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ABSTRACT: In this study, tropical cyclones (TCs) over the western North Pacific (WNP) and North Atlantic (NA)
basins are analyzed in seasonal forecasting models from five European modeling centers. Most models are able to capture
the observed seasonal cycle of TC frequencies over both basins; however, large differences for numbers and spatial track
densities are found. In agreement with previous studies, TC numbers are often underestimated, which is likely related to
coarse model resolutions. Besides shortcomings in TC characteristics, significant positive skill (deterministic and probabilis-
tic) in predicting TC numbers and accumulated cyclone energy is found over both basins. Whereas the predictions of TC
numbers over the WNP basin are mostly unreliable, most seasonal forecast provide reliable predictions for the NA basin.
Besides positive skill over the entire NA basin, all seasonal forecasting models are skillful in predicting the interannual TC
variability over a region covering the Caribbean and North American coastline, suggesting that the models carry useful
information, including for adaptation and mitigation purposes ahead of the upcoming TC season. However, skill in all fore-
cast models over a smaller region centered along the Asian coastline is smaller compared to their skill in the entire WNP
basin.

KEYWORDS: Tropical cyclones; Forecast verification/skill; Seasonal forecasting

1. Introduction

Every year, tropical cyclones (TCs) are associated with
casualties and high economic costs, due to the high wind
speeds, storm surges, and large rainfall amounts associated
with them (Pant and Cha 2019). This is especially the case for
highly populated regions of the Caribbean, North America,
and the coastline of Asia. For example, between 1984 and
2015 China experienced economic losses of roughly 6.9 billion
dollars (USD) per year on average related to tropical cyclones
(Wang et al. 2016).

Given the high socioeconomic impact of these events, there
is a large interest and demand in skillful predictions of TC
numbers and their intensities ahead of the upcoming season.
Several studies have investigated the ability of dynamical
models to predict TC interannual variability on seasonal time
scales (e.g., Chen and Lin 2013; LaRow et al. 2010; Zhao et al.
2010). One of the earliest attempts was made by Vitart and
Stockdale (2001) using the ECMWF model. They found high

correlations between observed and forecasted seasonal TC
numbers over the western North Pacific (WNP) and North
Atlantic (NA) basins. However, in their study the hindcast
period was limited to 1991–99. More recently TCs have been
analyzed in the U.K. Met Office seasonal forecast systems.
For GloSea5 data from 1996 until 2009, Camp et al. (2015)
found significant positive correlation between observed and
simulated interannual TC frequency and accumulated cyclone
energy (ACE; Saunders and Lea 2005) in the North Atlantic,
western Pacific, Australian region, and South Pacific.

The well-known advantages of using multimodel ensembles
(MMEs) over single-model ensembles has motivated further
studies of TCs in seasonal forecasting MMEs. Vitart (2006)
assessed the representation of TCs in seven coupled ocean–at-
mosphere models from the DEMETER (Palmer et al. 2004)
project and found for the period from 1987 to 2001 significant
positive correlations for TCs over the NA, the eastern North
Pacific (ENP), andWNP ocean basins for some models. Using
three models for which extended data from 1959 to 2001 were
available they also showed that the skill for TC numbers
varies throughout the hindcast period, which the author
argues may be associated with changes in ENSO variability
and improving ocean initial conditions through the period.
However, recent studies using coupled and atmosphere-only
century long seasonal hindcasts suggest that multidecadal var-
iability in skill could also be physically based as found for the
North Atlantic Oscillation and ENSO (Weisheimer et al.
2017, 2020). Multidecadal variability of tropical cyclone fre-
quencies has been further discussed in Fink et al. (2010) and
Caron et al. (2015). Vitart et al. (2007) analyzed the skill of
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three seasonal forecast models within the European Seasonal
to Interannual Prediction (EUROSIP) system (Stockdale
2013) in simulating TC variability over the North Atlantic
during 1993–2006 using deterministic and probabilistic skill
measures. Besides confirming earlier findings of high correla-
tions between observed and predicted TC numbers over the
NA basin, they also reported that the EUROSIP system was
able to successfully distinguish the exceptional hurricane season
of 2005 and the average TC season of 2006. More recently, an
extensive study of the predictability of tropical cyclones over
the North Atlantic using four seasonal forecast models from the
North American Multi-Model Ensemble (NMME)-Phase II
has been carried out by Manganello et al. (2019). While con-
firming results from Vitart (2006) and Vitart et al. (2007) on
generally moderate to high skill over the North Atlantic basin,
they show that the respective models are most skillful over the
western tropical North Atlantic and Caribbean. Furthermore,
high fluctuations in skill are found on decadal time scales, which
supports results presented in Vitart (2006).

One main shortcoming of current and past seasonal fore-
casting systems is their relatively coarse horizontal model res-
olution, which is usually on the order of 50 km or larger. The
effect of increased model resolution on tropical cyclone prop-
erties has been investigated in various studies (e.g., Roberts
et al. 2020; Murakami et al. 2015; Manganello et al. 2012),
which have shown that enhanced resolution results in
improvements of TC frequencies and intensities. The impact
of resolution in seasonal forecast models has been investi-
gated by Manganello et al. (2016) using a series of hindcasts
performed with ECMWF’s coupled model system at different
resolutions. In general, it was found that skill for ACE, and to
a lesser degree also for TC numbers, increases with resolu-
tion. However, in another study using the U.K. Met Office
GloSea5 seasonal prediction model, increased model resolu-
tion did not lead to improvements in forecast skill (Scaife et al.
2019).

