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Evidence for similar structural brain anomalies in
youth and adult attention-deficit/hyperactivity
disorder: a machine learning analysis
Yanli Zhang-James 1, Emily C. Helminen2, Jinru Liu3, The ENIGMA-ADHD Working Group, Barbara Franke 4,5,6,
Martine Hoogman4,5 and Stephen V. Faraone 1,7

Abstract
Attention-deficit/hyperactivity disorder (ADHD) affects 5% of children world-wide. Of these, two-thirds continue to
have impairing symptoms of ADHD into adulthood. Although a large literature implicates structural brain differences
of the disorder, it is not clear if adults with ADHD have similar neuroanatomical differences as those seen in children
with recent reports from the large ENIGMA-ADHD consortium finding structural differences for children but not for
adults. This paper uses deep learning neural network classification models to determine if there are neuroanatomical
changes in the brains of children with ADHD that are also observed for adult ADHD, and vice versa. We found that
structural MRI data can significantly separate ADHD from control participants for both children and adults. Consistent
with the prior reports from ENIGMA-ADHD, prediction performance and effect sizes were better for the child than the
adult samples. The model trained on adult samples significantly predicted ADHD in the child sample, suggesting that
our model learned anatomical features that are common to ADHD in childhood and adulthood. These results support
the continuity of ADHD’s brain differences from childhood to adulthood. In addition, our work demonstrates a novel
use of neural network classification models to test hypotheses about developmental continuity.

Introduction
Attention-deficit/hyperactivity disorder (ADHD) is a

common disorder affecting 5% of children and 3% of
adults1. It is associated with injuries2, traffic accidents3,
increased health care utilization4,5, substance abuse6,7,
criminality8, unemployment1, divorce9, suicide10,11, AIDS
risk behaviors12, and premature mortality13. The cost of
adult ADHD to society is between $77.5 and $115.9 bil-
lion each year14.
ADHD is highly heritable (76% heritability)15. A role for

brain dysfunction in the etiology of ADHD was suspected
for some time by the mechanism of action of the

medications that treat ADHD16, as well as supported by
findings from genome-wide association studies
(GWAS)17,18. Although many prior magnetic resonance
imaging (MRI) studies had suggested structural and
functional differences between the brains of children with
ADHD and those without19–25, machine learning (ML)
MRI diagnostic classifiers for ADHD have reported
inconsistent results. We and others have examined this
body of literature and reported large variations in choices
of MRI modalities, ML models, cross-validation and
testing methods, and sample sizes. Notably, many prior
studies risked data leakage and accuracy inflation by using
cross-validation methods without an independent test
set26. In addition, the largest dataset that ML classifiers
have used thus far was the ADHD-200 Global Competi-
tion dataset consisting of 776 children, adolescents, and
young adults (7–21 years old27). Only a few studies
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examined classifiers for adults with ADHD and they all
used extremely small datasets (<100 subjects28–30).
The Enhancing Neuro Imaging Genetics Through

Meta-Analysis (ENIGMA) ADHD Working Group cre-
ated a large collaborative dataset with sufficient power to
detect small effects. The ENIGMA-ADHD working group
found small, statistically significant sub-cortical volu-
metric reductions31, cortical thinning, and reduced sur-
face area32 to be associated with ADHD in children but
not adults. Two-thirds of youth with ADHD will continue
to have impairing symptoms of the disorder into young
adulthood and that persistence continues to decline with
age33. The term adult ADHD refers to childhood onset
ADHD that has persisted into adulthood, which is how it
is defined in DSM 5 and in the ENIGMA-ADHD studies.
The ENIGMA-ADHD study found small but significant
ADHD vs. control differences in regional volumes and
cortical thicknesses for children but not adolescents or
adults19,34,35. Other studies show that ADHD participants
whose brains become more neurotypical were more likely
than others to show remission of symptoms36,37. But,
although these longitudinal studies show reductions in
case vs. control differences, they also suggest that those
differences should be evident to some degree in cases that
persist into adulthood.
Although the expectation of finding substantial con-

tinuity between childhood and adult ADHD has been
widely accepted33,38,39 and recently confirmed by a large
GWAS40, this idea has been challenged41. Thus, given
these prior data and the controversy about the continuity
of ADHD into adulthood, we sought to test the idea that
the ADHD-associated volumetric reductions seen in
children with ADHD would be detected in adults with
ADHD by applying ML algorithms. Given that symptoms
and impairments persist into adulthood for most children
with ADHD42,43, we hypothesized that ADHD-related
brain structure differences in adults would be consistent
with those observed in children.

