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Abstract

Here we investigate finite element techniques aimed at preserving the underlying geomet-
ric structures for various problems, and, in doing so, develop new geometric structure
preserving methods. We initially focus on systems of Hamiltonian ODEs, examining the
place of existing methods as geometric numerical integrators. We then develop a new
geometrical finite element method for Hamiltonian ODEs with a view to generalise it to
be the temporal discretisation of a space-time adaptive finite element method.
We go on to investigate how well finite element methods can preserve the structure of
Hamiltonian PDEs, which are a large class of physically relevant PDEs possessing a con-
served physical invariant, the Hamiltonian functional, which often physically represents
the energy of the problem. Examples of this kind of problem include, but are not lim-
ited to, oceanographical models of wave propagation such as KdV type equations and
the nonlinear Schrödinger equations, and the semi-geostrophic equations for atmospheric
modelling. We construct a general methodology for the design of finite element schemes
for such problems and go on to develop multiple schemes in this framework for not only
Hamiltonian PDEs but also systems of Hamiltonian PDEs. Within the study of finite ele-
ment methods for Hamiltonian PDEs we prove both a priori and a posteriori error bounds,
in addition to examining the role of spatial adaptivity for our schemes.
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Chapter 1

Introduction

A vast number of problems arising from physics possess various algebraic and geometric
structures. For example, interstellar motion modelled by the Hénon Heines model [90]
through systems of ordinary differential equations (ODEs), which possesses a conserved
energy and closed orbits. Or alternatively, atmospheric fluid dynamics which is typically
modelled by Navier-Stokes or Euler partial differential equations (PDEs), see [177], which
possess physical structures such as conservation of mass, energy, among a multitude of
others.
When discretising any physical problem, it is of paramount importance to take these un-
derlying physical properties into account. Not only do they yield more physically relevant
solutions, but the conservation of such properties often leads to numerical stability. It is
crucial to note that the converse is not true, numerical stability does not imply that any
physical properties are preserved, as can be seen through the study of the backward Euler
method in [102].
In this thesis we focus on finite element methods and their ability to preserve the under-
lying structure of a problem. In the ODE setting the underlying structures we consider
fall under the umbrella of geometric integration (as discussed in Chapter 2). We apply the
term “structure” in the PDE setting to refer to the natural generalisation of the notion
of geometric integration. The term “finite element method” was coined in [44], with orig-
inal applications in aeronautical engineering, however, the development of finite element
methods goes back to [96, 50] and their work on developing “finite element” basis func-
tions. Due to the analytical nature of their framework, see [15], and their flexibility, finite
element methods have flourished, see [171, 6, 65, 176, 33]. Significant progress has been
made on the study of the conservative properties of finite element methods for conservation
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laws for PDEs, see for example [47], here we extend the understanding of the conservative
properties of finite element methods for a wide variety of underlying problems.
We divide this work into two parts based on the type of problem, and hence structure, we
consider. Initially, we consider the application of finite element methods to ODEs, then
their application as the spatial discretisation of Hamiltonian PDEs.

1.1 Finite element methods for ODEs

While typically the finite element method is utilised for the solving of PDEs, it is also
well developed for systems of first order ODEs, and has been extensively analysed when
constructing both a continuous and discontinuous finite element solution, see [113, 73, 67,
66, 68]. A large class of systems of first order ODEs, known as Hamiltonian systems, see
[130], can be studied as prototypical examples of structure preserving ODEs.
Such problems are well understood for classical time stepping methods for ODEs and are
known as geometric numerical integrators, see [85, 127, 162]. For this class of problem
two key structures are considered numerically. The conservation of the energy, and the
preservation of a “symplectic” structure on the flow map of the solution. While the former
is easier to visualise, and has well developed numerical methods, see [152, 81, 137, 42, c.f.],
the latter is typically aimed to be conserved. This is primarily due to the ability to design
classes of symplectic methods of arbitrarily high order, see [160]. In addition, it is known
that a method conserving the symplectic structure is “close” to conserving the energy, see
[28].
Due to the maturity of geometric numerical integration, it may initially appear that es-
tablishing the finite element method in geometric numerical integration is an exercise
in futility, however this is not the case. The development of finite element geometric
integrators affords insight into the temporal discretisation of PDEs. Spatial finite ele-
ment methods provide a powerful tool for the discretisation of the spatial component of a
PDE, however the temporal discretisations typically fall within a different framework, see
[91, 100, 60, 173, c.f.]. Through discretising temporally within the finite element frame-
work it is possible to unify the analysis of space and time, see [99, 174, 140, 120]. For
conservative problems, to yield physically relevant simulations over long time, it is impor-
tant to choose compatible finite element temporal discretisations which conserve invariants
of the underlying problem.
A powerful tool for the accurate simulation of space-time finite element schemes is space-
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time adaptivity, see [71, 140, 164]. However, for the development of space-time adaptive
algorithms, in general, discontinuity is required to avoid hanging nodes, see [22]. Note
that through the careful coupling of refinement and coarsening with the polynomial de-
gree of a finite element approximation it is possible to construct continuous space-time
adaptive algorithms, see [168], but we shall not press this point here. Regardless, the tem-
porally discontinuous nature of any space-time adaptive algorithm precludes the ability
to conserve geometric structures over time as for a well used discontinuous temporal algo-
rithm to be conservative it needs to be solved globally, which is not practical for evolution
problems. For spatial problems a new type of finite element method has been designed,
known as the recovered finite element method (RFEM), see [74, 58]. This method allows
for a discontinuous underlying solution which possesses a continuous reconstruction. The
design of a temporal RFEM method affords the ability to design adaptive space-time algo-
rithms, avoid the issue of hanging nodes, and maintain a structure preserving continuous
reconstruction. The development of the aforementioned method will be a focal point in
Chapter 3.
Some work into the understanding of finite element methods as geometric numerical in-
tegrators has already been conducted. See, for example, [87], where it is shown that
the continuous finite element method exactly conserves the energy of Hamiltonian ODEs.
Additionally, the same finite element method is “close” to a standard symplectic time step-
ping method, and is therefore close to preserving a discrete symplectic mapping, see [105].
Note that, in general, it is not possible to conserve both a discrete symplectic mapping
and the energy, see [185].
The notion of a symplectic mapping is not solely restricted to the ODE setting. In [135]
the notion of a multisymplectic integrator was introduced, and formally says that a PDE
is symplectic if it is on average symplectic in time and space. This has lead to the develop-
ment of discrete multisymplectic integrators, which typically comprise of Euler/Preissman
box schemes, see [34, 49, 48]. While it is possible to compare appropriate finite element
methods to the box schemes this is not the natural framework for a finite element method
due to their continuous nature. Indeed, a more appropriate notion of multisymplectic
within the finite element framework is described in [138]. The authors consider hybridised
discontinuous Galerkin methods, which can be implemented locally subject to prescribed
boundary fluxes and notice that, as within a finite element the numerical solution is con-
tinuous, the multisymplectic structure of the method arises from the appropriate handling
of the boundary fluxes. They place multiple existing methods into the hybridised discon-
tinuous Galerkin framework and examine their multisymplectic properties.
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1.2 Finite element methods for Hamiltonian PDEs

Throughout our study of finite element methods for PDEs we primarily focus on Hamil-
tonian PDEs. Hamiltonian PDEs are a specific class of PDE endowed with physically
relevant algebraic and geometric structures [147]. They arise from a variety of areas, not
least meteorological [166], such as the semi-geostrophic equations [155], and oceanograph-
ical, such as the Korteweg-de Vries (KdV) and nonlinear Schrödinger equations [144]. The
KdV and nonlinear Schrödinger equations are particularly special examples, in that they
are bi-Hamiltonian [131]. This means they have two different Hamiltonian formulations
which, in turn, is one way to understand the notion of integrability of these problems.
Regardless, the applications and the need to quantify the dynamics of the general Cauchy
problem motivate the development of accurate long time simulations for reliable prediction
of dynamics in both meteorology and oceanography.
A difficulty in the design of schemes for this class of problems is that the long term
dynamics of solutions can be destroyed by the addition of artificial numerical diffusion.
The reason for inclusion of this in a given scheme is the desirable stability properties this
endows on the approximation, however, this typically destroys all information in the long
term dynamics of the system through smearing of solutions.
Here we shall primarily focus on KdV type equations. In previous numerical studies of the
scalar KdV and modified KdV equations [182, 183, c.f.], it has been observed that classical
finite volume and discontinuous Galerkin (dG) schemes with “standard” numerical fluxes
introduce numerical artifacts. These typically appear through numerical regularisation
effects included for stability purposes which are not adapted to the variational structure
of the problem. The result of these artifacts is an inconsistency in the discrete energy.
Hamiltonian problems are inherently conservative, that is, the underlying Hamiltonian
functional is conserved over time. Other equations, including those of integrable type,
may have additional structures that manifest themselves through additional conserved
quantities. In particular, mass and momentum are such quantities. In [31, 114] the
authors propose and analyse a dG scheme for generalised KdV equations. The scheme
itself is very carefully designed to be conservative, in that the invariant corresponding to
the momentum is inherited by the discretisation. This yields L2 stability quite naturally
in the numerical scheme and extremely good long time dynamics. It is also possible to
design schemes that conserve the energy itself, see [180] and §4.2 onward, however, it does
not seem possible to design schemes to conserve more than two of these invariants for
nonlinear problems.
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A primary goal of this work is the derivation of Galerkin discretisations aimed at pre-
serving the underlying algebraic properties satisfied by the PDE system whilst avoiding
the introduction of stabilising diffusion terms. Our schemes are therefore consistent with
the Hamiltonian formulation of the original problems. It is important to note that our
approach is not an adaptation of entropy conserving schemes developed for systems of
conservation laws, see [172, 88], rather we study the algebraic properties of the PDE and
formulate the discretisation to inherit this specific structure. The methods are of arbi-
trarily high order of accuracy in space and provide relevant approximations free from
numerical artifacts. Similar techniques have proven useful in the study of dispersive phase
flow problems [77, 75] and we anticipate they will be extremely useful in dynamic model
adaptivity [79].
The schemes proposed here form classes of nonconforming finite element method which
have proven successful in the design of schemes for elliptic, parabolic and hyperbolic type
PDEs that are constructed without enforcing global continuity on the discrete solution.
One of the strengths of the method stems from the flexibility offered in the flux choice over
the element endpoints. This has proven a powerful tool in the design of stable schemes for
convection-dominated problems [45]. See also [12] for an accessible overview and history
of these methods for elliptic problems. For high order spatial operators, for example, the
dispersion operator in KdV, dG methods are a useful alternative to C1 elements whose
derivation and implementation can become very complicated, see [19, 151].
The KdV equation [119] has been extensively studied numerically, see [159, 1, 7, 163, 180,
115, c.f.]. In addition, the local discontinuous Galerkin method has proven quite successful
for the linearised problem, see [183, 182, 128, 98], where superconvergent approximation
schemes can be designed which are also conservative. Note also the recent work [43]
where a hybrid discontinuous Galerkin scheme has been presented for the stationary lin-
earised problem. These methods superconverge at the nodes which, via a post processing
procedure, lead to a uniformly superconvergent approximation by reconstructing the ap-
proximation using high order interpolation about the nodes, see [46, 141].
A notion of integrability appropriate for the KdV equation is that the equation possesses
infinitely many conservation laws, see [124]. Two of these correspond to the two Hamilto-
nians that admit KdV into the bi-Hamiltonian framework. The two Hamiltonian functions
of the KdV equation physically represent the momentum and energy of the PDE, which
constitute two of the three lowest order invariants. The linearised KdV problem allows
for the design of discretisations that conserve the mass and both the underlying Hamil-
tonians, all three of the fundamental, or base, conservation laws, see §4.2. This is due
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to both conserved quantities being quadratic allowing for the creation of compatible spa-
tial and temporal discretisations. In the nonlinear case one of the Hamiltonians remains
quadratic, while the other is cubic. It is not known how to design schemes that are able
to conserve all three base conservation laws in this case, even in the semi-discrete setting,
neither spatial nor temporal. This forces upon the user a choice of which invariant to
conserve and motivates Chapter 5, to examine the properties of the discretisations arising
from choosing to conserve one conserved quantity over the other.
To highlight the good behaviour of the proposed schemes, we develop a priori error bounds
for a subset of our schemes. Fundamentally, these a priori bounds depend upon the energy
arguments, see [175, 129, 157], and in particular the energy of the underlying problem
inducing a norm.
Further, in the sequel, we give an a posteriori error analysis making use of a hybrid
framework consisting of elliptic reconstruction techniques [133, 121, 122] together with
those developed for hyperbolic conservation laws [76] to allow derivation of optimal a
posteriori error bounds in the energy norm. Note that the arguments we use are quite
different to that of [114] where the authors construct a dispersive reconstruction to allow
for a posteriori control in L2.
Equipped with a posteriori bounds, we examine the delicate interplay between adaptivity
and conservation. We show that standard adaptive procedures applied to our scheme not
only fail to conserve the invariants but can also become unstable. The instability is caused
by an incompatibility in the Hamiltonian structure of the problem and the mesh change
operator. This is the mechanism with which we transfer information between meshes of
different refinement levels. We rectify this incompatibility by proposing a modified mesh
change operator that correctly preserves the invariants under mesh refinement and is
dissipative under mesh coarsening, ensuring numerical stability. We note a similar obser-
vation was given in [59] where the author studies the linear Schödinger equation, although
stability is not guaranteed. However, constructing dissipative operators for conservation
problems is not the only way to guarantee numerical stability for adaptive algorithms, and
in fact employing conservative mesh change operators through Lagrange multipliers has
proven successful in the literature, see [63, 143].
We note that issues have been observed even when examining dissipative PDEs adaptively.
A classical example shown in [62, §4] shows modifying the underlying mesh for a difference
discretisation of a one dimensional heat equation can result in a completely inconsistent
numerical scheme. Further stability issues have been observed for multi-dimensional dis-
cretisations of the heat equation, for example in [24] the authors observe instabilities
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occurring in a Crank-Nicolson finite element discretisation upon refinement that was re-
solved through the introduction of an appropriate mesh change term. Further examples
are given in [29].
When examining systems of Hamiltonian equations much less work has been carried out,
for example [17] give a near conservative method for a system of Schrödinger–KdV type and
[30] study a system of KdV equations. In the sequel we consider a system of Hamiltonian
equations known as the vectorial modified KdV equation (vmKdV) [9]. To the author’s
knowledge there has not been any numerical work on this system, nor such Hamiltonian
systems in general. Similarly to the scalar case, our proposed scheme is consistent with (one
of) the Hamiltonian formulation of the original problem. The methods are of arbitrarily
high order of accuracy in space and provide relevant approximations free from numerical
artifacts. Multiple technical complications arise extending the methodology from the
scalar to vectorial case, not least of which is the accurate transfer of energy between
vector components of the solution which can be resolved through the introduction of a
Lagrange multiplier, see [16].

1.3 Thesis structure

This thesis can be divided into two main parts. The first revolves around the study of
ODEs §2–3. In Chapter §2 we provide an overview of the literature on geometric inte-
gration for Hamiltonian ODEs and lay the necessary foundations to discuss finite element
methods as geometric integrators. In Chapter §3 we recall the geometric integration prop-
erties of existing finite element methods discussed in [105]. Additionally, we construct a
priori error bounds for linear problems. In §3.2 we introduce a new finite element method,
the temporal RFEM method, which facilitates the design of a discontinuous underlying so-
lution which possesses a continuous reconstruction. We discuss the implementation of this
method as a temporally adaptive algorithm with space-time adaptivity in mind. A priori
bounds are computed for this new method, and numerical experiments are presented.
In the second part, §4–8, we investigate the application of finite element methods to Hamil-
tonian PDEs. We begin in §4.1 by proposing a general methodology for the construction
of discretisations of Hamiltonian PDEs such that the discretisation inherently conserves
the corresponding Hamiltonian functional. We apply this methodology to the linearised
KdV equation in §4.2, which is bi-Hamiltonian. We find that for the linear problem we
can design a spatial discretisation which conserves both Hamiltonian functionals of the
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problem (namely momentum and energy). The conservation of both functionals allows us
to develop an a priori bound for the spatially discrete scheme.
As it does not appear possible to design discretisations which conserve multiple Hamilto-
nian functionals for nonlinear KdV type problems, we investigate which invariant yields
more accurate numerical results in Chapter 5. We compare a scheme designed using the
methodology in §4.1 which conserves the Hamiltonian corresponding to energy against the
scheme proposed in [31] which conserves the Hamiltonian corresponding to momentum.
We remark here that both conservative discretisations are not immediately compatible
with adaptivity, leading us to Chapter 6 where we introduce an adaptive algorithm for
Hamiltonian problems where we use a spatial finite element discretisation in space and
a finite difference, or method of lines, discretisation in time. For clarity, we restrict our
study here to the method for linearised KdV proposed in §4.2. We show that the con-
servative properties of the adaptive scheme depend entirely on the mesh change operator,
i.e., the operator which maps finite element functions between different spatial meshes.
In particular, the mesh change operator must be designed such that it inherently pre-
serves the invariants of the nonadaptive method. Here we introduce a mass conserving
and momentum dissipating mesh change operator.
In Chapter 7 we investigate dispersive KdV type equations. Here, the energy of the
scheme induces a norm, and as such the conservative methods we design exactly preserve
an appropriate energy norm over time. Note that, even in the linear case, this scheme does
not conserve momentum. Conservation of the energy norm over time allows us to prove
optimal a priori and a posteriori error bounds in the energy norm for the linear case in
§7.2 and §7.3 respectively. Additionally, we have laid out the framework for these bounds
to be generalised to the nonlinear case. We also investigate adaptivity for this scheme in
§7.4, proposing an energy dissipating mesh change operator and examine the numerical
error for a variety of different mesh change operators in §7.5.2.
We go on in Chapter 8 to investigate a system of Hamiltonian PDEs known as the vectorial
modified KdV equation, proposing a fully discrete energy conserving scheme comprising
of the amalgamation of a spatial finite element method and energy conservative time
stepping. For all chapters in this part we present appropriate numerical experiments at
the end of the respective chapters.

8



Section 1.4 Page 9

1.4 Novel contributions

Before proceeding we shall summarise the novel contributions of the work within this
thesis. In Chapter 3 we propose a new type of temporal finite element method which
is inspired by the spatial finite element methods developed in [74], but is fundamentally
different in both construction and implementation. This new temporal finite element
facilitates a methodology for the construction of structure preserving space-time adaptive
finite element methods.
We outline a new general methodology for the construction of conservative finite element
schemes for Hamiltonian PDEs in Chapter 4, noting that similar structures have been
built into existing finite difference schemes in the literature. Using this methodology we
construct multiple schemes for various Hamiltonian PDEs, with a primary focus on KdV-
type equations. We prove new a priori, and a posteriori error bounds for such schemes in
Chapter 4 and Chapter 7, as well as a numerical comparison of a new energy conserving
scheme compared against a well studied momentum conserving example in Chapter 5.
In addition, we develop new stable adaptive algorithms in Chapter 6 and Chapter 7. The
former relies on known techniques, however the latter involves the development of a new
stable operator for mapping the numerical solution between meshes.
Finally, we develop the first scheme for the vectorial modified KdV equation, a system
of Hamiltonian PDEs. For this systems of Hamiltonian PDEs multiple additional com-
plications arise. Our discretisation inherits the underlying Hamiltonian structure of the
continuous problem in the sense that it conserves the energy of the system over time.

9



Chapter 2

Geometric numerical integration for
ODEs

Here we summarise several key results from the research area of geometric numerical
integration. While no new results are given in this chapter, it serves not only as an
introduction to structure preserving numerical methods but is the genesis point for this
thesis. All results presented in this chapter can be found in [85, 161, 127]. Several ideas
here have also been investigated in the masters thesis [104]. As such, we shall not typically
present the proofs of results here, instead providing references to where the proofs were
originally presented. Geometric numerical integration of ODEs provides powerful tools for
the design of temporal discretisations for PDEs. We shall investigate structure preserving
temporal discretisations of PDEs from Chapter 4 onwards.

2.1 The continuous problem

Let u(t) = u ∈ (C1([0, T ]))D for t ∈ [0, T ] with T some predetermined constant, and
where D is a positive integer. Then, we define a general ODE such that

d
dtu = F (u, t) , (2.1)

subject to the initial data u(0) = u0 for u0 ∈ RD, and where d
dt represents a temporal

first derivative. Note that here F (u, t) can include general linear operators acting on u
which physically represent either spatial operators, or discretisations of spatial operators.
Typically, for an ODE to preserve geometric properties of the continuous level we require

10



Section 2.1 Page 11

it to be autonomous, that is to say that it does not explicitly depend on time, i.e., we seek
u such that

d
dtu = f (u) . (2.2)

To mark this difference we have changed notation for the right hand side of (2.2) adding
additional clarity to the type of operator we are considering. Within this chapter we
restrict ourselves to the study of autonomous problems of the form (2.2).
Of course, there is no general structure we expect to preserve for a general autonomous
ODE of the form (2.2). For example, when D = 1, we could choose f (u) = u2 and have
u blow up in finite time, or f (u) = −u and have u decay exponentially. As such, we
introduce the notion of a Hamiltonian system.

Definition 2.1.1 (A Hamiltonian system). Assume that D is even, then let
u ∈ (C1([0, T ]))D, H : RD → R with H (u) ∈ C1([0, T ]), and J ∈ RD×D be a constant
skew-symmetric matrix. A Hamiltonian system is given by seeking u such that

d
dtu = J∇H (u) , (2.3)

subject to the initial condition u(0) = u0. Throughout we assume that J is invertible,
which is expected for physical Hamiltonian systems.

In the sequel whenever discussing structure preservation of ODEs we are implicitly restrict-
ing our study to Hamiltonian systems. For particular examples of Hamiltonian systems
see §3.3.0.

Remark 2.1.2 (Skew-symmetric inner product). By definition, a skew-symmetric matrix
J ∈ RD×D satisfies

JT = −J.

This definition implies that for a given vectors v and w we have that

v · Jw = −w · Jv,

as v · Jw = JTv · w. This tells us that the skew-symmetric matrix J induces a skew-
symmetric inner product. In fact, this inner product defines a Poisson bracket, see [85],
similarly to that we discuss in §4.1 and §8.1.1.

Here we shall focus on two key geometric properties possessed by Hamiltonian systems.

11
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The first of which is the conservation of the Hamiltonian functionalH (u), which physically
represents energy, over time.

Theorem 2.1.3 (Conservation of the Hamiltonian over time). The Hamiltonian function
(or total energy) H (u), corresponding to the system (2.3), is conserved, i.e.,

d
dtH (u) = 0.

Proof. In view of the chain rule we see that

d
dtH (u) = d

dtu · ∇H (u)

= J∇H (u) · ∇H (u) ,

after the application of (2.3). Through the skew-symmetric inner product induced by J

as discussed in Remark 2.1.2 we observe that the Hamiltonian function is preserved over
time.

Hamiltonian systems also conserve a symplectic structure, which is characterised by the
behaviour of the solution vector u over time. When the vector dimension D = 2 the
symplectic structure corresponds to area conservation in the solution space (u1, u2). For a
detailed introduction to the notion of symplectic mappings for Hamiltonian systems where
D = 2 see [161, §2]. In arbitrary dimension the notion of symplecticity encompasses volume
conservation in the solution space, but it is a stronger condition, see [127, §3.5].
There are two main (equivalent) ways of viewing the notion of symplecticity. The first of
which is through the flow map of the solution, see for example [94]. The second, which we
shall present here, is through differential calculus.

Definition 2.1.4 (Exterior calculus notation and fundamental properties, [127]). Let
du denote the Cartan exterior derivative of u, and additionally let ∧ denote the skew-
symmetric wedge product, which is also known as the exterior product. We shall not provide
concise definitions of these operators here as they require the introduction of multiple
additional concepts, and instead refer the reader to [170, 72] for a gentle introduction.
Throughout we shall define the exterior derivative and wedge product through the following
identities:
Let da, db and dc be Cartan exterior derivatives over a subdomain of Rd and α, β ∈ R.

12
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Then the wedge product, ∧, respects a skew-symmetry

da ∧ db = − db ∧ da, (2.4)

bilinearity
da ∧ (α db+ β dc) = α da ∧ db+ β da ∧ dc, (2.5)

and a rule of matrix multiplication

da ∧ (A db) =
(
AT da

)
∧ db, (2.6)

for A ∈ Rd×d.

Theorem 2.1.5 (Symplectic structure preservation over time). Let u denote the solution
of the Hamiltonian system (2.3), then

d
dt
(

du ∧ J−1 du
)

= 0, (2.7)

i.e, the symplectic structure du ∧ J−1 du is preserved over time.

Proof of Theorem 2.1.5. Through application of the product rule, and bilinearity of the
wedge product (2.5), we find

d
dt
(

du ∧ J−1 du
)

= d
(

d
dtu

)
∧ J−1 du+ du ∧ J−1 d

(
d
dtu

)

= d
(

d
dtu

)
∧ J−1 du− J−1 d

(
d
dtu

)
∧ du

= 2 d
(

d
dtu

)
∧ J−1 du,

through (2.4), (2.6) and the skew-symmetry of J−1. Applying the ODE (2.3) we find that

d
dt
(

du ∧ J−1 du
)

= 2J−1∇∇TH (u) du ∧ J−1 du

= −2J−1J−1∇∇TH (u) du ∧ du,

where ∇∇TH (u) is the Hessian of H (u), through (2.6) and the skew-symmetry of J−1.
Note that the square of a skew-symmetric matrix is symmetric. Additionally the Hessian
∇∇TH (u) is symmetric as the partial derivatives of H (u) with respect to ui are smooth
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for i = 1, ..., D, through Schwarz’s theorem. So we can write

d
dt
(

du ∧ J−1 du
)

= −2A du ∧ du,

where A = J−1J−1∇∇TH (u) is symmetric. Through application of (2.4) and (2.6) we
observe that

A du ∧ du = −A du ∧ du,

allowing us to conclude the proof.

2.2 Discrete structure preservation

Throughout this section we shall recall numerical algorithms from the literature and in-
vestigate how well they preserve discrete equivalents of the structure we investigated on
the continuous level.
We partition our temporal interval [0, T ] such that 0 := t0 < t1 < · · · < tN =: T where
we define the length of each subinterval as τn := tn+1 − tn for n = 0, ..., N − 1. Here all
numerical approximations we consider consist solely of point evaluations at the nodes tn.
We shall denote the point value approximating u(tn) as un throughout, and shall always
fix the initial value of our numerical approximation as u0 = u(0).
As our discrete approximations consist only of a collection of point values we are required
to introduce discrete notions of conservation of the Hamiltonian and symplectic structure
over time.
Recall in the continuous setting that conservation of the Hamiltonian is written as

d
dt (H (u)) = 0. (2.8)

While we no longer have the notation of a time derivative we can instead define conserva-
tion of the Hamiltonian through a difference quotient, i.e.,

H (un+1)−H (un)
τn

= 0. (2.9)

14



Section 2.2 Page 15

Note that through integrating the left hand side of (2.8) we observe that

∫ tn+1

tn

d
dt (H (u)) dt = H (u (tn+1))−H (u (tn))

τn
,

through the fundamental theorem of calculus, so (2.9) holds for continuous problems but
is weaker.
We define the notion of preservation of the symplectic mapping in the same way as en-
ergy conservation, i.e., through difference quotients. We formally define the notion of
preservation of the symplectic structure locally as

dun+1 ∧ J−1 dun+1 − dun ∧ J−1 dun

τn
= 0, (2.10)

for more details on (2.10) see [162] or [127]. Similarly to the discrete notion of conservation
of the Hamiltonian, the discrete notion of symplecticity holds for continuous problems but
is a weaker notion.

Theorem 2.2.1 (The incompatibility between conserving the Hamiltonian and preserving
the symplectic structure in a numerical method, [185]). Let un be a discrete approximation
to (2.3) for n = 0, ..., N , and assume that the Hamiltonian function H is higher than
quadratic in order. If un conserves the Hamiltonian in the sense of (2.9) and preserves
the symplectic structure (2.10) then un ≡ u (tn) for n = 0, ..., N . That is to say to preserve
both the Hamiltonian and the symplectic mapping our numerical approximation must be
exact.

Remark 2.2.2 (Choosing which structure to conserve). As we found in Theorem 2.2.1,
in general it is not possible to conserve both the Hamiltonian and the symplectic structure
numerically. There has been much debate as to which invariant is more favourable to
conserve, see for example [167]. While no conclusions can be drawn on this point which
satisfy all in the field of geometric numerical integration, the preservation of the symplectic
mapping appears to be favoured in the literature. This may be, in part, due to the following
theorem.

Theorem 2.2.3 (Deviation in the Hamiltonian for symplectic methods over long time,
[28]). Let un for n = 0, ..., N be a symplectic numerical method, i.e., it satisfies (2.10),
then,

H
(
uN

)
= H

(
u0
)

+O
(
τ 2
max

)
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over an exponentially long time T , where τmax := maxn τn.

Remark 2.2.4 (Symmetry in Hamiltonian ODEs). In addition to conservation of the
Hamiltonian and the symplectic structure many Hamiltonian ODEs are also symmetric,
or time reversible. The symmetry of Hamiltonian ODEs is observed through the flow map
of the problem, where the flow map describes how the solution changes over time. The
notion of symmetry arises from the flow map being time reversible, that is to say that
assuming the vector u flows forwards in time, if time is then reversed the solution will
flow backwards in time along the same trajectory with the same velocity. We shall aim to
design numerical methods which are symmetric in time.
Let

un+1 = Ψτn (un) (2.11)

define a one step numerical scheme, where Ψτn represents the discrete flow of the numerical
approximation from un → un+1, then the method is symmetric if

Ψτn (un) = Ψ−τn (un)−1. (2.12)

We note that while the solution is vectorial the action of the flow map does not change
the dimension of the solution. In the discrete setting for a one step method the inverse of
the flow map can formally be found by interchanging un+1 and un in (2.11). A method
being symmetric is equivalent to saying that it is self-adjoined. Physically, a method being
symmetric will give rise to symmetries of the solution in phase space when visualised over
all time, which we expect to observe physically.

We shall now discuss particular classes of numerical methods and investigate their struc-
ture preserving properties.

2.2.1 Runge-Kutta methods

Runge-Kutta methods are an incredibly popular class of temporal discretisation, for both
ODEs and as temporal discretisations of PDEs, see [111, 47, 160]. Their popularity is not
only due to the ease of their implementation, or the concise formulation of the methods
developed by Butcher, see [37]. They have been analysed extensively, and it is possible to
construct stable methods of “arbitrary” order, see [39]. For a detailed history of Runge-
Kutta methods see [38].

16



Section 2.2 Page 17

Definition 2.2.5 (Runge-Kutta method). Let aij and bi for i, j = 1, ..., s be real numbers.
An s-stage Runge-Kutta method is given by

un+1 =un + τn
s∑
i=1

bip
i

pi =f
un + τn

s∑
j=1

aijp
j

 for i = 1, ..., s.
(2.13)

We shall now investigate the geometric properties it is possible to preserve by Runge-Kutta
methods.

Theorem 2.2.6 (Condition for symplecticity in Runge-Kutta methods, [160]). Let u
describe a Hamiltonian ODE of the form (2.3), i.e., f (u) = J∇H (u). Further let aij
and bi be the coefficients of the Runge-Kutta method (2.13) for i, j = 1, ..., s, then if

biaij + bjaji − bibj = 0,

then the method is symplectic, i.e.,

dun+1 ∧ J−1 dun+1 = dun ∧ J−1 dun.

Proof. Taking the differentials of (2.13) and substituting the differential of the numerical
scheme in to the left hand side of (2.7) and utilising (2.4), (2.5) and (2.6) we obtain the
desired result. The details of this proof can be found in [160].

Remark 2.2.7 (Hamiltonian conservation by Runge-Kutta methods). It was found in [40]
that Runge-Kutta methods do not, in general, conserve Hamiltonians of a higher degree
than quadratic. However, it is possible to construct a Runge-Kutta method which preserves
a particular polynomial Hamiltonian function, see [42]. We shall not press this point here.

Theorem 2.2.8 (Symmetry condition for Runge-Kutta methods, [179]). Let aij and bi

for i, j = 1, ..., s determine the Runge-Kutta method (2.13), then the method is symmetric
if

as+1−i,s+1−j + aij = bj ∀i, j = 1, ..., s.

Example 2.2.9 (Gauss-Legendre methods: A symplectic family of Runge-Kutta meth-
ods). The Gauss-Legendre family of Runge-Kutta methods are obtained by seeking the
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constants ci for i = 1, ..., s such that ci are given by the zeroes of

ds
dxs (xs (x− 1)s) .

Then the coefficients aij and bi for i, j = 1, ...s are determined by

aij =
∫ ci

0
Lj(t)dt, bi =

∫ 1

0
Li(t)dt,

where Li(t) is the Lagrange polynomial Li(t) = ∏
j 6=i

t−cj
ci−cj

Through fixing s we can observe through direct calculation that the condition for a method
to be symplectic given in Theorem 2.2.6 is satisfied. For a proof of this for general s see
[160].

2.2.2 Collocation methods

Collocation methods are a popular class of methods which can trace their origin back
to [86], see [85, §II.1.2]. However, since the popularisation of the work of [84] they are
not typically studied independently as they fall within the framework of the Runge-Kutta
method. While this may appear to make the independent introduction of this class of
methods superfluous we present them here as we utilise them in Chapter 3.

Definition 2.2.10 (Collocation method). Let ci for i = 1, ..., s be distinct real numbers,
with c0 = 0 and cs = 1. The collocation polynomial w(t) is a degree s polynomial satisfying

w(tn) = un

d
dtw (tn + ciτn) = f (w (tn + ciτn)) .

The corresponding collocation method is given by

un+1 = w (tn + τn) . (2.14)

Note that these methods do not solely consist of point values. In fact, in view of w we
obtain a continuous piecewise polynomial solution, similarly to a finite element function.

Theorem 2.2.11 (Collocation methods as Runge-Kutta methods, [181]). The collocation
method (2.14) defined by the real constants c1, ..., cs is equivalent to the s stage Runge-Kutta
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method (2.13) with coefficients

aij =
∫ ci

0
Lj(t)dt, bi =

∫ 1

0
Li(t)dt,

where Li(t) = ∏
j 6=i

t−cj
ci−cj is the Lagrange polynomial.

Remark 2.2.12 (Hamiltonian conservation of collocation methods). As collocation meth-
ods can be viewed as a subset of Runge-Kutta methods through Theorem 2.2.11 they cannot
conserve an arbitrary Hamiltonian function over time, see Remark 2.2.7.

Theorem 2.2.13 (Criteria for symmetric collocation methods). Let ci for i = 1, ..., s
describe the collocation method (2.14), then if ci = 1−cs+1−i then the method is symmetric.

Proof. As no original reference could be found for this proof we shall present it here.
Recall from Remark 2.2.4 that a numerical method is symmetric if it is invariant under
reversal of time and inversion of the discrete flow map, see (2.12). Inverting the discrete
flow map we can rewrite the collocation method in Definition 2.2.10 as

w(tn+1) = un+1

d
dtw (tn+1 + ciτn) = f (w(tn+1 + ciτn))

un = w (tn+1 + τn) .

Through reversing the flow of time, i.e., mapping τn → −τn, we observe that the collocation
method is preserved if and only if ci = 1− cs+1−i.

2.2.3 Discrete gradient methods

Discrete gradient methods, as their name suggests, are numerical methods designed such
that they preserve a discrete Hamiltonian, see [137, 139]. Such methods cannot be pre-
sented in one class as concisely as Runge-Kutta and collocation methods. We can define
a discrete gradient method for a Hamiltonian ODE as follows.

Definition 2.2.14 (Discrete gradient method). Let u be the solution to the Hamiltonian
problem (2.3), then a discrete gradient method is of the form

un+1 = un + τnJ∇̃K, (2.15)
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where ∇̃K denotes a discrete gradient, approximating the continuous function ∇H (u),
which satisfies the identity

∇̃K ·
(
un+1 − un

)
= H

(
un+1

)
−H (un) . (2.16)

Theorem 2.2.15 (Hamiltonian conservation of discrete gradient methods). Let un for
n = 0, ..., N be described by the discrete gradient method (2.15) for a Hamiltonian problem
(2.3), then the Hamiltonian function is conserved nodally, i.e.,

H
(
un+1

)
= H (un) .

Proof. Through application of (2.16) and (2.15) we see that

H
(
un+1

)
−H (un) = ∇̃K ·

(
un+1 − un

)
= τn∇̃K · J∇̃K

= 0,

as J is skew-symmetric.

Remark 2.2.16 (Preservation of a symplectic structure). As discrete gradient methods are
energy conserving in nature they cannot preserve a discrete symplectic structure by Theo-
rem 2.2.1. For numerical methods which preserve a discrete symplectic map we know that
numerical solution remains close to conserving energy, see Theorem 2.2.3. Unfortunately,
there are no analytic results stating that the converse is true in the literature.

There are three main families of discrete gradient methods which are introduced in [81],
[89] and [103]. Here we introduce a member of the family discussed in [81] as an illustrative
example.

Example 2.2.17 (An example of a discrete gradient method). Let u = (u1, u2, ..., uD)
describe a Hamiltonian problem of the form (2.3), then a discrete gradient method is given
by

un+1
i = uni + τnJ

∇H (un+1)i −∇H (un)i
un+1
i − uni

, (2.17)

for i = 1, ..., D. Clearly, this discrete gradient satisfies (2.16). Additionally, (2.17) is
symmetric, as interchanging un+1 and un then mapping τn → −τn returns the original
method.
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2.2.4 Composition methods

Composition methods are not a class of method in their own right. A composition method
refers to any numerical method in which the flow of the numerical solution over a single
step is composed of multiple numerical schemes. Such methods have very useful properties
in geometric integration, as well as improved stability, see [101]. It is possible to compose
methods which do not preserve geometric properties as a methodology of constructing
geometric numerical integrators. Here we focus on composition methods which already
possess geometric properties in view of the following remark.

Remark 2.2.18 (Composition of geometric integrators). Let Ψτn describe the numerical
flow of un and γ1, γ2 > 0. If the numerical flow either conserves a symplectic mapping or
the Hamiltonian, then the composition of this flow Ψγ1τn ◦ Ψγ2τn must also conserve the
same symplectic mapping or Hamiltonian due to the local nature of the discrete geometric
structure.

It is possible, through composition, to increase the order of a numerical method as has
been developed in [184, 136].

Theorem 2.2.19 (Minimum order of a composition method, [85, §II.4]). Consider the
composition method

un+1 = Ψγsτn ◦ · · · ◦Ψγ1τn ◦ un, (2.18)

where Ψτn (un) describes the numerical flow of an order p method and 2 < s ∈ Z. If

γ1 + · · ·+ γs = 1

γp+1
1 + . . . γp+1

s = 0,
(2.19)

then the composition method (2.18) is at least order p+1. Further, if Ψτn (un) is symmetric,
and

γs+1−i = γi, (2.20)

for i = 1, ..., s then the composition (2.18) is at least order p+ 2.

Remark 2.2.20 (Construction of arbitrarily high degree geometric integrators). In view
of Theorem 2.2.19 and Remark 2.2.18 we can construct arbitrarily high order geometric
numerical integrators. As well as preserving either a symplectic mapping or the Hamilto-
nian function it is also important to preserve symmetry if the method we compose with is
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itself symmetric, to preserve the symmetry we need to satisfy (2.20). The minimum num-
ber of times we need to compose a method with itself to preserve symmetry and increase
the order of accuracy is 3, as we have three constraints in (2.19) and (2.20), so we can
choose s = 3. The parameters γi as discussed in Theorem 2.2.19 are then given uniquely
by

γ1 = γ3 = 1
32 1

3 + 1
62 2

3 + 2
3 , γ2 = −2

32 1
3 − 1

32 2
3 − 1

3 .

While we shall not investigate composition methods in the sequel they provide us with a
powerful tool for generalising the temporal methods we develop from Chapter 5 onwards.
We shall investigate multiple nonlinear PDEs and design fully discrete numerical schemes
which conserve physical invariants of the problems. In space our numerical methods can be
of arbitrarily high order, however the coupled temporal schemes shall always be O (τ 2

max).
The methodology outlined here allows us to extend the temporal discretisation to be
arbitrarily high in order, although this comes at significant computational cost.