In addition to the impact of increased model resolution, TC
characteristics and their predictability are also affected by
other model dependencies. For example, the study of Camp
et al. (2019) used two versions of the U.K. Met Office’s sea-
sonal forecast model GloSea5 with the same resolution but
different dynamical cores and differences in the physics
schemes. While they found significant skill for TCs over the
western North Pacific for one of the model versions (Glo-
Sea5-GA3), no such skill was found for the other model ver-
sion (GloSea5-GC2). Feng et al. (2020) showed that the
limited skill of GloSea5-GC2 for TCs in the northeast WNP is
related to the overestimation of the negative TC–ENSO tele-
connection in this model.

In the past, several different schemes have been devel-
oped and applied to objectively identify tropical cyclones in
various datasets (e.g., Befort et al. 2020; Camargo 2013;
Walsh et al. 2013; Ullrich and Zarzycki 2017). Studies using
more than one detection scheme have found large differ-
ences in TC numbers, suggesting that the methods used to
identify TCs in gridded datasets can introduce another
source of uncertainty (e.g., Bell et al. 2019; Horn et al. 2014;
Murakami 2014).

In Europe, several national weather centers provide opera-
tional seasonal forecasts, including forecasts of TC activity.
Furthermore, a multimodel based tropical cyclone forecast
system for the North Atlantic can be found at https://
seasonalhurricanepredictions.bsc.es/. Studies on the level of
skill of European models in simulating tropical cyclones
either have focused on a single model (e.g., Camp et al. 2015,
2019) or are based on multimodel ensembles using older sea-
sonal forecast systems (e.g., Vitart 2006; Vitart et al. 2007).
Recently, the Copernicus Climate Change Service (C3S)
multimodel seasonal forecasting system has been established
(Brookshaw 2017), succeeding the EUROSIP system. C3S
currently provides seasonal forecasts from five different Euro-
pean institutions, as well as forecasts from four other forecast-
ing systems.

In this study, we analyze Northern Hemisphere tropical
cyclones with an emphasis on the western North Pacific and
North Atlantic in six European seasonal forecasting systems
from five different centers: ECMWF, the U.K. Met Office,
Météo-France, the German Weather Service [Deutscher Wet-
terdienst (DWD)], and the Euro-Mediterranean Center on
Climate Change [Centro Euro-Mediterraneo sui Cambia-
menti Climatici (CMCC)]. TCs are detected using a state-of-
the-art detection scheme for the common 22-yr hindcast
period from 1993 until 2014 and the skill is assessed against
five different reanalyses and IBTrACS observations using
deterministic and probabilistic skill measures. The short hind-
cast period provides further motivation to use a multimodel
ensemble. Similar skill patterns in different single model
ensembles increases the confidence of the findings, as seen for
skill in extratropical cyclones over the North Atlantic in
Befort et al. (2019).

The manuscript is structured as following: the datasets and
methods are described in section 2. Results for TCs in C3S
seasonal forecast models are presented in section 3 and sum-
marized in section 4.

2. Data and methods

a. Data

The TC identification is performed for six different sea-
sonal forecast systems: the ECMWF SEAS5 (hereafter
referred to as ECMWF-SEAS5; Johnson et al. 2019), U.K.
Met Office GloSea5-GC2 (hereafter UKMO-GloSea5-GC2;
MacLachlan et al. 2015), Météo-France System 5 (hereafter
Météo-France-S5; Météo-France 2015), Météo-France System
6 (hereafter Météo-France-S6; Dorel et al. 2017), DWD
GCFS2.0 (hereafter DWD-GCFS2.0; Fröhlich et al. 2021),
and CMCC SPS3 (hereafter CMCC-SPS3; Gualdi et al. 2020).
Apart from structural differences between the models (e.g.,
physical parameterizations), these seasonal forecast systems
differ with regards to horizontal and vertical resolution (atmo-
sphere and ocean) and ensemble size (Table 1). Besides these
differences, all the seasonal forecasts provide 12-hourly data
on pressure levels at a 18 3 18 horizontal resolution and are
available for a common 22-yr hindcast period from 1993 until
2014. The main focus is on the North Atlantic (NA) and
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western North Pacific (WNP) basins as well as two subbasins
centered on the North American and Asian coastlines (Fig. 1).
Due to the differences in the seasonal cycle of TCs over both
basins, the active TC season for the WNP is taken as June–Oc-
tober (JJASO) and for the NA as July–October (JASO). To
ensure we use the same lead time for both basins, forecasts ini-
tialized in May for the WNP basin and in June for the NA basin
are analyzed.

