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Bear, Bull, Sidewalk, and Crash: The Evolution of the US Stock Market Using Over a 

Century of Daily Data# 

 

Abstract 

In this paper, we employ a four-state hidden semi-Markov model, which outperforms a hidden 

Markov model, to identify market conditions of the US stock market over the daily period from 

16th of February, 1885 to 4th of June, 2020. Our results indicate that the four hidden states 

represent bear-, bull-, sidewalk-, and crash-markets, which in turn appropriately capture the 

various major historical events during the period of study.  

Keywords: Dow Jones Industrial Average, Hidden (semi-)Markov Models, Stock Returns, 

Market Conditions 

JEL Codes: C22, G10 

 

1. Introduction 

Historically, the stock market of the United States (US) has been identified as a leading 

indicator for major macroeconomic variables, like metrics of economic activity, inflation and 

interest rates (Stock and Watson, 2003; Simo-Kengne et al., 2016; Plakandaras, 2017; 

Pierdzioch and Gupta, 2020). Naturally, appropriate modeling of the states of the equity market 

is of paramount importance for policymakers, as well as investors, especially at high-frequency. 

This is because, one can then use this information in mixed frequency data sampling (MIDAS) 

models to produce nowcasts and real-time predictions of the variables that are sampled at lower 

(monthly or quarterly) frequencies, such as output growth and inflation (Andreou et al., 2013; 

Breitung and Roling, 2015). Against this backdrop, we aim to identify the evolution of the 

market conditions of the daily returns of Dow Jones Industrial Average (DJIA) over its entire 

available history covering the period from 16th of February, 1885 to 4th of June, 2020. The DJIA 

time series data is employed due to the large number of observations available, which in turn 

allows us to avoid incorrect inference due to sub-sample-specific characteristics or inefficiency 

of estimates obtained from small samples, as stressed by Gebka and Wohar (2019). Note that 

these authors analysed the predictive power of the DJIA index returns, measured at different 

quantiles of its distribution, for future return distribution for the period of 26th May, 1896 to 

10th September, 2014, i.e., over a similar historical sample like ours.   

Market conditions have been studied mostly with Markov-switching techniques (e.g. see, 

Babalos et al., 2015). One interesting insight from the Markov-switching models is the number 

of time-periods that a market condition can last before it transits to another, with this time 

interval typically referred to as sojourn time.1 However, one limitation of Markov-switching 

models is that the distribution of sojourn time can only implicitly follow a geometric 

distribution, which sometimes may not fit financial returns well (Bulla and Bulla, 2006). As an 

extension of the classical Hidden Markov model (HMM), the hidden semi-Markov model 

(HSMM) can arbitrarily specify the sojourn time distribution. Given this, Bulla and Bulla (2006) 

show that the HSMM outperforms the HMM in the reproduction of the stylized facts of daily 

financial returns. Since then, the HSMM has been a prevailing tool to quantitively identify the 

market conditions based on the distributional properties of the hidden states (Lau et al., 2017; 

                                                     
# We would like to thank an anonymous referee for many helpful comments. However, any remaining 

errors are solely ours. 
1 In the literature, sojourn time is also known as duration time, occupancy time, and dwell time. 
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Liu and Wang, 2017a; Liu and Wang, 2017b; Apergis et al., 2019). We refer the reader to Yu 

(2010) for detailed literature reviews on the HSMM and alternative applications in this regard. 

In light of this, we also employ the HSMM model, for the first time in the literature, to analyze 

and identify hidden states of the DJIA returns, since its inception spanning 136 years of daily 

data. The remainder of the paper is organized as follows: Section 2 outlines the methodology, 

while Section 3 discusses the data and the empirical results, with Section 4 concluding the paper. 

