gu et al., 2018). 145 

 146 

Evaluation of the HadGEM3-GA6 simulations was carried out to see if this model could 147 

accurately reproduce the characteristics of precipitation in the study region. The distributions 148 

of observed and simulated precipitation anomalies (Fig. 1c) during March-July in 1961–2010 149 

cannot be distinguished based on the K-S test (P-value=0.54; Table. ES1). Note that while 150 

precipitation anomalies are reasonably simulated, the HadGEM3-GA6 overestimates actual 151 

precipitation values. Moreover, both the HadGEM3-GA6 and CMIP5 models overestimate of 152 

seasonal precipitation variability (figures omitted), leading to the underestimation of return 153 

periods for the 2019-like precipitation event, particularly for the HadGEM3-GA6 (Table. 1). 154 

These results are consistent with the precipitation variability maps shown in Knutson and Zeng 155 

(2018). 156 

 157 

The probability density functions (PDFs) of the 2019-like persistent precipitation events from 158 

both models show the historical simulations shifting toward drier rainy seasons compared to 159 

the historicalNat simulations (Fig. 2a, c). This gives the estimated risk ratio of 0.43 [90% CI: 160 

0.31, 0.57] and 0.38 [90% CI: 0.32, 0.44] for CMIP5 and HadGEM3-GA6 ensembles respectively 161 

(Table. 1), which implies the anthropogenic forcings have reduced the likelihood of 2019-like 162 

extreme seasonal precipitation event over southern China by around 60%. Most of the best 163 

estimate of RR values of individual CMIP5 models are less than 1, except the GFDL-ESM2M 164 

and GISS-E2-H model (Fig. ES2). Moreover, the changes in return periods also demonstrate 165 

that the 2019-like prolonged rainy seasonal precipitation occurs less frequent due to 166 

anthropogenic influences and it changes from 1-in-4-yr event for historicalNat simulations to 167 

1-in-9-yr event for Historical simulations (Fig. 2b,d; Table. 1). Although the HadGEM3-GA6 168 

2019 simulations are atmospheric model simulations and conditional to 2019 SST pattern, 169 

their attribution results are consistent with the CMIP5 results which takes into account the 170 

variability in SST patterns. 171 
 172 
The results are consistent with the findings in Zhang et al. (2020) that anthropogenic forcings 173 
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reduced the probability of long-lasting heavy rainfall in central western China. The reduced 174 

probability of persistent heavy rainfall due to anthropogenic forcings could be mainly due to 175 

increased aerosols in the climate system (Song et al., 2014; Li et al., 2015; Zhang and Li, 2016; 176 

Burke and Stott, 2017). Specifically, by scattering and absorbing solar radiation, aerosols can 177 

induce surface cooling through aerosol-radiation interactions, and therefore can lead to 178 

reduced precipitation by increasing atmospheric stability. Aerosols also interact directly with 179 

cloud by serving as cloud condensation nuclei or ice nuclei, leading to changes in cloud 180 

radiative properties and reducing precipitation efficiency (Rosenfeld et al., 2008). In addition, 181 

increased aerosols can weaken land-sea thermal contrast and therefore lead to weakening of 182 

the monsoon circulation and reduced precipitation over monsoon regions (Dong et al., 2019; 183 

Zhou et al., 2020). The impacts of anthropogenic forcings on changing risks of persistent 184 

precipitation events are also emphasized by the findings in Ji et al. (2020). They demonstrated 185 

that the anthropogenic-induced climate change has reduced the likelihood of extreme 186 

flooding by around 34% over the Yellow River basins during summer, consistent with our result. 187 

In addition, Lu et al. (2020) used HadGEM3-GA6 to reveal that anthropogenic forcings have 188 

reduced precipitation in favor of severe drought development during May-June over 189 

southwestern China. 190 
 191 
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 192 
Fig 2: Probability density functions of (a) HadGEM3-GA6 and (c) CMIP5 All (2009-2028) and 193 
Nat (1961-1980) ensembles simulations of 2019 March-July precipitation anomalies 194 
(mm/day) in the study region. Return period for the (b) HadGEM3-GA6 and (d) CMIP5 All 195 
and Nat ensemble simulations. Each marker represents an ensemble member, and the green 196 
and red lines are return period for the historical and historicalNat, respectively. The errors 197 
bars indicate the 90% confidence interval using bootstrap resampling by 1,000 times. (e) 198 
Best estimates (blue lines) and 90% confidence intervals (aqua shadings) of risk ratio for 199 
CMIP5 & HadGEM3-GA6. 200 
 201 
 202 
 203 
 204 
 205 
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 206 
Table 1: The best estimate and 90% confidence intervals of return period and risk ratio 207 
estimated with HadGEM3-GA6 and CMIP5 models. 208 