2.3 Conclusion

We gave a brief overview of some of the literature in the area of geometric numerical
integration. We introduced the concepts of preservation of symplectic mapping and con-
servation of energy for Hamiltonian ODEs, and outlined selected numerical schemes which
preserve these properties. We also outlined a methodology for the construction of higher
order geometric numerical integrators from lower order integrators.
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Chapter 3

Finite element methods for ODEs

Here we discuss finite element discretisations for ODEs, both recalling methods from the
literature and developing a new finite element method. In the spirit of the previous chapter
we shall investigate geometric properties of these methods, similarly to the investigation
conducted in [105].
We also investigate the stability and convergence properties here, primarily to gain insight
into the properties of our newly developed method.
In this chapter we focus on two main types of ODE, both encompassed by (2.1). The first
are explicit nonlinear functions of u, i.e., F (u, t) = f (u). This is a very large class of
problems which include Hamiltonian systems, i.e., f (u) = J∇H (u) where J is a constant
skew-symmetric matrix, and H (u) is a scalar function which physically corresponds to
the energy of the system, see Definition 2.1.1. These problems have interesting physical
properties, such as conservation of the Hamiltonian function, and preservation of the
symplectic structure of the flow map, but due to their skew-symmetric structure they
are difficult to analyse. The second class of problems we consider are linear ODEs with
forcing, i.e., F (u, t) = f (t) − Au, where f (t) represents the forcing term and A is the
sum of a symmetric linear operator A and a skew-symmetric linear operator B, i.e., A =
c1A + c2B with c1 and c2 known constants. This class of problems is mainly utilised to
describe the temporal aspect of evolution PDEs with a combination of symmetric and
skew-symmetric operators in space. Here A can either represent a continuous spatial
operator or an appropriate discretisation of a spatial operator. Note that when required
we will divide this case into two sub-cases, when the problem is purely symmetric, i.e.,
when c2 = 0, and when the problem is purely skew-symmetric, i.e., when c1 = 0. The
symmetric case treats equations such as the heat equation, and the skew-symmetric case
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can treat equations such as the wave equation, linear KdV, or even a linear Hamiltonian
ODE such as the harmonic oscillator.

3.1 Known methods and their geometric properties

The ideas in this section have been presented in the masters thesis [105], we recall them
here for completeness in addition to them informing our study of temporal finite element
methods later in this chapter. All results from [105] are referenced appropriately.
Before introducing temporal finite element methods we must first introduce an abundance
of notation. Recall from §2.2 that we partitioned our temporal interval [0, T ] such that
0 := t0 < t1 < · · · < tN =: T . We define a temporal finite element as In := (tn, tn+1)
which possesses an element length τn := tn+1 − tn. We shall often write maxn τn = τmax.
Throughout this section we shall write the discrete counterpart to a continuous function
through capitalisation, i.e., for a temporal continuous function u = u(t) we write the finite
element function approximating it as U = U(t). Note that when there is no ambiguity
we shall not explicitly write the dependency of functions. In the sequel, when considering
spatial finite element methods, we shall also use capitalisation to refer to spatial finite
element functions.

Definition 3.1.1 (Temporal finite element spaces). Let Pq(In) denote the space of poly-
nomials of degree q on an interval In ⊂ R, then the discontinuous finite element space
is

Vq ([0, T ]) = {W : W |In ∈ (Pq(In))D , n = 0, ..., N − 1},

further to this the continuous finite element space is defined analogously with global conti-
nuity enforced, i.e.,

VC
q ([0, T ]) = Vq ([0, T ]) ∩

(
C0 ([0, T ])

)D
.

When there is no ambiguity we shall not explicitly write the domain of our finite element
spaces. Additionally, in the sequel VC

q (In) represents the localisation of the continuous
finite element space to a single element. Here, the initial conditions of functions in this
space are fixed by the endpoint of functions in VC

q (In−1), or an appropriate initial condi-
tion.

With the definition of the temporal finite element space in mind, we define the mesh
function τ ∈ V0 as the piecewise constant finite element function representing the length
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of an element, i.e.,
τ|In = τn.

Remark 3.1.2 (A 1D finite element de Rham complex between spaces,[13]). A de Rham
complex, in the general setting, refers to a complex of differential forms acting on a smooth
manifold which map all functions in a given space to all functions in a subsequent space
through an appropriate exterior derivative. In fact, as outlined in [13], there are discrete
counterparts to these continuous mappings in one, two and three dimensional spaces. In
the one dimensional case the de Rham mapping is comparatively straightforward. The de
Rham complex maps functions in the continuous finite element space VC

q+1 to functions
in the discontinuous finite element space of one degree lower Vq. The exterior derivative
which employs this mapping is the standard derivative operator d

dt .

The first temporal finite element we shall investigate is the continuous, or conforming,
Galerkin method. This method has been extensively analysed, see [67, 73].

Definition 3.1.3 (Continuous Galerkin method). Let VC
q+1 and Vq be the vectorial finite

dimensional spaces given in Definition 3.1.1. The continuous Galerkin (cG) finite element
approximation is given by seeking U ∈ VC

q+1 such that

∫ T

0

d
dtU · V dt =

∫ T

0
F (U , t) · V dt ∀V ∈ Vq,

U (0) = u0.

(3.1)

Remark 3.1.4 (Difference between test and trial spaces for the cG method). For readers
with a background in spatial finite element methods continuous Galerkin may initially seem
like a misnomer as it utilises a discontinuous test space of one degree lower, so is a Petrov-
Galerkin type method. In fact this is the natural continuous finite element formulation due
to the lack of symmetry in derivatives, and the degrees of freedom on the left hand side of
(3.1) match as d

dtU ,V ∈ Vq. This follows from the discrete de Rham complex discussed
in Remark 3.1.2.

Remark 3.1.5 (cG time stepping). The discontinuous nature of the test functions allow
us to rewrite the cG method over a single element, with the initial value of the trial function
U on the element being the final value of the trial function on the previous element due
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to continuity. Explicitly by choosing the test function

V (t) =

Ṽ (t) for t ∈ In
0 else,

where Ṽ is an arbitrary function in (Pq (In))D, over an arbitrary interval, we can write
the cG method locally as follows: Let U (tn) be given, then seek U ∈ VC

q+1 (In) such that

∫
In

d
dtU · Ṽ dt =

∫
In
F (U , t) · Ṽ dt ∀Ṽ ∈ (Pq (In))D . (3.2)

Theorem 3.1.6 (Preservation of the Hamiltonian function for the cG method, [105, 87]).
Let F (U , t) = J∇H (U) where J is constant, i.e., we restrict ourselves to the case of
a Hamiltonian system, as described in Definition 2.1.1, then the cG method described in
Definition 3.1.3 preserves the Hamiltonian function at the nodes. That is to say that for
n = 0, ..., N − 1

H (U(tn+1)) = H (U(tn)) .

Proof. Through the fundamental theorem of calculus we observe that

H (U(tn+1))−H (U(tn)) =
∫
In

d
dt (H (U)) dt =

∫
In
∇H (U) · d

dtUdt.

Additionally, through choosing Ṽ = ΠVq (∇H (U)), where ΠVq is the L2 projection into
Vq, in the local cG method (3.2) we find

∫
In

d
dtU · ∇H (U) dt =

∫
In
J∇H (U ) · ΠVq (∇H (U)) dt

=
∫
In
JΠVq (∇H (U)) · ΠVq (∇H (U)) dt

through the definition of the L2 projection, and as J is constant. In view of the skew
symmetry of J we can write

∫
In

d
dtU · ∇H (U) dt = 0,

allowing us to conclude.

Remark 3.1.7 (“Exact” conservation of the Hamiltonian). While the cG method exactly
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preserves the Hamiltonian function this is not necessarily true for an implementation of
the method. To implement the method we are required to make a quadrature approximation,
and if this quadrature approximation is not exact, then the Hamiltonian will not be exactly
preserved. In practice, we will only be able to preserve the Hamiltonian exactly if our
Hamiltonian function is polynomial and the quadrature method is chosen to be of high
enough order. When dealing with non-polynomial Hamiltonian functions it is also possible
to take an “overkill” approach, i.e., we can take a very high order quadrature approximation
so the quadrature error is of the same order of magnitude as machine precision.

Remark 3.1.8 (A comparison between the cG method and discrete gradient methods).
As we discussed in §2.2.3, a discrete gradient method (2.15) satisfies the identity

∇̃K ·
(
un+1 − un

)
= H

(
un+1

)
−H (un) ,

for some discrete gradient ∇̃K. The cG method (3.2), while not strictly falling within this
framework, satisfies the similar identity in the continuous framework

∫
In
∇H (U ) · d

dtUdt = H (U(tn+1))−H (U(tn)) ,

where U is the cG solution, which is crucial in the proof of Theorem 3.1.6.

Theorem 3.1.9 (cG as a Runge-Kutta method, [105]). Let F (U , t) = f (U ) be an explicit
function of U , then under a q+1 point quadrature choice the cG scheme, (3.1), agrees with
a Runge-Kutta method, see Definition 2.2.5, at the nodes. Furthermore this Runge-Kutta
method is given by

bi =
∫ 1

0
Li(t)dt

aij =
∫ ci

0
Lj(t)dt

(3.3)

for i, j = 1, ..., q + 1, where ci = ∑q+1
j=1 aij are our quadrature points and Li = ∏

j 6=i
t−cj
ci−cj is

a Lagrange polynomial.

Proof. Under a q + 1 point quadrature we can write the cG method, (3.1), as

N−1∑
n=0

q+1∑
iq=1

ciq
d
dtU (tn,iq) · V (tn,iq) =

N−1∑
n=0

q+1∑
iq=1

ciqf (U(tn,iq)) · V (tn,iq)

U(0) = u0.

(3.4)
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As V ∈ Vq we can choose

V =

1 t = tn,iq

0 all other quadrature points,

for an arbitrary quadrature point iq in an arbitrary interval In. Under this choice of test
function we can write (3.4) as

d
dtU(tn,iq) = f (U(tn,iq)) . (3.5)

As (3.5) is for an arbitrary quadrature point on an arbitrary interval we can conclude that
U is a collocation polynomial, see Definition 2.2.10. This implies that at the nodes our
cG formulation agrees with a collocation method defined by the quadrature points. This
collocation method is equivalent to the Runge-Kutta method (3.3) by Theorem 2.2.11.

Remark 3.1.10 (Symplectic implementation of cG, [105]). Applying particular quadrature
choices (which introduce leading order errors) we obtain a scheme equivalent on the nodes
to families of symplectic methods. For example choosing the q+ 1 point Gauss quadrature,
see [85, P34], the cG method (3.1) agrees with the Gauss Runge-Kutta family on the nodes.
These methods are known to be symplectic, as they satisfy Theorem 2.2.6.

We now shift our focus to a discontinuous Galerkin method often employed for temporal
ODEs, which has also been extensively studied in the literature, see [113, 66, 68]. Before
we can introduce this method we first must define additional notation.

Definition 3.1.11 (Discontinuous finite element notation). Due to the discontinuous na-
ture of the finite element space finite element functions are permitted to be multi-valued at
the nodes of the elements. With this in mind we write

U+
n := U (t+n ) := lim

t↘tn
U(t), U−n := U(t−n ) := lim

t↗tn
U(t),

to describe the values of the function on the right and left of a discontinuity respectively.
Additionally we define the jump of a function at the node tn to be

JUnK = U−n −U+
n (3.6)
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and the average as
{Un} = 1

2
(
U−n +U+

n

)
. (3.7)

Definition 3.1.12 (Upwind discontinuous Galerkin method). Let Vq be the space of piece-
wise polynomial functions of degree q as described in Definition 3.1.1. The upwind discon-
tinuous Galerkin (dG) approximation is given by seeking U ∈ Vq such that

N−1∑
n=0

∫
In

d
dtU · V dt =

N−1∑
n=0

∫
In
f (U ,V ) dt+ JUnK · V +

n ∀V ∈ Vq

U−(0) =u0.

(3.8)

Remark 3.1.13 (dG time stepping). Similarly to the cG method, the upwind dG method
can be implemented in a time-stepping fashion utilising the discontinuous nature of the test
function. To be concise, we can reduce the upwind scheme to a single element by choosing
our test function such that

V (t) =

Ṽ (t) for t ∈ In
0 else,

where ‹V is an arbitrary function in (Pq (In))D allowing us to write

∫
In

d
dtU · Ṽ dt =

∫
In
f
(
U , Ṽ

)
dt+ JUnK · Ṽ

+
n ∀Ṽ ∈ (Pq (In))D . (3.9)

Note that we cannot typically write dG methods in a time stepping fashion. The choice of
flux needs to be chosen carefully such that on an arbitrary element it only depends on the
value of the solution on the previous element. Many standard flux choices for spatial finite
element methods require information from both neighbouring elements and the methods
need to be solved globally. These global methods are not practical temporal discretisations.

Remark 3.1.14 (Dissipation of the upwind dG method). In [68] the upwind dG method
(3.9) is viewed as a discrete dynamical system for problems with a linear right hand side. It
is found that the associated dynamical system is dissipative in the sense that the numerical
solution over time can not increase. In addition, we will discover in the sequel, if the
right hand side is chosen to describe a purely skew-symmetric problem then the upwind dG
method is dissipative in the same sense that the solution over time does not increase, see
Theorem 3.1.22.
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Due to the dissipative nature of (3.9) it does not fall within the framework of geometric
numerical integration when applied to Hamiltonian systems.

Error bounds for both the cG and upwind dG methods have been fully developed in the
literature for linear problems, these bounds can be described as follows.

Theorem 3.1.15 (A priori error bound for the cG method (3.1), [67]). Let U be the
solution of the cG method (3.1), where u ∈ Cq+2 ([0, T ]) denotes the corresponding exact
solution given in (2.1). Under the assumption that F (U , t) is linear we have for q = 0, 1
that

sup
[0,T ]
|U − u| ≤ C(T )τ q+2

max sup
[0,T ]

∣∣∣∣∣ dq+2

dq+2t
u

∣∣∣∣∣ ,
where the constant C(T ) depends exponentially on T .

Theorem 3.1.16 (A priori error bound for the upwind dG method (3.8), [113]). Let U
be the solution of the upwind dG method (3.8), where u ∈ Cq+1 ([0, T ]) represents the
corresponding exact solution given in (2.1). Under the assumption that F (U , t) is linear
we have for q = 0, 1 that

sup
[0,T ]
|U − u| ≤ C(T )τ q+1

max sup
[0,T ]

∣∣∣∣∣ dq+1

dq+1t
u

∣∣∣∣∣ ,
where the constant C(T ) depends exponentially on T .

Note that while for the cG method (3.1) we seek a polynomial solution of degree q+ 1, for
the upwind dG method (3.8) we seek a polynomial solution of degree q, ergo both schemes
converge at the same rate.
While these error bounds are well established, we selectively develop equivalent bounds
in the sequel as they inform the analysis of the new finite element method we propose in
§3.2.

3.1.1 Stability

Here we investigate the stability properties of the temporal finite element methods pre-
sented in this section. Note that while similar results are often cited in the literature
they are rarely presented in full. We consider the stability of symmetric linear ODEs,
skew-symmetric linear ODEs, and Hamiltonian ODEs independently.
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3.1.1.1 Symmetric linear ODEs

In this subsection we restrict ourselves to symmetric linear ODEs, that is we choose the
right hand side of the ODE (2.1) such that F (u, t) = f− Au, where f = f (t) and A is a
symmetric linear operator. The operator A represents a symmetric spatial operator, which
can be either continuous in space or discrete. An example of an appropriate continuous
spatial operator could be the second spatial derivative, and a discrete operator could be a
symmetric finite element discretisation. Physically f represents the forcing of the system.
Our symmetric linear ODE can be written in the form

d
dtu+ Au = f.

We further assume that this operator is symmetric and consequently induces a norm, in
addition to this at various points in the sequel we will assume that the operator A induces
a bilinear form which is coercive, i.e., for w ∈ RD

Aw ·w ≥ CA |w|2A (3.10)

and/or continuous, i.e., for w1,w2 ∈ RD

|Aw1 ·w2| ≤ cA |w1|A |w2|A , (3.11)

where |·|A represents some appropriate semi-norm depending on A. For example, A could
represent, or approximate, the second order spatial Laplacian

A = −4.

In this case the semi-norm |·|A is in fact the spatial H1 norm, see for example [33]. If A is a
matrix then the coercivity and continuity conditions correspond to A being nondegenerate
and bounded.

Theorem 3.1.17 (Stability of the cG method for symmetric problems). Consider the
cG method (3.1) applied to a symmetric linear ODE, i.e., F (U , t) = f − AU where f is
bounded and A is a symmetric operator. The solution to the cG method satisfies

∥∥∥∥∥ d
dtU

∥∥∥∥∥
2

L2([0,T ])
+ AU(T ) ·U(T ) ≤ AU(0) ·U(0) + ‖f‖2

L2([0,T ]) .
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Remark 3.1.18 (Stability in multiple norms). Under the assumption that A induces a
coercive and continuous form, see (3.10) and (3.11), we can obtain the following stability
bound ∥∥∥∥∥ d

dtU
∥∥∥∥∥

2

L2([0,T ])
≤ cA |U (0)|2A + ‖f‖2

L2([0,T ]) .

Additionally we have stability in the norm induced by A, i.e.,

|U(T )|2A ≤ |U(0)|2A + ‖f‖2
L2([0,T ]) .

Proof of Theorem 3.1.17. For a symmetric linear problem we may write the cG method
as follows: seek U ∈ VC

q+1 such that

∫ T

0

d
dtU · V dt+

∫ T

0
AU · V dt =

∫ T

0
f · V dt ∀V ∈ Vq

U(0) =u0.

Choosing V = d
dtU we have

∫ T

0

∣∣∣∣∣ d
dtU

∣∣∣∣∣
2

+ AU · d
dtUdt =

∫ T

0
f · d

dtUdt,

which, after using the symmetry of A, can be written as

∫ T

0

∣∣∣∣∣ d
dtU

∣∣∣∣∣
2

+ 1
2

d
dt (AU ·U) dt =

∫ T

0
f · d

dtUdt

≤‖f‖L2([0,T ])

∥∥∥∥∥ d
dtU

∥∥∥∥∥
L2([0,T ])

≤ 1
4ε ‖f‖

2
L2([0,T ]) + ε

∥∥∥∥∥ d
dtU

∥∥∥∥∥
2

L2([0,T ])
,

through Hölder’s inequality and Cauchy’s inequality with ε. Choosing ε = 1
2 and applying

the fundamental theorem of calculus∥∥∥∥∥ d
dtU

∥∥∥∥∥
2

L2([0,T ])
+ AU(T ) ·U(T ) ≤ AU(0) ·U(0) + ‖f‖2

L2([0,T ]) ,

as required.
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Theorem 3.1.19 (Stability of the upwind dG method for symmetric problems). Let U
be the solution of the upwind dG method (3.8). Further assume that f (U) = f − AU ,
where f := f (t) is bounded and A is symmetric. Additionally assume that A is a coercive
operator, i.e., for all W ∈ Vq

‖W ‖2
L2(In) ≤ CA

∫
In
AW ·Wdt,

where we have assumed that |W | ≤ C |W |A, then

∣∣∣U−n+1

∣∣∣2 +
∫ T

0
AU ·Udt ≤ |u0|2 + CA

2 ‖f‖
2
L2((0,T )) ,

where u0 denotes the initial data.

Before presenting the proof of Theorem 3.1.19 we first require the following result.

Lemma 3.1.20 (A useful dG inequality). Let W ∈ Vq, then

∫
In

d
dtW ·Wdt+ JW nK ·W+

n ≥
1
2
∣∣∣W−

n+1

∣∣∣2 − 1
2
∣∣∣W−

n

∣∣∣2 .
Proof. Applying the definition of the jump and the fundamental theorem of calculus we
find ∫

In

d
dtW ·Wdt+ JW nK ·W+

n =
∫
In

1
2

d
dt |W |

2 dt+
(
W+

n −W−
n

)
·W+

n

=1
2

(∣∣∣W−
n+1

∣∣∣2 − ∣∣∣W+
n

∣∣∣2)+
∣∣∣W+

n

∣∣∣2 −W−
n ·W+

n .

Through Cauchy’s inequality we have that

−
∣∣∣W−

n ·W+
n

∣∣∣ ≥ −1
2
∣∣∣W−

n

∣∣∣2 − 1
2
∣∣∣W+

n

∣∣∣2 ,
which tells us

∫
In

d
dtW ·Wdt+ JW nK ·W+

n ≥
1
2
∣∣∣W−

n+1

∣∣∣2 − 1
2
∣∣∣W−

n

∣∣∣2 ,
as required.
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Proof of Theorem 3.1.19. Choosing V = U in the localised dG method (3.9) we have

∫
In

d
dtU ·U + AU ·Udt+ JUnK ·U+

n =
∫
In
f ·Udt.

Applying Lemma 3.1.20 we observe that
∣∣∣U−n+1

∣∣∣2 − ∣∣∣U−n ∣∣∣2 +
∫
In
AU ·Udt ≤

∫
In
f ·Udt.

Through Hölder’s and Cauchy’s inequality with ε we see

∣∣∣U−n+1

∣∣∣2 − ∣∣∣U−n ∣∣∣2 +
∫
In
AU ·Udt ≤ 1

4ε ‖f‖
2
L2(In) + ε ‖U‖2

L2(In)

≤ 1
4ε ‖f‖

2
L2(In) + εCA

∫
In
AU ·Udt,

after applying coercivity of A. Choosing ε = 1
2CA we find

∣∣∣U−n+1

∣∣∣2 − ∣∣∣U−n ∣∣∣2 + 1
2

∫
In
AU ·Udt ≤ CA

2 ‖f‖
2
L2(In) .

As this bound holds for arbitrary n we can iterate back in time to n = 0 finding

∣∣∣U−n+1

∣∣∣2 + 1
2

∫ T

0
AU ·Udt ≤

∣∣∣U−0 ∣∣∣2 + CA
2 ‖f‖

2
L2([0,T ]) ,

noting that U−0 is, by definition, the initial condition we can conclude.

3.1.1.2 Skew-symmetric linear ODEs

Here we restrict the right hand side function of the general ODE (2.1) to F (U , t) = −BU ,
where B is a linear skew-symmetric operator. Here the operator B can represent either: a
continuous spatial operator, a discretised spatial operator, or a constant operator. Possible
PDEs which can be represented when B is a spatial operator include the Airy equation
and linear KdV. We have assumed that there is no forcing term, as forcing destroys a lot
of the structure of these problems.

Theorem 3.1.21 (Stability of the cG method for skew-symmetric problems). Consider
the cG method (3.1) applied to a skew-symmetric linear ODE, i.e., F (U , t) = −BU where
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B is a skew-symmetric operator. The solution to the cG method satisfies

|U(T )| = |U(0)| .

Proof. The following argument follows directly from the “conservative” nature of the ODE,
and the fact that the discretisation mimics this conservative structure. Choosing V =
ΠVq (U), where ΠVq represents the L2 projection into Vq, in (3.1) for skew-symmetric
linear ODEs we find

0 =
∫ T

0

d
dtU · ΠVq (U) +BU · ΠVq (U)dt

=
∫ T

0

d
dtU ·U +BΠVq (U) · ΠVq (U)dt,

through the definition of the L2 projection into Vq as d
dtU ∈ Vq by Remark 3.1.2. Through

skew-symmetry of B, i.e., as BΠVq (U) · ΠVq (U) = 0 we find that

0 =
∫ T

0

1
2

d
dt |U |

2 dt

= |U(T )|2 − |U(0)|2 ,

through the fundamental theorem of calculus as required.

Theorem 3.1.22 (Stability of the upwind dG method for skew-symmetric problems).
Consider the upwind dG method (3.8) applied to the skew-symmetric linear ODE, i.e.,
F (U , t) = −BU where B is a skew-symmetric operator. The solution to the upwind dG
method satisfies ∣∣∣U−n+1

∣∣∣2 ≤ ∣∣∣U−n ∣∣∣2 ,
i.e., the numerical solution is stable over time. Note that for the true solution we have
that ∫

In

d
dt |u|

2 dt = 0,

so this bound allows for artificial diffusion, but does not ensure it as we have not explicitly
excluded the possibility that

∣∣∣U−n+1

∣∣∣2 =
∣∣∣U−n ∣∣∣2.

Proof. Choosing V = U in the localised upwind dG method (3.9) we have that

∫
In

d
dtU ·Udt+ JUnK ·U+

n +
∫
In
BU ·Udt = 0.
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Applying Lemma 3.1.20 and the skew-symmetry of B we find

1
2
∣∣∣U−n+1

∣∣∣ ≤ 1
2
∣∣∣U−n ∣∣∣ ,

as required.

3.1.1.3 Hamiltonian systems

In the continuous setting the natural notion of non-linear stability arises from conservation
of the Hamiltonian, i.e., d

dtH (u) = 0. For the cG method (3.1) applied to Hamiltonian
systems a discrete notion of non-linear stability follows directly from Theorem 3.1.6 which
tells us that

H (Un+1) = H (Un) ,

where U is the solution of the cG method (3.1) applied to a Hamiltonian system.
For the upwind dG method (3.8) stability does not follow as immediately in general, as
the Hamiltonian is not conserved at the nodes. However, the diffuse nature of the method,
see Remark 3.1.14, leads to stability. Note that the diffuse nature of the method has only
been proven in the case that J∇H (u) is linear. To prove the diffuse nature of nonlinear
problems we can follow the methodology outlined in §3.1.1.2.

3.1.2 Convergence

Here we develop a new a priori error bound for the cG method (3.1) for symmetric linear
problems. Similar order bounds can be developed for skew-symmetric linear problems,
however, for brevity we shall not discuss this case here. As presented in Theorem 3.1.15, a
priori error bounds already exist for this method which utilise duality arguments. Here we
employ a simpler approach. While we are proving this a priori bound for the cG method
we are primarily introducing the techniques so they can be applied to the new temporal
finite element method we introduce in §3.2. Throughout we shall assume that the exact
solution u is sufficiently smooth, to be concise we will require that u ∈ Cq+2([0, T ]).

Definition 3.1.23 (Interpolation operator for the cG method). Let
w ∈ (C0([0, T ]) ∩ L2([0, T ]))D, then we define the interpolation operator I (w) ∈ VC

q+1 (In)
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locally such that
∫
In

(I (w)−w) · φdt = 0 ∀φ ∈ (Pq−1 (In))D , (3.12)

for n = 0, ..., N − 1, and I (w(tn)) = w(tn) for n = 0, .., N . Note that this interpolation
is uniquely defined as (3.12) locally fixes q degrees of freedom and nodal conditions fix the
remaining degree of freedom on each element. When q = 0 our interpolation operator is
uniquely defined through being exact at the nodes.

Lemma 3.1.24 (Convergence of the cG interpolation operator). Let
w ∈ (Cq+1([0, T ]) ∩ L2([0, T ]))D, further let the interpolation operator I be as discussed in
Definition 3.1.23, then

‖w − I (w)‖L2(In) ≤ Cτ q+2
n

∥∥∥∥∥ dq+2

dq+2t
w

∥∥∥∥∥
L2(In)

.

Proof. Lemma 3.1.24 follows from the interpolation operator given in Definition 3.1.23
being exact for functions in VC

q+1 ([0, T ]).

Theorem 3.1.25 (A discrete error for the cG method for symmetric linear ODEs). Let
U be the solution to the cG method (3.1) with right hand side F (U , t) = f (t) − AU ,
additionally let I (u) be the interpolation of the exact solution of the ODE u as described
in Definition 3.1.23. The cG solution satisfies the bound

1
2 |Un − I (u)n|

2 +
∥∥∥∣∣∣ΠVq (U − I (u))

∣∣∣
A

∥∥∥2

L2([0,tn])
≤ C ‖|I (u)− u|A‖

2
L2([0,tn]) ,

with ΠVq denoting the L2 projection into the finite element space Vq. Note that here the
constant C depends on the coercivity and continuity constants given in (3.10) and (3.11)
respectively.

Proof of Theorem 3.1.25. We begin by splitting the error of the cG solution U with re-
spect to the exact solution u, by adding and subtracting the cG interpolant described in
Definition 3.1.23 applied to the exact solution I (u), i.e.,

U − u = (U − I (u)) + (I (u)− u) =: θ + ρ.
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Adding and subtracting the aforementioned interpolant appropriately to the local cG
method (3.2) we observe that

∫
In

d
dtθ · V + Aθ · V + d

dtI (u) · V + AI (u) · V dt =
∫
In
f · V dt ∀V ∈ Vq. (3.13)

Additionally, we can write the general linear ODE (2.1) with F (U , t) = f (t) − AU

variationally as ∫
In

d
dtu+ Au · V dt =

∫
In
f · V dt ∀V ∈ Vq. (3.14)

Eliminating f from (3.13) and (3.14) we can write

∫
In

d
dtθ · V + Aθ · V dt = −

∫
In

d
dtρ · V + Aρ · V dt. (3.15)

Through integration by parts we have that
∫
In

d
dtρ · V dt =−

∫
In
ρ · d

dtV dt+ ρn+1 · V n+1 − ρn · V n

=0,
(3.16)

after applying the definition of the interpolant, as ρ := I (u) − u. Note that in the
case q = 0 we have that

∫
In
ρ · d

dtV dt is trivially zero. In view of (3.16), we can choose
V = ΠVq (θ) in (3.15) allowing us to write

∫
In

d
dtθ · θ + AΠVq (θ) · ΠVq (θ) dt = −

∫
In
ρ · ΠVq (θ) dt,

through the definition of the L2 projection, as d
dtθ ∈ Vq. Through Hölder’s inequality, and

then continuity of A we have
∫
In

1
2

d
dt
(
|θ|2

)
+ AΠVq (θ) · ΠVq (θ) dt ≤ CA ‖|ρ|A‖L2(In)

∥∥∥∣∣∣ΠVq (θ)
∣∣∣
A

∥∥∥
L2(In)

where CA is given by (3.11). Further, through coercivity (3.10) and Cauchy’s inequality
with ε

1
2 |θn+1|2 + cA

∥∥∥∣∣∣ΠVq (θ)
∣∣∣
A

∥∥∥2

L2(In)
≤ 1

2 |θn|
2 + C2

A

4ε ‖|ρ|A‖
2
L2(In) + ε

∥∥∥∣∣∣ΠVq (θ)
∣∣∣
A

∥∥∥2

L2(In)
.
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Choosing ε = cA
2 and iterating back to the initial point in time

1
2 |θn+1|2 + cA

2
∥∥∥∣∣∣ΠVq (θ)

∣∣∣
A

∥∥∥2

L2([0,tn+1])
≤ 1

2 |θ0|2 + CA
2cA
‖|ρ|A‖

2
L2([0,tn+1]) .

Observing that θ0 = ρ0 = 0 allows us to conclude.

Corollary 3.1.26 (Convergence of the cG method for symmetric linear ODEs). Let U
be the solution to the cG method (3.1) with the symmetric right hand side F (U , t) =
f (t) − AU where A is a symmetric linear operator. Additionally, let u ∈ Cq+2([0, T ]) be
the exact solution of the ODE (2.1), then

|Un − un|2 +
∥∥∥∣∣∣ΠVq (U − u)

∣∣∣
A

∥∥∥2

L2([0,tn])
≤ C

∥∥∥∥∥τ q+2
∣∣∣∣∣ dq+2

dq+2t
u

∣∣∣∣∣
A

∥∥∥∥∥
2

L2([0,tn])
.

Proof. Recall that through the introduction of the interpolant I (u) described in Definition
3.1.23 we write

U − u = (U − I (u)) + (I (u)− u) =: θ + ρ.

Through the triangle inequality, and Cauchy’s inequality, we can write

|Un − un|2 ≤
3
2 |θn|

2 + 3
2 |ρn|

2

≤3
2 |θn|

2 ,
(3.17)

through Definition 3.1.23. Following a similar argument we see that

∥∥∥∣∣∣ΠVq (U − u)
∣∣∣
A

∥∥∥2

L2([0,tn])
≤3

2
∥∥∥∣∣∣ΠVq (θ)

∣∣∣
A

∥∥∥2

L2([0,tn])
+ 3

2
∥∥∥∣∣∣ΠVq (ρ)

∣∣∣
A

∥∥∥2

L2([0,tn])

≤3
2
∥∥∥∣∣∣ΠVq (θ)

∣∣∣
A

∥∥∥2

L2([0,tn])
+ 3

2 ‖|ρ|A‖
2
L2([0,tn]) ,

(3.18)

through the stability of the L2 projector. Combining (3.17) and (3.18), and applying
Theorem 3.1.25 we find that

|Un − un|2 +
∥∥∥∣∣∣ΠVq (U − u)

∣∣∣
A

∥∥∥2

L2([0,tn])
≤ C ‖|ρ|A‖L2([0,tn]) .

We may conclude through the application of Lemma 3.1.24.
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3.2 The recovered finite element method

The notion of recovered finite element methods (RFEM) have been recently introduced in
[74] for the two dimensional Poisson problem, with a view to being extended for general
spatial finite element methods. The authors define a reconstruction E which maps a dis-
crete function from a nonconforming to a conforming finite element space. Their operator
is similar to reconstructions applied when post-processing nonconforming approximations,
see [74, Page 3]. The key difference is that the reconstruction is hard-coded into the
numerical scheme, i.e., a nonconforming solution U is sought such that some variational
formulation holds where the variational formulation is described in terms of the conform-
ing reconstruction E (U). A recovered finite element method can also be developed for
temporal finite element methods, although it is fundamentally different due to the evolu-
tionary nature of the problem and lack of symmetry in the derivatives. We will see here
for first order temporal problems that the resultant RFEM method for ODEs of the form
(2.1) can be viewed as a generalisation of the standard cG method (3.1).
The concise definition of RFEM relies heavily on the function space which the reconstruc-
tion operator maps from, i.e., the function space of the underlying discontinuous solution.
Throughout we will denote this space as Vp where p corresponds to the polynomial degree
of the space. Our reconstruction operator E will act on each vector component of the
input independently, returning a vector of the same structure. That is to say that when
we write E (U) we are just succinctly writing (E (U1) , E (U2) , ..., E (UD))T .
The continuous reconstruction E (U) is not necessarily sought on the same mesh as the
underlying solution U . In fact, a key motivator behind the development of this method
is the ability to choose a different mesh for the discontinuous solution and continuous
reconstruction. This allows us to employ a discontinuous solution U over an adaptive
mesh, which possesses an associated continuous structure preserving reconstruction over
a fixed mesh.
Before defining RFEM we first must formally define the mesh of a method. The meshM
is uniquely determined through a collection of nodal points, i.e.,

M := {t0, t1, ..., tN}, (3.19)

where tn are as described at the beginning of §3.1. Additionally, we can modify our
notation slightly to highlight the mesh dependency of a finite element space as follows.

Definition 3.2.1 (Temporal finite element spaces with variable meshes). Let M be as
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given in (3.19), then we define the elements Jn = (tn, tn+1). Further let Pq(Jn) denote the
space of polynomials of degree q on the element Jn, then we define the discontinuous finite
element space as

Vq (M) = {W : W |Jn ∈ (Pq(Jn))D , n = 0, ..., N − 1},

further to this the continuous finite element space is defined analogously with global conti-
nuity enforced, i.e.,

VC
q (M) = Vq (M) ∩ C0 ([0, T ]) .

This is a slight abuse of notation as we sometimes also write the finite element space as a
function of the domain, however, the mesh implicitly defines the domain, and as such we
shall not enforce a clear distinction here.

With Definition 3.2.1 in mind we can define RFEM as follows.

Definition 3.2.2 (Recovered finite element method). Let the mesh ›M be a refinement of
the mesh M, i.e., M⊆ ›M, then we define recovered finite element methods for ODEs as
follows: Let the reconstruction operator be E : Vp(›M) → VC

q+1(M) for some p ≤ q, then
seek U ∈ Vp

(›M)
such that

∫ T

0

d
dtE (U) · V dt =

∫ T

0
F (E (U) , t) · V dt ∀V ∈ Vq

(›M)
. (3.20)

Consider the case where p = 0, and q = 3, possible functions of Vp(›M) and VC
q (M) can

be described by Figure 3.1 and Figure 3.2.

Figure 3.1: An example of a function in V0(›M), defined over a subset of the associated
mesh.

tn−1 tn tn+1 tn+2tn+ 1
3

tn+ 2
3

tn+ 3
2

Remark 3.2.3 (A motivator behind the development of RFEM for ODEs). While the
recovered finite element method, as discussed in this section, is a purely temporal method
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Figure 3.2: An example of a function in VC
3 (M), defined over a subset of the associated

mesh. Notice that the solution over the first element is linear, over the second is cubic
and over the third is quadratic.

tn−1 tn tn+1 tn+2

the development of this method is motivated by its extension to space-time numerical meth-
ods. Through coupling the RFEM discretisation in time with an appropriate discontinuous
spatial discretisation we can obtain a discontinuous numerical approximation on a fine
mesh with a continuous reconstruction which preserves the structure of the problem over
a coarser temporal mesh. The discontinuity of the underlying solution allows us to im-
plement space-time adaptivity. Note that the numerical scheme will be adaptive only on
the fine mesh, and the coarse mesh will be fixed a priori. We will find in the sequel that
the increase in temporal resolution on the finer mesh can be heuristically compared to in-
creasing the polynomial degree of the continuous reconstruction of the numerical solution.
An example of a potential refined and coarse space-time mesh are given in Figure 3.3.
Note that in the literature the adaptivity with spatial RFEM is fundamentally different, in
that the conforming reconstruction is is defined over a coarser mesh than the underlying
solution, see [58].

A fundamental, and indeed defining, property of RFEM is the choice of reconstruction
operator. Throughout we shall focus of study on the following reconstruction operator.

Definition 3.2.4 (The RFEM reconstruction operator). Assume that W ∈ Vp(›M), and
let N denote the Lagrange nodes of VC

q+1(M). We split the set of nodes into three groups.

1. Let N0 denote a set containing the first node at time t = 0.

2. Let Ne denote the set of nodal values at the nodes of the elements.

3. Let Ni denote the set of nodal values on the interiors of the elements.
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Figure 3.3: The time-stepping implementation of the fine mesh (thin black lines), on which
the underlying discontinuous solution lives superimposed with the coarse mesh (thick red
lines) on where the conforming reconstruction lives. Notice in that the second time step (in
the third sub-figure) is not uniform in space, so a discontinuous approximation is required
on the fine mesh to avoid issues with hanging temporal nodes.
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We define the reconstruction E (W ) such that for γ ∈ N it satisfies

E (W ) (γ) =


W (γ−) for γ ∈ Ne\N0

{W (γ)} for γ ∈ Ni
w0 for γ ∈ N0,

where w0 denotes the initial condition of the corresponding continuous problem.

Remark 3.2.5 (A comparison of Definition 3.2.4 and existing RFEM reconstruction op-
erators). For spatial RFEM the conforming reconstruction operator is chosen such that for
arbitrary Lagrange nodes of the solution space γ ∈ N·�E (W )(γ) = {W (γ)},

see [74, 58]. This choice is desirable as it is symmetry preserving and is well studied, see
[116]. In the temporal case we cannot choose such a reconstruction operator as it requires
us to solve globally. To remedy this in Definition 3.2.4 we have chosen a reconstruction
operator which can be evaluated locally in the sense that the solution over the element In
depends solely on information in In and on the previous element In−1. We do not need to
know any information from “future” elements.

Remark 3.2.6 (A time stepping implementation). In general, it is crucial that temporal
discretisations can be implemented in a time stepping fashion as opposed to solving globally.
As our choice of reconstruction operator is localisable it suffices for us to describe the
method over a single element of M. Let E : Vp

( ›M∣∣∣
(tn,tn+1)

)
→ VC

q+1 ([tn, tn+1]) for some

p ≤ q, then the local method is given by seeking U ∈ Vp

( ›M∣∣∣
In

)
such that

∫
In

d
dtE (U) · V dt =

∫
In
F (E (U) , t) · V dt ∀V ∈ Vq

( ›M∣∣∣
In

)
. (3.21)

This formulation is equivalent to its global counterpart (3.20), as can be seen similarly
to Remark 3.1.5. It is paramount to note that communication with the solution on the
previous element is conducted through the continuity of the reconstruction of the solution
E (U).

While the underlying approximation U for RFEM is discontinuous, the continuous recon-
struction of the solution possesses the following desirable geometric property.
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Lemma 3.2.7 (Geometric properties of RFEM). The continuous reconstruction of the
local RFEM method (3.21) satisfies the same geometric properties as the cG method. That
is to say if F (U , t) = J∇H (U ), then the reconstruction E (U) preserves the Hamiltonian
across the nodes, i.e.,

H (E (U(tn+1))) = H (E (U(tn))) .

Similarly under a q+1 point Gauss quadrature, the continuous reconstruction is symplectic.
This result follows analogously to the proof of Theorem 3.1.9 in view of Remark 3.1.10.

Proof. The proof of Lemma 3.2.7 is identical to the proof of Theorem 3.1.6. Note that
we can choose the test function V = J d

dtE (U) due to the discrete de Rham complex
discussed in Remark 3.1.2 and as M⊆ ›M.

A key property of RFEM is its ability to simultaneously possess a nonadaptive conserva-
tive continuous reconstruction and an adaptive discontinuous solution. To examine this
property we need first define various potential candidates for ›M.

Definition 3.2.8 (Potential mesh refinements). We define the mesh M0 through the col-
lection of points {t0, t1, ..., tN} given at the beginning of §3.2 to define our base mesh. We
further define M1 through the collection of points {t0, t 1

2
, t1, ..., tN− 1

2
, tN} where tn+ 1

2
=

1
2 (tn + tn+1). This mesh can be viewed as a refinement of M0 where we add one equidis-
tant point between every preexisting point. Through adding i new equidistant points between
every point of M0 we yield Mi for i ∈ N. For a pictographic representation see Figure
3.4.