Results from the seasonal forecast models are verified against
IBTrACS v4.0 observations (Knapp et al. 2010) and a set of
five different reanalyses: ERA-Interim (Dee et al. 2011), ERA5
(Hersbach et al. 2020), NCEP-CFSR (Saha et al. 2010),
MERRA-2 (Gelaro et al. 2017), and JRA-55 (Kobayashi et al.
2015) (see Table ST1 in the online supplemental material for
details). In this study, results for the seasonal forecasts will be
primarily compared to the mean of these five reanalyses. The
advantage of reanalyses over observations for validation is that
the TCs are identified in the same way as for the forecasts while
for observations operational procedures are different. It has
been previously shown that reanalyses have limitations to repre-
sent TCs (Hodges et al. 2017). However, even though the limi-
tations found in reanalyses might to a large extent be due to
their resolution, there is also uncertainty in the observations of
especially weaker tropical storms. The limitations in both cur-
rent reanalysis and IBTrACS mean that the record of tropical
cyclones during the past has uncertainties in both TC intensity
and frequency. The use of multiple reanalyses is thought to
obtain more robust TC number statistics compared to using a
single reanalysis.

b. Tropical cyclone identification

In this study, we used an objective tracking algorithm based
on vorticity fields to identify tropical cyclones over the Northern
Hemisphere (Hodges et al. 2017). This is based on the vertical
average of vorticity at 850 and 700 hPa spectrally filtered to
remove the large-scale background (n # 5) and truncated to T63
spectral resolution with spectral tapering applied to remove the
small-scale noise and allow for more reliable tracking (in previous
studies the 600-hPa level is used as well; however, data on this
pressure level were not available for the seasonal forecast sys-
tems). Initially all vorticity maxima are tracked that exceed a
threshold in the filtered vorticity field of 53 1026 s21. The track-
ing is performed by first initializing a set of tracks based on a near-
est neighbor method, which are then refined by minimizing a cost
function for track smoothness subject to adaptive constraints
(Hodges 1995, 1999), with the constraints chosen to be suitable
for the 12-hourly time steps that are available in the archived

seasonal forecast data. Tracking is performed in the Northern
Hemisphere in the latitude band 08–408N. Following the tracking
the tracks are filtered to retain those with lifetimes$ 2 days (four
time steps) and additional fields are added to the tracks, including
the T63 vorticity (no background removal, no tapering) maxima
at all levels between 850 and 200 hPa (850, 700, 500, 400, 300, 200
hPa) using B-spline interpolation and steepest ascent maximiza-
tion within a 58 (geodesic) radius of the tracked center. Also
added to the tracks are the mean sea level pressure (MSLP)
minima within the 58 radius using the interpolation and steepest
descent minimization and the maximum 10-m wind speeds within
a 68 radius using a direct search of the grid point values.

The identification of TCs in the reanalyses differs slightly
from that used for the seasonal models as 6-hourly input data
have been used. However, to make all datasets comparable to
each other, the reanalysis tracks are subsampled by only using
the 0000 and 1200 UTC time steps.

The tropical cyclones are identified from among all 2-day
and longer tracks using the same criteria used in similar stud-
ies (Feng et al. 2020; Hodges et al. 2017; Roberts et al. 2020),
namely:

1) the T63 relative vorticity at 850 hPa must attain a thresh-
old of at least 6 3 1025 s21;

2) the difference in vorticity between 850 and 200 hPa (at
T63 resolution) must be greater than 6 3 1025 s21 to pro-
vide evidence of a warm core;

3) the T63 vorticity center must exist at each level between
850 and 200 hPa for a coherent vertical structure;

4) criteria 1–3 must be jointly attained for a minimum of two
consecutive time steps (one day) and only apply over the
oceans; and

5) tracks must start within 08–308N.

Spatial statistics for track and genesis densities and mean
intensities are computed from the tracks using spherical ker-
nel estimators (Hodges 1996).

c. Verification metrics

The individual model skill in simulating the interannual
variability of TC numbers over the different ocean basins is
measured using two deterministic scores: linear correlation
coefficients and root-mean-square error (RMSE). For these
skill measures, confidence intervals are estimated by ran-
domly sampling over years with replacement. If not otherwise
stated 10th and 90th percentiles of the resulting bootstrapped
distribution are shown. Significant positive correlations are
those for which the 10th percentile of the bootstrap

TABLE 1. Datasets used in this study.

Model Initial dates Atmosphere resolution Ocean resolution Ensemble size

ECMWF SEAS5 (ECMWF-SEAS5) May, June TCO319/L91 ≈ 32 km 0.258/L75 25
GloSea5-GC2 (UKMO-GloSea5-GC2) May, June N216/L85 ≈ 90 km 0.258/L75 28
Météo-France S5 (Météo-France-S5) May, June TL255/L91 ≈ 80 km 18/42 levels 15
Météo-France S6 (Météo-France-S6) May, June TL359/L91 ≈ 50 km 18/75 levels 25
DWD (DWD-GCFS2.0) May, June T127/L91 ≈ 100 km 0.48/L40 30
CMCC (CMCC-SPS3) May, June ≈110 km/L46 0.258/L50 40
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distribution is larger than 0; for RMSE significant values are
those for which the 90th percentile of the bootstrap distribu-
tion for the respective model is smaller than the RMSE of a
climatological forecast.