Models 
Return Period (yrs) 

(90% CI) 
Risk Ratio 
(90% CI) 

HadGEM3-GA6 
historical 8.78(6.12, 13.17) 

0.38(0.32, 0.44) 
historicalNat 3.31(2.83, 4.35) 

CMIP5 
All 15.79(9.46, 33.10) 

0.43(0.31, 0.57) 
Nat 6.95(5.48, 9.92) 

 209 
 210 

Conclusions 211 

Using large ensembles of HadGEM3-GA6 and CMIP5 models, anthropogenic influences on 212 

changing risks of the 2019 March-to-July-like extreme rainy seasonal precipitation in southern 213 

China were quantified. Results based on these two models consistently indicate similar cases 214 

are less likely to occur in the current climate compared to the natural world. Specifically, 215 

anthropogenic forcings have made the probability of an extreme seasonal precipitation event 216 

like 2019 approximately 60% less likely.217 



BAMS Explaining Extreme Events of 2019 

   
 

Acknowledgements 218 

This study was conducted during the Operational Attribution Workshop at Sun Yat-Sen 219 

University, jointly sponsored by the National Key R&D Program (2018YFC1507700), the UK-220 

China Research & Innovation Partnership Fund through the Met Office Climate Science for 221 

Service Partnership (CSSP) China as part of the Newton Fund, and the Natural Science 222 

Foundation (NSF) of China (41975105), RL was funded by the National Key R&D Program 223 

(2017YFA0605004) and the NSF of China (41991254), DL was funded by the NSF of China 224 

(41706019) and the Strategic Priority Research Program of the Chinese Academy of Sciences 225 

(XDB42000000), NN was funded by the NSF of China (41905101) and the Fundamental 226 

Research Funds for the Central Universities (20lgpy25), ST, BD, & FL. were supported by the 227 

UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for 228 

Service Partnership (CSSP) China as part of the Newton Fund. 229 
 230 
 231 
  232 



BAMS Explaining Extreme Events of 2019 

   
 

References 233 

 234 
Burke, C., Stott, P., 2017. Impact of anthropogenic climate change on the East Asian summer 235 

monsoon. Journal of Climate, 30(14): 5205-5220.  236 
China Ministry of Emergency Management, 2020. 2019 Top 10 natural disasters in China, 237 

https://www.mem.gov.cn/xw/bndt/202001/t20200116_343570.shtml, Accessed 13 238 
April 2020 239 

Christidis, N., Stott, P.A., Scaife, A.A., Arribas, A., Jones, G.S., Copsey, D., Knight, J.R., Tennant, 240 
W.J., 2013. A new HadGEM3-A-based system for attribution of weather-and climate-241 
related extreme events. Journal of Climate, 26(9): 2756-2783.  242 

Ciavarella, A., Christidis, N., Andrews, M., Groenendijk, M., Rostron, J., Elkington, M., Burke, C., 243 
Lott, F.C., Stott, P.A., 2018. Upgrade of the HadGEM3-A based attribution system to 244 
high resolution and a new validation framework for probabilistic event attribution. 245 
Weather and climate extremes, 20: 9-32.  246 

CMA, 2020. China Climate Bulletin 2019. China Meteorological Administration, 20 pp.  247 
Dong, B., Wilcox, L.J., Highwood, E.J., Sutton, R.T., 2019. Impacts of recent decadal changes in 248 

Asian aerosols on the East Asian summer monsoon: roles of aerosol–radiation and 249 
aerosol–cloud interactions. Climate Dynamics, 53(5-6): 3235-3256.  250 

Field C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., M.D. Mastrandrea, K.J.M., G.-251 
K. Plattner, S.K. Allen, M. Tignor , (eds.), a.P.M.M., 2012. Managing the Risks of 252 
Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge 253 
University Press, Cambridge, UK, 582 pp.  254 