Figure 3.4: The structure of Mi over two elements as discussed in Definition 3.2.8.

tn−1 tn tn+1
M0

tn−1 tn tn+1
M1

tn− 1
2

tn+ 1
2

tn−1 tn tn+1
M2

tn− 2
3

tn− 1
3

tn+ 1
3

tn+ 2
3
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Remark 3.2.9 (A preliminary remark on the practical implementation of RFEM). In
practice, to compute the RFEM approximation in a time stepping fashion, as given in
(3.21), we must first assemble the forms as if solving for the conforming reconstruction
E (U). In order to solve for U we multiply the terms in the form which depend on E (U)
with a local transition matrix, which represents the action of E. The behaviour of the
method is highly dependent on this transition matrix, as such we make it the focal point of
the immediate sequel.

3.2.1 Implementation of RFEM when fiM≡M
Assume that the continuous reconstruction E (U) and U are defined over the same mesh,
i.e., that ›M ≡ M. Throughout we shall restrict ourselves to an arbitrary component
of the vector U which we denote W , for clarity of exposition. In this situation RFEM
(3.20) is well posed when p = q, as the kernel of E as given in Definition 3.2.4 is zero.
While it is possible to chose p < q we shall not focus on this case here, as it increases the
computational complexity of the method.
We present the cases where p = q = 0 and p = q = 1 independently. Firstly, if p = q = 0
we can view graphically in Figure 3.5. Notice that the reconstruction depends on the value

Figure 3.5: The underlying solution W and the reconstruction E (W ) over two arbitrary
elements.

tn−1 tn tn+1

W (t
n− 3

2
)

W (t
n− 1

2
)

W (t
n+ 1

2
)

E
(
W (tn−1)

)

E (W (tn))

E
(
W (tn+1)

)

of the underlying solution on the previous interval. When considering the first interval
this value of the “underlying solution” on the previous interval is given by the initial
condition. We implement this operator through the manipulation of its values at the
degrees of freedom. We define the local transition matrix −→T : V0 ([tn, tn+1)) → VC

1 (In)
which maps the values of the degrees of freedom of W to E (W ) on a given element. More
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concisely, through defining the local degrees of freedom of W (in addition to the ultimate
degree of freedom on the previous element) as

−→
W =

W (
tn− 1

2

)
W
(
tn+ 1

2

)
and the local degrees of freedom of the reconstruction E (W ) as

−→
E =

 E (W (tn))
E (W (tn+1))

 ,
the local transition matrix satisfies

−→
E = −→T −→W. (3.22)

In view of Definition 3.2.4 we observe that

−→
T =

1 0
0 1

 ,
i.e., the transition matrix is the identity.
If instead we assume that p = q = 1 then the reconstruction operator E : Vq → VC

q+1 can
be viewed graphically in Figure 3.6. The values of W and E (W ) at the degrees of freedom

Figure 3.6: The underlying solution W and the reconstruction E (W ) over two arbitrary
elements.

tn−1 tn tn+1

W (t−
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W (t+
n−1)
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(
W (tn−1)
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(
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2

)
) E (W (tn))

E
(
W (t
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E
(
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)

47



Section 3.2 Page 48

locally are now given by

−→
W =


W (t−n )
W (t+n )
W
(
t−n+1

)


and

−→
E =


E (W (tn))
E
(
W (tn+ 1

2
)
)

E (W (tn+1))


respectively. With this in mind, through Definition 3.2.4, the local transition matrix is
given by

−→
T =


1 0 0
0 1

2
1
2

0 0 1

 .
While we shall not explore this case numerically for ›M≡M, we can again choose p < q.
For example, if p = 0 and q = 1 then the reconstruction operator behaves as suggested in
Figure 3.7. Through the definition of E we observe that we can write the local transition

Figure 3.7: The underlying solution W ∈ V0 and the reconstruction E (W ) ∈ VC
2 over two

arbitrary elements.

tn−1 tn tn+1

W (t
n− 1

2
)

W (t
n+ 1

2
)

W (t
n+ 3

2
)

E
(
W (tn−1)

)

E
(
W (t

n− 1
2

)
)

E (W (tn))

E
(
W (t

n+ 1
2

)
)

E
(
W (tn+1)

)

matrix −→T , which satisfies (3.22), as

−→
T =


1 0
0 1
0 1
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with

−→
W =

W (
tn− 1

2

)
W
(
tn+ 1

2

) , −→
E =


E (W (tn))
E
(
W
(
tn+ 1

2

))
E (W (tn+1))

 .
Note that this transition matrix is injective when acting on −→W , but not surjective.

Lemma 3.2.10 (Relation of RFEM to known methods). Let U be the solution to (3.20)
where E (U) is given by Definition 3.2.4. Additionally assume that ›M ≡ M and that
p = q, then the reconstruction of the RFEM solution is equivalent to the solution to the
cG method (3.1).

Remark 3.2.11 (The importance of the relationship between p and q when ›M ≡ M).
The assumption that p = q in Lemma 3.2.10 is crucial. If we consider, for example, p < q

then the reconstruction operator E is not bijective. As such, we expect E (U) to describe
the numerical solution less accurately than the cG approximation given in Definition 3.1.3
of degree q over the same mesh.
If instead, we assumed that p > q then the reconstruction operator will have multiple
elements in its kernel, and the associated RFEM approximation would not be well posed
without the addition of stabilising terms.

Proof of Lemma 3.2.10. Lemma 3.2.10 follows from the fact that for all U ∈ Vq (M)
there exists E (U ) ∈ VC

q+1 (M), and conversely for all E (U) ∈ VC
q+1 (M) there exists

U ∈ Vq (M). This statement is equivalent to saying that E is an invertible mapping, which
arises from the fact that an additional degree of freedom is fixed in the reconstruction by
enforcing continuity and some initial data.

To illustrate Lemma 3.2.10 consider the case where q = 0. Additionally as the reconstruc-
tion acts on each component of a vector independently it is sufficient to consider a function
W ∈ V0(M). Over an arbitrary interval t ∈ In we can express W as the polynomial

W (t) = Wn+ 1
2
,

where Wn+ 1
2

is a constant. We can describe an arbitrary linear polynomial over the same
interval as

P (t) = a0 + a1t,
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In the case where q = 0 the values of the reconstruction on this interval are determined
uniquely by

E (W ) (tn) =W−
n

E (W ) (tn) =Wn+ 1
2
.

Note that W−
n is enforced by either continuity from the previous element or as an initial

condition. Our linear reconstruction can then be written as

E (W ) = t− tn+1

tn − tn+1
W−
n + t− tn

tn+1 − tn
Wn+ 1

2

=
tn+1W

−
n − tnWn+ 1

2

tn+1 − tn
+ t

Wn+ 1
2
−W−

n

tn+1 − tn
,

which is exactly the general linear polynomial P (t) with a0 =
tn+1W

−
n −tnWn+ 1

2
tn+1−tn and a1 =

W
n+ 1

2
−W−n

tn+1−tn . As Wn+ 1
2

is arbitrary, and W−
n is defined such that continuity, or initial, is

enforced we have that P (t) is an arbitrary function of VC
1 (M) after the enforcement of

some appropriate initial data.

3.2.2 Implementation of RFEM when M⊆ fiM
Here we relax the assumption that our underlying method U and continuous reconstruc-
tion E (U) are defined over the same mesh. To yield a well posed method we must observe
a delicate balance between the mesh refinement and q. We shall see that if ›M =Mi, as
described in Definition 3.2.8, this amounts to requiring that q = p+ i.
For simplicity, we consider the case that p = 0, and restrict ›M to be the hierarchy of
meshes Mi described in Definition 3.2.8.
Consider ›M ≡ M1 and choose q = 1, then through the definition of E we can view
W ∈ V0 (M1) and E (W ) ∈ VC

2 (M0) graphically in Figure 3.8. Similarly to §3.2.1 we can
write W and E (W ) through their values at the degrees of freedom as

−→
W =


W
(
tn− 1

4

)
W
(
tn+ 1

4

)
W
(
tn+ 3

4

)
 , −→

E =


E (W (tn))
E
(
W
(
tn+ 1

2

))
E (W (tn+1))

 ,
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Figure 3.8: The finite element mesh of E (W ) (black lines) superimposed on the finite
element mesh of W (black or blue lines), with the underlying solution W ∈ V0 (M1) over
the fine mesh and the reconstruction E (W ) ∈ VC

2 (M0) over the coarse mesh.
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allowing us to define the local transition matrix −→T satisfying (3.22) as

−→
T =


1 0 0
0 1

2
1
2

0 0 1

 .

Observe that that the local transition matrix defines E as a bijective operator. As such,
the resulting numerical method (3.20) is well posed here. Similarly to in §3.2.1 we can
increase q and still yield a well posed method, however we cannot expect to achieve best
approximability with respect to q as while we have increased q the underlying solution
does not possess any additional information.
If we instead we choose ›M ≡ M2, then we must also choose q = 2. As such, we obtain
an underlying solution W and continuous reconstruction E (W ) like that shown in Figure
3.9. The local transition matrix in this case is given by

−→
T =


1 0 0 0
0 1

2
1
2 0

0 0 1
2

1
2

0 0 0 1

 (3.23)
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Figure 3.9: The finite element mesh of E (W ) (black lines) superimposed on the finite
element mesh of W (black or blue lines), with the underlying solution W ∈ V0 (M2) over
the fine mesh and the reconstruction E (W ) ∈ VC

3 (M0) over the coarse mesh.

tn−1 tn tn+1tn− 2
3

tn− 1
3

tn+ 1
3

tn+ 2
3

where

−→
W =


W
(
tn− 1

6

)
W
(
tn+ 1

6

)
W
(
tn+ 1

2

)
W
(
tn+ 5

6

)

 ,
−→
E =


E (W (tn))
E
(
W
(
tn+ 1

3

))
E
(
W
(
tn+ 2

3

))
E (W (tn+1))

 .

Again we see that the reconstruction operator defined through the local transition matrix
(3.23) is a bijective operator. Similarly if we increase q we obtain an injective operator,
as we have more degrees of freedom for the reconstruction than the underlying solution.
Repeating this procedure we obtain similar results where ›M ≡Mi for p = 0 and q = i,
leading us to the following proposition.

Proposition 3.2.12 (Conditions for RFEM (3.20) to be well posed). Let U be the solution
of the RFEM approximation given in Definition 3.2.2 with continuous reconstruction E (U)
given in Definition 3.2.4. We further assume that the continuous reconstruction is defined
over the meshM≡M0 and the discontinuous solution is defined over the mesh ›M≡Mi

for i = 0, 1, .... Then the RFEM method is well posed if for a given p we choose

q ≥ p+ i.

Furthermore, if we choose q = p + i then the reconstruction operator is bijective and
therefore invertible.
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3.2.3 Analytic results

Here we assume that RFEM satisfies the conditions of Proposition 3.2.12 and the method
is well posed. In this case we can obtain stability and convergence results in terms of the
continuous reconstruction. While we do not explicitly examine the stability and conver-
gence of the underlying solution, the underlying solution must be stable if its application
under a well posed operator E is stable.
Through Lemma 3.2.7 we immediately obtain a nonlinear stability result when considering
Hamiltonian systems. Additionally, we obtain the following results for symmetric, and
skew-symmetric, linear problems.

Corollary 3.2.13 (Stability of RFEM for symmetric linear problems with forcing). Con-
sider RFEM (3.20), with E given by Definition 3.2.4, applied to a symmetric linear ODE,
i.e., F (U , t) = f−AU where f is bounded and A is a symmetric operator. Additionally as-
sume that M⊆ ›M and the conditions of Proposition 3.2.12 are met, then the continuous
reconstruction satisfies

∥∥∥∥∥ d
dtU

∥∥∥∥∥
2

L2([0,T ])
+ AE (U(T )) · E (U(T )) ≤ AE (U(0)) · E (U (0)) + ‖f‖2

L2([0,T ]) .

Corollary 3.2.14 (Stability of RFEM for skew-symmetric linear problems). Consider
RFEM (3.20), with E as described in Definition 3.2.4, applied to a skew-symmetric linear
ODE, i.e., F (U , t) = −BU where B is a skew-symmetric operator. Additionally assume
that M ⊆ ›M and the conditions of Proposition 3.2.12 are met, then the continuous
reconstruction of the discrete approximation satisfies

|E (U(T ))| = |E (U(0))| .

Proof of Corollary 3.2.13 and Corollary 3.2.14. Corollary 3.2.13 and Corollary 3.2.14 fol-
low identically to the proofs of Theorem 3.1.17 and Theorem 3.1.21 respectively. It is
important to note that we can always choose the same test functions as in the cG case, as
M⊆ ›M.

Further to numerical stability, for linear problems we also obtain the following a priori
bound for the RFEM reconstruction.
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Corollary 3.2.15 (Convergence of RFEM for symmetric linear ODEs). Let U be the so-
lution to RFEM (3.20), where E is described by Definition 3.2.4, with the symmetric linear
right hand side F (U , t) = f (t) − AU where A is a coercive and continuous symmetric
linear operator. Further let M =M0 and ›M =Mi for some i = 0, 1, ... as described in
Definition 3.2.8, and assume that p and q satisfy the relationship

q = p+ i.

Additionally, let u ∈ Cq+2 ([0, T ]) be the exact solution of the ODE (2.1), then

|E (U)n − u(tn)|2 +
∥∥∥∣∣∣ΠVq (E (U)− u)

∣∣∣
A

∥∥∥2

L2([0,tn])
≤ C

∥∥∥∥∥τ q+2
∣∣∣∣∣ dq+2

dq+2t
u

∣∣∣∣∣
A

∥∥∥∥∥
2

L2([0,tn])
.

Proof. Follows identically to the argument outlined in §3.1.2 asM⊆ ›M with one caveat.
We must redefine the interpolation operator given in Definition 3.1.23 as follows:
Let w ∈ (C0([0, T ]) ∩ L2([0, T ]))D then define the interpolation operator
I (w) ∈ VC

q+1

(
M0|In

)
locally such that

∫
In

(I (w)−w) · φdt = 0 ∀φ ∈ Vp−1
(
Mi|In

)
,

for n = 0, ..., N−1, and I (w(tn)) = w(tn) for n = 0, .., N . For this interpolation operator
to be well defined we require all of its degrees of freedom to be fixed, this is the case if
and only if

q = p+ i.

Remark 3.2.16 (Kernel removal in the case where q < p + i). The proposed RFEM
implementation, given in Definition 3.2.2, is only well posed for q ≥ p + i, due to the
kernel containing multiple elements if q < p + i. We can remove this problem, similarly
to [74], by introducing an additional term into the method which is typically small but
nonzero. Explicitly, we can redefine the method by seeking U ∈ Vp

(›M)
such that

∫ T

0

d
dtE (U) · V dt+ σ

N−1∑
n=0

JUnK · V +
n =

∫ T

0
F (E (U)) · V dt ∀V ∈ Vq

(›M)
,

for some σ 6= 0. This additional term comes at the cost of the geometric structure of the
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method, i.e., for Hamiltonian ODEs the Hamiltonian function will not be conserved, but
this error can be controlled by choosing σ to be small.

3.2.4 A discontinuous adaptive algorithm with a continuous re-
construction on a fixed mesh

We have now developed all of the tools we need to define a discontinuous adaptive algo-
rithm utilising RFEM which possesses a continuous reconstruction on a fixed mesh. We
define the RFEM adaptive algorithm as follows. Throughout the adaptive procedure we
fix the mesh of the conforming approximation to be M≡M0 and shall assume that p is
fixed.

1. Set n = 0.

2. Set i = 0.

3. Consider the local RFEM approximation (3.21) over In with the reconstruction E as
given in Definition 3.2.4. Seek a dG solution over ›M ≡ Mi|In with q = p + i and
compute an appropriate local error.

4. If the local error is above a set tolerance then set i = i+ 1 and go to 3.

5. If n < N − 1 then set n = n+ 1 and go to 2.

To validate our adaptive procedure we shall investigate the RFEM approximation over
the meshes ›M≡M0 and ›M≡M1 in §3.3.

3.3 Numerical experiments

Here we illustrate the numerical performance of the methods discussed within this chapter.
The experimental code written for this purpose has been partially implemented in the
software for automated system for solving differential equations through finite element
methods “Firedrake” [153]. Here we employ a Gauss quadrature of order 2q, where q

is the degree of the polynomial space considered in the finite element approximation,
to minimise the quadrature errors introduced into the approximation. Note that some
quadrature error shall always enter our approximation for non-polynomial right hand
sides F (U , t). For the computation of errors we increase the quadrature degree to 2q+ 4.

55



Section 3.3 Page 56

When considering nonlinear right hand sides we employ the PETSc Newton line search
method as our nonlinear solver with a tolerance of 10−15, see [20]. For limited linear
numerical experiments we assemble the underlying linear system directly and solve using
the Python library Numpy. We additionally utilise the Python library Matplotlib as our
primary visualisation tool.
We restrict our numerical study to Hamiltonian systems, in particular, we consider the
following problems for the case D = 2 with the skew-symmetric matrix

J =
0 −1

1 0

 .
Additionally, we shall write our solution vector in the form u(t) = (u1(t), u2(t))T.

Example 3.3.1 (Harmonic oscillator). The harmonic oscillator is described via the Hamil-
tonian

H (u1, u2) = 1
2u

2
1 + 1

2u
2
2,

with corresponding system

d
dtu1 = −u2

d
dtu2 = u1.

Through standard techniques for solving ODEs we observe that the solution of the harmonic
oscillator is

u1(t) = −u2(0)sin (t) + u1(0)cos (t)

u2(t) = u2(0)cos (t) + u1(0)sin (t) ,

where u1(0) and u2(0) are the prescribed initial conditions. We shall use this right hand
side to benchmark our schemes.

Example 3.3.2 (Pendulum problem). The pendulum problem is described via the Hamil-
tonian

H (u1, u2) = 1
2u

2
1 − cos (u2) ,
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with corresponding system

d
dtu1 = sin (u2)
d
dtu2 = u1.

While it is possible to obtain an exact solution through utilising Jacobi elliptic functions,
see [26], we shall not press this point here.

Example 3.3.3 (Lennard-Jones oscillator). The Lennard-Jones oscillator has the Hamil-
tonian function

H (u1, u2) = 1
2u

2
1 + u−12

2 − 2u−6
2 ,

and can be written as the system

d
dtu1 = 12u−13

2 − 12u−7
2

d
dtu2 = u1.

This Hamiltonian system is very nonlinear, and as such we expect significant quadrature
errors to encroach on any appropriate finite element approximation.

Throughout our numerical experiments, for clarity of exposition, we consider uniform time
steps τn = τ. This restriction is not required anywhere in our analysis.
To benchmark our numerical schemes we fix the polynomial degree q and compute a
sequence of solutions with τ = τ(i) = 2−i for a sequence of refinement levels, i = l, . . . , L.
With this in mind we construct the following definition.

Definition 3.3.4 (Experimental order of convergence). Given two sequences a(i) and
τ(i) ↘ 0 we define the experimental order of convergence (EOC) to be the local slope of
the log (a(i)) over log (τ(i)) curve, i.e.,

EOC(a, τ; i) =
log

(
a(i+1)
a(i)

)
log

(
τ(i+1)
τ(i)

) .
In the sequel a(i) will be a sequence of errors with τ(i) the corresponding sequence of time
step sizes.
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3.3.1 The cG method

Here we consider the cG method as given by Definition 3.1.3. We investigate the deviation
in the Hamiltonian functions for both the pendulum problem and the Lennard-Jones
oscillator in Figure 3.10 for degree q = 0, 1. Note that, through Theorem 3.1.6, we
have that the cG method conserves the Hamiltonian function at the nodes. However, as
discussed in Remark 3.1.7, for the Lennard-Jones oscillator we cannot exactly compute the
finite element method due to our inability to choose a quadrature method which evaluates
the method exactly. As such, we observe that the Hamiltonian function deviates for our
implementation of the Lennard-Jones oscillator.
Benchmarking the cG method (3.1) with degree q = 0, 1 in accordance with Definition
3.3.4 for the harmonic oscillator we obtain Figure 3.11. We observe optimal convergence.
Note that, due to the way we have presented the cG method optimal convergence rates
are O (τ q+2), as the numerical approximation is a degree q + 1 polynomial.

3.3.2 The upwind dG method

We consider the upwind dG method as described in Definition 3.1.12.
Investigating the nodal deviation in the Hamiltonian functions for both the pendulum
problem and the Lennard-Jones oscillator for degree q = 0, 1 we obtain Figure 3.12. As
expected from Remark 3.1.14, we observe that the Hamiltonian function dissipates over
time. However, for the Lennard-Jones oscillator this dissipation is not monotonic, this is
caused by the inexact quadrature approximation.
Additionally, when simulating the harmonic oscillator we observe optimal experimental
convergence rates for degree q = 0, 1, see Figure 3.13.
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Figure 3.10: We examine the nodal deviation in the Hamiltonian function for the cG
method (3.1) with various polynomial degrees, q, for various Hamiltonian systems. In
particular we consider the pendulum problem and the Lennard-Jones oscillator as given in
Example 3.3.2 and Example 3.3.3 respectively. For the pendulum problem we enforce the
initial data u1(0) = 0.1, u2(0) = 0.1, and for the Lennard-Jones oscillator we enforce that
u1(0) = 0.1, u2(0) = −1.3. For all simulation we employ the uniform time step τ = 0.1.
We observe that the Hamiltonian function is conserved for the pendulum problem, but not
for the Lennard-Jones oscillator due to the inexact numerical integration of the method.
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(a) We consider the pendulum problem for q = 0.
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(b) We consider the pendulum problem for q = 1.
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(c) We consider the Lennard-Jones oscillator for
q = 0.
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(d) We consider the Lennard-Jones oscillator for
q = 1.
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Figure 3.11: We examine the cG method (3.1) with various polynomial degrees, q,
approximating harmonic oscillator discussed in Example 3.3.1 subject to the initial data
u1(0) = 1, u2(0) = 1. We measure errors in the L2 (0, tn) norm and plot the corresponding
EOC, and notice optimal experimental convergence rates, in the sense that our error
converges as fast as the best polynomial approximation for each degree.

(a) Here q = 0.

(b) Here q = 1.
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Figure 3.12: We examine the nodal deviation in the Hamiltonian function for the upwind
dG method (3.8) with various polynomial degrees, q, for various right hand sides. In
particular we consider the right hand sides which describe the pendulum problem and the
Lennard-Jones oscillator as given in Example 3.3.2 and Example 3.3.3 respectively. For
the pendulum problem we enforce the initial data u1(0) = 0.1, u2(0) = 0.1, and for the
Lennard-Jones oscillator we enforce that u1(0) = 0.1, u2(0) = −1.3. For all simulation
we employ the uniform time step τ = 0.1. We observe that the Hamiltonian function
deviations for both right hand sides, which we expect from the dissipative nature of the
upwind dG method.
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(a) We consider the pendulum problem for q = 0.
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(b) We consider the pendulum problem for q = 1.
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(c) We consider the Lennard-Jones oscillator for
q = 0.
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(d) We consider the Lennard-Jones oscillator for
q = 1.
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Figure 3.13: We examine the upwind dG method (3.8) with various polynomial degrees,
q, approximating harmonic oscillator discussed in Example 3.3.1 subject to the initial data
u1(0) = 1, u2(0) = 1. We measure errors in the L2 (0, tn) norm and plot the corresponding
EOC, and notice optimal experimental convergence rates.

(a) Here q = 0.

(b) Here q = 1.
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3.3.3 The RFEM method

Here we consider the RFEM method developed in §3.2, utilising the mesh structures given
in Definition 3.2.8. We begin by considering the case where M ≡ ›M ≡M0 with p = q,
i.e., the case considered in §3.2.1 where our underlying solution is not a refinement of the
conforming reconstruction. Note that through Lemma 3.2.10 we have that the continuous
reconstruction of this implementation is equivalent to the cG method.
We consider the nodal deviation of the Hamiltonian applied to the continuous reconstruc-
tion of U1 and U2, i.e., H (E (U1) , E (U2)), for the pendulum problem with p = q = 0, 1 in
Figure 3.14.
We also consider the experimental convergence rates when simulating the harmonic oscil-
lator in Figure 3.15. We observe that the errors for both the underlying solution U and
reconstruction E (U) are optimal in the sense of best approximability.

Figure 3.14: We examine the nodal deviation in the Hamiltonian function for the continu-
ous reconstruction of the RFEM method (3.20) with the reconstruction given by Definition
3.2.4, M≡ ›M≡M0 and p = q. We consider various polynomial degrees, p, for the pen-
dulum problem given in Example 3.3.2, subject to the initial data u1(0) = 0.1, u2(0) = 0.1.
For all simulation we employ the uniform time step τ = 0.1. We observe that the Hamil-
tonian function is conserved for the pendulum problem.
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(a) Here q = 0.
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(b) Here q = 1.

A key property of RFEM is the ability to define the underlying solution on a more refined
mesh than that of the continuous reconstruction, leading to an adaptive discontinuous
approximation with a continuous reconstruction over a fixed mesh. With this in mind, we
investigate the behaviour of RFEM where the discontinuous approximation U exists on
a refinement of the conforming reconstruction E (U). In particular, we choose M ≡M0
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Figure 3.15: We examine the error and EOC of the RFEM method (3.20), with E as
given in Definition 3.2.4, M ≡ ›M ≡ M0 and p = q. We consider various polynomial
degrees, q, approximating harmonic oscillator discussed in Example 3.3.1 subject to the
initial data u1(0) = 1, u2(0) = 1. We measure errors in the L2 ([0, tn]) norm and plot the
corresponding EOC, and notice optimal experimental convergence rates.

(a) Here q = 0. (b) Here q = 1.

and ›M≡M1. In view of Proposition 3.2.12, we choose q = p+1 and restrict ourselves to
the case where p = 0. While we note that we can choose q larger at the cost of increasing
the computational complexity, we do not do this here as it does not significantly improve
the behaviour of the method.
We show the nodal deviation of the Hamiltonian for the harmonic oscillator in Figure 3.16
for p = 0 and q = 1, and observe that the Hamiltonian function is conserved nodally.
We investigate the error and experimental order of convergence in Figure 3.17, where
we observe optimal behaviour for both U and E (U). Notice that the error for U is
smaller here than in the nonadaptive case shown in Figure 3.15, but not considerably.
The additional accuracy of the underlying adaptive method is best observed through the
continuous reconstruction.
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Figure 3.16: We examine the nodal deviation in the Hamiltonian function for the con-
tinuous reconstruction of RFEM (3.20) with the reconstruction given by Definition 3.2.4,
M ≡M0, ›M ≡M1, p = 0 and q = 1. We approximate numerical the harmonic oscilla-
tor given in Example 3.3.1, subject to the initial data u1(0) = 0.1, u2(0) = 0.1. For this
simulation we employ the uniform time step τ = 0.1. We observe that the Hamiltonian
function is conserved nodally.
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(a) Here q = 0.

Figure 3.17: We examine the error and EOC of RFEM (3.20), with E as given in Definition
3.2.4,M≡M0, ›M≡M1, p = 0 and q = 1. We approximate the solution of the harmonic
oscillator discussed in Example 3.3.1 subject to the initial data u1(0) = 1, u2(0) = 1. We
measure errors in the L2 ([0, tn]) norm and plot the corresponding EOC, and notice optimal
experimental convergence rates.

(a) Here q = 0.
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3.4 Conclusion

We introduced the two finite element methods typically used for time integration, the cG
method and upwind dG method, and discussed their geometric properties, as can be found
in [105]. In addition, we conducted a stability analysis on these methods and proved an a
priori error bound for the cG method.
We then introduced a new temporal finite element method, RFEM, as the first step to-
wards a fully adaptive (discontinuous) space-time finite element method which possesses
a structure preserving temporal reconstruction. We conducted a stability and a priori
analysis of this method in addition to proposing a temporally adaptive algorithm which
has the potential to be generalised into a space-time adaptive algorithm.
We observed that the upwind dG method was dissipative which, while useful for numerical
stability, did not yield solutions which preserved any geometric structure over time. The
cG method and RFEM both preserved energy over time for Hamiltonian ODEs. Further to
this, RFEM generated a structure preserving solution while also possessing an underlying
discontinuous solution, which lends itself to the generation of fully adaptive space-time
numerical methods which preserve geometric structure over time.
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Chapter 4

An introduction to Hamiltonian
PDEs and their approximation

A fundamental challenge in the numerical analysis of partial differential equations is the
development of consistent and conservative algorithms for Hamiltonian PDEs. These are
a specific class of PDE which have physically relevant algebraic and geometric structures
associated to them, see [95, 117]. They arise form a variety of areas, not least meteorolog-
ical, such as the semi-geostrophic equations [155], and oceanographical equations, such as
the Korteweg de-Vries (KdV) and nonlinear Schrödinger equations [144]. The KdV and
Schrödinger equations are particularly special examples, in that they are bi-Hamiltonian.
This means the equations have two different Hamiltonian formulations which, in turn, is
one way to understand the notion of integrability of the problems. Regardless, the ap-
plications motivate the need for accurate long time simulations for reliable prediction of
future behaviour in both meteorology and oceanography.
Within this chapter we propose a new methodology for obtaining a numerical solution
which preserves the underlying structure of a Hamiltonian PDE, i.e., the “Hamiltonian
functional” over time. We will then restrict our attention and investigate the design of
a conservative numerical scheme for the linearised KdV equation, proving numerical sta-
bility and a new a priori error bound. In subsequent chapters we shall develop schemes
for a multitude of more complex Hamiltonian PDEs. The method that we design for
the linearised problem serendipitously falls within the framework for localised discontin-
uous Galerkin methods which have proven to be quite successful for linearised KdV, see
[183, 182, 128, 98]. These methods have been found to superconverge at the nodes. The
application of hybrid discontinuous Galerkin to this problem is currently under develop-
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ment, with the first hybridised discontinuous Galerkin scheme for the stationary linear
KdV problem being developed in [43] and also superconverge at the nodes.

4.1 Hamiltonian PDEs and a methodology for their
discretisation

Let u = u(t, x), where t ∈ [0, T ] and x ∈ S1, where S1 is the periodic interval [0, 1), which
can be thought of as a lower dimensional representation of a sphere. A Hamiltonian PDE
can be written with respect to the Hamiltonian H as

ut = −P δ

δu
H(u) (4.1)

where δ
δu

denotes the variational derivative and P is a differential operator which induces
a Poisson bracket, i.e., P defines the Poisson bracket

{g1(u), g2(u)}P :=
〈
δg1

δu
,P δg2

δu

〉
. (4.2)

This bracket satisfies the skew-symmetry condition

{g1(u), g2(u)}P = −{g2(u), g1(u)}P ,

and distributivity, i.e. for a, b ∈ R

{ag1(u) + bg2(u), g3(u)}P = a{g1(u), g3(u)}P + b{g2(u), g3(u)}P .

It also satisfies the product rule

{g1(u)g2(u), g3(u)}P = {g1(u), g3(u)}Pg2(u) + g1(u){g2(u), g3(u)}P

and the Jacobi identity

{g1(u), {g2(u), g3(u)}P}P + {g2(u), {g3(u), g1(u)}P}P + {g3(u), {g1(u), g2(u)}P}P = 0.
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Here, and in the sequel, 〈·, ·〉 denotes the spatial L2 inner product over S1. Note that by
skew-symmetry we have with g1(u) = g2(u) that

〈
δg1

δu
,P δg1

δu

〉
= 0. (4.3)

For clarity of exposition we have initially restricted the notion of a Hamiltonian PDE
to scalar problems, but this is not always the case, in fact we shall study a vectorial
Hamiltonian PDE in Chapter 8·
This structure is satisfied by many PDEs arising in physical situations not least, the KdV
equation

ut + 6uux + uxxx = 0,

u(0, x) = u0,
(4.4)

with u0 = u0(x) some sufficiently smooth function. This problem is bi-Hamiltonian, this
means the problem can be written in two Hamiltonian forms, that is, there exist two
distinct Hamiltonian operators P1,P2 and two different Hamiltonians H1, H2 such that

ut = −P1
δ

δu
H1(u) = −P2

δ

δu
H2(u).

The KdV equation has a bi-Hamiltonian structure given by the Hamiltonians and differ-
ential operators

P1(·) = (·)x H1 =
〈
u3 − u2

x

2 , 1
〉

(4.5)

P2(·) = (·)xxx + 4u(·)x + 2ux H2 = 1
2 〈u, u〉 .

Note that more complex higher order Hamiltonian problems such as the Camassa-Holm
(CH) equation also exist

mt + umx + 2mux = 0, m = u− uxx,

u(0, x) = u0,

see [95, 13.1]. Both of these problems are bi-Hamiltonian, however the CH equation is a
bi-Hamiltonian PDE with respect to the variable m := u− uxx with the Hamiltonian and

69



Section 4.1 Page 70

differential operators and functions

P1(·) = (·)x − (·)xxx H1 = 1
2
〈
u2 + u2

x, u
〉

P2(·) = mx +m(·)x H2 = 1
2 〈u, u〉+ 1

2 〈ux, ux〉 .

It should be pointed out that whether the problem at hand is of Hamiltonian or bi-
Hamiltonian structure, the underlying Hamiltonians are conserved quantities, that is,

d
dtH(u) =

〈
δ

δu
H(u), ut

〉
= {H(u), H(u)}P = 0, (4.6)

by (4.2) and (4.3).

Remark 4.1.1 (Choice of differential operators). Notice that in both KdV and CH prob-
lems one Hamiltonian is quadratic and one is cubic in the nonlinearity. We will focus on
the development of schemes that conserve nonquadratic invariants. The reasons for this
are twofold: Numerical schemes which preserve quadratic invariants are well developed,
and our methodology on the discrete level is more succinct when the differential operator is
linear, which is typically the case for nonquadratic invariants. For example, the differential
operator P2 for KdV, as described in (4.5) is a nonlinear so more difficult to represent in
the discrete setting. Conservation of the higher order invariants proves challenging both in
the design of spatial discretisations but also for temporal discretisations since the “usual”
geometric integrators that would be used in a method of lines approach typically based upon
the Gauss-Radau family of Runge-Kutta schemes are no longer conservative, see §5.2.

The methodology we propose for the construction of conservative numerical schemes for
Hamiltonian problems is based on the observation that the argument in (4.6) requires
δ
δu
H(u) to be admissible as a test function, as u is an admissible test function. When

performing these calculations on the PDE itself this is indeed the case, however when
considering a numerical scheme δ

δu
H(u) will not be admissible unless H(u) is quadratic.

The aforementioned methodology can be broken down as follows:

1. After the introduction of a diagnostic variable

v = δ

δu
H(u)
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we can rewrite the Hamiltonian PDE (4.1) as the system

ut + Pv = 0

v − δ

δu
H(u) = 0.

(4.7)

2. Multiplying (4.7) by v and ut respectively and integrating over the spatial domain
we find

〈ut + Pv, v〉 = 0〈
ut, v −

δ

δu
H(u)

〉
= 0.

(4.8)

Due to the skew-symmetric structure of P highlighted in (4.3) we have from the first
equation of (4.8) that

〈ut, v〉 = 0.

This permits us to simplify the second equation of (4.8) yielding

0 =
〈
ut,

δ

δu
H(u)

〉

= d
dt 〈H(u), 1〉 .

3. The technique may appear to add additional unnecessary complications, which at
the PDE level is true, however upon discretisation of the system (4.8) we are able to
mimic steps 1 and 2 on the discrete level to obtain a conservative scheme, assuming
that the discrete Poisson bracket is skew-symmetric. In the sequel, we will apply
this methodology to KdV with an aim to conserve the first Hamiltonian H1 which
physically represents the energy. This Hamiltonian represents the energy as it is
associated with a time translation (Lie) symmetry via Noether’s theorem, see [145,
147].
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4.2 The linearised KdV equation

Examining the leading order asymptotic behaviour of the KdV equation (4.4) we find,
after rescaling, that a linearised KdV equation can be described by the PDE

ut + ux + uxxx = 0, (4.9)

subject to some appropriate initial data u(0, x) = u0(x). Seeking a travelling wave solution,
i.e., assuming that u(t, x) = f(ζ) where ζ = x − ct for some constant c representing the
speed of the solution, we can rewrite (4.9) as the ODE

−1
c
f ′(ζ) + f ′(ζ) + f (3)(ζ) = 0,

where f ′(ζ) and f (3)(ζ) represent the first and third derivatives with respect to ζ. Inte-
grating allows us to write (

1− 1
c

)
f(ζ) + f (2)(ζ) = C1,

where C1 is an arbitrary constant. We find, due to the enforcement of periodic boundaries,
that an exact solution of the problem has the form

u(t, x) = C1 + C2sin
(
α
(
x− (1− α2)t

))
+ C3cos

(
α
(
x− (1− α2)t

))
, (4.10)

where α = 2πk for k ∈ Z and c = 1 − α2. While exact travelling wave solutions are
obtainable, we will use the linearised KdV equation as a prototypical example affording
us insight into the analysis of our numerical schemes for nonlinear KdV type equations
and Hamiltonian PDEs in general.

4.2.1 Finite element notation

As is often the case, before introducing our numerical scheme for linearised KdV we are
required to introduce a plethora of notation. Recall that our spatial domain is the periodic
unit interval S1, then we partition our domain such that 0 =: x0 < x1 < · · · < xM := 1.
We define a spatial finite element as Jm := (xm, xm+1) which possesses an element length
denoted hm := xm+1 − xm. Throughout we refer to continuous functions in lower case
Roman letters, i.e. u = u(t, x), and spatially discrete functions as upper case Roman
letters, i.e., U = U(t, x). When there is no ambiguity, for clarity of exposition, we shall
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not explicitly write the dependencies of functions. Unless stated otherwise, all functions
have the input arguments (t, x).

Definition 4.2.1 (Spatial finite element spaces). Let Pq(Jm) denote the space of polyno-
mials of degree q on the element Jm, then the discontinuous finite element space is given
by

Vq = {U : S1 → R : U |Jm ∈ Pq(Jm) for m = 0, ...,M − 1}.

Further to this we define the continuous finite element space as

VC
q = Vq ∩ C0

(
S1
)
,

where C0 (S1) denotes the space of continuous functions.

Similarly, for the temporal case presented in §3.1, we define the mesh function h ∈ V0 as
the piecewise constant finite element function representing the length of an element, i.e.,

h|Jm = hm.

We will additionally write the largest element as

hmax := max
x

h = max
m∈[0,M−1]

hm,

and define the largest element within a local “patch” of elements as

h̃m := max
i∈[m−1,m,m+1]

hi. (4.11)

In addition, throughout this work we restrict our minimal and maximal element such that

hmax ≤ Chmin,

for some constant C independent of hm.
As we discussed in Chapter 3, in the development of discontinuous finite element schemes it
is paramount to enforce some kind of communication between elements. This is performed
through fluxes at the nodes of the finite elements as given in Definition 3.1.11.
Recall we refer to the spatial L2 inner product as 〈·, ·〉, we shall refer to temporal integrals
using standard integral notation to avoid confusion when integrating over both space and
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Figure 4.1: An illustrative finite element function in the space V1 where M = 6.

x0 x1 x2 x3 x4 x5 x6

time.

Remark 4.2.2 (A clarifying remark about notation). Note that our spatial L2 inner
product 〈·, ·〉 is defined over the whole spatial domain but does not include the endpoints
of elements, i.e., for some f, g ∈ L2(S1)

〈f, g〉 :=
M−1∑
m=0

∫
Jm

fgdx.

We define 〈·, ·〉 this way as our discontinuous finite element functions do not exist at the
endpoints of the elements, so when integrating over the whole of S1 spatial derivatives of
discontinuous functions are not well defined.

4.2.2 Development of a spatially discrete scheme

The linearisation of the KdV equation is in its own right a (bi-)Hamiltonian PDE and can
be defined through the coupled differential operators and Hamiltonian functions

P1(·) = (·)x H1 = 1
2 〈u, u〉 −

1
2 〈ux, ux〉

P2(·) = (·)xxx + (·)x H2 = 1
2 〈u, u〉 ,

respectively. In line with the methodology outlined in the prequel we introduce the first
variation of the Hamiltonian H1 as an auxiliary variable v, allowing us to rewrite linearised
KdV as the system

ut + vx = 0

v − u− uxx = 0.
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Note that the first variation of the second Hamiltonian is simply u, which suggests it may
be possible to design a scheme which preserves both of the Hamiltonians over time. The
difficulty in designing a conservative scheme following the methodology in the prequel is
the design of the discrete Poisson bracket. To discretise the first differential operator we
need to mimic the following argument on the discrete level

〈v,P1v〉 = 〈v, vx〉 = 0,

where 〈·, ·〉 denotes the spatial inner product which induces the L2 norm. That is to
say we require that our discrete differential operator preserves the skew-symmetry of the
continuous operator. This leads us to defining the following first derivative operator.

Definition 4.2.3 (Discrete operator for first spatial derivatives). Let W ∈ Vq, then G :
Vq → Vq such that

〈G (W ) , φ〉 = 〈Wx, φ〉 −
M−1∑
m=0

JWmK {φm} ∀φ ∈ Vq,

where the jump J·K and average {·} are the spatial equivalent of the jump and average given
in Definition 3.1.11. Similar operators for first derivatives are defined in [31] and [78].

Lemma 4.2.4 (Integration by parts with the discrete operator for first spatial derivatives).
Let U, V ∈ Vq, then the finite element operator for first spatial derivatives described in
Definition 4.2.3 possesses the discrete integration by parts identity

〈G (U) , V 〉 = −〈U,G (V )〉 .