 

2. Methodology 

The HSMM is based on two coupled processes, the state process {𝑆𝑡}𝑡=1
𝑇  and the observation 

process {𝑋𝑡}𝑡=1
𝑇 . The state process follows a semi-Markov chain2, which is constructed by an 

embedded first-order Markov chain with sojourn time distribution. {𝑆𝑡}𝑡=1
𝑇  is hidden and 

unobservable, and can only take finite state space, i.e. 𝑆𝑡 ∈ {1, 2, … , 𝐾} . The time series 

dependence of 𝑆𝑡 is characterized by the transition probabilities defined in Equation (1): 

 𝛾𝑖,𝑗 = 𝑃(𝑆𝑡+1 = 𝑗|𝑆𝑡+1 ≠ 𝑖, 𝑆𝑡 = 𝑖) with ∑ 𝛾𝑖,𝑗 = 1

𝑗≠𝑖

 𝑎𝑛𝑑 𝛾𝑖,𝑖 = 0. (1) 

Arranging all possible transition probabilities together into a matrix produces the transition 

probability matrix (TPM) with 𝐾 × 𝐾 dimension. It should be noted that the diagonal entries in 

the TPM of HSMM are all zero.  

Recall that the HMM can only have a geometric distribution for its sojourn time. Unlike 

the HMM, the sojourn time in the HSMM,  

 𝑑𝑗(𝜏) = 𝑃(𝑆𝑡+𝜏+1 ≠ 𝑗, 𝑆𝑡+𝜏−𝑣 = 𝑗, 𝑣 = 0, … , 𝜏 − 2|𝑆𝑡+1 = 𝑗, 𝑆𝑡 ≠ 𝑗), (2) 

can be controlled by any arbitrary distribution, as shown in Equation (2). Thus, the number of 

periods for the HSMM staying in a hidden state can be more flexible. 

The observation process {𝑋𝑡}𝑡=1
𝑇  is observable, and is generated based on the state process 

{𝑆𝑡}𝑡=1
𝑇 . Importantly, the observation at time 𝑡  only depends on the state at time 𝑡  via the 

component distribution, as indicated in Equation (3): 

 𝑏𝑗(𝑥𝑡) = 𝑃(𝑋𝑡 = 𝑥𝑡|𝑆𝑡 = 𝑗). (3) 

Bulla and Bulla (2006) provide the likelihood function for the observations modelled by 

the HSMM. Then the expectation-maximization (EM) algorithm (Baum et al., 1970) is used to 

estimate the model parameters in the HSMM. Based on the estimated parameters, the 

unobservable state process can be globally decoded by the Viterbi algorithm (Viterbi, 1967), 

which enable us to reveal the timing and the evolvement of the hidden states over the sample 

period. For practical settings, we follow Liu and Wang (2017a) to use the logarithmic 

distribution for the sojourn time distribution and the normal distribution for the component 

distribution, since they are straightforward to interpret, and the fact that convergence in the EM 

algorithm can be reached in general.  

 

                                                     
2 Only non-absorbing states are considered in this study. Additionally, we follow Bulla and Bulla (2006) 

to consider the right-censored HSMM, which does not require the assumption that last observation 

coincide with the exit of a state.  
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3. Data and Empirical Results 

Our analysis involves the log-returns of the DJIA over the daily period from 16th of February, 

1885 to 4th of June, 2020, with the start and end dates being governed by the availability of data 

at the time of writing this paper. The data is sourced from MeasuringWorth: 

https://www.measuringworth.com/datasets/DJA/index.php. We first present the model 

comparison of the HSMM and the HMM with different numbers of hidden states in Table 1. 

The four-state HSMM provides the best fit in terms of log likelihood, and is also the best model 

according to the principles of Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). We will proceed with this best model, i.e., the four-state HSMM, for the 

remainder of our analysis.  

Table 1. Model Comparison 

  Log Likelihood AIC BIC 

2-State HSMM -47747.15 95508.30 95567.93 

3-State HSMM -46666.82 93361.63 93480.91 

4-State HSMM -46356.25 92758.49 92954.44 

2-State HMM -47989.73 95993.45 96053.09 

3-State HMM -46739.19 93506.39 93625.66 

4-State HMM -46388.95 92823.90 93019.85 

 Note: The red bold number indicates the best metric for the criteria of model comparison.  