Besides these deterministic metrics, the value of the predic-
tion systems is assessed using the relative operating character-
istic area under curve (ROC-AUC) score, which measures
the model’s ability to discriminate between an event and a
nonevent. In this study events are defined as seasons with TC
occurrences above the upper tercile (active season) and sea-
sons below the lower tercile (inactive seasons), respectively.
The confidence of the ROC-AUC values is assessed by ran-
domly sampling over years (analog to correlation coefficients
and RMSE). The short hindcast period of only 22 years intro-
duces some problems as tercile boundaries might not be
uniquely defined due to the discrete nature of TC numbers.
This means that the number of active (inactive) seasons dif-
fers if they are defined as seasons with counts larger (smaller)
than the percentile or with counts larger than or equal to
(smaller than or equal to) the percentile. Here, we use what-
ever method (larger/smaller vs larger or equal/smaller or
equal) provides a value closest to a tercile frequency (33.3%).
For each bootstrap sample of observations, active seasons are
defined as the 7 years with highest TC counts and inactive sea-
sons as those with the lowest seven TC counts.

The models’ reliability is assessed using the spread-over-
error (SoE) metric, defined by the ratio of the square root of
the average variance of the ensemble over all years and the
RMSE of the ensemble mean (Fortin et al. 2014). A value of
1 indicates a perfectly reliable ensemble, and values below 1
an overconfident and values above 1 an underconfident
ensemble.

Several studies investigating tropical cyclones in models
and observations also analyze the accumulated cyclone energy
(ACE) in addition to tropical cyclone numbers (Saunders and
Lea 2005). Here, ACE is computed for the different regions
using the formula

ACE5 23 102 4
∑

i

∑

n
V2

max,

where Vmax is the maximum 10-m wind speed (in knots; 1 kt ≈
0.51 m s21) and the summations, i and n, are over all tracks
and track points within a region. ACE is scaled so as to repli-
cate 6-hourly sampling.

Over the different basins and subbasins, TC numbers are
determined for those storms with at least one time step in the
domain. For ACE only wind values for time steps for which
the storm is located within the domain are taken into account.

3. Results on tropical cyclones in seasonal forecasts

a. Climatological features

The observed (IBTrACS) seasonal cycle of tropical cyclone
genesis over the WNP basin is shown in Fig. 2a. Over this
basin, most tropical cyclones are observed during June to
October. The observed seasonal cycle is well captured by the
reanalyses and thus by the multimodel reanalyses (MMRs),
with a slight overestimation of the TC numbers over this
region. In contrast, differences are large for the six seasonal
forecast models initialized in May. Too many TCs are
detected in UKMO-GloSea5-GC2 and in Météo-France-S5,
whereas the numbers of TCs are underestimated in the
CMCC-SPS3 and DWD-GCFS2.0 forecasts. The models’ abil-
ity to capture the seasonal cycle, measured by the Spearman
rank correlation coefficient to the MMR mean from May to
October, indicates that despite their large biases, CMCC-
SPS3 and UKMO-GloSea5-GC2 perform best alongside
ECMWF-SEAS5. Both Météo-France models show the low-
est correlations, which is due to the large number of TC
events wrongly detected in October. Note however that these
correlations might be sensitive to small changes as only six
data points are considered in calculating the correlation
statistics.

Over the NA basin most tropical cyclones are observed
during July–October (Fig. 2b), which is again very well cap-
tured by the ensemble of reanalyses (MMR). All seasonal
forecast models initialized in June are able to capture the
observed seasonal cycle with (rank) correlations above 0.8.
Besides this good agreement in the seasonal cycle, UKMO-
GloSea5-GC2, ECMWF-SEAS5, and both Météo-France
models are also able to reasonably well simulate the number
of TCs over this basin. Similar to results over the WNP,
CMCC-SPS3 and DWD-GCFS2.0 substantially underestimate
the number of TCs over the NA. It is worth mentioning that
both these models have relatively coarse resolutions (see
Table 1) compared to the other systems, which might contrib-
ute to the underestimation of TCs as shown by previous

FIG. 1. The five basins used in this study, based on the IBTrACS definition; WNP is western North Pacific and NA is North Atlantic. Addi-
tionally, two subregions centered on the coastlines (but including ocean areas) are used: WNPcoast and NAcoast.
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studies (e.g., Roberts et al. 2020; Murakami et al. 2015). These
results for the NA basin are similar to those found for climate
simulations carried out with similar model versions presented
in Roberts et al. (2020) (their Fig. 9). The UKMO-GloSea5-
GC2 model simulates too many TCs in October compared to
observations, whereas the DWD/MPI-ESM1-2 model simu-
lates too few events during the entire season. However, a
direct comparison is impossible as the model setup is not iden-
tical between the simulations used in this study and those
used in Roberts et al. (2020).

The spatial TC track density pattern for the MMR over the
WNP during June–October shows that most TCs are found
over the South China Sea and west of the Philippines (Fig. 3a).
Interestingly all three models that overestimate the number of
TCs over the WNP (UKMO-GloSea5-GC2, Météo-France-S5,
and ECMWF-SEAS5) show a similar track density difference
pattern to the MMR (Figs. 3c,d,f). These models tend to simu-
late too many TCs over the subtropical western Pacific Ocean
(which is most pronounced in the UKMO-GloSea5-GC2
model), whereas north and south of this area TCs are generally
underestimated by the models compared to reanalysis. In con-
trast, the DWD-GCFS2.0, CMCC-SPS3, and Météo-France-S6
models underestimate TCs over almost the entire WNP basin,
with the largest biases found in the DWD-GCFS2.0 forecast sys-
tem. Over the North Atlantic basin, most models exhibit smaller
biases and their spatial distribution is heavily model dependent.
Comparing results for the MMR mean and IBTrACS observa-
tions over the NA basin shows a similar pattern though the maxi-
mum found west of the African coast in the MMRmean is much
reduced in the observations. This is probably related to the fact
that the precursor parts of the TC tracks are identified by the
objective algorithm in the reanalyses and forecasts used in this
study, whereas only that part of the TC life cycle that exceeds
tropical storm intensity is usually included in observations.