This allows us to conclude that the spatial inner product of G is indeed a skew-symmetric
operation.
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Proof. Applying Definition 4.2.3, and integration by parts, we see that

〈G (U) , V 〉 = 〈Ux, V 〉 −
M−1∑
m=0

JUmK {Vm}

= −〈U, Vx〉+
M−1∑
m=0

JUmVmK− JUmK {Vm}

= −〈U, Vx〉+
M−1∑
m=0
{Um} JVmK

= −〈U,G (V )〉 ,

through integration by parts, and observing that

JUmVmK− JUmK {Vm} =
(
U−mV

−
m − U+

mV
+
m

)
− 1

2
(
U−m − U+

m

) (
V −m + V +

m

)
= 1

2
(
U−m + U+

m

) (
V −m − V +

m

)
= {Um} JVmK ,

through the definitions of the jump and the average (3.6) and (3.7) respectively.

Discretising the second differential operator is more tricky, as the operator needs to consist
of both a first and third derivative, and satisfy the skew-symmetry condition, i.e.,

〈v,P2v〉 = 〈v, vx〉+ 〈v, vxxx〉 = 1
2
〈(
v2
)
x
, 1
〉
− 1

2
〈(
v2
x

)
x
, 1
〉

= 0,

after integration by parts. Our methodology for the design of this discrete operator fol-
lows from the discrete design of P1. We will introduce an additional auxiliary variable
representing the first spatial derivative of the solution allowing us to write the linearised
KdV equation as a system of PDEs with at most one spatial derivative, i.e.,

ut + vx = 0

v − u− wx = 0

w − ux = 0.

(4.12)

This allows us to recursively employ G for the discrete version of the differential operator.
With the design of discrete differential operators in mind, we introduce the following
spatially discrete method.
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Definition 4.2.5 (Spatially discrete scheme for the linearised KdV equation). Our spa-
tially discrete scheme for the linearised KdV equation is given by seeking U, V,W ∈ Vq

such that

〈Ut + G (V ) , φ〉 = 0 ∀φ ∈ Vq

〈V − U − G (W ) , ψ〉 = 0 ∀ψ ∈ Vq

〈W − G (U) , χ〉 = 0 ∀χ ∈ Vq,

(4.13)

subject to the initial data U(0, x) = Πu0(x) where Π denotes the L2 projection into the
finite element space, and where G is given by Definition 4.2.3. Note that through the initial
data for U we can obtain initial data for the auxiliary variables V,W , although we shall
not delve into this intricacy until the introduction of the fully discrete scheme.

Remark 4.2.6 (A local discontinuous Galerkin method). The numerical scheme described
in Definition 4.2.5 falls within the framework of local discontinuous Galerkin (LDG) meth-
ods, in which the auxiliary variables V and W are removed and the method is implemented
in primal form, see [183, 98]. As such, the computational complexity of this method is not
increased by orders of magnitude through the introduction of diagnostic variables. Rewrit-
ing the scheme in primal form does however increase the stencil, which we expect for a
standard discretisation of higher order derivatives. In this work we do not implement the
scheme within the LDG framework to keep the exposition as simple as possible to convey
the main ideas.

Theorem 4.2.7 (Conserved quantities for the spatially discrete scheme for linearised
KdV). Let U, V,W be the numerical solution of the spatially discrete scheme for linearised
KdV as described in Definition 4.2.5, then the discrete mass

F1(U) = 〈U, 1〉 ,

the discrete momentum
F2(U) = 1

2 〈U,U〉

and the discrete energy
F3(U,W ) = 1

2 〈W,W 〉 −
1
2 〈U,U〉

are preserved over time. That is to say that d
dtF1(U) = 0, d

dtF2(U) = 0 and d
dtF3(U,W ) =

0.
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Proof. We begin by considering conservation of mass. We have that

d
dtF1(U) = 〈Ut, 1〉 = 〈G (V ) , 1〉 = 0

through choosing φ = 1 in (4.13), and then observing that G (V ) is orthogonal to constants.
We can either observe this orthogonality directly through the definition of G or we can
view it as a consequence of Lemma 4.2.4 as G (1) = 0.
To observe conservation of momentum and energy we will follow the methodology outlined
in the previous section. However the proofs are not quite as simple due to the introduc-
tion of another auxiliary variable as a methodology of discretising the second differential
operator P2. In view of conservation of momentum we have

d
dtF2(U) = 〈Ut, U〉

= −〈G (V ) , U〉

= 〈V,G (U)〉

through choosing φ = U in (4.13) and Lemma 4.2.4. Further choosing χ = V , ψ = W and
then χ = U we find

d
dtF2(U) = 〈V,W 〉

= 〈U + G (W ) ,W 〉

= 〈U,G (U)〉+ 〈G (W ) ,W 〉

= 0,

through the skew-symmetry of the spatial inner product induced by G. With respect to
energy conservation we have

d
dtF3(U,W ) = 〈Wt,W 〉 − 〈Ut, U〉

= 〈G (Ut) ,W 〉 − 〈Ut, U〉 ,

after choosing χ = W in the temporal derivative of (4.13). Note that as time is continuous,
and our test functions are purely spatial, taking the temporal derivative of the spatial
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numerical scheme is a valid operation. Applying Lemma 4.2.4 we find

d
dtF3(U,W ) = 〈Ut,G (W )− U〉

= 〈Ut, V 〉 ,

after choosing ψ = Ut in (4.13). Finally choosing φ = V we have

d
dtF3(U,W ) = 〈G (V ) , V 〉 = 0,

and energy is conserved.

Remark 4.2.8 (A continuous version of the spatially discrete scheme). If we enforced
continuity on our trial and test finite element spaces in the spatial scheme for linearised
KdV, Theorem 4.2.7 would still hold as all choices of test functions are equally valid when
the finite element space is global continuous. This would not be the case if we needed to test
with spatial derivatives of functions at any point. However, even though the continuous
method possesses fewer degrees of freedom (through the enforcement of continuity) than
its discontinuous counterpart, it cannot be implemented in primal form, see Remark 4.2.6.
As such, the continuous method has a significantly higher computational complexity than
the discontinuous method. In the sequel we shall focus on the discontinuous method for
not only this reason, but also because the discontinuous method contains within it the
continuous method, and more importantly, the a priori analysis we discuss in the sequel
requires discontinuity.

Remark 4.2.9 (Uniqueness of the spatially discrete scheme). Unfortunately our spatially
discrete scheme described in Definition 4.2.5 is not unique for odd order polynomial de-
grees. This is due to the kernel of the operator G having dimension 2 for odd polynomial
degrees, see [78]. Fortunately for even order polynomial degrees we have uniqueness as
the dimension of the kernel of G is 1. As such, the analysis of this numerical scheme in
the sequel is only valid for even polynomial degrees. Note that similar phenomena are
observed in [31].
It is possible to resolve this issue. Taking inspiration from [78] by introducing upwind and
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downwind discrete gradients G+,G− ∈ Vq such that

〈
G+ (W ) , φ

〉
= 〈Wx, φ〉 −

M−1∑
m=0

JWmKφ+
m ∀φ ∈ Vq

〈
G− (W ) , φ

〉
= 〈Wx, φ〉 −

M−1∑
m=0

JWmKφ−m ∀φ ∈ Vq,

(4.14)

respectively. With these new operators in mind we can examine the spatially discrete
scheme by seeking U, V,W ∈ Vq such that

〈
Ut + G+ (V ) , φ

〉
= 0 ∀φ ∈ Vq〈

V − U − G− (W ) , ψ
〉

= 0 ∀ψ ∈ Vq〈
W − G− (U) , χ

〉
= 0 ∀χ ∈ Vq,

(4.15)

subject to appropriate initial data. Before continuing with our analysis on the linearised
scheme proposed in Definition 4.2.5 we shall investigate the stability properties of (4.15).

Lemma 4.2.10 (Stability of the alternative scheme for linearised KdV (4.15)). Let U be
the solution of (4.15) subject to the initial data U(0, x) = Πu0, where Π is the L2 projection
into the finite element space. Then U is stable over time, i.e.,

‖U(t, x)‖2
L2(S1) ≤ ‖U(0, x)‖2

L2(S1) .

Before proving Lemma 4.2.10 we shall present several useful properties of the operators
G+ and G−.

Proposition 4.2.11 (Properties of G+ and G−). Let G+ and G− be as defined in (4.14).
Further let V,W ∈ Vq, then the integration by parts identity

〈
G+ (V ) ,W

〉
= −

〈
V,G− (W )

〉
(4.16)

holds. While G+ and G− are not conservative operators in the sense that they are orthog-
onal to their arguments, we do have that for W ∈ Vq

〈
G+ (W ) ,W

〉
≥ 0, (4.17)

and 〈
G− (W ) ,W

〉
≤ 0. (4.18)
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Proof. To show (4.16) we let V,W ∈ Vq, then through the definitions of G+ and G− we
observe that

〈
G+ (V ) ,W

〉
:= 〈Vx,W 〉 −

M−1∑
m=0

JVmKW+
m = −〈V,Wx〉+

M−1∑
m=0

(
JVW K− JVmKW+

m

)

= −〈V,Wx〉+
M−1∑
m=0

JW KW−
m =: −

〈
V,G− (W )

〉
,

through integration by parts and the definition of the jump operator (3.6). In view of
(4.17) we observe, through the application of Stokes theorem, that

〈
G+ (W ) ,W

〉
=
〈1

2
(
W 2

)
x
, 1
〉
−

M−1∑
m=0

JWmKW+
m

=
M−1∑
m=0

(1
2

q
W 2
m

y
− JWmKW+

m

)
.

(4.19)

Cauchy’s inequality tells us that

−W+
mW

−
m ≥ −

1
2
(
W+
m

)
− 1

2 (Wm)− ,

allowing us to write that

− JWmKW+
m := −

(
W+
m

)2
−W+

mW
−
m ≥

1
2
(
W+
m

)
− 1

2
(
W−
m

)
= 1

2
q
W 2
m

y
. (4.20)

Applying (4.20) to (4.19) we observe that

〈
G+ (W ) ,W

〉
≥ 0,

as required. The final result (4.18) follows directly through the amalgamation of (4.16)
and (4.17).

Proof of Lemma 4.2.10. To prove Lemma 4.2.10 we solely require that the discrete mo-
mentum dissipates. As such, we mimic the steps used in the proof of Theorem 4.2.7. After
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choosing φ = U in (4.15) we have

d
dtF2(U) = −

〈
G+ (V ) , U

〉
=
〈
V,G− (U)

〉
,

after application of (4.16). Further choosing ψ = G− (U) and then χ = G+ (G− (U)) we
find

d
dtF2(U) =

〈
U,G− (U)

〉
+
〈
G− (W ) ,G− (U)

〉
=
〈
U,G− (U)

〉
−
〈
W,G+

(
G− (U)

)〉
=
〈
U,G− (U)

〉
−
〈
G− (U) ,G+

(
G− (U)

)〉
.

Through (4.17) and (4.18), as outlined in Proposition 4.2.11, we observe that

d
dtF2(U) ≤ 0.

As such, applying the fundamental theorem of calculus over time we observe that

F2(U(t, x)) ≤ F2(U(0, x)),

as required.

Remark 4.2.12 (Dissipation of energy in the alternative spatially discrete scheme for lin-
earised KdV). As we found in Lemma 4.2.10, the alternative spatial finite element scheme
proposed in Remark 4.2.9 does not preserve a discrete momentum, and is dissipative in
nature. Due to the dissipative nature of the scheme we also do not conserve a discrete
energy. However, we do not have that the energy functional F3(U,W ) is dissipative over
time.

We shall now refocus our attention on the spatially discrete scheme described in Definition
4.2.5.

Lemma 4.2.13 (Stability of the spatial scheme for linearised KdV). Let U, V,W be the
solution of the spatial scheme for linearised KdV as described in Definition 4.2.5. Further
assume that the initial momentum and energy are bounded, i.e., F2(U(0, x)) < ∞ and
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F3(U(0, x),W (0, x)) <∞, then

‖U(t, x)‖2
L2(S1) = ‖U(0, x)‖2

L2(S1)

and
‖W (t, x)‖2

L2(S1) = ‖W (0, x)‖2
L2(S1) ,

for t ∈ [0, T ].

Proof. Recall in Theorem 4.2.7 we proved that the discrete momentum 1
2 〈U,U〉 and dis-

crete energy 1
2 〈W,W 〉 −

1
2 〈U,U〉 are preserved over time. Conservation of momentum

immediately gives us control over the solution in L2, i.e.,

‖U(t, x)‖2
L2(S1) = ‖U(0, x)‖2

L2(S1) .

Additionally conservation of energy affords us control over the solution in a discrete H1

norm, as

‖W (t, x)‖2
L2(S1) − ‖U(t, x)‖2

L2(S1) = ‖W (0, x)‖2
L2(S1) − ‖U(0, x)‖2

L2(S1)

allows us to write
‖W (t, x)‖2

L2(S1) = ‖W (0, x)‖2
L2(S1)

after application of the conservation of momentum. Note that as the energy is not sign
definite we cannot conclude stability in a H1 norm without conservation of energy and
momentum.

Theorem 4.2.14 (A priori error bound for the spatially discrete scheme for linearised
KdV). Let u, v, w be the exact solution to the linearised KdV system (4.12) subject to
appropriate initial data and enforce the regularity u,w ∈ C2([0, T ], Hq+1(S1)) and v ∈
C1([0, T ], Hq+1(S1)) on the exact solution. Additionally let U, V,W be the finite element
approximation of this system as described in Definition 4.2.5, and the polynomial degree
be even, then the following bound is satisfied

‖u(t, x)− U(t, x)‖2
L2(S1) + ‖v(t, x)− V (t, x)‖2

L2(S1) + ‖w(t, x)−W (t, x)‖2
L2(S1) ≤ h2q+2

max γ(t),
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where

γ(t) := C

β(t) + |v|2Hq+1(S1) +
∫ t

0
exp (s) β(s)ds

,
for β(t) as given in (4.24), or more succinctly can be increased slightly to be written as,

β(t) := C max
[0,t]

(
max
i=0,1,2

(∣∣∣z(i)
∣∣∣2
Hq+1(S1)

+
∣∣∣z(i)
t

∣∣∣2
Hq+1(S1)

))
+ C

∫ t

0
max
i=0,1,2

(∣∣∣z(i)
∣∣∣2
Hq+1(S1)

)
+ max

i=0,2

(∣∣∣z(i)
s

∣∣∣2
Hq+1(S1)

+
∣∣∣z(i)
ss

∣∣∣2
Hq+1(S1)

)
dt,

with z0 = u, z1 = v and z2 = w. Further C is constant and hmax is the size of the largest
spatial element.

We shall defer the proof of Theorem 4.2.14 to later in this section while we introduce the
projection operators and lemmas needed to present the proof concisely. The remainder of
§4.2.2 is dedicated to setting up and subsequently proving Theorem 4.2.14. We begin by
introducing a discrete projection operator, proving that it converges with respect to the
exact solution, and then showing that it converges with respect to the discrete solution
through energy arguments.

Definition 4.2.15 (Projection operator). Let u ∈ H1(S1) ⊕ Vq, then we define the pro-
jection operator S : H1(S1)⊕ Vq → Vq such that

〈S (u) , ψ〉 = 〈u, ψ〉 ∀ψ ∈ Vq−1

{S (u)m} = {um} for m = 0, ..,M.

Note that this projection operator is similar to those defined in [31, 78], and through count-
ing the number of degrees of freedom we observe that the projection operator is uniquely
defined.

Remark 4.2.16 (Interplay between S and G). The projection operator S acts like the
identity function under application of G, i.e.,

G (S (u)) = G (u) .
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We can observe this directly through the definition of S, as

〈G (S (u)) , φ〉 = −〈S (u) ,G (φ)〉

= −〈S (u) , φx〉+
M−1∑
m=0

JφK {S (u)}

= −〈u, φx〉+
M−1∑
m=0

JφK {u}

= −〈u,G (φ)〉

= 〈G (u) , φ〉 ,

(4.21)

after utilising Lemma 4.2.4.

Remark 4.2.17 (A priori bound for a globally continuous spatial finite element method).
Recall in Remark 4.2.8 we stated that we cannot obtain a priori bounds if we assume that
our spatially discrete finite element method is globally continuous. The reason for this is
we cannot design a continuous operator satisfying (4.21). In fact, if we could design such
an operator the remainder of our a priori analysis would follow for the continuous method
via an equivalent argument to that in the sequel.

Lemma 4.2.18 (Error bounds for S,[78]). Let u ∈ H1(S1), and S : H1(S1) ⊕ Vq → Vq

be the projection operator as given in Definition 4.2.15, then we have that

‖S (u)− u‖L2(S1) ≤ C
∣∣∣hq+1u

∣∣∣
Hq+1(S1)

,

where h ∈ V0 is the spatial step size of functions in the finite element space Vq.

Proof. See the proof of Lemma 8 in [78].

A key component in proving Theorem 4.2.14 will be splitting the error with the discrete
quantity S, to be more concise we will rewrite the error in each component of the solution
as

eu := u− U = (u− S (u)) + (S (u)− U) =: ρu + θu

ev := v − V = (v − S (v)) + (S (v)− V ) =: ρv + θv

ew := w −W = (w − S (w)) + (S (w)−W ) =: ρw + θw.

(4.22)

Notice that ρu, ρv, ρw is simply the error of the projection operator S, which we have
already quantified Lemma 4.2.18. We will now quantify the error between the two discrete
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objects, i.e, θu, θv, θw.

Theorem 4.2.19 (The error between the projection operator S and the spatially discrete
scheme for linearised KdV). Let u, v, w be the exact solution to the linearised KdV system
(4.12) subject to appropriate initial data and enforce the regularity u,w ∈ C2([0, T ], Hq+1(S1))
and v ∈ C1([0, T ], Hq+1(S1)) on the exact solution. Additionally let U, V,W be the finite
element approximation of this system as described in Definition 4.2.5. Further let S be
the projection operator as described in Definition 4.2.15, and ρ, θ as defined in (4.22), and
the polynomial degree q be even (for uniqueness of G), then

‖θu‖2
L2(S1) + ‖θv‖2

L2(S1) + ‖θw‖2
L2(S1) ≤ h2q+2

max

(
β(t) +

∫ t

0
12exp (s) β(s)ds

)
, (4.23)

where

β(t) = C

 |u(0, x)|2Hq+1(S1) + |v(0, x)|2Hq+1(S1) + |w(0, x)|2Hq+1(S1) + |ut(0, x)|2Hq+1(S1)

+ |wt(0, x)|2Hq+1(S1) + |u|2Hq+1(S1) + |v|2Hq+1(S1) + |ut|2Hq+1(S1) + |wt|2Hq+1(S1)

+
∫ t

0
|u|2Hq+1(S1) + |v|2Hq+1(S1) + |w|2Hq+1(S1) + |us|2Hq+1(S1)

+ |vs|2Hq+1(S1) + |ws|2Hq+1(S1) + |uss|2Hq+1(S1) + |wss|2Hq+1(S1) ds
,

(4.24)

with the constant C depending on the constant given in Lemma 4.2.18.

To prove Theorem 4.2.19 we will utilise Gronwall’s integral inequality as a fundamental
tool in the quantification of error propagation over time, as in [176]. For completeness we
shall present this inequality before proceeding with the proof.

Lemma 4.2.20 (Gronwall’s lemma, [83, 27]). Suppose that f(t) satisfies

d
dtf(t) ≤

∫ t

0
g(s)f(s)ds+ h(t),

where f(t) is differentiable, g(t) is continuous and h(t) is integrable, and all three functions
are non-negative, then

f(t) ≤ h(t) +
∫ t

0
exp

(∫ t

s
g(τ)dτ

)
g(s)h(s)ds.
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While we shall not explicitly use it here, we also present the differential version of Gron-
wall’s inequality for use in the sequel.

Lemma 4.2.21 (Gronwall’s lemma - differential version, [83, 27]). Suppose that f(t)
satisfies

d
dtf(t) ≤ g(t)f(t) + h(t),

where f(t) is differentiable, g(t) is continuous and h(t) is integrable, and all three functions
are non-negative, then

f(t) ≤ exp
(∫ t

0
g(s)ds

)(
f(0) +

∫ t

0
h(s)ds

)
.

Proof of Theorem 4.2.19. Before proving the error bound (4.23) we first need to examine
which linearised KdV-like problem S (u) ,S (v) ,S (w) solve. With this is mind we find for
all φ ∈ Vq that

〈S (u)t + G (S (v)) , φ〉 = 〈S (u)t + G (v) , φ〉

= 〈S (u)t − ut + G (v)− G (v) , φ〉

= −〈ρut , φ〉 ,

(4.25a)

through application of Remark 4.2.16 and by subtracting the first equation of the PDE
(4.12). Similarly we find for all ψ ∈ Vq

〈S (v)− S (u)− G (S (w)) , ψ〉 = 〈S (v)− v − S (u) + u− G (w) + G (w) , ψ〉

= 〈ρu − ρv, ψ〉 ,
(4.25b)

and for all χ ∈ Vq

〈S (w)− G (S (u)) , χ〉 = 〈S (w)− w − G (u) + G (u) , χ〉 = −〈ρw, χ〉 . (4.25c)

Subtracting the spatially discrete scheme from linearised KdV from (4.25) we find

〈θut + G (θv) , φ〉 = −〈ρut , φ〉 ∀φ ∈ Vq

〈θv − θu − G (θw) , ψ〉 = 〈ρu − ρv, ψ〉 ∀ψ ∈ Vq

〈θw − G (θu) , χ〉 = −〈ρw, χ〉 ∀χ ∈ Vq.

(4.26)

In order to gain control over θu, θv, θw we shall utilise similar arguments to those given
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in the proof of Theorem 4.2.7, i.e., the proof that the spatial scheme for linearised KdV
preserves momentum and energy. Applying this methodology to the error equation (4.26)
will allow us to rewrite our errors in terms of the residuals.
Choosing φ = θut in (4.26) allows us to write

1
2 〈θ

u, θu〉t = −〈G (θu) , θv〉 − 〈ρut , θu〉 ,

after application of Lemma 4.2.4. Further choosing χ = θv and ψ = θw tells us that

1
2 〈θ

u, θu〉t = −〈θv, θw〉 − 〈ρut , θu〉+ 〈θv, ρw〉

= −〈θu, θw〉+ 〈G (θw) , θw〉 − 〈ρut , θu〉+ 〈θv, ρw〉+ 〈ρv, θw〉 − 〈ρu, θw〉

= −〈G (θu) , θu〉 − 〈ρut , θu〉+ 〈θv, ρw〉+ 〈ρv, θw〉 − 〈ρu, θw〉+ 〈ρw, θu〉

= −〈ρut , θu〉+ 〈θv, ρw〉+ 〈ρv, θw〉 − 〈ρu, θw〉+ 〈ρw, θu〉 ,

(4.27)

after choosing χ = θu and applying the skew-symmetry of G. We ultimately wish to apply
Gronwall’s inequality to obtain error bounds for θu, but we cannot achieve an error bound
without first gaining control over the auxiliary variables θv, θw. With this in mind take
the temporal derivative of the latter two error equations (4.26) yielding

〈θvt − θut − G (θwt ) , ψ〉 = 〈ρut − ρvt , ψ〉 ∀ψ ∈ Vq

〈θwt − G (θut ) , χ〉 = −〈ρwt , χ〉 ∀χ ∈ Vq.
(4.28)

Choosing ψ = θv in (4.28) we see that

1
2 〈θ

v, θv〉t = 〈θut , θv〉+ 〈G (θwt ) , θv〉 − 〈ρvt , θv〉+ 〈ρut , θv〉 . (4.29)

Through choosing φ = θv in (4.26)

〈θut , θv〉 = −〈G (θv) , θv〉 − 〈ρut , θv〉 = −〈ρut , θv〉 . (4.30)

Additionally choosing φ = θwt in (4.26) and then ψ = θut in (4.28)

〈G (θwt ) , θv〉 = −〈θwt ,G (θv)〉 = 〈θut , θwt 〉+ 〈ρut , θwt 〉

= 〈θut ,G (θut )〉+ 〈ρut , θwt 〉 − 〈ρwt , θut 〉 = 〈ρut , θwt 〉 − 〈ρwt , θut 〉 .
(4.31)
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Applying (4.30) and (4.31) to (4.29) yields

1
2 〈θ

v, θv〉t = −〈ρvt , θv〉+ 〈ρut , θwt 〉 − 〈ρwt , θut 〉 . (4.32)

To gain control over θw we choose χ = θw in (4.28) allowing us to write

1
2 〈θ

w, θw〉t = 〈G (θut ) , θw〉 − 〈ρwt , θw〉

= −〈θut ,G (θw)〉 − 〈ρwt , θw〉

= −〈θut , θv〉+ 〈θut , θu〉 − 〈ρwt , θw〉 − 〈ρv, θut 〉+ 〈ρu, θut 〉

= 〈G (θv) , θv〉+ 1
2 〈θ

u, θu〉t − 〈ρ
w
t , θ

w〉 − 〈ρv, θut 〉+ 〈ρu, θut 〉+ 〈ρut , θv〉

= 1
2 〈θ

u, θu〉t − 〈ρ
w
t , θ

w〉 − 〈ρv, θut 〉+ 〈ρu, θut 〉+ 〈ρut , θv〉 ,

(4.33)

after choosing ψ = θut and φ = θv in (4.26). Notice that (4.33) also depends on 〈θu, θu〉t.
We now sum (4.27), (4.32) and (4.33), but we double the contribution of (4.27) in the
summation to avoid the 〈θu, θu〉t terms in (4.27) and (4.33) from cancelling each other
out, yielding

1
2 〈θ

u, θu〉t + 1
2 〈θ

v, θv〉t + 1
2 〈θ

w, θw〉t = −2 〈ρut , θu〉+ 2 〈θv, ρw〉+ 2 〈ρv, θw〉 − 2 〈ρu, θw〉

+ 2 〈ρw, θu〉 − 〈ρvt , θv〉+ 〈ρut , θwt 〉 − 〈ρwt , θut 〉

− 〈ρwt , θw〉 − 〈ρv, θut 〉+ 〈ρu, θut 〉+ 〈ρut , θv〉 .
(4.34)

Before we can apply Gronwall’s inequality notice that we have θt terms on the right hand
side of (4.34) which need to be removed. Note that through integration by parts in time
we have ∫ t

0
〈ρws , θus 〉 ds = −

∫ t

0
〈ρwss, θu〉 ds+ 〈ρwt , θu〉 − 〈ρwt (0, x), θu(0, x)〉∫ t

0
〈ρus , θws 〉 ds = −

∫ t

0
〈ρuss, θw〉 ds+ 〈ρut , θw〉 − 〈ρut (0, x), θw(0, x)〉∫ t

0
〈ρv, θus 〉 ds = −

∫ t

0
〈ρvs , θu〉 ds+ 〈ρv, θu〉 − 〈ρv(0, x), θu(0, x)〉∫ t

0
〈ρu, θus 〉 ds = −

∫ t

0
〈ρus , θu〉 ds+ 〈ρu, θu〉 − 〈ρu(0, x), θu(0, x)〉 .

(4.35)
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Integrating (4.34) over time we obtain

1
2 〈θ

u, θu〉+ 1
2 〈θ

v, θv〉+ 1
2 〈θ

w, θw〉 = 1
2 〈θ

u(0, x), θu(0, x)〉+ 1
2 〈θ

v(0, x), θv(0, x)〉

+ 1
2 〈θ

w(0, x), θw(0, x)〉

+
∫ t

0
−2 〈ρus , θu〉 − 2 〈θv, ρw〉 − 2 〈ρv, θw〉+ 2 〈ρu, θw〉

+ 2 〈ρw, θu〉 − 〈ρvs , θv〉+ 〈ρus , θws 〉+ 〈ρws , θus 〉

− 〈ρws , θw〉 − 〈ρv, θus 〉 − 〈ρu, θus 〉+ 〈ρus , θv〉 ds.
(4.36)

through the application of the fundamental theorem of calculus. Utilising (4.35) we can
remove the temporal derivatives of θ in (4.36) allowing us to write

1
2 〈θ

u, θu〉+ 1
2 〈θ

v, θv〉+ 1
2 〈θ

w, θw〉 = 1
2 〈θ

u(0, x), θu(0, x)〉+ 1
2 〈θ

v(0, x), θv(0, x)〉

+ 1
2 〈θ

w(0, x), θw(0, x)〉

+
∫ t

0
2 〈ρus , θu〉+ 2 〈θv, ρw〉+ 2 〈ρv, θw〉 − 2 〈ρu, θw〉

− 2 〈ρw, θu〉+ 〈ρvs , θv〉 − 〈ρuss, θw〉+ 〈ρwss, θu〉

+ 〈ρws , θw〉+ 〈ρvs , θu〉 − 〈ρus , θu〉 − 〈ρus , θv〉 ds

− 〈ρwt , θu〉+ 〈ρwt (0, x), θu(0, x)〉+ 〈ρut , θw〉

− 〈ρut (0, x), θw(0, x)〉 − 〈ρv, θu〉+ 〈ρv(0, x), θu(0, x)〉

+ 〈ρu, θu〉 − 〈ρu(0, x), θu(0, x)〉 .

Applying Hölder’s inequality, and for the temporally integrated terms and terms evaluated
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at t = 0 Cauchy’s inequality, we find

1
2 ‖θ

u‖2
L2(S1) + 1

2 ‖θ
v‖2
L2(S1)

+1
2 ‖θ

w‖2
L2(S1) ≤ 2 ‖θu(0, x)‖2

L2(S1) + 1
2 ‖θ

v(0, x)‖2
L2(S1) + ‖θw(0, x)‖2

L2(S1)

+ 1
2 ‖ρ

w
t (0, x)‖2

L2(S1) + 1
2 ‖ρ

u
t (0, x)‖2

L2(S1)

+ 1
2 ‖ρ

v(0, x)‖2
L2(S1) + 1

2 ‖ρ
u(0, x)‖2

L2(S1)

+ 3
∫ t

0
‖θu‖2

L2(S1) + ‖θv‖2
L2(S1) + ‖θw‖2

L2(S1) + ‖ρu‖2
L2(S1)

+ ‖ρv‖2
L2(S1) + ‖ρw‖2

L2(S1) + ‖ρus‖
2
L2(S1) + ‖ρvs‖

2
L2(S1)

+ ‖ρws ‖
2
L2(S1) + ‖ρuss‖

2
L2(S1) + ‖ρwss‖

2
L2(S1) ds

− 〈ρwt , θu〉+ 〈ρut , θw〉 − 〈ρv, θu〉+ 〈ρu, θu〉 .

Through Cauchy’s inequality with ε we an write

−〈ρwt , θu〉+ 〈ρut , θw〉

− 〈ρv, θu〉+ 〈ρu, θu〉 ≤ 1
4ε1
‖ρwt ‖

2
L2(S1) + ε1 ‖θu‖2

L2(S1) + 1
4ε2
‖ρut ‖

2
L2(S1) + ε2 ‖θw‖2

L2(S1)

+ 1
4ε1
‖ρv‖2

L2(S1) + ε1 ‖θu‖2
L2(S1) + 1

4ε1
‖ρu‖2

L2(S1) + ε1 ‖θu‖2
L2(S1) .

Choosing ε1 = 1
12 and ε2 = 1

4 allows us to write

1
4 ‖θ

u‖2
L2(S1) + 1

2 ‖θ
v‖2
L2(S1)

+1
4 ‖θ

w‖2
L2(S1) ≤ 2 ‖θu(0, x)‖2

L2(S1) + 1
2 ‖θ

v(0, x)‖2
L2(S1) + ‖θw(0, x)‖2

L2(S1)

+ 1
2 ‖ρ

w
t (0, x)‖2

L2(S1) + 1
2 ‖ρ

u
t (0, x)‖2

L2(S1)

+ 1
2 ‖ρ

v(0, x)‖2
L2(S1) + 1

2 ‖ρ
u(0, x)‖2

L2(S1)

+ 3 ‖ρwt ‖
2
L2(S1) + ‖ρut ‖

2
L2(S1) + 3 ‖ρv‖2

L2(S1) + 3 ‖ρu‖2
L2(S1)

+ 3
∫ t

0
‖θu‖2

L2(S1) + ‖θv‖2
L2(S1) + ‖θw‖2

L2(S1) + ‖ρu‖2
L2(S1)

+ ‖ρv‖2
L2(S1) + ‖ρw‖2

L2(S1) + ‖ρus‖
2
L2(S1) + ‖ρvs‖

2
L2(S1)

+ ‖ρws ‖
2
L2(S1) + ‖ρuss‖

2
L2(S1) + ‖ρwss‖

2
L2(S1) ds

(4.37)
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In preparation for the application of Gronwall’s inequality we define

α(t) = 2 ‖θu(0, x)‖2
L2(S1) + 1

2 ‖θ
v(0, x)‖2

L2(S1) + ‖θw(0, x)‖2
L2(S1)

+ 1
2 ‖ρ

w
t (0, x)‖2

L2(S1) + 1
2 ‖ρ

u
t (0, x)‖2

L2(S1) + 1
2 ‖ρ

v(0, x)‖2
L2(S1) + 1

2 ‖ρ
u(0, x)‖2

L2(S1)

+ 3 ‖ρwt ‖
2
L2(S1) + ‖ρut ‖

2
L2(S1) + 3 ‖ρv‖2

L2(S1) + 3 ‖ρu‖2
L2(S1)

+ 3
∫ t

0
‖ρu‖2

L2(S1) + ‖ρv‖2
L2(S1) + ‖ρw‖2

L2(S1) + ‖ρus‖
2
L2(S1) + ‖ρvs‖

2
L2(S1) + ‖ρws ‖

2
L2(S1)

+ ‖ρuss‖
2
L2(S1) + ‖ρwss‖

2
L2(S1) ds.

Notice that α(t) is an a priori known quantity, recall that in Lemma 4.2.18 we showed
that

‖ρu‖L2(S1) ≤ C
∣∣∣hq+1u

∣∣∣
Hq+1(S1)

,

and similarly for v and w. Additionally recall that at the initial time U(0) is simply the
L2 projection of the initial condition into the finite element space we have that

‖θu(0)‖L2(S1) := ‖S (u) (0)− U(0)‖L2(S1) = ‖S (u) (0)− Πu(0)‖L2(S1)

≤ ‖S (u) (0)− u(0)‖L2(S1) + ‖u(0)− Πu(0)‖L2(S1)

≤ ‖ρu‖L2(S1) ≤ C
∣∣∣hq+1u(0)

∣∣∣
Hq+1(S1)

,

by Lemma 4.2.18 and the optimally of the L2 projection, and again the same argument
holds with respect to v and w. With this in mind we can bound α(t) by

α(t) ≤ Ch2q+2
max

 |u(0, x)|2Hq+1(S1) + |v(0, x)|2Hq+1(S1) + |w(0, x)|2Hq+1(S1) + |ut(0, x)|2Hq+1(S1)

+ |wt(0, x)|2Hq+1(S1) + |u|2Hq+1(S1) + |v|2Hq+1(S1) + |ut|2Hq+1(S1) + |wt|2Hq+1(S1)

+
∫ t

0
|u|2Hq+1(S1) + |v|2Hq+1(S1) + |w|2Hq+1(S1) + |us|2Hq+1(S1)

+ |vs|2Hq+1(S1) + |ws|2Hq+1(S1) + |uss|2Hq+1(S1) + |wss|2Hq+1(S1) ds
 =: h2q+2

max β(t).
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We can rewrite (4.37) in the condensed form

1
4 ‖θ

u‖2
L2(S1) + 1

4 ‖θ
v‖2
L2(S1)

+1
4 ‖θ

w‖2
L2(S1) ≤ h2q+2

max β(t)

+ 12
∫ t

0

1
4 ‖θ

u‖2
L2(S1) + 1

4 ‖θ
v‖2
L2(S1) + 1

4 ‖θ
w‖2

L2(S1) ds

after decreasing the lower bound. Applying Gronwall’s inequality, see Lemma 4.2.20, we
find

1
4 ‖θ

u‖2
L2(S1) + 1

4 ‖θ
v‖2
L2(S1) + 1

4 ‖θ
w‖2

L2(S1) ≤ h2q+2
max

(
β(t) +

∫ t

0
12exp (s) β(s)ds

)
,

concluding the proof.

Now we have bounded the error between the discrete projection operator S and our nu-
merical solution we can prove the a priori error bound for our spatial scheme for linearised
KdV.

Proof of Theorem 4.2.14. For convenience we will again write the error as described in
(4.22). Through the triangle inequality we have that

‖eu‖2
L2(S1) + ‖ev‖2

L2(S1) + ‖ew‖2
L2(S1) ≤

3
2
(
‖ρu‖2

L2(S1) + ‖ρv‖2
L2(S1) + ‖ρw‖2

L2(S1)

)
+ 3

2
(
‖θu‖2

L2(S1) + ‖θv‖2
L2(S1) + ‖θw‖2

L2(S1)

)
.

Applying Lemma 4.2.18 and Theorem 4.2.19 we obtain the a priori error bound for our
spatial scheme for linearised KdV.

Remark 4.2.22 (A priori error bounds for the alternative spatially discrete scheme
(4.15)). The alternative spatially discrete scheme (4.15) also satisfies an a priori bound of
order O (hq+1

max). However, for (4.15) an optimal bound exists for all polynomial degree q.
Observe through Lemma 4.2.10 we obtain numerical stability, and the operators G+ and
G− are unique, see Remark 4.2.9. We obtain these a priori bounds through mimicking the
arguments made in this section with one caveat, instead of using the projection operator
given in Definition 4.2.15 to split the continuous and discrete errors we utilise two new
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projection operators. These projection operators are described as follows: Let u ∈ H1(S1),
then we define S+ : H1(S1)⊕ Vq → Vq such that

〈
S+ (u) , ψ

〉
= 〈u, ψ〉 ∀ψ ∈ Vq−1

and
S+ (u)m = u+

m for m = 0, ..,M.

Additionally we define S− : H1(S1)⊕ Vq → Vq such that

〈
S− (u) , ψ

〉
= 〈u, ψ〉 ∀ψ ∈ Vq−1

and
S− (u)m = u−m for m = 0, ..,M.

While the alternative scheme can be bounded a priori for more polynomial degrees than
the scheme we primarily focus on this section, is allow dissipates momentum. As we are
interested in the long time dynamical behaviour of solutions we shall not focus on this
alternative scheme, as we do not want to dampen our dynamics over long time. As such,
we now refocus our attention on the spatially discrete scheme described in Definition 4.2.5.
We shall return to examine this modified scheme in our numerical experiments.

4.2.3 Fully discrete scheme and numerical experiments

We will discretise our temporal interval such that 0 =: t0 < t1 < · · · < tN =: T with a
step size τn := tn+1 − tn. In this subsection, and throughout the remainder of this work,
when our temporal discretisation is within the finite difference framework we shall denote
temporally discrete functions with superscripts, i.e., un(x) is counterpart to u(t, x) at the
point t = tn.
We wish to discretise time in the spatially discrete scheme for linearised KdV (4.13) such
that we preserve the mass, momentum, and energy of the scheme over time, i.e., a fully
discrete version of Theorem 4.2.7 holds. Due to the quadratic, or lower order, nature of the
invariants we can choose a temporal discretisation which preserves quadratic invariants,
which are discussed in Chapter 2. For compatibility with our temporal discretisations in
the subsequent chapters we choose the Crank-Nicholson method.

Definition 4.2.23 (Fully discrete scheme for the linearised KdV equation). Let U j,W j ∈
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Vq be given for j = 0, .., n. Then we seek Un+1, V n+1,W n+1 ∈ Vq such that
〈
Un+1 − Un

τn
+ G

(
V n+1

)
, φ

〉
= 0 ∀φ ∈ Vq〈

V n+1 − Un+ 1
2 − G

(
W n+ 1

2
)
, ψ
〉

= 0 ∀ψ ∈ Vq〈
W n+1 − G

(
Un+1

)
, χ
〉

= 0 ∀χ ∈ Vq,

(4.40)

where Un+ 1
2 := 1

2 (Un+1 + Un) for n = 0, .., N − 1. Further we define the initial data
U0 = Πu0(x) where Π denotes the L2 projection into the finite element space, we initialise
W such that W 0 = G (U0), and G is given by Definition 4.2.3.

Remark 4.2.24 (Temporal discretisation of auxiliary variables). Through rewriting the
scheme (4.40) in primal form we observe that U is discretised temporally by Crank-
Nicholson. However, we do not discretise the auxiliary variables explicitly as V n+ 1

2 and
W n+ 1

2 . First consider the auxiliary variable V n+1, as this variable is diagnostic, and does
not evolve in time, we do not require information about it from the previous time step.
If, for example, we evaluated the auxiliary variable at V n+ 1

2 then it would not alter any
subsequent analytic results, or change the rate of convergence in our numerical experi-
ments. It would however introduce additional numerical artefacts, as we would need to
enforce initial data on all three variables instead of just U0 and W 0, so small errors in V

could propagate over time. We have discretised in W such that we are permitted to take
a discrete temporal derivative in the third equation of (4.40). The ability to do this was
fundamental to the proof of energy conservation in the spatially discrete case, so we expect
it to help us in the fully discrete case.