Materials and methods
MRI samples
The current study was approved by all contributing

members of the ENIGMA-ADHD Working Group, which
provided T1-weighted structural MRI (sMRI) data from
4183 subjects from 35 participating sites (by Aug. 2019).
Each participating site had approval from its local ethics
committee to perform the study and to share de-identified,
anonymized individual data. Images were processed using
the consortium’s standard segmentation algorithms in
FreeSurfer (V5.1 and V5.3)31. A total of 151 variables were
used including 34 cortical surface areas, 34 cortical thick-
ness measurements, and 7 subcortical regions from each
hemisphere, and intracranial volume (ICV). Subjects miss-
ing more than 50% of variables were removed. Remaining

missing values and outliers (outside of 1.5 times the inter-
quartile range (iqr 1.5)) were replaced with imputed values
using multiple imputation with chained equations in
STATA15. The final ML dataset consisted 4042 subjects
from 35 sites, among which 45.8% were non-ADHD con-
trols (n= 1850, male to female ratio (m/f)= 1.42) and
54.2% ADHD participants (n= 2192, m/f= 2.79). Ages
ranged from four to 63 years old; 60.7% were children (age
<18 years, n= 2454) and 39.3% were adults (age ≥18 years,
n= 1588). ADHD diagnosis was significantly biased by sex
(X2

(1)= 66.9, p < 0.0001), sites (X2
(1)= 146.73, p < 0.0001),

and age (X2
(1)= 4.28, p= 0.04).

To balance the confounding factors, we took the fol-
lowing steps. First, we randomly assigned samples to
training (~70%), validation (~15%), and test (~15%) sub-
sets within each diagnosis, sex, age subgroup (child vs.
adult), and site to ensure that the train/validation/test
subsets have the same composition of these variables.
Twelve sites that provided only cases or only controls
(total 203 subjects) were excluded during the initial train/
validation/test split because their samples cannot provide
an unbiased learning during the training and validation
steps. These samples were added to the test set for final
test evaluation. Supplementary Table 1 shows the sample
splitting from each site. Next, we balanced the training set
for the case and control groups within each sex, age, and
site subgroup by random oversampling of the under-
represented diagnostic group, a procedure commonly
used to deal with class imbalance. The resulting balanced
training set is described in Table 1. The validation and test
sets were not balanced by age, sex, and site, however due
to our sample splitting procedures, they contain the same
demographic samples as the training set. In addition, the
test set also contains samples from sites that had been
excluded from the training set due to not having a site-
specific control group.

Table 1 Training set sample characteristics after
balancing for age and sex.

Diagnosis Child (age <18) Adult (age ≥18)

Female Male Female Male

Control N of subjects 352 714 224 373

Mean age 11.3 11.6 31.9 28.1

SD of age 2.9 2.9 11.5 9.4

ADHD N of subjects 352 714 224 373

Mean age 11.0 11.8 32.2 28.8

SD of age 2.6 2.7 10.6 9.4

SD standard deviation, N total numbers.
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Feature preprocessing
The high correlation among the 151 MRI features

suggested the need for feature dimension reduction. Many
prior studies have opted for feature selection in which the
most important features were retained rather than using
all MRI features. Although this approach reduces the
numbers of input features, it does not remove the highly
correlated relationships among the selected features. As
prior MRI studies also suggested small but widespread
differences between children with and without ADHD, we
chose to use principal factors factor analysis (PFFA) for
dimension reduction. With varimax rotation, PFFA on
sMRI features of the training set identified 46 factors that
explained >90% of the variance. This means that the
reduced numbers of 46 non-correlated factors were able
to represent majority (>90%) of the variance within the
training dataset. We then computed factor scores for
subjects in the validation and test sets based on the
training set PFFA. We compared the original MRI and
PFFA features in a screening pipeline for nine different
ML models (see below) to determine which set of features
were better for the classifiers.