The intensity distributions for both basins based on the
TC’s minimum MSLP and maximum 10-m wind speeds
(WIND10M) are shown in Fig. 4. As discussed in Hodges et al.
(2017), current reanalyses datasets do not fully capture the
observed characteristics of tropical cyclones, which is partly
related to their resolution so that strong TC intensities are

underestimated compared to observations. This is also the
case for all the seasonal forecast models, with all of them
underestimating maximum intensity even compared to reanal-
yses. This is in line with all models having resolutions, which
are often coarser than the reanalysis (and could also be
affected as the C3S forecast model data are only available
on a 18 3 18 horizontal grid). For MSLP over the WNP
(Fig. 4c) all models show similar intensity distributions with
more frequent weak TCs (with a minimum MSLP of about
1000 hPa), a better fit to observations for TCs with minima in
the range of 970–990 hPa, and an underestimation of TCs
with higher intensities. Only the DWD-GCFS2.0 model is dif-
ferent, which shows a substantial overestimation of TCs with
lower intensity up to about 990 hPa and a substantial underes-
timation of stronger TCs (in line with DWD-GCFS2.0 having
the coarsest resolution). Over the NA the underestimation is
similar in magnitude for DWD-GCFS2.0 and CMCC-SPS3,
whereas the other four seasonal forecast models simulate a
higher frequency of TCs with stronger intensities (Fig. 4d). For
WIND10M the model distributions differ more drastically
between each other. Whereas CMCC-SPS3 and DWD-
GCFS2.0 show the largest underestimation over both basins (in
accordance to results found for MSLP), Météo-France-S6 per-
forms best for TC maximum 10-m wind speeds, especially over
the North Atlantic. Over theWNP, ECMWF-SEAS5 also simu-
lates a relatively high number of intense TCs compared to the
rest of the seasonal forecast systems.

Overall, results on climatological characteristics of TCs in
the analyzed seasonal multimodel ensemble indicate large dif-
ferences between the single model ensembles. Biases in TC
numbers and intensities are likely to be related to the model
resolutions but might also be linked to other model compo-
nents (see section 4).

b. Interannual predictability

After assessing the degree to which current seasonal fore-
cast models are able to simulate observed climatological char-
acteristics of tropical cyclones, their ability to predict the
observed interannual variability of TCs is analyzed. Due to

FIG. 2. Tropical cyclone seasonal cycle (genesis months) over (a) the WNP basin and (b) the NA basin. Colored lines indicate the differ-
ent seasonal forecast models, whereas the dotted line shows IBTrACS observations, and the solid black line shows the five-model multi-
model reanalysis (MMR) mean. The spread of the reanalysis is shown as gray shading. The verification months are also indicated by the
green shading. Temporal correlations between models and MMR over the verification months are displayed in parentheses in the legend.
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the limited sample size of only 22 years, several skill scores
(deterministic and probabilistic) are considered (see section 2b).
Figure 5a shows the linear correlation coefficients for tropical
cyclone numbers between each seasonal forecast system and the
MMR mean. Correlation coefficients for TC numbers over the
WNP region for the JJASO season are moderate with values
around 0.6 for all forecast models. However, skill decreases dras-
tically for the region centered on the western North Pacific coast
(WNPcoast). Correlations for the best models (DWD-GCFS2.0,
CMCC-SPS3, Météo-France-S6) are around 0.4, whereas for the
remaining models (ECMWF-SEAS5, UKMO-GloSea5-GC2,
Météo-France-S5) skill is even lower. For UKMO-GloSea5-
GC2 these results are in line with those from Feng et al. (2020),
who found major model deficiencies in simulating the observed
TC–ENSO teleconnections over the WNP and also over a
region similar to the WNPcoast region used in this study. For
the North Atlantic basin during the JASO season, skill mea-
sured by the linear correlation coefficient is around 0.5 for most
models, with the DWD-GCFS2.0 model showing the lowest
score (0.4). In contrast to the WNP basin, skill for all models is
also significantly positive for the NAcoast subregion, which
includes the Caribbean and parts of the North American coast-
line. This is especially the case for ECMWF-SEAS5 with a cor-
relation of about 0.7 for the NAcoast, which is the highest single-
model score for the NA. This suggests that seasonal forecasts
could provide valuable information in predicting TC numbers for
the upcoming season. However, the interannual TC variability of
the ensemble mean shows large differences between the

models, with all of them underestimating the observed vari-
ability, which is especially pronounced in the DWD-GCFS2.0
model (Figs. S1–S4 in the online supplemental material).