Proposition 4.2.25 (Conservation of invariants in the fully discrete scheme). As we
are employing a quadratic invariant preserving temporal method, and our spatial method
preserves a discrete mass, momentum and energy of linearised KdV, our fully discrete
scheme preserves appropriate discrete invariants, i.e.,

F1
(
Un+1

)
= F1(Un)

F2
(
Un+1

)
= F2(Un)

F3
(
Un+1,W n+1

)
= F3(Un,W n).

Proof. The proof for conservation of these invariants follows from the same methodology
as the proof of Theorem 4.2.7, but we shall present it here for completeness.
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To show conservation of mass we need only choose φ = 1 in (4.40) finding

F1
(
Un+1

)
−F1(Un) =

〈
Un+1 − Un, 1

〉
= τn

〈
G
(
V n+1

)
, 1
〉

= 0.

To show momentum conservation we require compatibility between the terms for W in
the second and third equations of (4.40). We obtain this by summing the third equation
on the current step, and on the previous step, allowing us to write

〈
W n+ 1

2 − G
(
Un+ 1

2
)
, χ
〉

= 0. (4.41)

Choosing φ = Un+ 1
2 in (4.40), and subsequently χ = V n+1 in (4.41), ψ = W n+ 1

2 in (4.40),
and χ = Un+ 1

2 in (4.41) we have that

F2
(
Un+1

)
−F2(Un) = 1

2
〈
Un+1, Un+1

〉
− 1

2 〈U
n, Un〉 =

〈
Un+1 − Un, Un+ 1

2
〉

= −τn
〈
G
(
V n+1

)
, Un+ 1

2
〉

= τn
〈
V n+1,G

(
Un+ 1

2
)〉

= τn
〈
V n+1,W n+ 1

2
〉

= τn
〈
Un+ 1

2 + G
(
W n+ 1

2
)
,W n+ 1

2
〉

= τn
〈
Un+ 1

2 ,W n+ 1
2
〉

= τn
〈
Un+ 1

2 ,G
(
Un+ 1

2
)〉

= 0,

and the discrete momentum is conserved.
Recall in the spatially discrete proof of conservation of energy we were required to take the
temporal derivative of the third equation in the numerical scheme. In the fully discrete case
the equivalent operation is taking the difference of the third equation of (4.40) between
the temporal nodes tn+1 and tn, this yields

〈
W n+1 −W n − G

(
Un+1

)
+ G (Un) , χ

〉
= 0. (4.42)

After choosing χ = W n+ 1
2 in (4.42), ψ = Un+1−Un

τn
in (4.40) and then φ = V n+1 in (4.40)
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we have

F3
(
Un+1,W n+1

)
−F3(Un,W n) = 1

2
〈
W n+1,W n+1

〉
− 1

2
〈
Un+1, Un+1

〉
− 1

2 〈W
n,W n〉+ 1

2 〈U
n, Un〉

=
〈
W n+1 −W n,W n+ 1

2
〉
−
〈
Un+1 − Un, Un+ 1

2
〉

=
〈
G
(
Un+1

)
− G (Un) ,W n+ 1

2
〉
−
〈
Un+1 − Un, Un+ 1

2
〉

= −
〈
Un+1 − Un,G

(
W n+ 1

2
)〉
−
〈
Un+1 − Un, Un+ 1

2
〉

= −
〈
V n+1, Un+1 − Un

〉
= τn

〈
V n+1,G

(
V n+1

)〉
= 0,

confirming that the discrete energy is conserved.

Lemma 4.2.26 (Stability of the fully discrete scheme for linearised KdV). Let Un, V n,W n

be the numerical solution of the fully discrete scheme for linearised KdV as described in
Definition 4.2.23 for n = 0, .., N . Further assume that the initial momentum and energy
are bounded, i.e., F2(U0) <∞ and F3(U0,W 0) <∞, then

‖Un‖2
L2(S1) =

∥∥∥U0
∥∥∥2

L2(S1)

and
‖W n‖2

L2(S1) =
∥∥∥W 0

∥∥∥2

L2(S1)
.

Proof. Similarly to the spatially discrete case given in Lemma 4.2.13 the result is obtained
as a consequence of the conservation of momentum and energy of the fully discrete scheme
discussed in Proposition 4.2.25.

Now we have developed the fully discrete scheme we shall conduct numerical experiments.
Our spatial discretisation has been built through Firedrake, see [153], utilising Unified
Form Language, see [8]. We have implemented an order 2q Gauss quadrature approxi-
mation, so the finite element method is computed exactly, i.e., we do not have additional
quadrature errors contributing to our scheme, with the exception of the L2 projection of
the initial condition u0. We employ a direct LU decomposition solver from the PETSc
library [20] to solve the assembled linear system. Additionally, we will use a combination
of Paraview and Matplotlib as visualisation tools.
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For simplicity we assume that both the time step and spatial element length are uniform.
When conducting numerical experiments with a spatial component we shall also stretch
our spatial domain from S1(0, 1)→ S1(0, 40). The reason for this stretching at present is
solely for compatibility with numerical experiments in the sequel where solution dynamics
are more difficult to visualise on small domains. With this stretching in mind we can
redefine our exact solution to the linearised KdV equation, (4.10) as

u(t, x) = C1 + C2sin
(
α
(
x− (1− α2)t

))
+ C3cos

(
α
(
x− (1− α2)t

))
, (4.43)

where α = 2πk
40 for k ∈ Z.

While we present the experimental order of convergence in the previous chapter, see Def-
inition 3.3.4, we recall it here to clarify the definition in the PDE setting. For each
benchmark test we fix the polynomial degree q and compute a sequence of solutions with
h = h(i) = 2−i and τ chosen either so τ � h, to make the temporal discretisation er-
ror negligible, so τ = Ch so temporal discretisation error dominates. This is done for a
sequence of refinement levels, i = l, . . . , L.

Definition 4.2.27 (Experimental order of convergence). Given two sequences a(i) and
h(i) ↘ 0 we define the experimental order of convergence (EOC) to be the local slope of
the log (a(i)) vs. log (h(i)) curve, i.e.,

EOC(a, h; i) =
log

(
a(i+1)
a(i)

)
log

(
h(i+1)
h(i)

) .
As in Definition 3.3.4 a(i) represents a sequence of errors and h(i) the corresponding
sequence of element sizes. In practice, we assume that the time step size is either coupled
with the element sizes or that it is sufficiently small.

4.2.3.1 A trigonometric test case

Here we shall investigate how well our fully discrete scheme approximates the exact solution
to the linearised KdV equation (4.43) where we have chosen C1 = C3 = 0 and C2 = 1. We
observe in Figure 4.2 and Figure 4.3 the numerical deviation in conserved quantities. We
also obtain the EOC for the aforementioned two cases, where τ is fixed to be small and
we vary only h in Figure 4.4, and where τ = Ch in Figure 4.5.
We shall also perform numerical experiments on the finite element scheme defined by (4.15)
as defined in Remark 4.2.9. Note that we have only described the spatial discretisation
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here, the temporal discretisation is equivalent to that described for our fully discrete
scheme as seen in (4.40). We plot the global deviation in the “conserved quantities” in
Figure 4.6, and the EOC in Figure 4.7 and Figure 4.8.

Figure 4.2: Here we examine the conservative discretisation scheme with various poly-
nomial degrees, q, approximating the exact solution (4.43). We show the global deviation
in the three invariants mass, momentum and energy. In each test we take a fixed spatial
discretisation parameter of h = 1 and fixed time step of τ = 0.1. The simulations are run
for long time to test conservativity with T = 100 in each case.
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(a) Here q = 0.
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(b) Here q = 1.
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(c) Here q = 2.
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(d) Here q = 3.

Remark 4.2.28 (Propagation of machine error). Analytically, we have proven that the
mass, momentum, and energy are preserved. Numerically when examining the global
change in these quantities in Figure 4.2 we observe the deviation in these quantities, at
least for the cases where q = 2, 3, propagate over time. This is likely due to small local
errors in the implementation of our numerical scheme, such as only being able to store
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Figure 4.3: Here we examine the conservative discretisation scheme with various poly-
nomial degrees, q, approximating the exact solution (4.43). We show the local deviation
in the three invariants mass, momentum and energy. In each test we take a fixed spatial
discretisation parameter of h = 1 and fixed time step of τ = 0.1. The simulations are run
for long time to test conservativity with T = 100 in each case.
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(a) Here q = 0.
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(b) Here q = 1.
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(c) Here q = 2.
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(d) Here q = 3.

numbers to finite precision, which are committed on every time step. There is no reason
that these errors should cancel each other out, but sometimes they do, particularly for lower
order polynomial degrees. In Figure 4.3 we observe that the deviation in our conserved
quantities locally, i.e., the difference between the invariant on the current time step and
the previous time step, is sufficiently small for all time.
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Figure 4.4: Here we examine the conservative discretisation scheme with various polyno-
mial degrees, q, approximating the exact solution (4.43) with C1 = C3 = 0 and C2 = 1.
We measure errors in the L∞(0, tn;L2(S1(0, 40))) norm for each variable in the system and
plot the EOC for test runs that benchmark both the spatial and temporal discretisation.
Here we fix τ = 0.0005 such that the spatial error always dominates. We denote the error
in U as eu := ‖u− U‖L∞(0,tn;L2(S1(0,40))), and similarly for v and w.
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(a) Here q = 0.
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(b) Here q = 1.

Remark 4.2.29 (Suboptimal spatial convergence for odd polynomial degrees). For odd
polynomial degree we numerically observe suboptimal convergence by one order of the con-
servative numerical scheme described in Definition 4.2.23. This does not contradict our an-
alytical results as these only hold for even polynomial degrees as our scheme is not unique,
see Remark 4.2.9. We observe that by applying the fix discussed in the aforementioned
remark we achieve a numerical scheme with EOC in agreement with best approximation,
however we do not preserve a discrete momentum or mass over long time.
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Figure 4.5: Here we examine the conservative discretisation scheme with various polyno-
mial degrees, q, approximating the exact solution (4.43) with C1 = C3 = 0 and C2 = 1.
We measure errors in the L∞(0, tn;L2(S1(0, 40))) norm for each variable in the system and
plot the EOC for test runs that benchmark both the spatial and temporal discretisation.
Here τ = Cτ, so we expect different errors to dominate for different polynomials. We
denote the error in U as eu := ‖u− U‖L∞(0,tn;L2(S1(0,40))), and similarly for v and w.
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(a) Here q = 0. Note that the spatial and temporal
errors are converging at the same rate.
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(b) Here q = 1. Note that the spatial error domi-
nates.
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(c) Here q = 2. Note that the temporal error dom-
inates.
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(d) Here q = 3. Note that the temporal error dom-
inates.
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Figure 4.6: Here we examine the nonconservative scheme given by the amalgamation of
the spatially discrete scheme (4.15) with the temporal discretisation employed for (4.40)
for various polynomial degrees, q, approximating the exact solution (4.43). We show the
global deviation in the three invariants mass, momentum and energy. In each test we take
a fixed spatial discretisation parameter of h = 1 and fixed time step of τ = 0.1. The
simulations are run for long time to test conservativity with T = 100 in each case. We
observe that only mass is preserved numerically for q > 0. When q = 0 the numerical
scheme is so unstable that the increase in magnitude of the solution causes large deviations
in the mass.
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(a) Here q = 0.
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(b) Here q = 1.
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(c) Here q = 2.
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(d) Here q = 3.
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Figure 4.7: Here we examine the nonconservative scheme given by the amalgamation of
the spatially discrete scheme (4.15) with the temporal discretisation employed for (4.40) for
various polynomial degrees, q, approximating the exact solution (4.43) with C1 = C3 = 0
and C2 = 1. We measure errors in the L∞(0, tn;L2(S1(0, 40))) norm for each variable in
the system and plot the EOC for test runs that benchmark both the spatial and temporal
discretisation. Here we fix τ = 0.0005 such that the spatial error always dominates. We
denote the error in U as eu := ‖u− U‖L∞(0,tn;L2(S1(0,40))), and similarly for v and w.
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(a) Here q = 0.
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(b) Here q = 1.
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Figure 4.8: Here we examine the nonconservative scheme given by the amalgamation of
the spatially discrete scheme (4.15) with the temporal discretisation employed for (4.40)
for various polynomial degrees, q, approximating the exact solution (4.43) with C1 =
C3 = 0 and C2 = 1. We measure errors in the L∞(0, tn;L2(S1(0, 40))) norm for each
variable in the system and plot the EOC for test runs that benchmark both the spatial
and temporal discretisation. Here τ = Cτ, so we expect different errors to dominate for
different polynomials. We denote the error in U as eu := ‖u− U‖L∞(0,tn;L2(S1(0,40))), and
similarly for v and w.
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(a) Here q = 0. Note that the spatial errors domi-
nate.
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(b) Here q = 1. Note that the spatial errors and
temporal errors converge at the same rate with re-
spect to u and v. With respect to w the spatial error
dominates. The error with respect to w is heuris-
tically a H1 error with respect to u so the slower
convergence rate is somewhat expected.
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(c) Here q = 2. Note that the temporal error dom-
inates.
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(d) Here q = 3. Note that the temporal error dom-
inates.
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4.2.3.2 An initial condition which solves the KdV equation

Here we initialise our numerical scheme with an exact solution to the standard KdV
equation. This exact solution, as given in Chapter 5, is a solitary wave in the KdV
equation known as a soliton, but of course in the linearised KdV equation it is not a
supported solution. We describe the initial data as

U0(x) = Π
(

1
2sech

(1
2 (x− 20)

)2)
. (4.44)

This test case is motivated by [125] where an exact solution of the linearised KdV equation
is enforced as the initial condition for a numerical discretisation of the KdV equation. It is
observed here, as well as in Chapter 5 and Chapter 8, that the initial condition decomposes
into solitons, a natural solution for the KdV equation. Here we investigate if the converse
is true.
We display the deviation in conserved quantities in Figure 4.10 and examine the numerical
solution dynamics in Figure 4.9.

Figure 4.9: Here we show the dynamics of the approximation generated by our fully
discrete scheme for linearised KdV with polynomial degree q = 1 and τ = h = 0.1
approximating the solution to (4.12) with initial conditions given by (4.44). Notice that
initially, dispersive waves emanate from the soliton, although no significant structure is
visible over long time.

106



Section 4.2 Page 107

Figure 4.10: Here we examine the conservative discretisation scheme with various polyno-
mial degrees, q, with the initial condition (4.44). We show the global deviation in the three
invariants mass, momentum and energy. In each test we take a fixed spatial discretisation
parameter of h = 1 and fixed time step of τ = 0.1. The simulations are run for long time
to test conservativity with T = 100 in each case.
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(a) Here q = 0.
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(b) Here q = 1.
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(c) Here q = 2.
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(d) Here q = 3.

4.2.3.3 Discontinuous initial data

We will now enforce a discontinuous initial condition to our scheme for the linearised KdV
equation. It is important to remember that this initial condition lacks the smoothness to
be a solution of the continuous problem. We can describe the initial data by

U0(x) =

1 for x ∈ [10, 20]

0 otherwise.
(4.45)
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We display the deviation in mass, momentum and energy globally in Figure 4.12, as well
as examining the numerical solution dynamics in Figure 4.11.

Figure 4.11: Here we show the dynamics of the approximation generated by our fully
discrete scheme for linearised KdV with polynomial degree q = 1 and τ = h = 0.1
approximating the solution to (4.12) with initial conditions given by (4.45) simulated
over long time. We note that similar phenomena have been observed numerically in
[148, 118, 107]. While this test case violates the conditions for our analysis we observe
that the solution remains stable.
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Figure 4.12: Here we examine the conservative discretisation scheme with various polyno-
mial degrees, q, with the initial condition (4.45). We show the global deviation in the three
invariants mass, momentum and energy. In each test we take a fixed spatial discretisation
parameter of h = 1 and fixed time step of τ = 0.1. The simulations are run for long time
to test conservativity with T = 100 in each case.
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(a) Here q = 0.
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(b) Here q = 1.
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(c) Here q = 2.
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(d) Here q = 3.
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4.3 Conclusion

In this chapter we introduced a methodology for the design of conservative finite element
methods for Hamiltonian PDEs. We go on to design such a scheme for the linearised KdV
equation, show that for this linear problem we preserve the momentum and the energy,
and utilise these conservative properties to prove a priori error bounds when the scheme
is uniquely defined. We observe numerically that even when the scheme is not unique it
is still conservative.
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Chapter 5

Invariant preserving schemes for the
KdV equation

Here we give a numerical comparison of two discontinuous Galerkin methods for the
Korteweg-de Vries (KdV) equation, one of which has been developed following the method-
ology outlined in §4.1. Similarly to the previous chapter, in view of the importance of
conservation properties for this problem and other related Hamiltonian problems for long
time simulations, these methods are constructed such that different discrete invariants
of the problem are conserved. Due to the nonlinearity of the problem it does not seem
possible to construct discrete schemes that preserve more than two invariants following
our discretisation methodology. As such we look at two schemes. One scheme conserves
the mass and momentum (which is a quadratic invariant), and the other the mass and
energy (which is a cubic invariant). We summarise with numerical experiments aimed at
testing the robustness, long time accuracy and computational speed of these methods.

5.1 The KdV equation and two spatial discretisations

5.1.1 The continuous problem

Similarly to the previous chapter, let u = u(t, x), where t ∈ [0, T ] and x ∈ S1 with S1 the
periodic unit interval. For brevity when there is no ambiguity we will not explicitly write
the dependencies of u. Recall that the KdV equation is given by

ut + 6uux + uxxx = 0

u(0, x) = u0,

111



Section 5.1 Page 112

in (4.4) for u0 = u0(x) sufficiently smooth, where subscripts represent partial derivatives.
Notice that the KdV equation can be written in conservative form, i.e.,

ut = −
(
3u2 + uxx

)
x
. (5.1)

In view of the PDE (5.1) we observe mass conservation, that is,

d
dt 〈u, 1〉 = 〈ut, 1〉 = −

〈(
3u2 + uxx

)
x
, 1
〉

= 0,

utilising Stokes theorem and the periodic boundary conditions. We will refer to the mass
in the sequel as

F1(u) := 〈u, 1〉 . (5.2)

Similarly, again by (4.4) and integration by parts we find that a momentum is also con-
served, that is,

d
dt

(1
2 〈u, u〉

)
= 〈ut, u〉 = −〈6uux + uxxx, u〉 = −

〈
2
(
u3
)
x
− 1

2
(
u2
x

)
x
, 1
〉

= 0.

We will denote the momentum by

F2(u) = 1
2 〈u, u〉 . (5.3)

Further the problem conserves an energy, that is,

d
dt

(1
2 〈ux, ux〉 −

〈
u2, u

〉)
= 〈uxt, ux〉 − 3

〈
ut, u

2
〉

= −
〈
ut, uxx + 3u2

〉
=
〈(
uxx + 3u2

)
x
, uxx + 3u2

〉
= 0,

through integration by parts and Stokes’ theorem utilising the periodic boundary condi-
tions. We will write the energy as

F3(u) = 1
2 〈ux, ux〉 −

〈
u2, u

〉
. (5.4)

These are only the first three invariants of the problem, in fact, infinitely many conserva-
tion laws can be constructed through Bäcklund transformations, see [2]. Notice that our
momentum F2(u) and energy F3(u) are exactly the Hamiltonian operators for the KdV
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equation described in (4.5).

Remark 5.1.1 (Invariant induced norms). Notice that the only invariant which induces
a norm without further interpolation arguments is momentum. Both the mass (5.2) and
energy (5.4) are not signed. This will add significant complications to the analysis of finite
element schemes which do not preserve the momentum. For example, through momentum
conservation we have

‖u(t, x)‖2
L2(S1) = ‖u(0, x)‖2

L2(S1)

immediately, whereas energy conservation yields the nonlinear notion of stability

F3(u(t, x)) = F3(u(0, x)),

which requires the Gagliardo-Nirenberg interpolation inequality to be related to a norm, see
Proposition 8.1.3.

5.1.2 Spatial finite element notation

Before introducing our invariant preserving spatial finite element schemes we direct the
reader to recall the notation found in §4.2.1. With this notation in mind we now introduce
our invariant conserving schemes.

5.1.3 Momentum conserving spatial discretisation

The momentum conserving scheme we consider was developed and analysed in [31, 114].
Note that this scheme is actually described for a general class of KdV-type equations, but
here we restrict our study to the KdV equation for clarity of exposition. This numerical
scheme arises through defining two discrete operators: Let W ∈ Vq, then the first operator
deals with the nonlinear term, define N : Vq → Vq such that

〈N (W ) , φ〉 = −
〈
W 2, φx

〉
+ 1

3

M−1∑
m=0

(
W+
m

2 +W+
mW

−
m +W−

m
2) JφmK ∀φ ∈ Vq, (5.5)

where W+
m = limx↘xmW (x) and W−

m = limx↗xmW (x). This operator is conservative in
the sense that 〈N (W ) ,W 〉 = 0 ∀W ∈ Vq, as we will discuss in the proof of Proposition
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5.1.3. We also define the dispersion operator D : Vq → Vq for W ∈ Vq such that

〈D (W ) , φ〉 = 〈Wx, φxx〉+
M−1∑
m=0

W+
xx JφmK− JWmKφ+

xx − {Wxm} JφxmK ∀φ ∈ Vq. (5.6)

Note that the dispersion operator is similarly conservative in the sense that 〈D (W ) ,W 〉 =
0, but this operator is only well defined for q ≥ 2, for q = 1 it lacks consistency due to
loss of information in the flux terms.

Definition 5.1.2 (Momentum conserving spatially discrete scheme,[31]). Let N and D
be the operators defined in (5.5) and (5.6) respectively. Then seek U ∈ Vq (for q ≥ 2) such
that

〈Ut + 3N (U) +D (U) , φ〉 = 0 ∀φ ∈ Vq

U(0, x) = Πu0,
(5.7)

where Π is the L2 projection into the finite element space.

Proposition 5.1.3 (Conservation of momentum by (5.7), [31]). Let U ∈ Vq be the solution
of the spatial finite element approximation given in Definition 5.1.2 for 2 ≤ q ∈ Z. The
discrete mass F1(U) and momentum F2(U) are conserved, that is to say that

d
dtF1(U) = 0

and
d
dtF2(U) = 0.

Proof. We observe discrete mass conservation through choosing φ = 1 in (5.7), as

d
dtF1(U) = 〈Ut, 1〉 = −〈3N (U) +D (U) , 1〉 = 0,

through orthogonality ofN and D with constants. Note that we observe this orthogonality
directly through the operators respective definitions (5.5) and (5.6).
Conservation of momentum can be seen through choosing φ = U in (5.7) as

d
dtF2(U) = 〈Ut, U〉 = −〈3N (U) +D (U) , U〉 = 0,
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utilising orthogonality ofN (U) andD (U) with U . Note that this orthogonality is observed
through direct calculation. For N we have

〈N (U) , U〉 = −
〈
U2, Ux

〉
+ 1

3

M−1∑
m=0

(
U+
m

2 + U+
mU

−
m + U−m

2) JUmK

= −1
3
〈[
U3
]
x
, 1
〉

+ 1
3

M−1∑
m=0

q
U3
m

y

= 0,

through the application of the fundamental theorem of calculus applied elementwise. For
D we have

〈D (U) , U〉 = 〈Ux, Uxx〉 −
M−1∑
m=0
{Uxm} JUxmK

= 1
2
〈(
U2
x

)
x
, 1
〉
−

M−1∑
m=0

1
2

q
Ux

2
m

y

= 0,

through application of the definitions of the jumps and averages, as well as the fundamental
theorem of calculus elementwise. Note that these operators have been designed such
that they both respect the aforementioned orthogonality conditions as a methodology of
designing a conservative scheme.

As the momentum conserving scheme (5.7) preserves F2(U) over time from Remark 5.1.1
we observe that we have numerical stability in the L2 norm. This numerical stability
allows for the development of the following suboptimal error bound.

Theorem 5.1.4 (An a priori bound for the momentum conserving scheme,[31]). Let U ∈
Vq be the spatial finite element approximation as given in Definition 5.1.2 for 2 ≤ q ∈ Z,
and let u be the corresponding exact solution to (4.4). Further assume that the polynomial
degree q and the number of nodes N are both even, then

‖u(t, x)− U(t, x)‖L2(S1) ≤ C1exp (C2t)hqmax,

where the constants C1 and C2 depend on p and the magnitude of the solution u and its
derivatives.
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5.1.4 Energy conserving spatial discretisation

We now design a new energy conserving scheme utilising the methodology outlined in §4.1,
as the energy functional corresponds to one of the Hamiltonian formulations of the KdV
equation. We begin by introducing the variational derivative of the energy as an auxiliary
variable, allowing us to rewrite the KdV equation as the system

ut + vx = 0

v − 3u2 − uxx = 0,

on the continuous level. Then to prove energy conservation on the continuous level we
show

d
dtF3(u) = 〈uxt, ux〉 − 3

〈
ut, u

2
〉

= 〈ut, uxx〉 −
〈
ut, 3u2

〉
= 〈ut, v〉 = 〈vx, v〉 = 1

2
〈(
v2
)
x
, 1
〉

= 0,

through integration by parts and the fundamental theorem of calculus. It is this argument
we wish to mimic on the discrete level. Before discretising this system we define the
following spatial operators for the first and second spatial derivatives.

Definition 5.1.5 (Discrete operator for first spatial derivatives). Let W ∈ Vq, then recall
that G : Vq → Vq such that

〈G (W ) , φ〉 = 〈Wx, φ〉 −
M−1∑
m=0

JWmK {φm} ∀φ ∈ Vq.

Note that the operator for first derivatives is given in Definition 4.2.3, we recall it here for
the readers convenience.

Definition 5.1.6 (Discrete operator for second spatial derivatives: Symmetric interior
penalty, [11]). Let γ = 1 and W ∈ Vq, then Ah : Vq × Vq → Vq such that

Ah (W,φ) = 〈Wx,φx〉+
M−1∑
m=0

(
− γ JWmK {φxm}

− γ JφmK {Wxm}+ σ

hm
JWxmK JφxmK

)
∀φ ∈ Vq,

(5.8)

where σ is a sufficiently large constant to guarantee coercivity. Numerically we choose it
to be at least 10, see [5]. While γ = 1 we refer to the method as the consistent interior
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penalty method, however, we also consider the case where γ = 0. If γ = 0 we refer to
the method as the inconsistent interior penalty method. Unless stated otherwise, we shall
always consider the consistent method. The operator Ah is a symmetric bilinear form
which induces a norm. See [12] for more details and an overview of similar operators.

The energy conserving spatial finite element scheme is then described as follows.

Definition 5.1.7 (Energy conserving spatially discrete scheme). Let the operators G and
Ah be as described in Definition 4.2.3 and Definition 5.1.6, then seek U, V ∈ Vq such that

〈Ut + G (V ) , φ〉 = 0 ∀φ ∈ Vq〈
V − 3U2, ψ

〉
+Ah (U, ψ) = 0 ∀ψ ∈ Vq

U(0, x) = Πu0,

(5.9)

where Π is the L2 projection into the finite element space.

Proposition 5.1.8 (Conservation of energy by (5.9)). Let U, V ∈ Vq be the solution to
the spatial finite element scheme described by Definition 5.1.7. The discrete mass F1(U)
and the discrete energy ›F3 (U) := 1

2Ah (U,U)−
〈
U2, U

〉
, (5.10)

are conserved over time, i.e.,
d
dtF1(U) = 0

and
d
dt
›F3 (U) = 0.

Proof. In view of mass conservation we have

d
dtF1(U) = 〈Ut, 1〉 = 〈G (V ) , 1〉 = 0,

through choosing φ = 1 in (5.9) and recalling that G is orthogonal to constants, which can
be seen through combining Lemma 4.2.4 with the definition of G, Definition 4.2.3.
To show energy conservation we depend heavily on Lemma 4.2.4, that is that G is a
skew-symmetric operator. Choosing ψ = Ut in (5.9)

d
dt
›F3 (U) = Ah (Ut, U)−

〈
Ut, 3U2

〉
= 〈Ut, V 〉 ,
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as Ah is symmetric. Further choosing φ = V in (5.9) we have

d
dt
›F3 (U) = −〈G (V ) , V 〉 = 0,

through the skew-symmetry of G.

Remark 5.1.9 (Choice of operator for the second derivative). We do not necessarily need
to choose Ah to be described by (5.8) with γ = 1 for an energy conserving method. In fact,
all we need is that the bilinear form Ah (·, ·) is symmetric. For our numerical method to
be well posed we additionally need the bilinear form to be coercive. For example, choosing
γ = 0 the bilinear form

Ah (W,φ) = 〈Wx,φx〉+
M−1∑
m=0

σ

hm
JWxmK JφxmK ∀φ ∈ Vq,

is inconsistent in the sense of [12] but would be an equally valid choice of operator. This
modified choice of Ah leads the scheme to preserve a modified discrete energy.

Remark 5.1.10 (A remark on the uniqueness of the energy conserving scheme). Recall in
§4.2 we introduced a scheme which utilised the G operator and we found in Remark 4.2.9
that this scheme was not uniquely defined due to multiple elements in the kernel of G.
While utilising G the energy conserving scheme (5.9) is uniquely defined, as Ah includes
a kernel removing stabilisation term.

5.1.5 A preliminary comparison of the numerical schemes

While both the momentum and energy conserving schemes fall within the discontinuous
finite element framework there are some fundamental differences between the momentum
and energy conserving schemes. The momentum conserving scheme requires a polynomial
degree of q ≥ 2, due to the weak handling of the third derivative, whereas the energy
conserving scheme is valid for q ≥ 1 as the third derivative is being “hidden” by an
auxiliary variable. While the auxiliary variable allows us to use lower order polynomials
it also increases the computational complexity of a naive implementation of the scheme,
as our finite element approximation is a system of equations. However, it is possible to
rewrite the energy conserving scheme in primal form and implement it as one would for
local dG as is discussed in Remark 4.2.6 leading to both schemes having a comparable
computational complexity.

118



Section 5.2 Page 119

While the momentum conserving scheme is required to be discontinuous, due to the han-
dling of the third derivative, for the energy conserving scheme we could restrict our scheme
to the continuous finite element space. We shall not consider the continuous restriction
of our scheme here, but we implement a scheme following the same methodology as the
energy conserving scheme in Chapter 8 which utilises continuous finite element spaces.
We note that, in view of Theorem 5.1.4, the momentum has proven a priori bounds under
the assumption that the degree of the finite element space q has even parity and an even
number of nodes. We do not have such a priori bounds for the energy conserving scheme,
primarily because, as we discussed in Remark 5.1.1, the conservation of energy does not
lead us to numerical stability in a norm.

5.2 Temporal discretisations

We now discuss the temporal discretisations which we shall couple with the momentum
conserving and energy conserving schemes. It is important to note that the temporal
discretisation for conservation of each invariant is distinct as the invariants have different
order nonlinearities. Unlike for linearised KdV, see §4.2, a single temporal discretisation
cannot be conservative for both momentum and energy. Note that both of these temporal
discretisations are mass conserving.
Recall that we define the temporal partition 0 =: t0 < t1 < · · · < tN := T with a step
size τn := tn+1 − tn, additionally recall that we denote a temporally discrete function
of the function u(t, x) at tn as un(x). The temporal discretisations we discuss will be
fixed at second order, as can be seen through Taylor’s theorem. While higher order
conservative temporal methods are available, for example, through composition of the
methods discussed in this work, we shall not press this point here.

5.2.1 Momentum conserving temporal discretisation

In §4.2 we discussed how the Crank-Nicholson temporal discretisation preserved quadratic
invariants. As momentum is quadratic in order we again choose a Crank-Nicholson dis-
cretisation, i.e., we define our temporal discretisation as follows.

Definition 5.2.1 (Momentum conserving temporal discretisation). Let u0 = u(0, x), then
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for n = 0, ..., N − 1 find un+1 such that

un+1 − un

τn
+ 6un+ 1

2
x un+ 1

2 + u
n+ 1

2
xxx = 0, (5.11)

where un+ 1
2 = un+1+un

2 .

Remark 5.2.2 (Crank-Nicholson timestepping). For a temporal problem of the form

ut = f(u),

the Crank-Nicolson temporal discretisation typically takes the form

un+1 − un

τn
= f (un+1) + f (un)

2 .

For our temporally discrete momentum conserving scheme this may not initially appear
to be the case, due to the handling of the nonlinear term 6un+ 1

2
x un+ 1

2 , however as we
are spatially continuous we can rewrite this term as the total derivative 3

((
un+ 1

2
)2
)
x

confirming that our temporal discretisation is Crank-Nicholson in nature.

Proposition 5.2.3 (Nodal conservation of momentum by (5.11)). Let un for n = 0, .., N
be as described in Definition 5.2.1, then the mass and momentum are conserved nodally,
i.e.,

F1
(
un+1

)
= F1(un), F2

(
un+1

)
= F2(un).

Proof. In view of mass conservation we integrate (5.11) spatially and observe that

〈
un+1 − un, 1

〉
= −

〈
3
((
un+ 1

2
)2
)
x

+ u
n+ 1

2
xxx , 1

〉
= 0,

by the fundamental theorem of calculus similar to the continuous argument. For conser-
vation of momentum we multiply (5.11) by un+ 1

2 , then integrating over the spatial domain
we yield

F2
(
un+1

)
−F2(un) = 1

2
〈
un+1, un+1

〉
− 1

2 〈u
n, un〉 =

〈
un+1 − un, un+ 1

2
〉

= −τn
〈

6un+ 1
2u

n+ 1
2

x + u
n+ 1

2
xxx , un+ 1

2

〉
= −τn

〈
2
((
un+ 1

2
)3
)
x
− 1

2

((
u
n+ 1

2
x

)2
)
x

, 1
〉

= 0,
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after integration by parts, the fundamental theorem of calculus and the periodic spatial
boundary conditions.

5.2.2 Energy conserving temporal discretisation

Due to the cubic nature of the energy we cannot employ the Crank-Nicholson temporal
discretisation to yield an energy conserving scheme. Instead, we introduce a temporal
discretisation designed specifically such that the energy is conserved. This temporal dis-
cretisation can be viewed as a second order perturbation of Crank-Nicholson, through
Taylor’s theorem, with respect to the variable u, see Remark 5.2.8.

Definition 5.2.4 (Energy conserving temporal discretisation). Let u0 = u(0, x), then for
n = 0, ..., N − 1 find un+1 and vn+1 such that

un+1 − un

τn
+ vn+1

x = 0

vn+1 −K
(
un+1, un

)
− un+ 1

2
xx = 0,

(5.12)

where un+ 1
2 = un+1+un

2 and

K
(
un+1, un

)
:=
(
un+1

)2
+ un+1un + (un)2 .

Remark 5.2.5 (Temporal treatment of the auxiliary variable). Note that we design the
temporal discretisation of our auxiliary variable v such that it is diagnostic, i.e., we eval-
uate it at tn+1 to bypass the need to provide initial data for v which in practice introduces
additional errors. This does not reduce the order of accuracy in time as temporally we
can rewrite the scheme in primal form eliminating the auxiliary variable.

Proposition 5.2.6 (Nodal conservation of energy by (5.12)). Let un for n = 0, ..., N be
as described in Definition 5.2.4, then the mass and energy are conserved nodally, i.e.,

F1
(
un+1

)
= F1(un), F3

(
un+1

)
= F3(un).

Proof. In view of mass conservation we have that

F1
(
un+1

)
−F1(un) =

〈
un+1 − un, 1

〉
= −τn

〈
vn+1
x , 1

〉
= 0,
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by the fundamental theorem of calculus and the periodic boundary conditions.
In view of energy conservation, through algebraic manipulation and integration by parts,
we see that

F3
(
un+1

)
−F3(un) = 1

2
〈
un+1
x , un+1

x

〉
− 1

2 〈u
n
x, u

n
x〉 −

〈(
un+1

)2
, un+1

〉
+
〈
(un)2 , un

〉
=
〈(
un+1

)2
+ un+1un + (un)2 , un+1 − un

〉
−
〈
u
n+ 1

2
xx , un+1 − un

〉
.

Choosing ψ = un+1−un
τn

in (5.12) allows us to write that

F3
(
un+1

)
−F3(un) = τn

〈
un+1 − un, vn+1

〉
.

Note that this choice of ψ is similar to the choice made to show energy conservation in the
spatial case, but instead of a time derivative we choose a discrete time derivative, realised
as a difference quotient, as a test function. Choosing φ = vn+1 in (5.12) we see that

F3
(
un+1

)
−F3(un) = τ 2

n

〈
vn+1
x , vn+1

〉
= τ 2

n

〈((
vn+1

)2
)
x
, 1
〉

= 0,

i.e., the energy is conserved nodally.

Remark 5.2.7 (The design of temporal discretisations that preserve higher order in-
variants). The key to designing a temporal discretisation that preserves a nonquadratic
invariant is solely in the discretisation of the nonlinear term of the scheme. Notice that
for the momentum conserving scheme when we multiply our difference quotient with un+ 1

2

we obtain a difference of squares, i.e.,

(
un+1 − un

)
un+ 1

2 =
(
un+1

)2
− (un)2 .

To obtain a difference of cubes, as is required of the energy conserving scheme, we define
our nonlinear term K (un+1, un) such that we obtain a difference of cubes, i.e.,

K
(
un+1, un

)
un+ 1

2 =
(
un+1

)3
− (un)3 .

Following this methodology we can design temporal discretisations for problems with high
order nonlinearities, such as the modified KdV equation, as we will discuss later in this
chapter, or the vectorial modified KdV equation, see Chapter 8. Note that this idea is
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similar to that used in the design of discrete gradient methods which are discussed in
§2.2.3.

Remark 5.2.8 (Deviation of the nonconserved invariant). Note that, after rewriting the
energy conserving temporal scheme in primal form, the only difference between the mo-
mentum conserving scheme and the energy conserving scheme is the discretisation of the
nonlinear term. We can explicitly write the nonlinear term of the momentum conserving
scheme (5.11) as

3
((
un+ 1

2
)2
)
x
,

and for the energy conserving scheme (5.12) as
((
un+1

)2
+ un+1un + (un)2

)
x
.

Through Taylor expanding we observe that the difference between these nonlinear terms is
second order, i.e.,

(
un+1

)2
+ un+1un + (un)2 = 3

(
un+ 1

2
)2

+ 1
4τ

2
n

d
dξ u(ξ, x) for some ξ ∈ [tn, tn+1] . (5.13)

In view of (5.13) we have that for the momentum conserving scheme (5.11) the local devi-
ation in energy is O (τ 2

n), and similarly for the energy conserving scheme (5.12) the local
deviation in momentum is O (τ 2

n).

Remark 5.2.9 (Order of the temporal discretisations). We can observe, through direct
application of Taylor’s theorem, that both (5.11) and (5.12) are second order accurate in
time.

5.3 Full discretisations

We will now combine the spatial and temporal schemes for both momentum conserving
and energy conserving discretisations, and show that the fully discrete methods preserve
their respective invariants at the temporal nodes. These proofs will be an amalgamation
of the spatially discrete and temporally discrete proofs.
Recall that we define spatially discrete finite element functions through capitalisation, and
temporally discrete functions through superscripts. With this in mind, we write Un(x) as
the fully discrete function approximating u(t, x).
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Unlike in the prequel, here we allow our spatial mesh to change over time. This requires us
to redefine our spatial notation with dependence on time as follows. We refine our spatial
partition as 0 =: xn0 < xn1 < · · · < xnM := 1 with elements J n

m := (xnm, xnm+1) possessing
length hnm := xnm+1 − xnm. Note that here superscripts of spatial points do not necessarily
represent a sequence of points, as we have not assumed that the number of points are
constant. It is possible that the number of points changes over time.

Definition 5.3.1 (Fully discrete finite element space). Let Pnq (J n
m) denote the space of

polynomials of degree q on an interval J n
m ⊂ R at time t = tn, then the discontinuous

finite element space is given by

Vn
q = {Un : S1 → R : Un|J nm ∈ Pnq (J n

m) for m = 0, ...,M − 1},

where M depends on the time step, and for n = 0, ..., N .

Additionally, as our spatial mesh can change over time, for our numerical methods to be
well defined we are required to introduce an mesh change operator which maps from the old
mesh at time n to the new mesh at time n+1, denoted Pn+1 : Vn

q → Vn+1
q . We shall define

this operator more concisely in the sequel, but in the literature this operator is typically
either the Lagrange interpolation operator onto the new mesh or the L2 projection. In the
case that Vn+1

q ≡ Vn
q then Pn+1 is the identity as the mesh does not change.

Before proceeding to introduce our fully discrete numerical schemes we first briefly discuss
different potential methods of adaptivity.