Machine learning framework
Our ML framework starts with a screening pipeline in

which nine different ML models were thoroughly eval-
uated. We used only training and validation sets for this
purpose and we also compared the results of the original
MRI features and the PFFA factors. Children and adults
were combined for the screening analysis. The screening
pipeline utilized Scikit‐Learn’s grid search algorithm44 to
search a large hyperparameter space for each of the
models (see Supplementary Fig. 1 for details on these
models and their hyperparameter spaces). We then
compared both the training and validation scores of all the
possible combinations of the hyperparameter sets. We
used the area under the receiver operating characteristic
(ROC) curves (AUC) as a measure of accuracy. To avoid
overfitting, we chose the model having the highest vali-
dation AUC and smaller training AUC. Because multi-
layer perceptron (MLP) neural network models were
found to be better than other models in meeting this
criterion, we used MLP in the following analysis.
More detailed hyperparameter tuning for MLP was

carried out using the Keras API (version 2.3.1), the Ten-
sorFlow library (version 1.14.0), and HyperOpt45. The
neural network hyperparameters and their spaces are: the
numbers of layers (1–3, model deteriorates quickly when
more than 3 layers were used), numbers of units in each
layer (4–500) and dropout rates in each layer (0.1–0.9),
learning rate (0.00001–0.01) and batch normalization size
(4–256). These hyperparameters were chosen for the
HyperOpt tuning because of their important role in
effective learning, avoiding local minimum and overfitting.

The numbers of layers and units determines the com-
plexity of the model. The ideal complexity of the neural
network ensures a converging model that was able to learn
the predictive features but not overfit the training exam-
ples. Early stopping was also implemented to avoid over-
fitting. We tested different activation functions (relu, selu,
tanh), and optimizers (Adam, SGD, RMSprop, Adagrad,
Adamax, Nadam). We used binary cross entropy as the
loss function. Best model architecture and hyperpara-
meters were chosen based on the lowest total validation
loss. Final test scores were obtained on the test set with
ensemble learning approach46. All ML algorithms were
written in Python 3.5.

Analysis pipeline
Our main analysis pipeline starts with two base models

that used data from the corresponding age groups during
the model training and validation phase and tested also on
data from their corresponding age groups. The child
model used only child samples during model training,
validation, and hyperparameter optimization, and tested
on child test set. The adult model, similarly, was trained
and validated on the adult samples and tested on the adult
test set. We examined models using MRI features only, as
well as those included age and sex information. We also
trained a combined model that uses all the training data
from both child and adult groups and compared the
performance with the age-specific models.
Next, we sought to determine if the model trained and

validated on the adult samples, the adult model, could be
used to predict child ADHD, and vice versa. We hypo-
thesized that if the ADHD vs. control sMRI differences
seen in children are also present in adult ADHD brains,
then the base models for each age group should be able
to predict ADHD in the other age group. To create the
largest test sets possible, we tested the child model on
all the adult samples, and the adult model on all the
child samples.

Model evaluation
The sigmoid function in the output layer of the neural

network generates a continuous score that assesses the
probability for each individual to be classified as ADHD.
We name this continuous output the brain risk score.
Using the brain risk scores, we calculated Cohen’s d effect
sizes for child and adult test sets. We computed ROC
curves and used the area under the ROC curve (AUC) as
our primary measure of accuracy. The AUC and its
confidence intervals were calculated in Stata 15 using the
empirical method and compared with nonparametric
approach by DeLong et al.47. We also computed
precision-recall (PR) curves and reported the area under
the PR curves, as well as the Brier loss for the final models
as measures of accuracy and goodness of fit.
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Results
The screening results (Supplementary Fig. 1) showed

that principal factors as input features greatly improved
the classifiers’ performance compared with original MRI
features, as demonstrated by higher validation AUCs
achieved in many models. Using principal factors, MLP
outperformed all other models and was chosen as the base
model and used in the following main analysis after
additional fine-tuning the hyperparameters. The final
MLP models’ hyperparameters were listed in Supple-
mentary Table 2.
Figure 1A (top portion) shows the test set AUCs (as dots)

and their 95% confidence intervals (as horizontal lines) for
the base models using only MRI factors. The model trained
and validated on child data predicted child ADHD with a
significant AUC 0.64 (95%CI 0.58–0.69). In contrast, the

model trained and validated on adult data was not sig-
nificant AUC (0.56, 95%CI 0.49–0.62, p= 0.057). ROC
curves for the two base models are in Supplementary
Fig. 2A. The difference between the two base models’
AUCs was not significant (X2

(1)= 3.4, p= 0.065). The areas
under the precision-recall curve (AUPRC) were higher for
the adult model (AUPRC= 0.74) than the child model
(AUPRC= 0.68). Using the model predicted brain risk
scores, we calculated the Cohen’s d effect sizes in the test
set to be 0.47 for child samples (95%CI: 0.27–0.68) and 0.15
(−0.08–0.39) for the adult samples.
After adding age and sex as predictors, the adult model