Further to the skill of the single seasonal forecast systems,
the skill of the combined multimodel ensemble (MME) is
derived. Even if not always providing the highest skill (as,
e.g., over the NAcoast region), it is found that the MME pro-
vides significantly positive correlation coefficients for all
regions analyzed here. However, it should be kept in mind
that correlation coefficients are sensitive to ensemble size
(Kharin et al. 2001), which differs between the systems (see
Table 1) and is much larger for the MME than for the individ-
ual systems (163 members). Hence, the skill of the MME is
not directly comparable to skill derived for the individual sea-
sonal forecast systems.

Several studies use the TC ACE per season instead of or in
addition to TC numbers (e.g., Camp et al. 2015). It is found
that using ACE a similar skill pattern to that using TC num-
bers is found with the largest correlation coefficients found
for the WNP, NA, and NAcoast regions and lower skill over
the WNPcoast (Fig. 5b; see Figs. S5–S8 in the online
supplemental material for individual time series for different
basins). Over the WNP the correlation coefficients for ACE
tend to be higher than for TC counts, which could potentially
be linked to a stronger ENSO–ACE relationship in the WNP
[see Camp et al. (2015) and references therein for more infor-
mation]. The difference in skill between using numbers and
ACE is probably partly related to the fact that ACE depends

FIG. 3. Absolute TC track density for (a),(i) a mean of five reanalyses (MMR) and (b),(j) IBTrACS. Also shown are (c)–(h) differences
between each C3S seasonal model and the MMR over the WNP basin for JJASO (May start dates) and (k)–(p) differences between each
C3S seasonal model and the MMR over the NA basin for JASO (June start dates). Track densities are given in units of number per season
per ensemble member per unit area (unit area equivalent to a 58 spherical cap). The MMR represents the average over the five individual
reanalysis datasets.
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on both the length of the tracks and the intensity of TCs, for
which major differences between the models are found
(Fig. 4). However, it must be kept in mind that the uncertainty
of correlation coefficients for ACE and TC numbers is large
(see uncertainty range in Figs. 5a,b) and that compared to
these uncertainties the differences between correlations found
for ACE and TC numbers for individual systems are small.
However, given the short hindcast period from 1993 until
2014 (22 years) it is reassuring that the different skill metrics
derived for TC numbers and ACE provide a similar picture,
which increases the trustworthiness and robustness of these
results.

The RMSE of the ensemble mean for TC numbers of each
forecast system compared to the MMR is shown in Fig. 6. For
the WNP it is found that all forecast systems have significantly
lower RMSE values compared to a climatological forecast,
with the lowest errors found for the MME. In accordance
with low correlation coefficients, RMSEs are larger for the
WNPcoast region, with no model showing significantly lower
RMSE values than climatology. For the NA basin and
NAcoast region, about half of the models show significantly
lower errors compared to climatology, especially ECMWF-
SEAS5 over the NAcoast and Météo-France-S5 over the
whole NA basin. It is worth mentioning that the results

depend on the reference used, as we generally find larger
RMSE values for all basins if we compare against IBTrACS
instead of the MMR.

The ability of a seasonal forecast system to discriminate
between active and inactive seasons can be measured by the
ROC-AUC score. Here, an active season is defined as an upper
tercile and an inactive season is defined as a lower tercile event.
Consistent with results for the correlation score and RMSE, it is
found that the ROC-AUC scores are highest for the WNP, NA
and NAcoast regions, whereas the ROC-AUC scores are
smaller for the WNPcoast region (Fig. 7). The ROC-AUC
scores are particularly high for active seasons over the NA and
NAcoast regions, whereas the ROC-AUC scores are lower for
inactive seasons, which is especially the case for UKMO-Glo-
Sea5-GC2 over the NAcoast. To understand differences between
active and inactive seasons, we analyze the time series of TC
counts over the NAcoast region for each model (Fig. S2). In
reanalyses the most active seasons are 1995, 1998, 1999, 2005,
2008, 2010, and 2011 and the most inactive seasons are 1993,
1994, 1997, 2006, 2007, 2009, and 2013. Here we focus on the rep-
resentation of active and inactive seasons in UKMO-GloSea5-
GC2 and ECMWF-SEAS5. For both models the percentage of
ensemble members correctly predicting an (observed) active sea-
son is on average larger compared to the average percentage of

FIG. 4. Intensity distributions for the MMR (solid black; range given as gray shading), IBTrACS observations (black dotted), and six dif-
ferent seasonal forecast models (colored lines). Results are shown for (a),(c) the WNP during JJASO using May start dates and (b),(d) the
NA during JASO using June start dates. Intensity is measured using (top) 10-m wind speeds (WIND10M) and (bottom) mean sea level
pressure (MSLP).
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ensemble members correctly predicting an (observed) inactive
season. The UKMO-GloSea5-GC2 model especially fails to pre-
dict the inactive TC seasons of 2013 and 2006, whereas the inac-
tive seasons in 2006 and 2007 are not well predicted by
ECMWF-SEAS5.