Remark 5.3.2 (Different methods of adaptivity). In the literature three types of adaptivity
are typically considered for finite element methods. The first of which is r-adaptivity, see
[35]. In r-adaptivity the number of nodal points is constant, and the degrees of freedom of
the method are simply redistributed, or relocated. A key benefit to this method of adaptivity
is that the dimension of the finite element space does not change in time, and as such we
have a predetermined computational complexity. This type of adaptivity is often driven by
a Monge-Ampere type equation, see [36, 150], which in one spatial dimension is equivalent
to the Laplacian. This type of adaptivity is also referred to as a moving mesh method,
typically where the mesh is subject to Lagrangian flow, see [41, 18, 126].
The second type of adaptivity is known as h-adaptivity, as the spatial step, typically denoted
h, is adapted locally over time, see [57]. Ultimately this kind of adaptivity can be viewed as
coarsening/refining the elements of the spatial mesh for a finite element method. This is a
popular method of adaptivity within the finite element framework primarily as the analysis
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of such methods falls within the finite element framework, as such a posteriori bounds can
be constructed and their magnitude can be controlled locally through h-adaptivity, see [6].
Is it possible, if desired, to combine r-adaptivity with h-adaptivity, see [14].
The final type of adaptivity, which is implemented within the finite element framework, is
known as p-adaptivity. Here the polynomial degree of the finite element approximation is
adapted locally over time, see [25, 61, 64, 112]. While p-adaptivity yields very fast con-
vergence of solutions for smooth solutions, it is not ideal for representaing discontinuities.
This has led to the coupling of p-adaptivity with h-adaptivity which handle discontinuities
relatively well, see [54, 97, 169, 55, 53, 52] on hp-adaptive schemes.
The methods that we propose allow for r-adaptivity and h-adaptivity. Throughout this
work we assume that the polynomial degree of the finite element method is fixed. Note that
p-adaptivity can in fact be considered, but we do not accommodate it here for clarity of
exposition.

5.3.1 Fully discrete momentum conserving scheme

Definition 5.3.3 (Momentum conserving fully discrete scheme, [31]). Let Un ∈ Vn
q and

U0 = Π0u0 where Π0 is the L2 projection into the initial finite element space. Then we
seek Un+1 ∈ Vn+1

q such that
〈
Un+1 − Pn+1Un

τn
+ 3N

(
Un+ 1

2
)

+D
(
Un+ 1

2
)
, φ

〉
= 0 ∀φ ∈ Vn+1

q , (5.14)

where Un+ 1
2 = 1

2 (Un+1 + Pn+1Un), and N and D are defined by (5.5) and (5.6).

Proposition 5.3.4 (Conservative properties of (5.14)). Let Un for n = 0, ..., N − 1 be as
described in Definition 5.3.3, then we have that

F1
(
Un+1

)
= F1

(
Pn+1Un

)
,

and
F2
(
Un+1

)
= F2

(
Pn+1Un

)
,

where F1 and F2 are given in (5.2) and (5.3) respectively. Ultimately this tells us that the
deviation in mass and momentum of the momentum conserving scheme is controlled by
the interpolation of the solution from the spatial mesh at tn to the spatial mesh at tn+1.

Remark 5.3.5 (A remark on Proposition 5.3.4). If our mesh is not adaptive then the mass
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and momentum of the “momentum conserving scheme” will be conserved, as the mesh
change operator Pn+1 be the identity operator. In general, over an adaptive mesh, to pre-
serve invariants we need to design the mesh change operator Pn+1 such that Fi(Pn+1Un) =
Fi(Un) for a given invariant. We focus on the design of such operators in §6.2 and §7.4.

Proof of Proposition 5.3.4. In view of mass conservation add and subtract F1(Pn+1Un),
choose φ = 1 in (5.14) and utilise the orthogonality of the nonlinear and dispersion oper-
ators to the constants to find

F1
(
Un+1

)
−F1(Un) =

〈
Un+1 − Un, 1

〉
=
〈
Un+1 − Pn+1Un, 1

〉
+
〈
Pn+1Un − Un, 1

〉
=− τn

〈
3N

(
Un+ 1

2
)

+D
(
Un+ 1

2
)
, 1
〉

+
〈
Pn+1Un − Un, 1

〉
=
〈
Pn+1Un − Un, 1

〉
.

In the same spirit as the spatially discrete case we choose φ = Un+ 1
2 to show that

F2
(
Un+1

)
−F2(Un) = 1

2
〈
Un+1, Un+1

〉
− 1

2 〈U
n, Un〉

= 1
2
〈
Un+1, Un+1

〉
− 1

2
〈
Pn+1Un,Pn+1Un

〉
+ 1

2
〈
Pn+1Un,Pn+1Un

〉
− 1

2 〈U
n, Un〉

=
〈
Un+1 − Un, Un+ 1

2
〉

+ 1
2
〈
Pn+1Un,Pn+1Un

〉
− 1

2 〈U
n, Un〉

= −τn
〈
3N

(
Un+ 1

2
)

+D
(
Un+ 1

2
)
, Un+ 1

2
〉

+ 1
2
〈
Pn+1Un,Pn+1Un

〉
− 1

2 〈U
n, Un〉

= 1
2
〈
Pn+1Un,Pn+1Un

〉
− 1

2 〈U
n, Un〉 ,

by the orthogonality of the non-linear and dispersion operators to their argument discussed
in §5.1.3.

Corollary 5.3.6 (Stability of the momentum conserving scheme). Assume that Vn
q ⊆ Vn+1

q

and that Pn+1 is consistent, then the momentum conserving scheme described in Definition
5.3.3 is stable in L2(S1) over time, i.e.,

‖Un‖L2(S1) = ‖U0‖L2(S1) .

126



Section 5.3 Page 127

Proof. This result follows directly from conservation of momentum discussed in Proposi-
tion 5.3.4.

5.3.2 Energy conserving scheme

Definition 5.3.7 (Energy conserving fully discrete scheme). Let Un ∈ Vn
q be given, then

seek Un+1, V n+1 ∈ Vn+1
q such that
〈
Un+1 − Pn+1Un

τn
+ G

(
V n+1

)
, φ

〉
= 0 ∀φ ∈ Vn+1

q〈
V n+1 −K

(
Un+1,Pn+1Un

)
, ψ
〉

+Ah
(
Un+ 1

2 , ψ
)

= 0 ∀ψ ∈ Vn+1
q ,

(5.15)

where
K
(
Un+1, Un

)
=
(
Un+1

)2
+ Un+1Pn+1Un +

(
Pn+1Un

)2
, (5.16)

Un+ 1
2 = 1

2 (Un+1 + Pn+1Un), Ah (·, ·) and G are described by Definition 5.1.6 and Defini-
tion 4.2.3 respectively. Additionally U0 is given by the L2 projection of u0 into the initial
finite element space.

Proposition 5.3.8 (Conservative properties of (5.15)). Let Un for n = 0, ..., N − 1 be as
described by Definition 5.3.7, then we have that

F1
(
Un+1

)
= F1

(
Pn+1Un

)
,

and ›F3
(
Un+1

)
= ›F3

(
Pn+1Un

)
,

where F1 and ›F3 are given in (5.2) and (5.10) respectively. Similarly to in Proposition
5.3.4, for the momentum conserving scheme, we have that the deviation in mass and energy
for our fully discrete scheme are controlled by the interpolation of the numerical solution
between the spatial mesh at time tn to the spatial mesh at time tn+1. If we do not adapt
the spatial mesh over time we conserve the discrete mass and energy exactly.

Before proving Proposition 5.3.8 we first need to introduce a discrete identity for Ah.

Lemma 5.3.9 (Discrete identity for the bilinear form). Let Un+1 ∈ Vn+1
q and Un ∈ Vn

q ,
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then
Ah

(
Un+ 1

2 ,
Un+1 − Un

τn

)
= 1

2τn

(
Ah

(
Un+1, Un+1

)
−Ah (Un, Un)

)
.

Proof. Applying the definition of Un+ 1
2 and bilinearity we find

Ah
(
Un+ 1

2 ,
Un+1 − Un

τn

)
= 1

2τn
Ah

(
Un+1 + Un, Un+1 − Un

)
= 1

2τn

(
Ah

(
Un+1, Un+1

)
−Ah (Un, Un)

)
after utilising symmetry of the bilinear form.

Proof of Proposition 5.3.8. In view of energy conservation we add and subtract the energy
of Pn+1Un allowing us to write›F3

(
Un+1

)
−›F3 (Un) = ›F3

(
Un+1

)
−›F3

(
Pn+1Un

)
+ ›F3

(
Pn+1Un

)
−›F3 (Un)

= 1
2
(
Ah

(
Un+1, Un+1

)
−Ah

(
Pn+1Un,Pn+1Un

))
−
〈(
Un+1

)2
, Un+1

〉
+
〈(
Pn+1Un

)2
,Pn+1Un

〉
+ ›F3

(
Pn+1Un

)
−›F3 (Un) .

Applying Lemma 5.3.9 and then choosing ψ = Un+1−Un
τn

in (5.15) we have find that›F3
(
Un+1

)
−›F3 (Un) = τnAh

(
Un+ 1

2 ,
Un+1 − Pn+1Un

τn

)

− τn
〈
K
(
Un+1,Pn+1Pn+1Un

)
,
Un+1 − Pn+1Un

τn

〉
+ ›F3

(
Pn+1Un

)
−›F3 (Un)

= τn
〈
V n+1, Un+1 − Un

〉
+ ›F3

(
Pn+1Un

)
−›F3 (Un)

where K is defined by (5.16). Note that choosing φ = V n+1 in (5.15) we have›F3
(
Un+1

)
−›F3 (Un) = τ 2

n

〈
V n+1,G

(
V n+1

)〉
+ ›F3

(
Pn+1Un

)
−›F3 (Un)

= ›F3
(
Pn+1Un

)
−›F3 (Un) ,

through the skew-symmetry of G, see Lemma 4.2.4, as required.
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Remark 5.3.10 (Preservation of invariants and adaptivity). As we observe from Propo-
sition 5.3.4 and Proposition 5.3.8, we cannot freely adapt our mesh over time and expect
to preserve the higher order invariants of the problem. In fact, we cannot even expect to
preserve the mass. This presents a significant problem with the employment of adaptivity,
as numerical stability in both the momentum and energy conserving schemes arises from
conservation of their respective invariants. As such, we cannot expect an adaptive algo-
rithm to be well behaved. This motivates the design of mesh change operators Pn+1 such
that the invariants are still preserved to regain some of this numerical stability. We shall
elaborate on this point in Chapter 6. For the remainder of this chapter we shall assume a
uniform mesh in both space and time.

Remark 5.3.11 (Conservative schemes for the modified KdV equation). Throughout this
chapter we have restricted our study to the KdV equation, but neither the momentum or
the energy conserving schemes need to be restricted to such cases. Consider, for example,
the modified KdV equation

ut + 24u2ux + uxxx = 0,

which possesses the mass, momentum and energy

〈u, 1〉 , 1
2 〈u, u〉 ,

1
8 〈ux, ux〉 −

1
2
〈
u2, u2

〉
,

respectively. The corresponding momentum conserving scheme in this case is given by
letting Un ∈ Vn

q be given, where U0 = Π0u0 with Π0 the L2 projection into the initial finite
element space. Then, we seek Un+1 ∈ Vn+1

q such that
〈
Un+1 − Pn+1Un

τn
+ 24N

(
Un+ 1

2
)

+D
(
Un+ 1

2
)
, φ

〉
= 0 ∀φ ∈ Vn+1

q ,

where Un+ 1
2 = 1

2 (Un+1 + Pn+1Un), and we redefine our nonlinear operator such that for
W ∈ Vn+1

q

〈N (W ) , φ〉 = −
〈
W 3, φx

〉
+ 1

4

M−1∑
m=0

((
W+
m

)3
+
(
W+
m

)2
W−
m +W+

m

(
W−
m

)2
+
(
W−
m

)3
)

JφmK .

and D is as described in (5.6), as can be seen in [31]. Mimicking the proof of Proposition
5.3.8 we find that a discrete mass and momentum are still preserved for this scheme in
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the sense that

F1
(
Un+1

)
= F1

(
Pn+1Un

)
F2
(
Un+1

)
= F2

(
Pn+1Un

)
.

Equivalently, we can introduce the first variation of the energy v = 8u3+uxx as an auxiliary
variable yielding the following scheme. Let Un ∈ Vn

q be given, where U0 = Π0u0 where
Π0 is the initial L2 projection into the finite element space. Further let G and Ah be as
described in Definition 4.2.3 and Definition 5.1.6, then we seek Un+1 ∈ Vn+1

q such that
〈
Un+1 − Pn+1Un

τn
+ G

(
V n+1

)
, φ

〉
= 0 ∀φ ∈ Vn+1

q〈
V n+1 − 8K

(
Un+1,Pn+1Un

)
, ψ
〉
Ah

(
Un+ 1

2 , ψ
)

= 0 ∀ψ ∈ Vn+1
q ,

where Un+ 1
2 = 1

2 (Un+1 + Pn+1Un) and we redefine our nonlinear operator K as

K
(
Un+1,Pn+1Un

)
= 1

4

((
Un+1

)3
+
(
Un+1

)2
Pn+1Un + Un+1

(
Pn+1Un

)2
+
(
Pn+1Un

)3
)
.

Mimicking the proof of Proposition of 5.3.8 we see that we conserve mass and the discrete
energy ”F3 (Un) = 1

8Ah (Un, Un)− 1
2 (Un)3 ,

in the sense that

F1
(
Un+1

)
= F1

(
Pn+1Un

)”F3
(
Un+1

)
= ”F3

(
Pn+1Un

)
.

5.4 Numerical experiments

Here we run numerical experiments with the aim of comparing the momentum conserving
scheme (5.14) and energy conserving scheme (5.15). Similarly to previous chapters we
implement our schemes using the automated system for solving finite element methods
Firedrake [153]. We employ a Gauss quadrature of degree 3q, which is exact for finite
element functions. When computing errors we shall employ a degree 3q+4 Gauss quadra-
ture. We approximately solve the nonlinear component of our finite element scheme using
the PETSc Newton line search method, see [20], to a tolerance of 10−12.
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We restrict ourselves here to a uniform mesh. That is we assume that τn is constant for
all n, that hm is constant for all m, and that our finite element mesh does not change over
time.
We benchmark our schemes in the L∞ norm in time and for the spatial component we will
consider two different norms: the L2(S1) norm and an appropriate spatial energy norm
which can be written as

eu := max
n
‖Un − u(tn)‖L2(S1) (5.17)

and

eudG := max
n

√√√√‖(Un − u(tn))x‖
2
L2(S1) +

M∑
m=0

σ

hm
JUn

mK2 (5.18)

respectively, where σ is as given in Definition 5.1.6.
While our analysis is conducted over S1(0, 1) we shall stretch our periodic spatial domain
to S1(0, 40) as the visualisation of solution dynamics is more difficult over smaller domains.

5.4.1 One soliton simulation

Consider the one soliton solution

u(t, x) = 1
2sech

(1
2ξ
)2
, (5.19)

where ξ = (x− t+ 20 mod 40)− 20.
We begin by computing the deviation in mass, momentum and energy for both of our
schemes with degree q = 2, 3, 4, 5 over long time in Figure 5.1 and Figure 5.2, additionally
we specify a nonlinear solver tolerance of 10−12. Note that for the energy conserving
simulation we can also obtain a degree q = 1 simulation which behaves similarly to the
higher degree cases. In the simulation for the momentum conserving scheme we observe
that the deviation in mass and momentum are below solver tolerance at each time step, and
similarly the deviation in mass and energy for the energy conserving simulations are below
solver tolerance at each time step. Globally however for the degree q = 4, 5 simulations
the deviation in the conserved quantities increases above the solver tolerance globally for
both schemes. This is due to the propagation of solver errors over time, see Remark 4.2.28.
We notice that the deviation in energy for the momentum conserving scheme decreases as
we increase the polynomial degree until the deviation is approximately 10−7, whereas the
deviation in momentum for the energy conserving scheme is approximately 10−7 regardless
of spatial polynomial degree.
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Figure 5.1: The deviation in mass, momentum and energy with T = 100 and initial
condition (5.19) for the momentum conserving scheme (5.14). Further we choose τn = 0.2,
hm = 0.4 and vary the polynomial degree q.

0 20 40 60 80 100
t

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

De
vi

at
io

n 
in

 q
ua

nt
ity

 fr
om

 in
iti

al
 v

al
ue

Mass
Momentum
Energy

(a) Here q = 2.
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(b) Here q = 3.
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(c) Here q = 4.
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(d) Here q = 5.

We benchmark our approximations against the exact solution (5.19) in Figure 5.3 for
spatial degree q = 2, 3 with higher nonlinear solver tolerance of 10−8. This higher tolerance
is chosen here as it significantly decreases computational time. Note in these simulations
we have fixed the time step to be sufficiently small so that it does not make a leading
order contribution to the error. In all cases the EOC for the dG error (5.18) is one order
lower than the L2 error (5.17) so we shall not discuss them separately. We can also see
that for the momentum conserving scheme the EOC in L2 is 3 for both q = 2 and q = 3.
This suggests a spatial error of O (hq+1

m ) for q even and O (hqm) for q odd. For the energy
conserving scheme the spatial error appears to behave like O (hq+1

m ) for all q. Allowing
the time step to vary in proportionately with the spatial step, i.e., τn = hm, we observe in
Figure 5.4 that the temporal EOC is O (τ 2

n) as we expect from our analysis.
We shall also investigate how well the qualitative structure of the solution is captured. In
the spirit of [32] we investigate the amplitude error, phase error and shape error of a single
soliton over time.
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Figure 5.2: The deviation in mass, momentum and energy with T = 100 and initial
condition (5.19) for the energy conserving scheme (5.15). Further we choose τn = 0.2,
hm = 0.4 and vary the polynomial degree q.
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(a) Here q = 2.
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(b) Here q = 3.
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(c) Here q = 4.
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(d) Here q = 5.
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The amplitude error for Ui is then given by

max
X

Ui −max
X

ui.

If the amplitude error is positive then the numerical soliton is larger than the exact solu-
tion, and vice versa. Similarly we define the phase error as

epi = argmax
X

Ui − argmax
X

ui,

where argmax represents the spatial coordinate associated to the maximum over X. If the
phase error is positive then the numerical approximation is moving faster than the exact
solution, and vice versa. Note that this discrete measure of the error cannot detect shifts
in phase which are smaller than the distance between degrees of freedom.
In addition to the amplitude and phase error we introduce the “shape error”. In [32]
the shape error is defined to be miny∈S1 ‖u(x+ y, tn)− U(x, tn)‖L2(S1). Numerically we
approximate this error by shifting the exact solution by the distance of the phase error
and computing the L2 error at fixed times, i.e., the discrete shape error is

∥∥∥ui(x+ epi, tn)− Ui(x, tn)
∥∥∥
L2(S1([0,40]))

.

We tabulate the amplitude, phase and shape errors for the momentum and energy con-
serving discretisations initialised by the single soliton initial condition (5.19) in Table 5.1.
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Table 5.1: Here we tabulate the phase, amplitude and shape errors committed by the momen-
tum and energy conserving schemes (5.14) and (5.15) respectively, approximating the smooth
solution (5.19). We display the minimal and maximal errors over the time interval t ∈ [0, 100] for
the phase and amplitude errors. As the shape error is signed we only display its maximal value
over the interval. We show these errors for various coupled temporal and spatial discretisations
and various polynomial degrees. We notice through inspecting the phase errors that both of our
numerical solitons travel slower than their exact counterparts. Note that when the phase error
is measured to be zero this does not mean that the phase of the numerical scheme is exact, only
that the phase error is smaller than the distance between the degrees of freedom, hm

q , of our
numerical approximation.

τ h Degree Phase error Amplitude error Shape error
min max min max max

2 -4.8e-01 0.0e+00 -2.6e-04 1.5e-03 3.3e-02
2.5e-01 3.2e-01 3 -4.3e-01 0.0e+00 -3.4e-04 6.9e-04 2.1e-02

4 -4.0e-01 0.0e+00 -2.4e-04 3.8e-04 1.5e-02
2 -1.6e-01 0.0e+00 -1.5e-04 3.7e-04 1.6e-02

1.2e-01 1.6e-01 3 -1.1e-01 0.0e+00 -9.3e-05 1.4e-04 1.0e-02
4 -1.2e-01 0.0e+00 -6.3e-05 1.1e-04 7.3e-03
2 -4.0e-02 0.0e+00 -5.2e-05 6.7e-05 7.4e-03

6.2e-02 8.0e-02 3 -2.7e-02 0.0e+00 -2.3e-05 3.8e-05 5.1e-03
4 -4.0e-02 0.0e+00 -2.1e-05 2.9e-05 3.7e-03

(a) Here we consider the momentum conserving scheme (5.14).

τ h Degree Phase error Amplitude error Shape error
min max min max max

1 -6.4e-01 0.0e+00 -3.7e-03 3.8e-03 5.8e-02
2 -3.2e-01 0.0e+00 -1.1e-03 7.5e-04 2.9e-02

2.5e-01 3.2e-01 3 -3.2e-01 0.0e+00 -6.8e-04 2.3e-04 1.9e-02
4 -3.2e-01 0.0e+00 -6.2e-04 1.6e-04 1.5e-02
1 -1.6e-01 0.0e+00 -1.0e-03 1.1e-03 2.9e-02
2 -8.0e-02 0.0e+00 -2.8e-04 1.9e-04 1.5e-02

1.2e-01 1.6e-01 3 -1.1e-01 0.0e+00 -1.9e-04 8.0e-05 9.7e-03
4 -1.2e-01 0.0e+00 -1.4e-04 4.7e-05 7.3e-03
1 -8.0e-02 0.0e+00 -2.4e-04 2.4e-04 1.5e-02
2 -4.0e-02 0.0e+00 -7.4e-05 4.5e-05 7.3e-03

6.2e-02 8.0e-02 3 -2.7e-02 0.0e+00 -4.6e-05 2.5e-05 4.9e-03
4 -4.0e-02 0.0e+00 -3.7e-05 1.2e-05 3.6e-03

(b) Here we consider the energy conserving scheme (5.15).
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Figure 5.3: The errors, as described in (5.17) and (5.18), and experimental order of con-
vergence of the single soliton solution (5.19) for the momentum conserving scheme (5.14)
or the energy conserving scheme (5.15) with polynomial degrees q = 2, 3. Here we fix
τn = 0.00001 and vary hm.
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(a) Momentum conserving scheme with spatial
degree q = 2.
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(b) Momentum conserving scheme with spatial
degree q = 3.
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(c) Energy conserving scheme with spatial degree
q = 2.
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(d) Energy conserving scheme with spatial degree
q = 3.
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Figure 5.4: The errors, as described in (5.17) and (5.18), and experimental order of con-
vergence of the single soliton solution (5.19) for the momentum conserving scheme (5.14)
or the energy conserving scheme (5.15) with polynomial degree q = 3. Here we vary τn
and hm such that τn = Chm.
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(a) Momentum conserving scheme with spatial
degree q = 3. Here the temporal error dominates.
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(b) Energy conserving scheme with spatial degree
q = 3. Here the temporal error dominates.

137



Section 5.4 Page 138

5.4.2 Two soliton simulation

Consider the two soliton solution over the real line R of

u(t, x) = F

G
, (5.20)

where

F = 2(c1 − c2)
c1cosh

(√
c2

2 (x− p2 − t)
)2

+ c2sinh
(√

c1

2 (x− p1 − t)
)2


and

G = (√c1 −
√
c2)cosh

(√
c1

2 (x− p1 − t) +
√
c2

2 (x− p2 − t)
)

+ (√c1 +√c2)cosh
(√

c1

2 (x− p1 − t)−
√
c2

2 (x− p2 − t)
)
.

In the sequel we specify c1 = 1.5, c2 = 0.6, p1 = 20, p2 = 21. Note that numerically we are
implementing this solution over a periodic domain, as such once our numerical solution
wraps around the periodic domain the exact solution is no longer valid.
We compute the deviation in mass, momentum and energy for the two soliton solution
(5.20) of both of our numerical schemes in Figure 5.5 and Figure 5.6 where our nonlin-
ear solver tolerance is specified as 10−12. We notice a similar behaviour to the 1 soliton
case. Both mass and momentum are conserved over each time step for the momentum
conserving scheme and mass and energy are conserved over each time step for the energy
conserving scheme. In addition for q = 2, 3 the respective conserved quantities are con-
served globally, as the deviation remains below solver tolerance. We can again observe
that for the momentum conserving scheme the deviation in energy decreases as polynomial
degree q increases until it reaches 10−3 globally, whereas the deviation in momentum for
the energy conserving scheme is 10−3 for all polynomial degrees we consider. Note in both
figures the deviation of the quantity which is not conserved decreases around t ≈ 40, 80,
this decrease coincides temporally with soliton interactions.
We benchmark our schemes against the exact solution (5.20) in Figure 5.7 with spatial
degrees q = 2, 3. Similarly to the 1 soliton case we notice that the spatial L2 error (5.17)
for the momentum conserving scheme appears to be O (hq+1

m ) for q even and O (hqm) for
q odd. Our experiments suggest that the error for the energy conserving scheme behaves
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Figure 5.5: The deviation in mass, momentum and energy with T = 100 and initial
condition (5.20) for the momentum conserving scheme (5.14). Further we choose τn = 0.2,
hm = 0.4 and vary the polynomial degree q.
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(a) Here q = 2.
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(b) Here q = 3.
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(c) Here q = 4.
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(d) Here q = 5.

like O (hq+1
m ) for all spatial polynomial degrees. We also note that from Figure 5.8 we

observe that the temporal error of two soliton solution the converges at least O (τ 2
n).
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Figure 5.6: The deviation in mass, momentum and energy with T = 100 and initial
condition (5.20) for the energy conserving scheme (5.15). Further we choose τn = 0.2,
hm = 0.4 and vary the polynomial degree q.
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(a) Here q = 2.
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(b) Here q = 3.
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(c) Here q = 4.
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(d) Here q = 5.
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Figure 5.7: The errors, as described in (5.17) and (5.18), and experimental order of con-
vergence of the two soliton solution (5.20) for the momentum conserving scheme (5.14)
and energy conserving scheme (5.15) with polynomial degrees q = 2, 3. Here we fix
τn = 0.00001 and vary hm.
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(a) Momentum conserving scheme with spatial
degree q = 2.
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(b) Momentum conserving scheme with spatial
degree q = 3.
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(c) Energy conserving scheme with spatial degree
q = 2.
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(d) Energy conserving scheme with spatial degree
q = 3.
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Figure 5.8: The errors, as described in (5.17) and (5.18), and experimental order of conver-
gence of the two soliton solution (5.20) for the momentum conserving scheme (5.14) or the
energy conserving scheme (5.15) with polynomial degree q = 3. Here we vary τn = 0.00001
and hm such that τn = Chm.
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(a) Momentum conserving scheme with spatial
degree q = 3. Here the temporal error dominates.
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(b) Energy conserving scheme with spatial degree
q = 3. Here the temporal error dominates.
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5.5 Conclusion

We introduced a momentum conserving scheme and an energy conserving scheme for the
KdV equation and presented a detailed numerical comparison of both schemes. While the
dynamical behaviour of both schemes is similar, the energy conserving typically outper-
formed the momentum conserving scheme with respect to phase error and shape error.
With respect to the error in amplitude the momentum conserving scheme slightly outper-
formed the energy conserving scheme. We observed that the error for the energy conserv-
ing scheme is smaller, and has a faster experimental convergence rate for odd polynomial
degree. While for the momentum conserving scheme a detailed error analysis exists in
[31, 114], for the energy conserving scheme we could not show error bounds with existing
techniques, as the energy of KdV does not induce a norm.
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Chapter 6

An introduction to conservative
finite element schemes as adaptive
algorithms

As we found in Chapter 5, the conservation of invariants does not immediately extend to
adaptive algorithms. Here we shall focus on a h-adaptive implementation of our scheme for
linearised KdV given by Definition 4.2.23, which we discussed at length for non-adaptive
problems in §4.2. For clarity of exposition, we refer the reader to our notation for spatially
adaptive finite element meshes and spaces introduced in §5.3.
Before introducing our h-adaptive implementation, we first recall the notion of a mesh
change operator, which maps a finite element function of Vn

q to Vn+1
q . We write the mesh

change function as Pn+1. We shall not explicitly choose this function forthwith, but it shall
be either an interpolation or projection operator. We modify our scheme for linearised
KdV to allow for adaptivity as follows.

Definition 6.0.1 (An adaptive scheme for linearised KdV). Let U j ∈ Vj
q be given for

j = 0, .., n. Then we seek Un+1, V n+1,W n+1 ∈ Vn+1
q such that

〈
Un+1 − Pn+1Un

τn
+ G

(
V n+1

)
, φ

〉
= 0 ∀φ ∈ Vn+1

q〈
V n+1 − Un+ 1

2 − G
(
W n+ 1

2
)
, ψ
〉

= 0 ∀ψ ∈ Vn+1
q〈

W n+1 − G
(
Un+1

)
, χ
〉

= 0 ∀χ ∈ Vn+1
q ,

(6.1)

with W n = G (Pn+1Un) for G given by Definition 4.2.3, and where
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Un+ 1
2 := 1

2 (Un+1 + Pn+1Un) for n = 0, .., N − 1. Further we define the initial data
U0 = Π0u0(x) where Π0 denotes the L2 projection into the initial finite element space.

We shall describe how we adapt the aforementioned scheme in §6.1.

Remark 6.0.2 (The temporal discretisation of auxiliary variables in the adaptive scheme).
Notice that our handling of the auxiliary variable in the adaptive scheme differs from the
standard case seen in Definition 4.2.23. In our adaptive algorithm we no longer update
W n in a time stepping fashion. Due to the auxiliary nature of W n applying a mesh change
operator causes inconsistencies in the resultant numerical scheme. We instead redefine W n

for every time step such that it is compatible with Pn+1Un.
When our spatial mesh is not adaptive the adaptive implementation (6.1) is equivalent to
the standard implementation (4.40). Computationally however, there is additional over-
head in the form of recomputing W n on every time step.

Proposition 6.0.3 (Deviation of invariants in the adaptive scheme for linearised KdV).
Let Un be the solution of the adaptive scheme for linearised KdV described in Definition
6.0.1 subject to some mesh change operator Pn+1. Recall from Theorem 4.2.7 that the
mass and momentum are described by

F1(Un) = 〈Un, 1〉

and
F2(Un) = 1

2 〈U
n, Un〉 ,

respectively. Additionally, we rewrite the energy in the form

F3(Un) = 1
2 〈G (Un) ,G (Un)〉 − 1

2 〈U
n, Un〉

which is equivalent, but more illuminating in the adaptive case.
The deviation in mass, momentum and energy can then be quantified as

F1
(
Un+1

)
= F1

(
Pn+1Un

)
,

F2
(
Un+1

)
= F2

(
Pn+1Un

)
,

and
F3
(
Un+1

)
= F3

(
Pn+1Un

)
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respectively.

Remark 6.0.4 (Conservation of invariants in the adaptive scheme for linearised KdV).
If, for a given invariant Fi, we choose a mesh change operator such that

Fi
(
Pn+1Un

)
= Fi(Un),

then the invariant is conserved but this is not guaranteed by standard interpolators. In the
sequel we shall investigate the design of mesh change operators which preserve invariants
under adaptivity. For any consistent mesh change operator, we find that all invariants are
preserved if our adaptive routine only allows for refinement, i.e., if Vn

q ⊆ Vn+1
q .

Proof of Proposition 6.0.3. Proposition 6.0.3 follows the argument outlined in the proof
of Proposition 4.2.25 with the caveat that we must write

Fi(Un) = Fi
(
Pn+1Un

)
+ Fi(Un)−Fi

(
Pn+1Un

)
,

for i = 1, 2, 3, similarly to in the proofs of Proposition 5.2.3 and Proposition 5.2.6.

Remark 6.0.5 (Lagrange multipliers for conservative adaptivity). One methodology for
the design of a conservative mesh change operator is by enforcing conservation of an
invariant through Lagrange multipliers, see [16]. This has proven very successful in the
literature, see [63, 143], however we cannot expect mass to be conserved when constructing
a Lagrange multiplier which conserves a nonlinear invariant.

6.1 Adaptive algorithm

Before we discuss the conservative properties of the adaptive linearised KdV scheme under
different mesh change operators we must first discuss how we adapt the spatial mesh over
time.
While adapting the spatial mesh subject to predetermined hierarchical structure is often
considered, see [165, 186, 56, c.f.], here we shall not explicitly take this approach. While a
hierarchical mesh has major practical benefits for adaptivity in two dimensions and higher,
for one dimensional simulations it is not paramount as a hierarchical mesh structure always
exists even if we do not explicitly structure our algorithm this way.
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To implement our adaptive algorithm there are multiple parameters we must specify. First
we define coarsen and refine to be the percentage of elements we attempt to coarsen
and refine respectively. Note that for the adaptive routine to make sense we require that
0 ≤ coarsen and 0 ≤ refine, and coarsen + refine ≤ 100 as we cannot simultaneously
refine and coarsen an element. Additionally we define hmin and hmax to be the minimal and
maximal sizes of any given element J n

m. Of course, if we attempt to coarsen or refine an
element beyond these tolerances the elements shall not change, and no additional mesh
change shall be implemented to compensate for this.
In addition to these parameters our adaptive algorithm is also subject to a mesh change in-
dicator function, indicator (Un), in this chapter we heuristically choose indicator (Un) ∈
Vn

0 such that

〈indicator (Un) , φ〉 =
M−1∑
m=0

〈
{hm}−1 JUn

mK , φ|J nm
〉

∀φ ∈ Vn
0 .

In the adaptive algorithm we also formally define mesh to describe the collection of nodal
values of a given mesh.
Note that in practice, we employ the adaptivity on the initial condition to more accurately
initialise the simulation.

6.2 Mesh change operators

As we found in Proposition 6.0.3, the choice of mesh change operator is paramount to
the numerical conservation of invariants. Throughout this section we discuss different
potential mesh change operators and their respective properties, in particular we focus
on the Lagrange interpolation of the solution from an old mesh to a new mesh, and the
L2 projection. All results presented here depend on Proposition 6.0.3. First we consider
Lagrange interpolation as our mesh change operator.

Definition 6.2.1 (The Lagrange interpolation operator). For a function Un ∈ Vn
q its

interpolant onto the new mesh In+1Un ∈ Vn+1
q is described uniquely by its values at the

degrees of freedom X as

In+1Un (ξ) = Un (ξ) ∀ξ ∈X. (6.2)

Note that our degrees of freedom are located at the zeroes of the Lagrange basis functions.
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Algorithm 6.1 Adaptive algorithm
Require:

The number of time steps N
An initial mesh mesh
An initial finite element solution U0

A coarsening percentage coarsen
A refining percentage refine
A maximum possible element size hmax

A minimum possible element size hmin

An indicator function indicator
Ensure:

An adaptive finite element solution Un for n = 0, ..., N
1: for n = 0 : N − 1 do . Loop over time
2: ind = indicator (Un) . Compute the indicator function on

the current time step
3: marker = zeroes(length(mesh)− 1) . Initialise a vector of zeroes the

same length as the number of el-
ements on the mesh

4: for m = 0 : length(marker) do . Loop over elements of the mesh
5: if ‖ind‖L2(J nm) is within coarsen percent of the smallest value and the resulting

element size is small than hmax then
6: marker[m] = −1 . Mark element for coarsening
7: else if ‖ind‖L2(J nm) is within refine percent of the largest value and the re-

sulting element sizes are both larger than hmin then
8: marker[m] = 1 . Mark element for refinement
9: mesh = mesh change(mesh, marker) . Change the mesh in accordance

with marker
10: Un+1 = solve(Pn+1Un, mesh) . Solve the finite element method

over one time step
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Proposition 6.2.2 (Conservative properties of the interpolant). Let Un be the solution of
the adaptive scheme for linearised KdV given in Definition 6.0.1, and In+1 be the Lagrange
interpolation operator given in Definition 6.2.1. Under refining the mesh all invariants
are preserved, i.e., if Vn

q ⊆ Vn+1
q we have that

Fi
(
In+1Un

)
= Fi(Un),

for i = 1, 2, 3. However, under an adaptive algorithm which includes coarsening we do not
preserve any invariants.

Remark 6.2.3 (The Lagrange interpolation operator and adaptivity). The Lagrange in-
terpolant (6.2) does preserve the mass, momentum and energy under refinement, however
if the algorithm involves coarsening all of these invariants are lost, therefore it is not
an ideal mesh change operator for a conservative adaptive algorithm. For an adaptive
algorithm to be practically useful the ability to coarsen is essential, otherwise adaptivity
increases the computational complexity of the algorithm.

Proof of Proposition 6.2.2. If Vn
q ⊆ Vn+1

q then the Lagrange interpolation operator is ex-
act, i.e., In+1Un = Un, and as such all invariants are conserved through Proposition 6.0.3.
However, if this is not the case then we may construct counter examples demonstrating
that the invariants are not conserved, such as the examples explicitly computed in §6.3.

We now consider the L2 projection as our mesh change operator. While we have regularly
utilised this projection throughout we write it explicitly here to add clarity to the behaviour
of the L2 projection as a mesh change operator.

Definition 6.2.4 (The L2 projection). For a function Un ∈ Vn
q the L2 projection into

Vn+1
q is given by seeking Πn+1Un ∈ Vn+1

q such that

〈
Πn+1Un, φ

〉
= 〈Un, φ〉 ∀φ ∈ Vn+1

q . (6.3)

Proposition 6.2.5 (Conservative properties of the L2 projection). Let Un be the solution
of the adaptive scheme for linearised KdV given in Definition 6.0.1, and Πn+1 be the
L2 projection described in Definition 6.2.4. Under mesh refinement all invariants are
preserved, i.e., if Vn

q ⊆ Vn+1
q then

Fi
(
Πn+1Un

)
= Fi(Un),
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for i = 1, 2, 3. Further, if we also allow for coarsening, i.e., Vn
q * Vn+1

q , then the L2

projection conserves mass, and dissipates momentum, i.e.,

F1
(
Πn+1Un

)
= F1(Un)

and
F2
(
Πn+1Un

)
≤ F2(Un).

Remark 6.2.6 (The L2 projection as a mesh change operator). Through the amalgamation
of Proposition 6.2.5 with Proposition 6.0.3, we find that our adaptive algorithm (6.1) with
the L2 projection as its mesh change operator not only conserves the mass over all time,
but also either conserves or dissipates momentum (depending on whether the algorithm
coarsens). As momentum can be written in terms of the L2 norm, we can conclude that the
adaptive algorithm is numerically stable with the L2 projection as a mesh change operator.

Proof of Proposition 6.2.5. If Vn
q ⊆ Vn+1

q then the L2 projection (6.3) is exact, and through
Proposition 6.0.3 all three invariants are conserved. Relaxing this assumption to allow for
mesh coarsening we observe, through choosing φ = 1 in (6.3), that

F1
(
Πn+1Un

)
= F1(Un),

i.e., mass is conserved. Additionally choosing φ = Πn+1Un we find that

1
2
∥∥∥Πn+1Un

∥∥∥2

L2(S1)
= F2

(
Πn+1Un

)
= 1

2
〈
Πn+1Un,Πn+1Un

〉
= 1

2
〈
Un,Πn+1Un

〉
≤ 1

2 ‖U
n‖L2(S1)

∥∥∥Πn+1Un
∥∥∥
L2(S1)

,

through Cauchy’s inequality. Dividing both sides by ‖Πn+1Un‖L2(S1) and squaring the
resulting identity we observe that

F2
(
Πn+1Un

)
≤ F2(Un),

i.e., the momentum dissipates.
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Remark 6.2.7 (A momentum conserving mesh change operator). While the L2 projection
dissipates momentum it is possible to construct a mesh change operator which exactly
preserves momentum. Consider the mesh change operator Pn+1 : Vn

q → Vn+1
q defined by

seeking Pn+1Un ∈ Vn+1
q such that
〈(
Pn+1Un

)2
, φ
〉

=
〈
(Un)2 , φ

〉
∀φ ∈ Vn+1

q ,

where Un ∈ Vn+1
q . Through choosing φ = 1 we observe the momentum is exactly conserved,

however this Lagrange interpolation operator is not mass conserving and has a higher
computational complexity than the L2 projection.

Remark 6.2.8 (Adaptive change in energy). Unfortunately, for the numerical scheme
under consideration, the energy does not induce a norm as it is not signed. As such we
cannot obtain stability in a norm for our adaptive scheme. However, in §7.4 we investigate
a numerical scheme where the energy induces a norm and propose an energy dissipating
mesh change operator.

Remark 6.2.9 (Mesh change operators for hp-adaptive algorithms). Often, in the litera-
ture, h-adaptivity is combined with p-adaptivity, see Remark 5.3.2. With this in mind we
observe that all results for the L2 projection hold when our spatial mesh is also adaptive
in polynomial degree.

6.3 Numerical experiments

Here we shall conduct numerical experiments on our adaptive scheme for linearised KdV
(6.1). As discussed in §4.2.3, at its core our code utilises Firedrake with a 2q order Gauss
quadrature. The mesh adaptive algorithm and mesh change operators have been imple-
mented in Python 3 and utilise Numpy linear solvers where appropriate. Additionally we
used Matplotlib for visualisation. Similarly to previous chapters, throughout our numeri-
cal experiments we stretch our periodic spatial domain from S1(0, 1) to S1(0, 40), primarily
for consistency with results in the prequel.
Here we approximate numerically the exact solution of linearised KdV

u(t, x) = sin
(
α
(
x− (1− α2)t

))
, (6.4)

where α = 2π
40 . Unless stated otherwise, we shall choose the adaptive parameters discussed
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in §6.1 as

coarsen = 10 hmax = 1 (6.5)

refine = 60 hmin = 0.2.