Next, Table 2 shows the estimation results of the four-state HSMM. State 1 can be 

interpreted as the crash-market because it has an extreme negative mean (-0.320) and the largest 

standard deviation (3.423), which typically covers the left tail of the return distribution. State 2 

is characterized by a negative mean (-0.069) and second largest standard deviation (1.467), and 

thus corresponds to the bear-market. State 3 has a positive mean (0.072) and the lowest standard 

deviation (0.489), which meets distributional properties of the bull-market. Lastly, State 4 has 

a mean insignificantly different from zero (t-statistic: 1.147) and the second lowest standard 

deviation (0.872), thus capturing the sidewalk-market. The information on sojourn time 

confirms our interpretation: the crash-market is typically short-lived with average sojourn time 

of 31 days, and the bear-market lasts slightly longer with 52 days on average, while the bull 

and the sidewalk markets tend to continue for over half a year (125 days). We have four 

observations by examining the TPM: 1) the bear-market always follows after the crash; 2) the 

bear-market can transit to the sidewalk-market (68.9%) and to the crash-market (31.1%), but it 

never directly evolves into the bull-market; 3) the bull-market is succeeded by the sidewalk-

market with a probability of 99.2%; and 4) the sidewalk-market is more likely to be followed 

by the bull-market (81.2%), rather than the bear-market (18.8%). 

Comparing with the existing relevant literature, our results in Table 2 provide some new 

insights. First, Liu and Wang (2017a, 2017b) only find three market conditions (bear, bull, and 

sidewalk), which is mainly due to the relatively shorter length of the sample periods in their 

studies. However, by using over a century of daily data, we find an additional market condition, 

namely the crash market, which has extremely negative mean and substantially large standard 

deviation. Second, although our estimation results on the bear-, bull-, and sidewalk-markets in 

the US are generally consistent with Liu and Wang (2017b), their study shows that the bear 

market is almost certain to be move to the sidewalk-market, while we find that the bear-market 

can also be transited to the crash-market. Third, the average sojourn time of the bear-, the bull-, 

and the sidewalk-markets in our estimation are modestly longer than those in Liu and Wang 

(2017b). 

https://www.measuringworth.com/datasets/DJA/index.php
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Table 2. Estimation of the Four-State HSMM 

    State 1 State 2 State 3 State 4 

Conditional 

 Distribution 

Mean -0.320 -0.069 0.072 0.028 

SD 3.423 1.467 0.489 0.872 

t-statistic -3.183 -1.457 2.233 1.147 

TPM 

From/To         

State 1 (Crash) - 100.0% 0.0% 0.0% 

State 2 (Bear) 31.1% - 0.0% 68.9% 

State 3 (Bull) 0.7% 0.0% - 99.2% 

State 4 (Sidewalk) 0.0% 18.8% 81.2% - 

Sojourn  

Time  

No. of Days 1161 5275 11191 19406 

No. of Times 38 102 89 153 

Average Sojourn Time 30.553 51.716 125.742 126.837 

 

By employing the Viterbi algorithm (Viterbi, 1967), we can globally decode the timing of 

the four hidden states over the entire sample period, which in turn is displayed in Figure 1. To 

facilitate studying the evolution of the states of the market, we collect the information of the 

four hidden states into different sub-periods based on the well-known historical events, as 

shown in Table 3. In the 19th century and before World War I (WWI) period, the market was 

mainly in the bull or sidewalk phases, with some occasional crashes.  In course of the WWI, 

the percentage of periods in the bull-market substantially decreased, while the percentage of 

other market conditions increased, and in particular the crash episodes. The economy started to 

recover after the WWI until the “Great Depression” in 1929, during which period there was no 

crash. Nevertheless, the market was in tremendous turmoil during the “Great Depression” with 

nine episodes of crashes, and no bull-market at all. Intriguingly, the market experienced a “U-

turn” since the start of World War II (WWII), with 1,263 days in the bull-market (out of 1,782 

days in total). This can be intuitively explained by the fact that, WWII largely helped the US to 

boost its economy. Over the long-lasting Cold War, the market had relatively lower percentage 

of time spent in the bear phase, and modestly higher percentage in the bull-market. In the pre-