Next, the reliability of the different seasonal forecast sys-
tems is assessed using the spread-over-error statistic. As
explained in section 2, for a perfectly reliable ensemble the
average ensemble spread matches the error of the ensemble
mean. An overdispersive (underconfident) forecast is thus a
forecast with a too large spread compared to the error,
whereas an underdispersive (overconfident) forecast is charac-
terized by a too small spread compared to its error. For TC

numbers, we find that over the WNP most models are overdis-
persive (underconfident) except DWD-GCFS2.0 and CMCC-
SPS3, with the latter being the only model which is not signifi-
cantly unreliable over the WNP and WNPcoast regions
(Fig. 8a). A different result is found over the NA region,
where the reliability for all models except CMCC-SPS3 and
DWD-GCFS2.0 cannot be distinguished from a perfect value
of 1. Reliability for the ACE is different compared to that
found for TC numbers, as all models tend to be overconfident
(underdispersive) over the WNP and NA regions (Fig. 8b).
The ECMWF-SEAS5 and Météo-France-S6 systems over the
WNP and WNPcoast are the only forecasts whose reliability
measured by the SoE cannot be distinguished from the

FIG. 5. (a) Anomaly correlation coefficients (ACC) for TC numbers over WNP, NA, WNPcoast, and NAcoast. Significance is tested
using a 1000 sample bootstrap, where whiskers indicate the 10th and 90th percentile. Filled box-and-whisker plots indicate models with
significant positive correlations. The dot indicates the linear correlation coefficient between the respective model and the MMR, whereas
the star indicates the linear correlation between IBTrACS and the seasonal forecast model. (b) As in (a), but for accumulated cyclone
energy (ACE).

J OURNAL OF CL IMATE VOLUME 351392

Brought to you by UNIVERSITY OF READING | Unauthenticated | Downloaded 03/28/22 03:42 PM UTC



reliability of a perfect system. It should be noted that reliabil-
ity can potentially be improved by applying calibration meth-
ods as discussed in Camp et al. (2018).

4. Summary and discussion

In this study, the ability of six European seasonal prediction sys-
tems (DWD-GCFS2.0, CMCC-SPS3, ECMWF-SEAS5, UKMO-
GloSea5-GC2, Météo-France-S5, and Météo-France-S6) to repre-
sent observed characteristics of tropical cyclones over the NA and
WNP has been assessed for the common hindcast period from
1993 until 2014. These characteristics include climatological aspects
such as temporal and spatial variability and TC intensities as well
as the skill of the models to simulate the interannual TC frequency
and accumulated cyclone energy. Due to differences in the
observed seasonal cycle characteristics, the season from June to
October (JJASO) is used for the WNP, whereas July–October
(JASO) is used for the NA basin. To compare the level of skill
over both ocean basins, May start dates are used for verification of
TCs over the WNP and June start dates for the NA. Thus, we use
a lead time of 1 month for each basin. Besides the main NA and
WNP basins, smaller subregions along the coastlines named
NAcoast and WNPcoast are also used. The seasonal forecasts are
verified against the multi-reanalysis mean consisting of five differ-
ent reanalyses (ERA5, ERA-Interim, NCEP-CFSR, JRA-55, and
MERRA-2) as well as IBTrACS observations.

We find large differences between the seasonal forecasting
systems in representing the climatological properties of tropical
cyclones. The UKMO-GloSea5-GC2 and Météo-France-S5
models overestimate TC occurrences over the NA and WNP
basins, whereas DWD-GCFS2.0 and CMCC-SPS3 underesti-
mate TCs over these two basins. Besides large differences

between the models with regards to seasonal mean TC num-
bers, the ability of the models to simulate the observed seasonal
cycle varies considerably between the models, with the UKMO-
GloSea5-GC2 and ECMWF-SEAS5 models showing the best
performance. Apart from structural differences between the
models and resolutions, they also differ with regard to the ini-
tialization techniques used. For example, the UKMO-GloSea5-
GC2 model uses a lagged initialization technique, in contrast to,
say, the ECMWF model. The impact of the lagged start dates is
not the focus of this study; however, lead time–dependent
biases have been analyzed using hindcasts initialized in May,
June, July, and August for all forecast systems. These show
rather similar biases in terms of track densities for all the initial-
izations as those already shown (see Figs. S9 and S10 in the
online supplemental material), indicating that the different ini-
tialization techniques only contribute in a limited way to the
mean seasonal TC biases found in the models (given the rela-
tive proximity in time of the different lagged start dates; e.g., a
maximum of 3 weeks apart for UKMO-GloSea5-GC2).

All seasonal forecast systems have difficulties in represent-
ing the observed intensity distribution over the WNP and NA
basins, with too few strong TC events simulated. Intensity
biases are largest for the two models with the lowest resolu-
tion, CMCC-SPS3 and DWD-GCFS2.0, which is in line with
findings from previous studies (e.g., Roberts et al. 2020).
However, ECMWF-SEAS5 and UKMO-GloSea5-GC2 also
include stochastic schemes to represent model uncertainty.
Stochastic schemes have been found to have a positive impact
on tropical SSTs in seasonal predictions (e.g., Befort et al.
2020; Weisheimer et al. 2014), and a recent study by Vidale
et al. (2021) suggests that such schemes can have a similar
effect on the frequency of TCs to increasing the horizontal

FIG. 6. RMSE for WNP, NA, WNPcoast, and NAcoast. Regions, seasons, and confidence intervals as in Fig. 5. Filled box-and-whisker
plots indicate models with RMSE values, which are significantly lower than the RMSE value of a climatological forecast (dotted line). The
dot indicates the RMSE between the respective model and the MMR, whereas the star indicates the RMSE between IBTrACS and the
seasonal forecast model.
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resolution. The low computational costs of such stochastic
schemes provides motivation for further research to assess if
such schemes improve TC characteristics in seasonal forecasts.