(Fig. 1B, top) increased the AUC to 0.62 (95%CI
0.56–0.69, p= 0.002). Although prediction AUC was now
significant, the increase from the base model without age
and sex was not statistically significant (X2

(1)= 2.01, p=
0.15). The AUPRC for the adult model also slightly
increased to 0.79. Adding age and sex as predictors to the
child model did not affect either the AUC, nor the
AUPRC. ROC curves of two models are plotted in Sup-
plementary Fig. 2B. The Cohen’s d effect sizes in the test
set were 0.48 for children (95%CI: 0.27–0.69) and 0.39
(0.15–0.63) for adults. All above models had similarly
small Brier scores (0.25).
The combined model with MRI features produced an

overall test AUC of 0.60 (95%CI 0.55–0.64). The test
AUC was 0.64 (95%CI 0.58–0.69) on the child subset
and 0.54 (95%CI 0.47–0.60) on the adult subset, com-
parable to those from the age-specific models. Similarly,
the combined model with MRI, age, and sex features
produced an overall AUC of 0.63 (95%CI 0.59–0.67).
The subset test AUC was 0.65 (95%CI 0.60–0.71) on the
child subset and 0.56 (95%CI 0.49–0.63) on the adult
subset, also statistically comparable to those of the age-
specific models.
Because the training samples had been balanced for age

and sex, these variables are not predictive of ADHD for
either the child or adult test sets. To verify this, linear
regression using only age and sex and their interactions to
predict ADHD in the child and adult samples resulted in
non-significant AUCs (child AUC 0.51, 95%CI: 0.45–0.57;
adult AUC 0.46, 95%CI: 0.39–0.53).

Tests of hypotheses
For models using only MRI features, neither the adult

nor child models were successful at predicting ADHD in
the other age group (Fig. 1A, bottom). However, the adult
model that used both MRI features and age and sex was
able to predict the child samples significantly (AUC=
0.60, 95%CI: 0.58–0.62, Fig. 1B bottom). The Cohen’s
d effect size for children, based on the adult model pre-
dictions, was 0.17 (95%CI: 0.10–0.24), smaller than those
predicted by their age-corresponding models. The child
model that used both MRI features and age and sex did

Fig. 1 Area under the receiver operating characteristic curve for
the test results. Area under the receiver operating characteristic
curve (AUC) accuracy statistics for the held-out test results were
plotted (as dots) with their 95% confidence intervals (as horizontal
lines). The vertical line at an AUC of 0.5 indicates a chance level of
diagnostic accuracy. If the 95%CI does not overlap with the 0.5 vertical
line, it indicates significant predictive accuracy. A AUC comparison of
the models using only MRI features. A AUC comparison of the models
using MRI features plus age and sex. In both A and B, the Top portion
shows the base models, where models were trained and validated in
child or adult samples and tested on their corresponding age groups;
Bottom portion tests the hypotheses that if model trained/validated
on child samples can also predict adult ADHD and vice versa. Note
that test sample consists of combined training, validation, and test
sets from the other age group because they are not used in the
model optimization and training.
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not significantly predict ADHD when applied to the adult
samples (AUC= 0.53, 95%CI: 0.49, 0.56, Fig. 1B bottom).
ROC curves of both models tested on the different age
groups are plotted in Supplementary Fig. 2C.

Discussion
Consistent with previous ENIGMA ADHD findings31,32,

we found that the ability of sMRI data to discriminate
people with and without ADHD is much stronger for
children than adults, which is consistent with a broader
literature showing that ADHD-associated structural brain
differences diminish with age19,34–37. While the ENIGMA
ADHD study did not find any significant differences
between ADHD and control subjects for adults, our adult
model did achieve a significant AUC 0.62 (95%CI
0.56–0.69) and a high area under the PR curve (AUPRC=
0.79). Consistent with the ENIGMA findings, our model-
predicted brain risk scores had a larger effect size for the
children than adults in both the models using MRI fea-
tures and those with age and sex added. Notably, our effect
sizes were two times greater than the largest of those
individual regions reported in prior ENIGMA ADHD
studies for both children (Cohen’s d=−0.21) and adults
(Cohen’s d=−0.16)31,32.
Only a handful of prior ML studies attempted to