Gu, W., Wang, L., Hu, Z.-Z., Hu, K., Li, Y., 2018. Interannual Variations of the First Rainy Season 255 
Precipitation over South China. Journal of Climate, 31: 623-640. DOI:10.1175/JCLI-D-256 
17-0284.1 257 

Ji, P., Yuan, X., Jiao, Y., Wang, C., Han, S., Shi, C., 2020. Anthropogenic Contributions to the 2018 258 
Extreme Flooding over the Upper Yellow River Basin in China. Bulletin of the American 259 
Meteorological Society, 101(1): S89-S94.  260 

Knutson, T.R., Zeng, F., 2018. Model assessment of observed precipitation trends over land 261 
regions: Detectable human influences and possible low bias in model trends. Journal 262 
of Climate, 31(12): 4617-4637.  263 

Li, C., Tian, Q., Yu, R., Zhou, B., Xia, J., Burke, C., Dong, B., Tett, S.F., Freychet, N., Lott, F., 2018. 264 
Attribution of extreme precipitation in the lower reaches of the Yangtze River during 265 
May 2016. Environmental Research Letters, 13(1): 014015.  266 

Li, X., Ting, M., Li, C., Henderson, N., 2015. Mechanisms of Asian summer monsoon changes in 267 
response to anthropogenic forcing in CMIP5 models. Journal of Climate, 28(10): 4107-268 
4125.  269 

Lu, C., Chen, R., Jiang, J., Ullah, S., 2020. Anthropogenic influence on 2019 persistent drought 270 
in southwestern China. Bulletin of the American Meteorological Society, 101(1): S65-271 
S70.  272 

Peters, G.P., Andrew, R.M., Boden, T., Canadell, J.G., Ciais, P., Le Quéré, C., Marland, G., 273 
Raupach, M.R., Wilson, C., 2013. The challenge to keep global warming below 2 °C. 274 
Nature Climate Change, 3(1): 4-6. DOI:10.1038/nclimate1783 275 



BAMS Explaining Extreme Events of 2019 

   
 

Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., 276 
Kaplan, A., 2003. Global analyses of sea surface temperature, sea ice, and night marine 277 
air temperature since the late nineteenth century. Journal of Geophysical Research: 278 
Atmospheres, 108(D14). DOI:10.1029/2002jd002670 279 

Rosenfeld, D., Lohmann, U., Raga, G.B., O'Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell, A., 280 
Andreae, M.O., 2008. Flood or drought: How do aerosols affect precipitation? science, 281 
321(5894): 1309-1313.  282 

Shen, Y., Xiong, A., Wang, Y., Xie, P., 2010. Performance of high-resolution satellite precipitation 283 
products over China. Journal of Geophysical Research: Atmospheres, 115(D2). 284 
DOI:10.1029/2009jd012097 285 

Song, F., Zhou, T., Qian, Y., 2014. Responses of East Asian summer monsoon to natural and 286 
anthropogenic forcings in the 17 latest CMIP5 models. Geophysical Research Letters, 287 
41(2): 596-603. DOI:10.1002/2013gl058705 288 

Zhang, J., Zhou, T., Yu, R., Xin, X., 2009. Atmospheric water vapor transport and corresponding 289 
typical anomalous spring rainfall patterns in China. Chin. J. Atmos. Sci., 33(1): 121-134.  290 

Zhang, L., Li, T., 2016. Relative roles of anthropogenic aerosols and greenhouse gases in land 291 
and oceanic monsoon changes during past 156 years in CMIP5 models. Geophysical 292 
Research Letters, 43(10): 5295-5301. DOI:10.1002/2016gl069282 293 

Zhang, W., Li, W., Zhu, L., Ma, Y., Yang, L., Lott, F.C., Li, C., Dong, S., Tett, S.F., Dong, B., 2020. 294 
Anthropogenic Influence on 2018 Summer Persistent Heavy Rainfall in Central 295 
Western China. Bulletin of the American Meteorological Society, 101(1): S65-S70.  296 

Zhou, T., Zhang, W., Zhang, L., Zhang, X., Qian, Y., Peng, D., Ma, S., Dong, B., 2020. The dynamic 297 
and thermodynamic processes dominating the reduction of global land monsoon 298 
precipitation driven by anthropogenic aerosols emission. Science China Earth Sciences, 299 
63(7): 919-933.  300 

 301 