We assess the skill of all six seasonal forecast systems in
predicting TCs using several deterministic and probabilistic
metrics. The use of several measures is motivated by the short
common hindcast period of only 22 years as it is assumed that
positive significant skill in several metrics is an indicator of
more robust skill results. Significant positive correlations for
both tropical cyclone counts and ACE are found over the NA
and WNP basins for all models, in line with previous studies
(e.g., Camp et al. 2015; Manganello et al. 2019). We find high
correlations over the NAcoast region, including the Carib-
bean, which agrees with results from Manganello et al. (2019),
who found that the MME consisting of models from the
NMME-Phase II show significant positive correlations for TC
counts over the Caribbean. Moderate correlation coefficient
values are also found for the WNP basin. However, in con-
trast to results for the NA basin, skill for all models is largely
reduced for the WNPcoast regions compared to the whole
WNP basin. This is especially pronounced for the UKMO-
GloSea5-GC2 model, in agreement with the results presented
in Camp et al. (2019) and discussed in Feng et al. (2020), who
showed that the limited skill of GloSea5-GC2 for TCs in the

northeast WNP is related to the overestimation of the nega-
tive TC–ENSO teleconnection. Even though our analysis has
revealed large differences for TC numbers and intensities
between the different models, this seems not to translate into
differences in skill. However, as intensities and numbers are
largely biased in the models, calibration techniques are neces-
sary to obtain meaningful TC counts and intensities.

In addition to correlation coefficients, RMSEs are calcu-
lated for each region and each forecast system. These
results support those for correlation coefficients, with sig-
nificantly lower RMSEs for all models than for a climato-
logical forecast over the WNP and for some models over
the NA and NAcoast regions. Over the WNPcoast region
RMSEs for all models are similar to the RMSE from a cli-
matological forecast. Besides these deterministic skill met-
rics, the ability of the models to discriminate between
active and inactive seasons has been assessed. Again, these
results indicate that the models are skillful over the NA,
NAcoast, and WNP but less skillful for the WNPcoast
region. Our results for the NA are in line with those from
Vitart et al. (2007), who showed the EUROSIP ensemble
was able to discriminate between the hurricane seasons of
2005 and 2006. Interestingly, some of the models analyzed
here are less skillful to simulate TC activity during 2005

FIG. 7. ROC scores for active (upper tercile; red) and inactive season (lower tercile; blue) for the WNP, WNPcoast, NA, and NAcoast
regions. Seasons and confidence intervals as in Fig. 5. Filled box-and-whisker plots indicate models with ROC scores, which are signifi-
cantly larger than using a climatological forecast (dotted line).
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and 2006 (see Fig. S1). In this study, especially the low TC
activity during 2006 is not well captured by the models.
However, results presented in Vitart et al. (2007) are based
on 2 years only. Here the full common hindcast period
from 1993 until 2014 has been analyzed, which provides a
much more robust assessment of the models ability to dis-
criminate between active and inactive seasons.

The reliability of the different seasonal forecast ensembles
has been assessed using the spread-over-error (SoE) statistic.
For TC counts, it is found that most models over the NA and
NAcoast are reliable in a statistical sense, meaning that the
average ensemble spread matches the error of the ensemble
mean (Fortin et al. 2014). In contrast, most models are under-
confident over the WNP and WNPcoast regions. For ACE
most models are overconfident meaning that ACE values
from reanalyses are often outside the predicted range of the

models. Exceptions are the ECMWF-SEAS5 and Météo-
France-S6 models over the WNP and WNPcoast regions with
these ensembles being reliable.

Overall, these results suggest that the six seasonal forecasting
models used in this study provide useful information, especially
over the North Atlantic basin but also over a subregion cen-
tered over the Caribbean. All skill scores suggest that seasonal
forecasts over this region may be an useful tool for potential
end users and for decision making processes. In contrast, skill
over the WNPcoast region is much smaller for all systems.

One shortcoming of this study is the short time period ana-
lyzed, which is due to the common hindcast period of all mod-
els. Previous studies have shown large decadal-scale variability
of seasonal forecast models with regard to TC frequency (e.g.,
Manganello et al. 2019). Recently developed century-long sea-
sonal hindcasts (Weisheimer et al. 2017, 2020) might prove to

FIG. 8. (a) Spread-over-error statistic (SoE) for TC numbers over WNP, NA, WNPcoast, and NAcoast. Regions, seasons, and confi-
dence intervals are as in Fig. 5. Filled box-and-whisker plots indicate models with an SoE value that cannot be distinguished from 1 (perfect
reliability). (b) As in (a), but for ACE.
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be a useful tool to evaluate long-term variability in skill and
also how far this variability is related to changes in observation
density and/or in predictive skill of atmospheric and oceanic
large-scale conditions. This study has not investigated the causes
for the presence or nonexistence of skill. On seasonal time
scales ENSO is known to heavily affect TC intensity and fre-
quency over the WNP and NA basins (e.g., Camargo et al.
2010). Thus, future research on this topic should also assess the
ability of the models to simulate ENSO events as well as the tel-
econnections to TCs in both basins [as was done for the
UKMO-GloSea5-GC2 model in, e.g., Camp et al. (2015) and
Feng et al. (2020)].
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