classify ADHD from controls using only sMRI data.
Most used resting-state functional MRI (rs-fMRI), or rs-
fMRI in combination with another MRI modality,
sometimes including cognitive measurements such as
IQ. Many prior studies reported model performance on a
cross-validation dataset without using an independent
test set. We and many others have warned about the risk
of data leakage and model overfitting when using only
cross-validation without an independent test set26,48–51.
Among those that reported independent test results,
classification accuracies varied from 37 to 93%, with an
average of 68% (ref. 26). Notably, it is difficult to directly
compare the accuracy scores with our AUC scores since
many of these studies used imbalanced datasets. Never-
theless, one study, among those, reported classifiers built
with only sMRI features. In that study, Yoo and collea-
gues examined various combinations of fMRI, sMRI
features, and genetic data from a balanced cohort of 94
children and adolescents. The unimodal sMRI classifier,
using the cortical thickness and volumes, achieved an
accuracy of 69.4% and AUC 0.65 in a small independent
test set (18 ADHD and 18 typically developing chil-
dren)52. Although the AUC is comparable to our child
model, it is not clear how well this model would gen-
eralize to other samples given the extremely small
sample sizes in both training and test sets. Nevertheless,
the authors reported a better AUC (0.70) with a multi-
modal classifier built with features from both diffusion
tensor imaging and sMRI data52.

Although our results from the child and adult base
models show that sMRI data are not sufficiently predictive
to be useful in clinical practice, they provide crucial pieces
of evidence that will be useful in future attempts at pre-
dictive modeling. We are the first to confirm in the largest
possible adult ADHD MRI sample available, that adults
with ADHD differ significantly from adults without
ADHD on sMRI features. Only a few prior studies
attempted to classify adult ADHD from controls, but all
used extremely small dataset (<100 (refs. 28–30)). Although
these studies reported higher accuracies (74%–80%), all
were based on cross-validation results and none reported
prediction performance on independent test sets. The
improvements we found by adding age and sex to the
adult model indicate that these demographic variables
must moderate the predictive ability of sMRI features.
These demographics moderate the sMRI effects because
our regression models show that the demographic vari-
ables on their own have no predictive utility (which was
fixed in advance by balancing the case and control
training samples by age and sex). It is possible that there
are different age subgroups within the adult dataset
that demonstrate different patterns of MRI features. For
example, many regions of the brain, including prefrontal
cortex, do not fully mature until early adulthood, around
age 25 (ref. 53). Perhaps the age group “adults” should not
include developing brains prior to age 25. However, we
cannot assess for such age effects due to the sample sizes
of more refined age groups. Future work should recruit
more MRI data particularly for under-represented ado-
lescent and older adult age groups. We have also shown
that ML methods dramatically increase the ADHD vs.
Control effect size compared with the prior univariate
ENIGMA analyses.
The results from our hypothesis testing provide further

information that is useful in understanding the continuity
of child and adult ADHD. Consistent with our hypothesis,
the adult model, trained only on adult samples, sig-
nificantly predicted ADHD in the child samples. This
suggests that the adult model learned combinations of
structural features relevant for discriminating the sMRI
scans from children with and without ADHD. This
implies that some of ADHD’s sMRI differences that are
relevant for persistent cases are also relevant in childhood
(only some of which will be persistent into adulthood).
This conclusion must, however, be considered equivocal
because the child model did not successfully predict
ADHD in the adult samples. To resolve this issue, future
studies will need to find a way to better discriminate sMRI
features associated with the onset of ADHD and those
associated with the persistence of ADHD.
Our work should be interpreted in the context of several

limitations. First, because we combined data across many
sites, we inherit all the limitations of the original studies.
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Heterogeneity of methods across studies may have added
noise to the combined dataset that made it difficult to
discriminate the data from people with and without
ADHD. Second, we only used structural imaging data.
Incorporating other imaging modalities might provide
clearer results and conclusions. Third, we used pre-defined
structures from ENIGMA standard image processing
pipeline as features. It is possible that other methods such
as one using 3D images as input features, in a convolutional
neural network, would uncover useful features leading to
increased classification accuracy. However, the 3D images
are not available. Finally, our use of neural networks makes
it difficult to clarify the importance of each brain region in
the model’s algorithm.
Despite these limitations, we have shown that a neural

network approach is able to detect case-control sMIR
differences in adults with ADHD that could not be
detected with standard analyses. We have also provided
some evidence for the continuity of sMRI findings from
childhood into adulthood.
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