Additionally we choose a fixed time step of τn = 0.1, and an initial uniform spatial mesh
of hm = 0.4. Notice our spatial mesh is deliberately taken to be very coarse.
First we examine the solution dynamics for different mesh change operators. We choose the
Lagrange interpolation operator in Figure 6.1, and the L2 projection operator in Figure
6.2. We do not observe significant differences in the solution dynamics between mesh
change operators, which is likely due to the linear nature of the underlying problem.
Additionally, we examine the values of each invariant over time adapting the mesh subject
to the Lagrange interpolation operator in Figure 6.3 and subject to the L2 projection in
Figure 6.4. We observe that the L2 projection outperforms the Lagrange interpolant as
a mesh change operator with respect to the invariants, as expected from our analysis in
§6.2.
While we cannot visually differentiate between the accuracy of the solution dynamics
for different mesh change operators, we quantify the respective errors in Figure 6.5. We
observe that the L2 projector marginally outperforms the Lagrange interpolation operator.
Through increasing the percentage of elements which are coarsened to coarsen = 30,
we observe that the L2 projection significantly outperforms the Lagrange interpolation
operator in Figure 6.6
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Figure 6.1: Here we examine the dynamics of the adaptive algorithm for linearised
KdV (6.1) with the Lagrange interpolant (6.2) as the mesh change operator. The mesh
coordinates are represented by vertical blue lines at the bottom of each solution snapshot.
We initialise the simulation with the L2 projection of (6.4) at t = 0 and employ the
adaptive parameters (6.5). Further to this we consider the uniform time step τn = 0.1,
and initialise our spatial mesh as a uniform mesh with the spatial element size hm = 0.4.
We allow for the initial mesh to be adapted.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 6.2: Here we examine the dynamics of the adaptive algorithm for linearised KdV
(6.1) with the L2 projection (6.3) as the mesh change operator. The mesh coordinates are
represented by vertical blue lines at the bottom of each solution snapshot. We initialise
the simulation with the L2 projection of (6.4) at t = 0 and employ the adaptive parameters
(6.5). Further to this we consider the uniform time step τn = 0.1, and initialise our spatial
mesh as a uniform mesh with the spatial element size hm = 0.4. We allow for the initial
mesh to be adapted.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 6.3: Here we examine the values of the invariants (mass, momentum and energy)
at the temporal nodes in the adaptive algorithm for linearised KdV (6.1) with the Lagrange
interpolant (6.2) as the mesh change operator. We initialise the simulation with the L2
projection of (6.4) into the initial finite element space and employ the adaptive parameters
(6.5). Further to this we consider the uniform time step τn = 0.1, and initialise our spatial
mesh as a uniform mesh with the spatial element size hm = 0.4. All invariants deviate
non-monotonically.
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Figure 6.4: Here we examine the values of the invariants (mass, momentum and energy)
at the temporal nodes in the adaptive algorithm for linearised KdV (6.1) with the L2
projection (6.3) as the mesh change operator. We initialise the simulation with the L2
projection of (6.4) into the initial finite element space and employ the adaptive parameters
(6.5). Further to this we consider the uniform time step τn = 0.1, and initialise our spatial
mesh as a uniform mesh with the spatial element size hm = 0.4. We notice that mass is
conserved and momentum decreases monotonically. The deviation in momentum is also
significantly smaller than in the case where the mesh change operator is chosen to be the
Lagrange interpolant.
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Figure 6.5: Here we examine the error measured in the Bochner norm L∞ ([0, T ], L2 (S1))
for linearised KdV (6.1) with the Lagrange interpolant (6.2) or the L2 projection (6.3).
We additionally plot the error the number of degrees of freedom used in each simulation
on each time step. The simulations are initialised by L2 projection of (6.4) into the initial
finite element space and employ the adaptive parameters (6.5). Further to this we consider
the uniform time step τn = 0.1, and initialise our spatial mesh as a uniform mesh with the
spatial element size hm = 0.4. We observe that both simulations use a comparable number
of degrees of freedom, with the L2 projection marginally outperforming the Lagrange
interpolation operator.
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Figure 6.6: Here we examine the error measured in the Bochner norm L∞ ([0, T ], L2 (S1))
for linearised KdV (6.1) with the Lagrange interpolant (6.2) or the L2 projection (6.3).
We additionally plot the error the number of degrees of freedom used in each simulation
on each time step. The simulations are initialised by L2 projection of (6.4) into the
initial finite element space and employ the adaptive parameters (6.5) with coarsen = 30.
Further to this we consider the uniform time step τn = 0.1, and initialise our spatial
mesh as a uniform mesh with the spatial element size hm = 0.4. We observe that the L2
projection significantly outperforms the Lagrange interpolation operator. Note that the
number of degrees of freedom the algorithm uses with the L2 projection as a mesh change
operator is slightly higher, this is likely due to the spatial location of the leading order
error changing and the algorithm attempting to refine nodes which are not already at the
maximal refinement level. The increase in the number of degrees of freedom is not the
reason that the L2 projection outperforms the Lagrange interpolation operator.
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6.4 Conclusion

We presented an introduction to an adaptive routine for conservative problems through the
conservative numerical scheme for linearised KdV introduced in §4.2. We found that for
conservativity, and therefore numerical stability, the mesh change operator of an adaptive
scheme needs to be carefully chosen such that the invariants are bounded. It is likely that
we did not encounter significant numerical difficulties with the mesh change operators
which did not fall within this framework due to the linearity of the problem considered.
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Chapter 7

Conservative Galerkin methods for
dispersive Hamiltonian PDEs

In this chapter we focus on the design of conservative discontinuous Galerkin schemes
for generalised third order KDV type equations. The techniques we employ allow for the
derivation of optimal a priori and a posteriori bounds, the latter of which is crucial for
the development of adaptive algorithms. We specify our family of problems such that
their energy defines a norm. It is through conserving a discrete version of this energy
that optimal a priori and a posteriori bounds can be constructed. Further, we use our
a posteriori bounds to drive an adaptive algorithm, similar to the adaptive algorithm
developed in Chapter 6. Recall that interpolation based adaptive methods do not preserve
any of the underlying structure of the problem, and are not necessarily stable. We develop a
new mesh change projection which is stable in an appropriate energy norm of the problem.
While we set up the framework to prove nonlinear error bounds here we only explicitly
show bounds for the linear case.

7.1 Necessary definitions and the continuous problem

Here we formulate the model problem, fix notation and give some basic assumptions.
We describe some known results and history of the defocusing generalised Korteweg-de
Vries equation, highlighting the Hamiltonian structure of the equation. We show that the
underlying Hamiltonian structure naturally yields an induced stability of the solutions to
the PDE system and give a summary of some exact solutions for specific nonlinearities.
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Throughout this work we consider the dispersive KdV type problem

ut − f ′(u)x + uxxx = 0, (7.1)

where
f(u) = α

β
uβ for β ∈ 2N, α > 0,

and f ′(u) represents the first Frechet derivative. An example of this is given through
choosing β = 4 and α = 1, i.e.,

ut − u2ux + uxxx = 0.

Notice the sign in front of the nonlinearity. This problem is sometimes referred to as the
defocusing mKdV equation, with the focusing mKdV equation, which we briefly discussed
in Remark 5.3.11, having the opposing sign on the nonlinearity.

Proposition 7.1.1 (Invariants of the continuous problem). The dispersive problem (7.1)
has the invariants

d
dt 〈u, 1〉 = d

dt

(1
2 〈u, u〉

)
= d

dt

(〈1
2u

2
x + f(u), 1

〉)
= 0, (7.2)

as can be seen through a similar argument to that conducted in §5.1.1. Physically the
invariants presented in (7.2) represent the mass, momentum and energy of the PDE (7.1)
respectively.

Before continuing with our investigation of defocusing KdV type equations we first in-
troduce standard Sobolev space and norm notation, as discussed in [69]. Recall that we
denote the standard Lebesgue spaces by Lp(S1), 1 ≤ p ≤ ∞, with corresponding norms
‖ · ‖Lp(S1). Let also Hs(S1), be the Hilbertian Sobolev space of index s ∈ R of real-valued
functions defined on S1, constructed via standard interpolation and/or duality procedures,
along with the corresponding norm and seminorm

‖u‖Wk,p(S1) :=


(∑
|α|≤k ‖Dαu‖pLp(S1)

)1/p
if p ∈ [1,∞)∑

|α|≤k ‖Dαu‖L∞(S1) if p =∞

|u|Wk,p(S1) :=
∥∥∥Dku

∥∥∥
Lp(S1)

respectively. We also make use of the following notation for time dependent Sobolev
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(Bochner) spaces:

Ci(0, T ;Hk(S1)) :=
{
u : [0, T ]→ Hk(S1) : u and dj

djtu for 0 < j ≤ i is continuous
}
,

L∞(0, T ;Hk(S1)) :=
{
u : [0, T ]→ Hk(S1) : ess supt∈[0,T ] ‖u(t)‖Hk(S1) <∞

}
.

Remark 7.1.2 (Representation of the energy of (7.1)). The energy of (7.1),
〈1

2u
2
x,+f(u), 1

〉
,

defines a norm, which can be seen more clearly when f(u) is written in terms of a norm,
i.e.,

f(u) = α

β
‖u‖βLβ(S1) . (7.3)

Throughout the sequel we shall freely apply (7.3).

Remark 7.1.3 (Pointwise solution control). As the energy of the problem induces a norm,
we obtain stability of the continuous problem. More concisely, energy conservation

d
dt

〈1
2u

2
x + f(u), 1

〉
= 0

immediately shows that,

‖u‖Ci(0,T ;H1(S1)) ≤ C ‖u(0)‖H1(S1) ,

as f(u) ≥ 0. Since H1(S1) ⊂ L∞(S1) we see

sup
t∈[0,∞]

‖u(t)‖L∞(S1) ≤ C ‖u(0)‖H1(S1) ,

i.e., the solution to the continuous problem remains in a bounded set. It is this argument
we shall later mimic on the discrete level to demonstrate numerical stability.

We shall now briefly discuss the exact solution of (7.1) in both a linear and nonlinear case.

Example 7.1.4 (Exact solution to the linear problem). Let f(u) = 1
2u

2, then under the
ansatz that u(t, x) = u(ξ), with ξ = c (x+ (1 + c2)t) we find that

u(t, x) = C1sin (ξ) + C2cos (ξ) , (7.4)
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solves (7.1) where c = 2lπ for l ∈ Z and C1, C2 denote real constants. Due to the lin-
ear nature of the problem any possible linear combination of (7.4) for various attainable
parameter values is also a solution.

Example 7.1.5 (Exact solution to the nonlinear problem). With f(u) = 1
2u

4, then under
the ansatz that u(t, x) = u(x+ ct) it can be shown that the positon solution

u(x, t) = 1
2 csch

(
c

1
2

(x− ct)
2

)2

formally solves (7.1). It is well-known that one can bijectively map solutions from the de-
focusing mKdV equation to solutions to the KdV equation employing the Miura transform,
see [142, 3]. Although, it is worth noting that it is not possible to get smooth, nonsingular
position solutions of the defocusing mKdV through inverse scattering techniques because
of the singularity that is inherent in its Darboux transformation. For f(u) = 1

4u
4 we can,

however find kink

u(x, t) = (3c)1/2 tanh
(2c)

1
2

2 (x+ ct)


and anti-kink solutions

u(x, t) = −(3c)1/2 tanh
(2c)

1
2

2 (x+ ct)
 ,

that are smooth, but are not periodic. To establish periodic, smooth exact solutions, one
must examine Jacobi elliptic functions [149]. Let sn(x, k) denote that Jacobi elliptic func-
tion with modulus k ∈ [0, 1), then a solution is given by [51]

u(x, t) = k sn(x+ (k2 + 1)t, k), (7.5)

after employing a spatial rescaling to satisfy the periodic boundary conditions.

7.2 Discretisation and a priori analysis

Here we approximate (7.1) by a semi-discrete discontinuous Galerkin method. We suggest
the reader recalls the finite element notion and discretisation parameters introduced in
§4.2.1, and in particular the definition of the spatial finite element space given by Definition
4.2.1.
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Following the methodology for the design of conservative Galerkin schemes outlined in
§4.1, which we additionally implemented in Chapter 5, we introduce the first variation of
the energy as an auxiliary variable. This allows us to rewrite (7.1) as

ut + vx = 0

v + f ′(u)− uxx = 0.

Definition 7.2.1 (Spatially discrete scheme for defocusing KdV type equations). Let
G : Vq → Vq be the spatial first derivative operator given in Definition 4.2.3. Additionally
let Ah : Vq×Vq → Vq be a symmetric bilinear form representing the weak formulation of a
second spatial derivative. Our spatially discrete scheme for defocusing KdV type equations
(7.1) is given by seeking U, V ∈ Vq such that

〈Ut + G (V ) , φ〉 = 0 ∀φ ∈ Vq

〈V + f ′(U), ψ〉+Ah (U, ψ) = 0 ∀ψ ∈ Vq,
(7.6)

with initial condition U(0, x) = Πu0.

While we formally defined the dG type norm in (5.18) as the spatial component of a
Bochner norm, we shall concisely define it here as

‖W‖2
dG :=

M−1∑
m=0

(
‖Wx‖2

L2(Jm) + {hm}−1 JWmK2
)
.

We impose that the bilinear form Ah is coercive and continuous with respect to the dG
norm, that is, there exists a CA, cA > 0 such that for all U, V ∈ Vq

Ah (U, V ) ≤ CA ‖U‖dG ‖V ‖dG ,

cA ‖U‖2
dG ≤ Ah (U,U) .

When examining the method (7.6) numerically we shall choose Ah to be the interior
penalty method described in Definition 5.1.6 where γ = 0.

Proposition 7.2.2 (Conservativity of discrete invariants). Recall that we write the mass
as F1(U) := 〈U, 1〉. Additionally, we redefine the discrete energy of (7.6) as

F3 (U) = 1
2Ah (U,U) + α

β
‖U‖βLβ(S1)
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Let U ∈ Vq be the solution of the discrete scheme (7.6). Then U conserves the mass and
the discrete energy, i.e.,

d
dtF1(U) = 0
d
dtF3 (U) = 0.

Proof. The desired results follow from an identical argument to that made in the proof of
Proposition 5.1.8.

We now present an a priori analysis of the spatially discrete scheme (7.6). We begin by
introducing a perturbed error equation allowing us to compute the difference between the
numerical solution and two yet undetermined discrete functions.

Lemma 7.2.3 (Perturbed error equation and its deviation in energy). Let U, V be a
solution of (7.6) and let ‹U, ‹V ∈ Vq be a solution to the perturbed problem

〈‹Ut,+G (‹V ) , φ〉 = −〈Eu, φ〉 ∀φ ∈ Vq〈‹V + f ′(‹U), ψ
〉

+Ah
(‹U, ψ) = −〈Ev, ψ〉 ∀ψ ∈ Vq,

(7.7)

for some Eu, Ev ∈ Vq. Then, with θu = U − ‹U and θv = V − ‹V
d
dt

(
1
2Ah (θu, θu) + α

β
‖θu‖βLβ(S1)

)
= I1 + I2, (7.8)

where
I1 =

〈
f ′(U)− f ′(‹U), Eu

〉
− 〈Ev,G (θv)〉+Ah (θu, Eu)

and

I2 =
〈
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

)
, Eu

〉
+
〈
G
(
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

))
,
(
Ev − f ′(U) + f ′(‹U)

)〉
−Ah

(
θu,G

(
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

)))
,

with Π representing the L2 projection into the finite element space.

Proof. To begin we note that a discrete error equation is given by taking the difference of
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(7.6) and (7.7) yielding

〈θut + G (θv) , φ〉 = 〈Eu, φ〉〈
θv + f ′(U)− f ′(‹U), ψ

〉
+Ah (θu, ψ) = 〈Ev, φ〉 .

(7.9)

Explicitly computing the time derivative

d
dtF3 (θu) := d

dt

(
1
2Ah (θu, θu) + α

β
‖θu‖βLβ(S1)

)
= Ah (θu, θut ) + 〈f ′(θu), θut 〉

= Ah (θu, θut ) +
〈
f ′(U)− f ′(‹U), θut

〉
−
〈
f ′(U)− f ′(‹U)− f ′(θu), θut

〉
,

through adding and subtracting appropriately. Now making use of (7.9) we see

d
dtF3 (θu) = 〈Ev − θv, θut 〉 −

〈
f ′(U)− f ′(‹U)− f ′(θu), θut

〉
=: I1 + I2.

Again using (7.9) we see

I1 = 〈Ev − θv, θut 〉

= 〈Ev − θv, Eu − G (θv)〉

= 〈Ev, Eu〉 − 〈θv, Eu〉 − 〈Ev,G (θv)〉 ,

where we have used skew-symmetry of G. Further, again by (7.9), we have

I1 =
〈(
f ′(U)− f ′(‹U)

)
, Eu

〉
− 〈Ev,G (θv)〉+Ah (θu, Eu) . (7.10)

For the other term, making use of (7.9) analogously to the previous argument we see

I2 =
〈(
f ′(U)− f ′(‹U)− f ′(θu)

)
, θut

〉
=
〈
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

)
, θut

〉
=
〈
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

)
, Eu − G (θv)

〉
=
〈
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

)
, Eu

〉
+
〈
G
(
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

))
, θv

〉
=
〈
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

)
, Eu

〉
+
〈
G
(
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

))
, Ev − f ′(U) + f ′(‹U)

〉
−Ah

(
θu,G

(
Π
(
f ′(U)− f ′(‹U)− f ′(θu)

)))
,
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concluding the proof.

Now we have quantified the error between the numerical solution of (7.6) and two discrete
objects, we fix these discrete objects, and shall quantify the discrete error (7.8) in the
linear case.

Lemma 7.2.4. Suppose v ∈ Hq+2(S1) and modify the projection operator S (v) ∈ Vq

given in Definition 4.2.15 such that

〈S (v) , φ〉 = 〈v, φ〉 ∀φ ∈ Vq−1

{S (v)m} = v(xm).

Then
‖v − S (v)‖L2(S1) + ‖vx − G (S (v))‖L2(S1) ≤ Chq+1 |v|Hq+2(S1) .

Proof. To show the L2 bound, it suffices to notice that S (v) is exact when v ∈ Vq, allowing
the use of Bramble-Hilbert. For the gradient bound, note through the definition of G we
have

‖Π (vx)− G (S (v))‖L2(S1) = sup
φ∈L2,‖φ‖≤1

〈(Π (vx)− G (S (v))) , φ〉

= sup
φ∈L2,‖φ‖≤1

〈vx − G (S (v)) ,Πφ〉

= sup
φ∈L2,‖φ‖≤1

−〈v − S (v) , (Πφ)x〉+
M−1∑
m=0
{vm − S (v)m} JΠφmK

= 0,

by the definition of S. Hence Π (vx) = G (S (v)) and the result follows through standard
approximation properties of the L2 projection.

Lemma 7.2.5 (Inconsistent Ritz projectors and its error control). For u ∈ Hq+1(S1), v ∈
Hq+2(S1), let R (u) ∈ Vq satisfy

Ah (R (u) , φ) + 〈R (u) , φ〉 = Ah (u, φ) + 〈u+ v − S (v) , φ〉 . (7.11)

Then we have for hmax small enough

‖u−R (u)‖L2(S1) + hmax ‖u−R (u)‖dG ≤ Chq+1
max

(
|u|Hq+1(S1) + |v|Hq+2(S1)

)
. (7.12)
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Proof. To show (7.12) we note that through the definition (7.11) we have the orthogonality
result

Ah (R (u)− u, φ) + 〈R (u)− u, φ〉 = 〈(v − S (v)) , φ〉 ∀φ ∈ Vq.

Hence we have, for any W ∈ Vq

cA ‖W −R (u)‖2
dG

+ ‖W −R (u)‖2
L2(S1) ≤ Ah (W −R (u) ,W −R (u)) + 〈W −R (u) ,W −R (u)〉

= Ah (W − u,W −R (u)) + 〈W − u,W −R (u)〉

+Ah (u−R (u) ,W −R (u)) + 〈u−R (u) ,W −R (u)〉

= Ah (W − u,W −R (u)) + 〈W − u,W −R (u)〉

+ 〈S (v)− v,W −R (u)〉

≤ 1
2

(
C2
A ‖W − u‖

2
dG + ‖W − u‖2

L2(S1) + C2
A ‖W −R (u)‖2

dG

+ 2 ‖W −R (u)‖2
L2(S1) + ‖S (v)− v‖2

L2(S1)

)
.

Thus, choosing W = Πu, using standard approximation properties of the L2 projector as
well as the bound from Lemma 7.2.4

‖W −R (u)‖2
dG ≤ C

(
h2q
max |u|

2
Hq+1(S1) + h2q+2

max |v|
2
Hq+2(S1)

)
,

and hence the dG norm bound follows from the triangle inequality. To show the L2 norm,
let z ∈ H2 solve the dual problem

−zxx + z = u−R (u) ,

then standard elliptic regularity, see [80], shows that

|z|H2(S1) ≤ C ‖u−R (u)‖L2(S1) . (7.13)
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Hence, for any Z ∈ Vq

‖u−R (u)‖2
L2(S1) = 〈u−R (u) , u−R (u)〉

= 〈−zxx + z, u−R (u)〉

= Ah (z, u−R (u)) + 〈z, u−R (u)〉

= Ah (z − Z, u−R (u)) + 〈z − Z, u−R (u)〉+ 〈S (v)− v, Z〉

≤ CA ‖z − Z‖dG ‖u−R (u)‖dG + ‖z − Z‖L2(S1) ‖u−R (u)‖L2(S1)

+ ‖S (v)− v‖L2(S1) ‖Z‖L2(S1) ,

using Cauchy-Schwarz. Choosing Z = Πz, we have

‖u−R (u)‖2
L2(S1) ≤ Chmax |z|H2(S1) ‖u−R (u)‖dG + Ch2

max |z|H2(S1) ‖u−R (u)‖L2(S1)

+ ‖S (v)− v‖L2(S1) ‖z‖L2(S1) ,

≤ Chmax ‖u−R (u)‖L2(S1) ‖u−R (u)‖dG + Ch2
max ‖u−R (u)‖2

L2(S1)

+ Chq+1
max |v|Hq+2(S1) ,

using the elliptic regularity result (7.13) and Lemma 7.2.4. Hence

(
1− Ch2

max

)
‖u−R (u)‖L2(S1) ≤ Chmax ‖u−R (u)‖dG + Chq+1

max |v|Hq+2(S1) ,

as required for hmax small enough.

Now we have quantified the difference between the numerical solution (7.6) and appropriate
discrete functions we obtain an a priori bound for (7.6) in the linear case.

Theorem 7.2.6 (A priori bound - linear case). Suppose f(u) = 1
2u

2, in this case the PDE
(7.1) is linear and given by

ut − ux + uxxx = 0.

Let U solve (7.6)) and the conditions of Lemma 7.2.3, Lemma 7.2.4 and Lemma 7.2.5
hold. Then, for t ∈ [0, T ],

‖(u− U) (t)‖2
dG

+ ‖(u− U) (t)‖2
L2(S1) ≤ C1exp (C2t)

(
‖(u− U) (0)‖2

dG + ‖(u− U) (0)‖2
L2(S1)

+ h2q
max

∫ t

0
|ut(s, x)|2Hq+1(S1) + |v(s, x)|2Hq+2(S1) ds

)
.

(7.14)
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Proof. We begin by noting that, since f ′(u) = u, in Lemma 7.2.3 I2 = 0, hence we see
that

d
dtF3 (θu) = 〈θu, Eu〉 − 〈Ev,G (θv)〉+Ah (θu, Eu) , (7.15)

through (7.10). Observe that the term G (θv) is not controllable in G (θu) and also will not
be of an optimal order. It is prudent for fixed U, V to choose ‹U, ‹V such that Ev = 0. This
then constrains choices for the pair ‹U, ‹V . We pick ‹V = S (v) and then choose ‹U = R (u).
This choice ensures that the perturbed equations

〈‹Ut + G
(‹V ) , φ〉 = −〈Eu, φ〉 ∀ Φ ∈ Vq〈‹V + f ′(‹U), ψ

〉
+Ah

(‹U, ψ) = −〈Ev, ψ〉 ∀ ψ ∈ Vq,

are satisfied with

Eu = ut − ‹Ut + vx − G
(‹V )

Ev = 0.

Substituting this into (7.15) we have

d
dtF3 (θu) = 〈θu, Eu〉+Ah (θu, Eu) .

Now, through Cauchy’s inequality we see

d
dtF3 (θu) ≤ 1

2
(
‖θu‖2

L2(S1) + C2
A ‖θu‖

2
dG + ‖Eu‖2

L2(S1) + C2
A ‖Eu‖2

dG

)
.

Hence Gronwall’s inequality, see Lemma 4.2.21, implies that

F3 (θu(t)) ≤ exp
(
C2
At
)(

F3 (θu(0)) +
∫ t

0
‖Eu(s)‖2

L2(S1) + C2
A ‖Eu(s)‖2

dG ds
)
.

It remains to bound the term Eu. We do this by splitting into two components and
controlling them individually. First note that since we are in a semi discrete setting,
Lemma 7.2.5 yields

‖ut −R (u)t‖L2(S1) ≤ Chq+1
max

(
|ut|Hq+1(S1) + |v|Hq+2(S1)

)
.
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Further, Lemma 7.2.4 immediately gives

‖vx − G (S (v))‖L2(S1) ≤ Chq+1
max |v|Hq+2(S1) ,

hence
‖Eu‖2

L2(S1) + C2
A ‖Eu‖2

dG ≤ Ch2q
max

(
|ut|2Hq+1(S1) + |v|2Hq+2(S1)

)
,

as required.

7.3 A posteriori analysis

Here we give an a posteriori analysis of the semi discrete scheme posed in §7.2. We proceed
along similar lines to the a priori analysis in that we examine solutions of perturbed
equations, taking account of different effects errors induced will have. The difference
being, in this section we make use of the stability framework of the underlying PDE.

Lemma 7.3.1 (Perturbed error equation and its deviation in energy). Let
u ∈ C1([0, T ], H3(S1)) be a strong solution to (7.1) and suppose ũ ∈ C1([0, T ], H3(S1))
satisfies

ũt − f ′(ũ)x + ũxxx = −R,

for some R ∈ L2(S1). Additionally assume that the bilinear form Ah is consistent in the
sense that its action on a continuous function is the same as the corresponding continuous
operator. Then, with ρ := u− ũ

d
dt

(
1
2Ah (ρ, ρ) + α

β
‖ρ‖βLβ(S1)

)
= J1 + J2,

where

J1 = 〈−ρxx + f ′(u)− f ′(ũ),R〉

J2 = 〈(f ′(ρ)− f ′(u) + f ′(ũ)) ,R〉+ 〈(f ′(ρ)− f ′(u) + f ′(ũ))x , ρxx〉

− 〈f ′(ρ), (f ′(u)− f ′(ũ))x〉 .

Proof. To begin, we note that ρ = u− ũ satisfies the discrete error equation

ρt − (f ′(u)x − f ′(ũ)x) + ρxxx = R. (7.16)
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Note that the bilinear form Ah is consistent, so explicitly computing the time derivative
of the energy we have

d
dtF3 (ρ) = 〈ρx, ρxt〉+ 〈f ′(ρ), ρt〉

= −〈ρxx, ρt〉+ 〈f ′(u)− f ′(ũ), ρt〉+ 〈f ′(ρ)− f ′(u)− f ′(ũ), ρt〉 =: J1 + J2.

Making use of (7.16) we see

J1 = −〈ρxx, ρt〉+ 〈f ′(u)− f ′(ũ), ρt〉

= 〈−ρxx + f ′(u)− f ′(ũ),R− ρxxx + f ′(u)x − f ′(ũ)x〉

= 〈−ρxx + f ′(u)− f ′(ũ),R〉 .

Further,

J2 = 〈f ′(ρ)− f ′(u) + f ′(ũ), ρt〉

= 〈f ′(ρ)− f ′(u) + f ′(ũ),R− ρxxx + f ′(u)x − f ′(ũ)x〉

= 〈f ′(ρ)− f ′(u) + f ′(ũ),R〉+ 〈(f ′(ρ)− f ′(u) + f ′(ũ))x , ρxx〉

− 〈f ′(ρ)− f ′(u) + f ′(ũ), (f ′(u)− f ′(ũ))x〉

= 〈f ′(ρ)− f ′(u) + f ′(ũ),R〉+ 〈(f ′(ρ)− f ′(u) + f ′(ũ))x , ρxx〉

− 〈f ′(ρ), (f ′(u)− f ′(ũ))x〉 ,

as required.

Remark 7.3.2 (The linear case). For the sake of exposition, similarly to the a priori case,
we have divided the contributions of the energy identity into two components, J1 and J2,
where J2 = 0 in the case the problem is linear.
Here we conduct the a posteriori analysis for the linear problem, hence in this section we
take f(u) = 1

2u
2, we leave the analysis of the nonlinear problem for future work.

Definition 7.3.3 (Discrete reconstruction operator D). We define D : Vq → Vq+1 to be
the discrete reconstruction operator satisfying for W ∈ Vq

〈D (W )x − G (W ) , φ〉 = 0 ∀φ ∈ Vq,

where G is given in Definition 4.2.3, and

D (W )m = {Wm},
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for m = 0, ...,M .

Remark 7.3.4 (Continuity of the discrete reconstruction operator). Note that D is con-
structed such that for any W ∈ Vq we have that D (W ) ∈ Vq+1 ∩ C0(S1). In addition we
have the approximation properties, proofs of which can be found in [133],

‖W −D (W )‖2
L2(S1) ≤ C

∥∥∥h1/2 JW K
∥∥∥2

L2

‖W −D (W )‖2
dG ≤

∥∥∥h−1/2 JΨK
∥∥∥2

L2
.

Remark 7.3.5 (Orthogonality). Note that D is constructed such that for any W ∈ Vq

and φ ∈ Vq−1 we have that
〈D (W )−W,φ〉 = 0.

A proof can be found in [75]

Definition 7.3.6 (Elliptic reconstruction). Let R : Vq → H1(S1), we define the elliptic
reconstruction R (U) as the solution of

−R (U)xx + f ′(R (U)) = −D (V ) (7.17)

with average value matching the discrete solution, that is

〈R (U)− U, 1〉 = 0

Proposition 7.3.7 (Regularity bound for the reconstruction). The elliptic problems defin-
ing the reconstruction operators in Definition 7.3.6 are well posed, moreover, thanks to
elliptic regularity (see [80]), we have

‖R (U)‖Hk+1(S1) ≤ C ‖D (V )‖Hk−1(S1) for k = 0, 1, 2.

Lemma 7.3.8 (Reconstructed PDE). The reconstruction given in Definition 7.3.6 satis-
fies

R (U)t − f
′(R (U))x + R (U)xxx = R, (7.18)

with
R = (R (U)− U)t .

Proof. Since R (U) satisfies (7.17) and the problem data D (V ) ∈ H1(S1) it is clear that

172



Section 7.3 Page 173

R (U) ∈ H3(S1) and satisfies

−R (U)xxx + f ′(R (U))x = −D (V )x . (7.19)

Further, the first equation of the semi discrete scheme (7.6) states

0 = 〈Ut + G (V ) , φ〉

= 〈Ut +D (V )x , φ〉 ,
(7.20)

using the discrete reconstruction given in Definition 7.3.3. Since Ut,D (V )x ∈ Vq (7.20)
can be written pointwise as

Ut +D (V )x = 0. (7.21)

Substituting (7.19) and (7.21) into (7.18) we see

R (U)t − f
′(R (U))x + R (U)xxx = R (U)t +D (V )x

= (R (U)− U)t ,

as required.

Proposition 7.3.9 (A posteriori control for the elliptic problem). The reconstruction
R (U) is the elliptic reconstruction of U [132]. There exists an optimal order elliptic a
posteriori estimate controlling ‖U −R (U)‖L2(S1) and ‖U −R (U)‖dG, that is, there exist
functionals η0,1 depending only upon U and the problem data such that

‖U −R (U)‖L2(S1) ≤ η0(U, g) ∼ O(hq+1
max)

‖U −R (U)‖dG ≤ η1(U, g) ∼ O(hqmax),

where g represents the right hand side of the elliptic reconstruction. Indeed, with g :=
−D (V ) in (7.17), for Ah (·, ·) given by the interior penalty discretisation (5.8) an estimate
of the form

η0(U, g) = C
M−1∑
m=0

(
h4
m ‖g + Uxx − f ′(U)‖2

L2(Jm) + h̃m
3
JUxmK2 + σh̃m JUmK2 + h̃m JVmK2

)
,

η1(U, g) = C
M−1∑
m=0

(
h2
m ‖g + Uxx − f ′(U)‖2

L2(Jm) + h̃m JUxmK2 + σh̃m
−1

JUmK2 + h̃m JVmK2
)
,
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where h̃m is the maximal element size in a local patch of elements as given in (4.11).

Proof. The result is an extension of those found in [178, 116] whilst noting that, due to
the definition of the elliptic reconstruction R (U), U satisfies the orthogonality condition

Ah (R (U)− U, φ) + 〈f ′(R (U))− f ′(U), φ〉 = 〈V −D (V ) , φ〉 ∀φ ∈ Vq.

This induces an inconsistency error that can be controlled by the results in Remark 7.3.4.

Remark 7.3.10 (Alternative estimators). One of the strengths of the elliptic reconstruc-
tion methodology is the ability to use other types of estimator that are not residual based.
Indeed, recovery based a posteriori estimators have been widely used since their introduc-
tion by the engineering community in the 1980s. Their success in applications is due to
their simplicity of implementation, milder dependence of problem data than other esti-
mators and certain superconvergence properties. Work carried out on recovery estimators
has reached a state of maturity for elliptic problems, see [6, 23, 187, 123] and subsequent
references.

Theorem 7.3.11 (A posteriori bound - linear case). Suppose f(u) = 1
2u

2. Further, let U
solve (7.6) and the conditions of Lemma 7.3.1 and Lemma 7.3.8 hold. Then, for t ∈ [0, T ],

‖(u− U) (t)‖2
L2(S1)

+ ‖(u− U) (t)‖2
dG ≤ exp (t)

(
‖(u− U) (0)‖2

dG + ‖(u− U) (0)‖2
L2(S1)

+
∫ t

0
η1(Ut, (s)gt(s))2 + η0(Ut(s), gt(s))2 ds

)
.

(7.22)

Proof. Since f ′(u) = u, in Lemma 7.3.1 R = R (U)t − Ut, hence

d
dtF3 (ρ) = 〈−ρxx + ρ,R〉

= Ah (ρ,R (U)t)−Ah (ρ, Ut) + 〈ρ,R (U)t − Ut〉

≤ 1
2
(
C2
A ‖ρx‖

2
L2(S1) + C2

A ‖R (U)t − Ut‖
2
dG + ‖ρ‖2

L2(S1) + ‖R (U)t − Ut‖
2
L2(S1)

)
.
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Gronwall’s inequality, given in Lemma 4.2.21, implies

F3 (ρ(t)) ≤ exp
(
C2
At
)(

F3 (ρ(0))

+
∫ t

0
C2
A ‖(R (U)t − Ut) (s)‖2

dG + ‖(R (U)t − Ut) (s)‖2
L2(S1) ds.

)

It remains to computationally bound R (U)t − Ut for which we can invoke the results of
Proposition 7.3.9, concluding the proof.

Remark 7.3.12 (Suboptimality in L2). The bound for the pointwise in time L2 error,
appearing on the left-hand side of (7.22), is tight only for very short times. As we will
observe in §7.5 on a uniform mesh of size h→ 0 the gradient term ‖u− U‖dG = O (hqmax),
while ‖(u− U) (t)‖L2(S1) = O (hq+1

max).

7.4 Temporal discretisation and the design of a stable
adaptive algorithm

Practically, a fully discrete approximation scheme is required for implementation. Here
we present an argument for designing a fully discrete scheme similar to that in §4.2 and
§5.3. For brevity, we suggest that the reader recalls the required notation for the temporal
discretisation as presented in §5.3.

Definition 7.4.1 (Fully discrete scheme for defocusing KdV type equations). Given U0 ∈
V0
q, for n ∈ [0, N − 1] find Un+1 ∈ Vn+1

q such that
〈
Un+1 − Pn+1Un

τn
+ G

(
V n+1

)
, φ

〉
= 0 ∀φ ∈ Vn+1

q〈
V n+1 + f(Un+1)− f(Pn+1Un)

Un+1 − Pn+1Un
, ψ

〉
+Ah

(
Un+ 1

2 , ψ
)

= 0 ∀ψ ∈ Vn+1
q

U0 = Π0u0

(7.23)

where Un+ 1
2 := Un+1 +Pn+1Un and Π0 denotes the L2 orthogonal projector into the initial

finite element space, G is described by Definition 4.2.3 and Ah is described by Definition
5.1.6.
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Remark 7.4.2 (Conserving invariants in mesh dependent invariant). It is not possible to
conserve invariants which depend adaptively on the underlying spatial mesh, as this allows
the invariant to change in time. As such, we must remove the spatial dependency of Ah
by replacing h with hmin in (5.8), where hmin is the minimal obtainable spatial element size
in the adaptive simulation.

Proposition 7.4.3 (Conservativity of the fully discrete scheme). Let {Un}Nn=0 be the fully
discrete scheme generated by (7.23), then we have that

F1
(
Un+1

)
= F1

(
Pn+1Un

)

and
F3
(
Un+1

)
= F3

(
Pn+1Un

)

Proof. The proof of Proposition 7.4.3 follows the same methodology as the proof of Propo-
sition 5.3.8, noting the symmetric of the bilinear form Ah.

Remark 7.4.4 (Conservation over spatially adapting meshes). Assuming a non-adaptive
spatial mesh our fully discrete scheme through Proposition 7.4.3 we have that a discrete
mass and energy are conserved. However, over an adaptive mesh this is not necessarily
the case and is highly dependent on the mesh change operator Pn+1. Recall, from Chapter
6, that through choosing the mesh change operator to be the Lagrange interpolant (6.2) no
invariants are conserved for arbitrary adaptations. We also found that the L2 projection
(6.3) conserves the mass, and dissipates momentum yielding numerical stability for the
adaptive algorithm (6.1). Unfortunately the scheme under consideration is not momentum
conserving in the non-adaptive setting, and as such the L2 projection does not lead to
numerical stability here. This leads us to propose a new mesh change operator with an
aim of dissipating the energy.

In view of Remark 7.4.4, we define the Ritz projection as the following mesh change
operator.

Definition 7.4.5 (The Ritz projection). For a function Un ∈ Vn
q , we define the Ritz
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projection L n+1 : Vn
q → Vn+1

q by seeking L n+1Un ∈ Vn+1
q such that

1
β∗
Ah

(
L n+1Un, φ

)
+ α

β

〈(
L n+1Un

)β−1
, φ
〉

= 1
β∗
Ah (Un, φ) + α

β

〈
(Un)β−1 , φ

〉
∀φ ∈ Vn+1

q ,
(7.24)

where 1
β

+ 1
β∗

= 1.

Proposition 7.4.6 (Conservative properties of the Ritz projection). Let Un be the solution
of the adaptive scheme (7.23), and L n+1 be the Ritz projection described in Definition
7.4.5. Under an adaptive mesh the energy is stable, i.e.,

F3
(
L n+1Un

)
≤ F3 (Un) .

In addition for the linear problem, so f(u) = 1
2u

2, then mass is also conserved as long as
Ah is consistent, i.e.,

F1
(
L n+1Un

)
= F1(Un).

Remark 7.4.7 (The Ritz projection as a mesh change operator). Through amalgamating
Proposition 7.4.6 with Proposition 7.4.3, we find that our adaptive algorithm for linear
problems, i.e., f(u) = 1

2u
2, is mass conservative. Further to this, we find that the energy

dissipates. As the energy induces a norm, we immediately obtain stability of the adaptive
algorithm with the Ritz projection as the mesh change operator in the natural energy norm
for the problem.

Proof of Proposition 7.4.6. If we restrict ourselves to the linear case where f(u) = 1
2u, then

through choosing φ = 1 in (7.24) we observe that mass is conserved for any consistent Ah,
i.e., 〈

L n+1Un, 1
〉

= 〈Un, 1〉 .

Now let us consider the stability properties of the Ritz projector. Through choosing
φ = L n+1Un we observe that

1
β∗
Ah

(
L n+1Un − Un,L n+1Un

)
+ α

β

〈(
L n+1Un

)β−1
− (Un)β−1 ,L n+1Un

〉
= 0. (7.25)

For clarity of exposition we may the two terms components in (7.25) independently, as
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the two terms do not interact. Examining the first term we find that

1
β∗
Ah

(
L n+1Un,L n+1Un

)
= 1
β∗
Ah

(
Un,L n+1Un

)
≤ 1
β∗
Ah (Un, Un)

1
2 Ah

(
L n+1Un,L n+1Un

) 1
2 ,

as Ah (·, ·) defines an inner product. Additionally, through Cauchy’s inequality with ε

where ε = 1
2 we find that

1
2β∗Ah

(
L n+1Un,L n+1Un

)
≤ 1

2β∗Ah (Un, Un) . (7.26)

Through application of Hölder’s inequality to the second form of (7.25) we can write

α

β

∥∥∥L n+1Un
∥∥∥β
Lβ(S1)

= α

β

〈
(Un)β−1 ,L n+1Un

〉
≤ α

β

∥∥∥(Un)β−1
∥∥∥
Lβ∗ (S1)

∥∥∥L n+1Un
∥∥∥
Lβ(S1)

where 1
β

+ 1
β∗

= 1. Further, applying Young’s inequality we have that

α

β

∥∥∥L n+1Un
∥∥∥β
Lβ(S1)

≤ α

β

(
1
β∗

∥∥∥(Un)β−1
∥∥∥β∗
Lβ∗ (S1)

+ 1
β

∥∥∥L n+1Un
∥∥∥β
Lβ(S1)

)
.