Global Financial Crisis (GFC) period, the market seemed to be normal with similar pattern as 

observed in the 19th Century, pre-WWI, and post-WWI. Since then, the market encountered 

substantial turmoil during the GFC in 2008 (and the associated “Great Recession”), and the 

European sovereign debt crisis (ESDC) in 2010, featured with 10.2% of total days in the crash- 

and 32.7% in the bear-markets. In the recent years, the US stock market had gradual recovery 

with 51.5% of total days in the bear phase, until another dramatic shock due to the outbreak of 

COVID-19.    

 

4. Conclusion 

In this paper, we employ a HSMM on the DJIA returns covering the period of 16th of February, 

1885 to 4th of June, 2020. We find that a four-state HSMM model, with its hidden states 

corresponding to bear, bull, sidewalk, and crash markets, fits the data the best when compared 

to the version of the model with two and three hidden states. This model also outperforms the 

HMM model estimated with the same number of hidden states. Finally, when we analyze the 

evolution of the returns, our model is appropriately able to associate the four states with the 

various historical events, such as WWI, the “Great Depression” WWII, the Cold War, global 



5 

 

financial and European sovereign debt crises, and the recent outbreak of COVID-19. Given that, 

stock market movements act as the leading indicator for macroeconomic variables measured in 

lower frequencies, the high-frequency information contained in the hidden states identified by 

the HSMM model could be used by policymakers to nowcast the economy based on the MIDAS 

models, and investors to conduct timely portfolio allocations.   

 

Figure 1. Global decoding of the four-State HSMM 

 

 

Note: Upper panel: DIJA index along with the four decoded states; Lower panel: returns of DIJA along 

with the four decoded states. 
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Table 3. Information on the Four Hidden States in Different Sub-Periods 

Famous Event Start End Total Days 
  No. of Days   Percentage in Total Days   No. of Times 

  State 1 State 2 State 3 State 4   State 1 State 2 State 3 State 4   State 1 State 2 State 3 State 4 

19 Century 1885-02-16 1899-12-31 4488  
37 512 1302 2637  0.8% 11.4% 29.0% 58.8%  3 12 9 18 

Pre-WWI 1900-01-01 1914-07-27 4358  
29 675 1146 2508  0.7% 15.5% 26.3% 57.5%  3 17 14 27 

WWI 1914-07-28 1918-11-11 1176  
30 217 34 895  2.6% 18.5% 2.9% 76.1%  4 8 1 6 

Post-WWI 1918-11-12 1929-09-03 3229  
0 563 515 2151  0.0% 17.4% 15.9% 66.6%  0 5 4 9 

Great Depression 1929-09-04 1939-08-31 2981  
791 1045 0 1145  26.5% 35.1% 0.0% 38.4%  9 14 0 4 

WWII 1939-09-01 1945-08-15 1782  
11 47 1263 461  0.6% 2.6% 70.9% 25.9%  2 4 8 10 

Cold War 1945-08-16 1991-12-26 11878  
29 887 4802 6160  0.2% 7.5% 40.4% 51.9%  8 21 29 43 

Pre-GFC 1991-12-27 2007-01-31 3804  
54 640 941 2169  1.4% 16.8% 24.7% 57.0%  5 10 9 14 

GFC and ESDC 2007-02-01 2012-07-31 1386  
142 453 205 586  10.2% 32.7% 14.8% 42.3%  2 5 5 8 

Recent 2012-08-01 2020-06-04 1910   36 197 983 694   1.9% 10.3% 51.5% 36.3%   2 8 11 18 

Note: WWI denotes the first World War; WWII represents the second World War; GFC is the global financial crisis in 2008; ESDC stands for European sovereign debt crisis; State 1 is the 

crash-market, State 2 is the bear-market, State 3 is the bull-market, and State 4 is the sidewalk-market. 
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