Noting that through the definition of the Lebesgue norms we have
∥∥∥(Un)β−1

∥∥∥
Lβ∗ (S1)

= ‖Un‖βLβ(S1) ,

which allows us to conclude that

α

ββ∗

∥∥∥L n+1Un
∥∥∥β
Lβ(S1)

≤ α

ββ∗
‖Un‖βLβ(S1) , (7.27)

after observing that 1− 1
β

= 1
β∗

. Combining (7.26) with (7.27) completes the proof.

7.5 Numerical experiments

Here we conduct numerical experiments for the proposed fully discrete scheme (7.23) in
both the linear and nonlinear case, with particular emphasis on the linear case. In the
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uniform setting we present the experimental order of convergence and plots displaying the
deviation in mass, momentum and energy, similarly to those seen in §4.2.3 and §5.4. We
go on to present results in the adaptive setting, and investigate solution dynamics along
with the deviation in invariants over adaptive spatial meshes, similarly to §6.3.
The non-adaptive components of our code are implemented in Firedrake [153], and de-
pending on the nature of the problem, utilise either a direct solver or Newton line search
method with a tolerance of 10−12 in PETSc [20]. We utilise a Gauss quadrature of high
enough degree that the finite element method is evaluated exactly, and when integrating
continuous functions we ensure that our quadrature approximation does not introduce
leading order errors. The adaptive components of our code are implemented in Python 3
with mesh change operators utilising Numpy linear solvers.
Similarly to the prequel, in our numerical experiments we stretch our periodic domain such
that S1 (0, 1) → S1 (0, 40) for consistency. For the linear problem, i.e., when f(u) = 1

2u
2

in (7.1), we numerically simulate a spatially stretched version of the exact solution (7.4)
with C1 = 1, C2 = 0 and l = 1. For the nonlinear problem f(u) = 1

4u
4 we simulate

the exact solution (7.5) with modulus k = 0.9 and rescale the spatial domain by x →
1.03123684533926907037x̃ to numerically enforce the solution is periodic up to a tolerance
of 10−15.

7.5.1 Uniform experiments

We begin by examining the global deviation in invariants for both the linear and nonlinear
problems. We observe, in Figure 7.1, that both problems conserve the expected invariants.
Notice that often these deviations propagate in time, this is due to the propagation of errors
below either machine precision or our solver tolerance.
We plot the experimental order of convergence for the linear problem in Figure 7.2. We
observe that the dG norm sharply obtains the same convergence rate observed in the a
priori bound (7.14). However, the L2 component of the error superconverges with respect
to the a priori bound, in fact the error here agrees with best approximation results in the
L2 norm.
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Figure 7.1: The deviation in mass, momentum and energy with T = 100 for the scheme
(7.23) with either f(u) = 1

2u
2 or f(u) = 1

4u
4. If f(u) = 1

2u
2 then we initialise the scheme

with (7.4), otherwise if f(u) = 1
4u

4 we initialise the scheme with (7.5). Further we choose
τn = 0.2, hm = 0.4 and vary the polynomial degree q.

(a) Here f(u) = 1
2u

2 and q = 1. (b) Here f(u) = 1
2u

2 and q = 2.

(c) Here f(u) = 1
4u

4 and q = 1. (d) Here f(u) = 1
4u

4 and q = 2.
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Figure 7.2: The errors of (7.23) in both the L2 and dG norm (5.18), and associated exper-
imental order of convergence with the corresponding exact solution (7.4) with polynomial
degrees q = 1, 2, 3. Here we fix τn = 0.0002 and varying hm. We observe the a priori
bound (7.14) is attained, however the L2 component superconverges with respect to the a
priori bound.
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7.5.2 Adaptive experiments

Here we implement the adaptive algorithm (7.23) following the methodology outlined in
§6.1, subject to the mesh change parameters

coarsen = 10 hmax = 1 (7.28)

refine = 60 hmin = 0.2.

We shall also consider the effect of increasing the percentage of elements coarsened from
coarsen = 10 to coarsen = 30. Throughout we assume an initial uniform spatial mesh
with element size hm = 0.4.
We focus our attention on not only the Ritz projection (7.24) as a mesh change operator,
but also the Lagrange interpolant (6.2) and L2 projection (6.3).
We begin by examining solution dynamics of the linear problems for different mesh change
operators. In Figure 7.3, Figure 7.4 and Figure 7.5 we choose the Lagrange interpolant,
L2 projection and Ritz projection respectively as mesh change operators for the linear
problem f(u) = 1

2u. We observe that while all three solutions look similar in this case
the mesh adaptivity is highly dependent on the mesh change operator that we consider,
however a similar overall number of degrees of freedom are used. We observe that over time
the L2 projection leads to a nonsmooth approximation. While the Lagrange interpolant
is significantly smoother the smoothest approximation is obtained by the Ritz projector,
likely due to its stability in the energy norm.
While we cannot explicitly see significant differences through visualising the solution dy-
namics for different choices of mesh change operators, through examining the deviation in
the “invariants” of the scheme we obtain a measure of how well the adaptive schemes are
performing. We consider the invariants of the adaptive scheme with Lagrange interpolant,
L2 projection and Ritz projection as mesh change operators in Figure 7.6, Figure 7.7 and
Figure 7.8 respectively. The Lagrange interpolation operator appears to dissipate the mo-
mentum and energy in this case, but it does not conserve the mass. The L2 projection,
while conserving the mass, is not stable with respect to the energy. We observe that for
the Ritz projection the mass is conserved, and the energy dissipates as we expect from
Proposition 7.4.6.
We can further compare the mesh change operators through their respective errors, see
Figure 7.9. We observe that in the energy norm the Ritz projector slightly outperforms
the interpolant, however, in the L2 norm the L2 projector and interpolant outperform the
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Figure 7.3: Here we examine the dynamics of the adaptive algorithm (7.23) with the
Lagrange interpolant (6.2) as the mesh change operator. The mesh coordinates are rep-
resented by vertical blue lines at the bottom of each solution snapshot. We initialise the
simulation with the L2 projection of (7.4) at t = 0 and employ the adaptive parameters
(7.28). Further to this we consider the uniform time step τn = 0.1, and initialise our
spatial mesh as a uniform mesh with the spatial element size hm = 0.4. We allow for the
initial mesh to be adapted.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Ritz projector. By increasing the percentage of elements we coarsen to coarsen = 30, we
obtain Figure 7.10 which exaggerates this point.
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Figure 7.4: Here we examine the dynamics of the adaptive algorithm (7.23) with the L2
projection (6.3) as the mesh change operator. The mesh coordinates are represented by
vertical blue lines at the bottom of each solution snapshot. We initialise the simulation
with the L2 projection of (7.4) at t = 0 and employ the adaptive parameters (7.28).
Further to this we consider the uniform time step τn = 0.1, and initialise our spatial mesh
as a uniform mesh with the spatial element size hm = 0.4. We allow for the initial mesh
to be adapted.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 7.5: Here we examine the dynamics of the adaptive algorithm (7.23) with the Ritz
projection (7.24) as the mesh change operator. The mesh coordinates are represented by
vertical blue lines at the bottom of each solution snapshot. We initialise the simulation
with the L2 projection of (7.4) at t = 0 and employ the adaptive parameters (7.28).
Further to this we consider the uniform time step τn = 0.1, and initialise our spatial mesh
as a uniform mesh with the spatial element size hm = 0.4. We allow for the initial mesh
to be adapted.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 7.6: Here we examine the values of the invariants (mass, momentum and energy)
at the temporal nodes in the adaptive algorithm (7.23) for f(u) = 1

2u
2 with the Lagrange

interpolant (6.2) as the mesh change operator. We initialise the simulation with the L2
projection of (7.4) into the initial finite element space and employ the adaptive parameters
(7.28). Further to this we consider the uniform time step τn = 0.1, and initialise our spatial
mesh as a uniform mesh with the spatial element size hm = 0.4. We observe that the mass
deviates non-monotonically, however the momentum and energy dissipate globally.
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Figure 7.7: Here we examine the values of the invariants (mass, momentum and energy) at
the temporal nodes in the adaptive algorithm (7.23) for f(u) = 1

2u
2 with the L2 projection

(6.3) as the mesh change operator. We initialise the simulation with the L2 projection
of (7.4) into the initial finite element space and employ the adaptive parameters (7.28).
Further to this we consider the uniform time step τn = 0.1, and initialise our spatial mesh
as a uniform mesh with the spatial element size hm = 0.4. We observe that the mass in
conserved, however the energy increases globally indicating an instability in the algorithm.
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Figure 7.8: Here we examine the values of the invariants (mass, momentum and energy)
at the temporal nodes in the adaptive algorithm (7.23) for f(u) = 1

2u
2 with the Ritz

projection (7.24) as the mesh change operator. We initialise the simulation with the L2
projection of (7.4) into the initial finite element space and employ the adaptive parameters
(7.28). Further to this we consider the uniform time step τn = 0.1, and initialise our spatial
mesh as a uniform mesh with the spatial element size hm = 0.4. We observe that the mass
is conserved, and the momentum and energy monotonically dissipate.
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Figure 7.9: Here we examine the error measured both the L2 and dG norm (5.18) for
the adaptive algorithm (7.23) with the Lagrange interpolant (6.2), the L2 projection (6.3)
or the Ritz projection (7.24) as the mesh change operator. We plot with the error the
number of degrees of freedom used in each simulation on each time step. The simulations
are initialised by L2 projection of (7.4) into the initial finite element space and employ the
adaptive parameters (7.28). Further to this we consider the uniform time step τn = 0.1,
and initialise our spatial mesh as a uniform mesh with the spatial element size hm = 0.4.
We observe that all simulations use a comparable number of degrees of freedom with
the L2 projection using slightly more. In the L2 norm for this simulation the Lagrange
interpolant has the smallest error. In the dG norm the Ritz projector and interpolant
behave comparably, although for the Ritz projector fewer degrees of freedom are used.
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Figure 7.10: Here we examine the error measured both the L2 and dG norm (5.18)
for the adaptive algorithm (7.23) with the Lagrange interpolant (6.2), the L2 projection
(6.3) or the Ritz projection (7.24) as the mesh change operator. We display alongside the
error the number of degrees of freedom used in each simulation on each time step. The
simulations are initialised by L2 projection of (7.4) into the initial finite element space and
employ the adaptive parameters (7.28) with coarsen = 30. Further to this we consider
the uniform time step τn = 0.1, and initialise our spatial mesh as a uniform mesh with the
spatial element size hm = 0.4. We observe that all simulations use a comparable number
of degrees of freedom, the Ritz projector marginally outperforms the Lagrange interpolant
in the energy norm. In the L2 norm the Lagrange interpolant and L2 projector behave
comparably and outperform the Ritz projector. We also notice that the error in the L2
projection blows up in the dG norm.
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7.6 Conclusion

In this chapter we designed a new numerical scheme for a general dissipative KdV type
equation. We proved optimal a priori and a posteriori error bounds in the spatially discrete
linear case. We also proposed a fully discrete adaptive algorithm, and designed a mesh
change operator which guarantees numerical stability of this adaptive algorithm. We have
left the study of the nonlinear case for future work.
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Chapter 8

A conservative discretisation for the
vectorial modified KdV equation

The work in this chapter has been published, see [107], and was conducted in collaboration
with Georgios Papamikos during his time at the University of Reading.
We design a consistent Galerkin scheme for the approximation of the vectorial modified
Korteweg-de Vries (vmKdV) equation with periodic boundary conditions. We demonstrate
that the scheme conserves energy up to solver tolerance. In this sense the method is
consistent with the energy balance of the continuous system. This energy balance ensures
there is no numerical dissipation allowing for extremely accurate long time simulations
free from numerical artefacts. Various numerical experiments are shown demonstrating the
asymptotic convergence of the method with respect to the discretisation parameters. Some
simulations are also presented that correctly capture the unusual interactions between
solitons in the vectorial setting.
To the best of the author’s knowledge, the discretisation discussed here is the first designed
to conserve the energy of the vmKdV equation. Similarly to previous chapters, as the
vmKdV falls within the framework of Hamiltonian PDEs, we employ the methodology
discussed in §4.1 for the discretisation of Hamiltonian operators. However, the vectorial
case possesses a significantly different structure to the scalar Hamiltonian PDEs in the
prequel. For example, there is no mass conservation in the vectorial case. Moreover, the
corresponding Hamiltonian operator is a nonlocal differential operator in the vectorial case
which presents additional complexity in its discrete representation.
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8.1 The continuous problem

In this section we formulate the model problem, fix notation and give some basic assump-
tions. We describe some known results and history of the vmKdV equation, highlighting
the Hamiltonian structure of the equation. We show that the underlying Hamiltonian
structure naturally yields an induced stability of the solutions to the PDE system and
give a brief description of how to construct some exact solutions using a dressing method.
We then show how the system can be written through induced auxiliary variables which
are the basis of the design of our numerical scheme.
Recall that throughout we denote the standard Lebesgue spaces by Lp(I) for I ⊆ R,
p ∈ [1,∞], equipped with corresponding norms ‖u‖Lp(I). In addition, we denote Hk(I) to
be the Hilbert Sobolev space of order k of real-valued functions defined over I ⊆ R with
norm ‖u‖Hk(I).
The vmKdV equation is an evolutionary PDE for a real, D-vector valued function

u : R2 → RD

(x, t) 7→ u(x, t) = (u1, . . . , ud)T

and is given by
ut + 3

2u · uux + uxxx = 0. (8.1)

Here we are using “x · y” as the Euclidean inner product between two vectors, x and y.
In the sequel we shall also write “|x|” as the induced Euclidean norm of x.
A particular case of the vmKdV system occurs when d = 2, u = (u1, u2)T when (8.1) can
be identified with the complex modified KdV (mKdV) equation

yt + 3
2 |y|

2 yx + yxxx = 0

for the complex dependent variable y = u1 + iu2. Sometimes this is also called the Hirota
mKdV equation [92]. When d = 1 we obtain the famous mKdV equation which has been
studied numerically in the context of Galerkin methods in [31] and Remark 5.3.11.
Equation (8.1) admits both Lie and discrete point symmetries and has infinitely many
conservation laws. Indeed, under the action of the orthogonal group Od(R), which is the
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group of real d× d matrices such that ATA = I,‹u = Au, for A ∈ Od(R)

equation (8.1) remains invariant. Moreover, vmKdV is invariant under the translations

x̃ = x+ ε, t̃ = t+ γ

and under the scaling transformation

(
x̃, t̃,‹u) =

(
eεx, e3εt, e−εu

)
.

Proposition 8.1.1 (Conservative properties of solutions). The vmKdV equation admits
the following conservation laws:

d
dtf2(u) = d

dxg2(u)
d
dtf4(u) = d

dxg4(u),

with d
dt and d

dx representing the total derivatives with respect to t and x respectively, where
the conserved densities are given by

f2(u) = 1
2 |u|

2

f4(u) = 1
2 |ux|

2 − 1
8 |u|

4

and the corresponding fluxes are

g2(u) = |ux|2 − 2u · uxx −
3
4 |u|

4

g4(u) = 1
8 |u|

6 − |u|2 |ux|2 −
1
2 (u · ux)2 − ux · uxxx + 1

2 |uxx|
2 + 1

2 |u|
2 u · uxx.

Proof. To prove that the total time derivative of f2(u) and f4(u) are in the image of d
dx

we use the Euler operator E = (E1, ..., Ed), where

Ei(f) =
∞∑
k=0

(
− d

dx

)k
∂uikxf, uikx = uix...x︸ ︷︷ ︸

k
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and the fact that KerE = Im d
dx , see [147] for a proof. On the other hand in order to

calculate the corresponding fluxes g2 and g4 we apply the homotopy operator [147] to
d
dtf2(u) and d

dtf4(u) respectively. The homotopy operator is given by

H(f(u)) =
∫ 1

0

d∑
i=1

Ii(f)(λu)dλ
λ

where

Ii(f) =
∞∑
k=1

k−1∑
s=0

uisx

(
− d

dx

)k−s−1
 fuikx .

Corollary 8.1.2 (Conservative properties of solutions on S1.). Let S1 be the unitary
circle, i.e., [0, 1] with matching endpoints and recall that 〈·, ·〉 denotes the spatial L2 inner
product over S1. Then from Proposition 8.1.1 it follows that, upon defining

F2(u) := 〈f2(u), 1〉

as the momentum functional and

F4(u) := 〈f4(u), 1〉

as the energy functional for periodic solutions, we have

d
dtF2(u) = d

dtF4(u) = 0.

Moreover this does not just hold for periodic solutions over S1. Indeed, one can consider the
equation (8.1) over R and require that solutions decay at infinity, for example Schwartz
functions, and the result holds. A particular example of such solutions are the much
celebrated soliton and breather solutions. Note that we refer to F2(u) as the momentum
as it is associated with the space translation Lie symmetry, and similarly the energy F4(u)
is associated with the time translation Lie symmetry.

Proposition 8.1.3 (A continuous stability bound). Let the vmKdV system (8.1), defined
over S1, be coupled with initial conditions u0 satisfying F2(u0) = C2 < ∞ and F4(u0) =
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C4 <∞ then u satisfies

‖ux(t)‖L2(S1) ≤
(

4C4 + C8
GNC

3
2

2

)1/2

,

where CGN is a constant appearing from the Gagliardo-Nirenberg interpolation inequality.

Proof. In view of the definition of F4(u) we have that

‖ux‖2
L2(S1) = 2F4(u) + 1

4 ‖u‖
4
L4(S1)

= 2F4(u0) + 1
4 ‖u‖

4
L4(S1) ,

(8.2)

through the conservativity of F4(u) given in Theorem 8.1.1. Now making use of the
Gagliardo-Nirenberg interpolation inequality there exists a constant CGN such that

‖u‖L4(S1) ≤ CGN ‖u‖3/4
L2(S1) ‖ux‖

1/4
L2(S1) ,

hence

1
4 ‖u‖

4
L4(S1) ≤

1
4C

4
GN ‖u‖

3
L2(S1) ‖ux‖L2(S1)

≤ 1
32C

8
GN‖u‖

6
L2(S1) + 1

2‖ux‖
2
L2(S1),

(8.3)

through Young’s inequality. Substituting (8.3) into (8.2) we see

1
2 ‖ux‖

2
L2(S1) ≤ 2F4(u0) + C8

GN

32 ‖u‖
6
L2(S1)

≤ 2F4(u0) + C8
GN

4 F2(u)3

≤ 2F4(u0) + C8
GN

4 F2(u0)3

≤ 2C4 + C8
GNC

3
2

4 ,

using the conservativity of F2(u), concluding the proof.

Remark 8.1.4 (Hierarchy of conservation laws). Note that the vmKdV equation (8.1)
admits an infinite hierarchy of conserved quantities. For example, after F2(u) and F4(u)
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the next member of the hierarchy is

F6(u) = 1
2
〈
|u|3 , |u|3

〉
+ 10 〈u · ux,u · ux〉+

〈
|u|2 , |ux|2

〉
+ 7

〈
|u|2 ,u · uxx

〉
+ 4 〈|uxx| , |uxx|〉 .

A generating function of the conserved densities for the vmKdV is constructed using its
Lax representation in [4].
Together with the Gagliardo-Nirenberg interpolation inequality one may derive a priori
bounds of a similar form to that given in Theorem 8.1.3 but in higher order norms. Indeed,
for s ∈ N the conservation law F2s naturally gives rise to a stability bound in Hs−1.

8.1.1 Exact solutions to the vmKdV system

The vmKdV equation (8.1) is integrable and has already drawn some attention [4, 10].
Its integrability properties were derived using the structure equation for the evolution
of a curve embedded in an n-dimensional Riemannian manifold with constant curvature
[158, 9, 134]. The associated Cauchy problem can be studied analytically using the inverse
scattering transform [2, 146, 70]. As it admits a zero curvature representation (or a Lax
representation, see [125]), i.e., it can be written in the following form:

Ut − Vx + [U, V ] = 0,

where U = U(u;λ) and V = V (u;λ) are appropriate matrices in a Lie algebra having
a polynomial dependence on a spectral parameter λ ∈ C. One can construct, see [4], a
Darboux matrix M [154, 156] that maps the pair (U, V ) to

(U, V ) 7→ (‹U, ‹V ) = (MUM−1 +MxM
−1,MUM−1 +MtM

−1) (8.4)

and ‹U = U(‹u;λ) and ‹V = V (‹u;λ). In other words ‹U and ‹V have the same structure
as U and V respectively. The transformation (8.4) implies a nonlocal symmetry u 7→ ‹u
of the vmKdV, known as a Bäcklund transformation. Such transformations that have
applications in geometry [154] are characteristic of integrable equations. Starting with the
trivial background solution u = 0 one can then recursively and algebraically construct the
soliton solutions of vmKdV equation (8.1). For example, when d = 2 a 1-soliton solution
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is given by
u = 2µ

cosh (ξµ)E, (8.5)

where µ ∈ R, ξµ = µ (x− cµ)−µ3t, for some shift cµ ∈ R and E is a constant unit vector.
A 2-soliton solution is given by

u = Fµ,ν
G
E1 + Fν,µ

G
E2, (8.6)

where E1 and E2 are constant unit vectors, µ, ν ∈ R with µ 6= ±ν and

Fk,l = 2(l2 − k2)lcosh (ξk) (8.7)

and
G = (µ2 + ν2)cosh (ξµ) cosh (ξν)− 2µνsinh (ξµ) sinh (ξν)− 2µνE1 ·E2. (8.8)

The 1-soliton (8.5) and 2-soliton (8.6) solutions, while elegant, are not the most general
of their kind, see [4] for details. Nevertheless, the exact solutions (8.5) and (8.6) are both
perfectly adequate for benchmarking our scheme which we shall use them for in §8.4. Such
solutions can also be derived using Hirota’s bilinear form [93, 10].
Solitons are, however, a special class of solution for this problem with a very particular
structure. In general one cannot write down closed form solutions for this problem moti-
vating the need for long time accurate numerical schemes. We shall proceed by describing
the Hamiltonian structure of the vmKdV problem which forms the basis for the design of
our numerical scheme.

Remark 8.1.5 (Hamiltonian formulation of vmKdV). The vmKdV system is Hamiltonian
and thus it can be written as

ut = P(u)δF4(u)
δu

,

where P(u) is a Hamiltonian operator, F4(u) is the corresponding Hamiltonian and δ·
δu

denotes the first variation with respect to u, as discussed in Chapter 4 for scalar problems.
For this specific problem the Hamiltonian operator acts on a real, d-vector function y and
takes the form

P(u)y := yx − uy
[

d
dx
−1 (y ⊗ u− u⊗ y)

]
, (8.9)

as described in [9], where d
dx
−1 is the formal inverse operator of d

dx , ⊗ is the tensor product
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between vectors and y is an interior product defined through

xy (y ⊗ z) = (x · y) z.

This then induces a Poisson bracket

{F,G} :=
〈
δF

δu
,P(u)δG

δu

〉
,

a skew-symmetric bilinear form satisfying the Jacobi identity. In view of the skew-symmetry
of P(u) we have

d
dtF4(u) = {F4(u), F4(u)} = 0.

Notice also that the vmKdV system can also be written as

ut = {u, F4(u)}.

The main idea behind the discretisation we propose is to correctly represent the Hamilto-
nian operator in the finite element space whilst preserving the skew-symmetry property
of the underlying bracket. Indeed, the proof of Proposition 8.1.1 motivates rewriting the
vmKdV system by introducing auxiliary variables to represent different components of the
Hamiltonian operator. We consider seeking the tuple (u,v,w) such that

0 = ut + vx +w

0 = v − 1
2 |u|

2 u− uxx

0 = w − |u|2 ux + (ux · u)u.

(8.10)

Notice that v = δF4(u)
δu

and w = uy
[

d
dx
−1 (v ⊗ u− u⊗ v)

]
. This form of w is extremely

important as the Hamiltonian operator given in (8.9) is nonlocal. The fact that it can
be “localised” by removing the d

dx
−1 allows for the efficient approximation by Galerkin

methods.
This reformulation also means that in the case both arguments of the Poisson bracket are
the Hamiltonian we may write

0 = {F4(u), F4(u)} = 〈v,vx +w〉 . (8.11)
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It is exactly this structure that we try to exploit.

Remark 8.1.6 (Relation to the scalar case). As already mentioned when d = 1, the
problem reduces to the mKdV equation. In this case w ≡ 0 and the mixed system coincides
with that discussed in Remark 5.3.11. Energy conservative schemes can be derived, and a
priori bounds can be proven for a linearised version of the problem, see Chapter 4. For
d > 1, w is not necessarily zero and represents the additional contribution arising from
the Hamiltonian operator described in Remark 8.1.5.

Proposition 8.1.7 (The mixed system is conservative). Let u,v,w be given by (8.10)
then we have that

d
dtF4(u) = d

dt

(1
2 〈ux,ux〉 −

1
8
〈
|u|2 , |u|2

〉)
= 0.

Proof. Since the mixed system is equivalent to the vmKdV system the proof is clear
through Proposition 8.1.1, however, for illustrative purposes we present it in full as it will
become the basis for the design of our numerical scheme. To begin note

d
dtF4(u) = 〈ux,uxt〉 −

〈1
2 |u|

2 u,ut

〉
= −〈uxx,ut〉 −

1
2
〈
|u|2 u,ut

〉
= −〈v,ut〉 .

Now making use of (8.10)

d
dtF4(u) = 〈v,vx +w〉

= 〈v,w〉

=
〈1

2 |u|
2 u+ uxx,w

〉
.

Note that from (8.10) we can see that w · u = 0 and hence

d
dtF4(u) = 〈uxx,w〉

=
〈
uxx, |u|2 ux − (ux · u)u

〉
.

(8.12)
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Now, through an integration by parts we have
〈
|u|2 ux,uxx

〉
= −

〈(
|u|2 ux

)
x
,ux

〉
= −2 〈u · ux,ux · ux〉+

〈
|u|2 uxx,ux

〉
and hence 〈

|u|2 ux,uxx
〉

= −〈u · ux,ux · ux〉 . (8.13)

In addition,

〈ux · u,u · uxx〉 = −〈(ux · uu)x ,ux〉

= −〈uxx · u,u · ux〉 − 2 〈ux · ux,u · ux〉

and hence
〈ux · u,u · uxx〉 = −〈ux · ux,u · ux〉 . (8.14)

Substituting (8.13) and (8.14) into (8.12) concludes the proof.

8.2 Temporal discretisation

For the reader’s convenience we will present an argument for designing the temporally
discrete scheme in the spatially continuous setting. As in the prequel, we consider a time
interval [0, T ] subdivided into a partition of N consecutive adjacent subintervals whose
endpoints are denoted t0 = 0 < t1 < . . . < tN = T . The n-th timestep is defined
as τn := tn+1 − tn. We will consistently refer to temporally discrete functions through
superscripts, i.e., yn(x) is the temporally discrete approximation of y(t, x) at t = tn. We
also denote yn+ 1

2 := 1
2 (yn + yn+1).

We consider the temporal discretisation of the mixed system (8.10) as follows: Given u0,
for n ∈ [0, N ] find un+1 such that

un+1 − un

τn
+ vn+1

x +wn+1 = 0

vn+1 − 1
2

(
|un|2 +

∣∣∣un+1
∣∣∣2)un+ 1

2 − u
n+ 1

2
xx = 0

wn+1 −
∣∣∣∣un+ 1

2
∣∣∣∣2 un+ 1

2
x +

(
u
n+ 1

2
x · un+ 1

2

)
un+ 1

2 = 0.

(8.15)

Remark 8.2.1 (Structure of the temporal discretisation). The temporal discretisation
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given in (8.15) is not a Runge-Kutta method. It resembles a Crank-Nicolson discretisation,
however the treatment of the nonlinearity is different. This treatment is similar to that
conducted in our temporal discretisations in Chapter 5. It is formally of second order and
is constructed such that it satisfies the next theorem. Although construction of higher order
methods is possible they become very complicated to write down so we will not press this
point here.
Notice that the diagnostic variables vn+1 and wn+1 are not evaluated at the midpoint,
suggesting our temporal discretisation does not resemble Crank-Nicolson. This is not the
case. In fact, this does not effect our temporal discretisation due to the variables’ diagnostic
nature. Through eliminating the diagnostic variables we observe a temporal discretisation
which is a second order perturbation of Crank-Nicolson.

Theorem 8.2.2 (Conservativity of the temporal discretisation). Let {un}Nn=0 be a tem-
porally discrete solution of (8.15) then we have

F4(un) = F4(u0) ∀n ∈ [0, N ].

Proof. It suffices to show that

F4(un+1)− F4(un) = 0

and then the result follows inductively. So

2
(
F4(un+1)− F4(un)

)
=
〈
un+1
x ,un+1

x

〉
− 〈unx,unx〉

− 1
4

〈∣∣∣un+1
∣∣∣2 , ∣∣∣un+1

∣∣∣2〉+ 1
4
〈
|un|2 , |un|2

〉
=
〈
un+1
x − unx,un+1

x + unx
〉

− 1
4

〈
un+1 − un,

∣∣∣un+1
∣∣∣2 un+1 +

∣∣∣un+1
∣∣∣2 un〉

− 1
4
〈
un+1 − un, |un|2 un+1 + |un|2 un

〉
= −

〈(
un+1 − un

)
,un+1

xx + unxx
〉

− 1
2

〈
un+1 − un,

∣∣∣un+1
∣∣∣2 un+ 1

2 + |un|2 un+ 1
2
〉

= −
〈
un+1 − un,vn+1

〉
,

through expanding differences, integrating by parts and using the scheme (8.15). Now,

200



Section 8.3 Page 201

again using the scheme

2
(
F4(un+1)− F4(un)

)
= τn

〈
vn+1
x +wn+1,vn+1

〉
= τn

〈
wn+1,vn+1

〉
= τn

〈
wn+1,

1
2

(∣∣∣un+1
∣∣∣2 un+ 1

2 + |un|2 un+ 1
2
)

+ un+ 1
2

xx

〉

= τn

〈
wn+1,u

n+ 1
2

xx

〉
,

in view of the orthogonality condition wn+1 · un+ 1
2 = 0 following from the third equation

of (8.15). Now we may use the definition of wn+1 and the identities (8.13) and (8.14) to
conclude.

Remark 8.2.3 (Conservation of other invariants). This discretisation does not lend itself
to conservation of other invariants, for example even the quadratic invariant F2 is not
conserved under this scheme. A class of Runge-Kutta methods that are able to exactly
conserve all quadratic invariants are the Gauss-Radau family, this is because they are
symplectic, see Chapter 2. When one considers higher order invariants, it seems that
schemes must be designed individually and there is no class that can exactly conserve all.

8.3 Spatial and full discretisation

In this section we describe the discretisation which we analyse for the approximation of
(8.1). We show that the scheme has a temporally constant energy functional consistent
with that of the original PDE system.
Recall we define our spatial partition and the appropriate finite element spaces as follows.

Definition 8.3.1 (Finite element space). We discretise (8.1) spatially using a piecewise
polynomial continuous finite element method. To that end we let S1 := [0, 1] be the unit
interval with matching endpoints and choose

0 = x0 < x1 < · · · < xM = 1.

Note that in the numerical experiments we take a larger periodic interval, however for
clarity of presentation we restrict our attention in this section to S1. We denote Jm =
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[xm, xm+1] to be the m–th subinterval and let hm := xm+1−xm be its length. We impose that
the ratio hm/hm+1 is bounded from above and below for m = 0, . . . ,M − 1. Let Pq(Jm)
denote the space of polynomials of degree q on the element Jm, then the discontinuous
finite element space is given by

Vq = {U : S1 → R : U |Jm ∈ Pq(Jm) for m = 0, ...,M − 1}.

Further to this we define the continuous finite element space as

VC
q = Vq ∩ C0

(
S1
)
,

where C0 denotes the space of continuous functions.

Throughout this section we will use capital Latin letters to denote spatially discrete trial
functions and Greek letters to denote discrete test functions.

Remark 8.3.2 (Use of the discontinuous finite element space). For clarity of exposition
in this chapter we primarily focus on a numerical scheme utilising the continuous finite
element space. There is no reason we have to design our scheme with such a restriction,
in fact our scheme and all analytical results herein also apply to an appropriately defined
spatially discontinuous scheme. We shall discuss this discontinuous scheme briefly in
Remark 8.3.8.

8.3.1 Spatial discretisation

Before we give the discretisation let us first consider a direct semi-discretisation of the
mixed system (8.10), to find U ,V ,W ∈ VC

q such that

〈(U t + V x +W ) ,φ〉 = 0 ∀φ ∈ VC
q〈

V − 1
2 |U |

2U ,ψ
〉

+ 〈Ux,ψx〉 = 0 ∀ψ ∈ VC
q〈(

W − |U |2Ux + (Ux ·U)U
)
,χ
〉

= 0 ∀χ ∈ VC
q .

One may run through the calculation in the proof of Proposition 8.1.7 analogously to see
that

d
dtF4(U) = 〈V ,W 〉 , (8.16)
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whereby in the continuous case one uses the fact that v and w are orthogonal. In the
discrete setting there is no reason why this should be the case and, indeed, except in
very special cases, it is not. This necessitates a formulation that forces 〈V ,W 〉 = 0
thus ensuring conservation of F4(U). We achieve this through a Lagrange multiplier
approach encapsulated by the following spatially discrete scheme, to seek U ,V ,W ∈ VC

q

and P ∈ R/{0} such that

〈U t + V x +W ,φ〉 = 0 ∀φ ∈ VC
q〈

V − 1
2 |U |

2U ,ψ
〉

+ 〈Ux,ψx〉 = 0 ∀ψ ∈ VC
q〈

W − |U |2Ux + (Ux ·U)U ,χ
〉

= 0 ∀χ ∈ VC
q

P 〈V ,χ〉+ ζ 〈V ,W 〉 = 0 ∀ζ ∈ R/{0}

U 0 = Πu0,

(8.17)

where Π represents the L2 projection into the finite element space.

Theorem 8.3.3 (Conservativity of the spatially discrete scheme). Let U ,V ,W , P solve
the spatially discrete formulation (8.17) then

d
dtF4(U) = d

dt

(1
2 〈Ux,Ux〉 −

1
8
〈
|U |2 , |U |2

〉)
= 0.

Proof. An analogous argument to the proof of Proposition 8.1.7 yields (8.16). To conclude
pick ζ = P and χ = W to see that

2P 〈V ,W 〉 = 0,

as required.

Remark 8.3.4 (Compatibility of the scheme with the Poisson bracket). Notice that in
view of Theorem 8.3.3 the spatial discretisation is compatible with the Poisson structure
of the vmKdV system, indeed, using the same formulation as (8.11) we have that the
numerical scheme can be written as

U t = {U ,F 4(U)} = − (Π (V x) +W ) ,

where Π denotes the L2 orthogonal projector onto VC
q . In addition, the evolution of the
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Hamiltonian can be described consistently

d
dtF4(U) = {F4(U), F4(U)} = 0.

It is important to note that the evolution of other quantities, such as further invariants
are not compatible with this structure, for example

d
dtF2(U) = {F2(U), F4(U)} 6= 0.

Remark 8.3.5 (Issues with preserving unsigned invariants). Typically, preserving an in-
variant of a continuous problem numerically leads to many desirable properties, such as
boundedness of the numerical scheme and a methodology of obtaining a priori error bounds,
see [176]. Unfortunately this depends on the energy being signed as this often leads to in-
variant inducing a norm. Consider, for example, the vmKdV-type equation described by

ut −
3
2u · uux + uxxx = 0. (8.18)

We can show, through a similar argument to Proposition 8.1.1, that (8.18) possesses the
sign definite Hamiltonian‹F4(u) := 1

2 〈ux,ux〉+ 1
8
〈
|u|2 , |u|2

〉
= 1

2 ‖ux‖
2
L2(S1) + 1

8 ‖u‖
4
L4(S1) dx.

The conservation of this invariant immediately implies that, for any t > 0,

1
2 ‖ux(t)‖

2
L2(S1) + 1

8 ‖u(t)‖4
L4(S1) = 1

2 ‖ux(0)‖2
L2(S1) + 1

8 ‖u(0)‖4
L4(S1) ,

guaranteeing stability of solutions without the necessity of the interpolation arguments of
Proposition 8.1.3. Similarly to our spatially discrete scheme for vmKdV, we can define
the spatially discrete scheme for this vmKdV-type problem by seeking U ,V ,W ∈ VC

q and
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P ∈ R/{0} such that

〈U t + V x +W ,φ〉 = 0 ∀φ ∈ VC
q〈

V + 1
2 |U |

2U ,ψ
〉

+ 〈Ux,ψx〉 = 0 ∀ψ ∈ VC
q〈

W + |U |2Ux − (Ux ·U)U ,χ
〉

= 0 ∀χ ∈ VC
q

P 〈V ,χ〉+ ζ 〈V ,W 〉 = 0 ∀ζ ∈ R/{0}

U 0 = Πu0.

Through an almost identical argument to that in the proof of Theorem 8.3.3 we find that
this spatially discrete scheme conserves the Hamiltonian functional in the sense that

d
dt
‹F4(U) = d

dt

(1
2 ‖Ux‖2

L2(S1) + 1
8 ‖U‖

4
L4(S1)

)
= 0,

so our scheme is numerically stable in the sense that

1
2 ‖Ux(t)‖2

L2(S1) + 1
8 ‖U(t)‖4

L4(S1) = 1
2 ‖Ux(0)‖2

L2(S1) + ‖U (0)‖4
L4(S1) ,

so we have boundedness of the numerical approximation in not only L4 but also in a
discrete H1 norm. We expect that the space of exact solutions for (8.18) and (8.1) are quite
different and leave the quantification of solutions of this problem for future work. For our
spatially discrete scheme for vmKdV such elegant stability bounds cannot be shown, and
conservation of F4(U) ultimately tells us that

1
2 ‖Ux(t)‖2

L2(S1) −
1
8 ‖U(t)‖4

L4(S1) = 1
2 ‖Ux(0)‖2

L2(S1) − ‖U(0)‖4
L4(S1) ,

which, while suggesting that the numerical scheme is likely bounded, does not conclusively
prove it. The stability analysis and a priori analysis for this scheme are left as future
work.

8.3.2 Fully discrete scheme

Making use of the semi discretisations developed in §8.2 and §8.3.1 we consider a fully dis-
crete approximation that consists of finding a sequence of functions Un+1,V n+1,W n+1 ∈
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VC
q and P n+1 ∈ R/{0} such that for each n ∈ [0, N − 1] we have

〈
Un+1 −Un

τn
+ V n+1

x +W n+1,φ

〉
= 0 ∀φ ∈ VC

q〈
V n+1 − 1

2

(
|Un|2 +

∣∣∣Un+1
∣∣∣2)Un+1/2,ψ

〉
+
〈
Un+1/2
x ,ψx

〉
= 0 ∀ψ ∈ VC

q〈
W n+1 −

∣∣∣Un+1/2
∣∣∣2Un+1/2

x +
(
Un+1/2
x ·Un+1/2

)
Un+1/2,χ

〉
= 0 ∀χ ∈ VC

q

P n+1
〈
V n+1,χ

〉
+ ζ

〈
V n+1,W n+1

〉
= 0 ∀ζ ∈ R/{0}

U 0 = Πu0,

(8.19)

where Π denotes the L2 orthogonal projector into the finite element space VC
q at the

initial point in time. This is the direct discretisation of the mixed system (8.10) with the
temporal discretisation as that proposed in §8.2 with an additional equation for a unknown
real number that represents a Lagrange multiplier ensuring 〈V n,W n〉 = 0 for all n.

Remark 8.3.6 (Adaptivity). Note that our method permits spatial adaptivity over time,
that is to say that our spatial mesh, and therefore our finite element spaces, can change
from one time step to the next. However, we shall assume that our spatial mesh is fixed
over all time here for simplicity. Note that multiple complications arise from allowing
spatial adaptivity as discussed in Chapter 6 and §7.4, and for the arguments in the sequel
to hold without the introduction of nonstandard interpolation operators we require nested
finite element spaces.

Theorem 8.3.7 (Conservativity of the fully discrete scheme). Let {Un}Nn=0 be the fully
discrete scheme generated by (8.19), then we have that

F4(Un) = F4(U 0) ∀n ∈ [0, N ].

Proof. It suffices to show that

F4(Un+1)− F4(Un) = 0

206



Section 8.3 Page 207

and then the result follows inductively. To this end

2
(
F4(Un+1)− F4(Un)

)
=
〈
Un+1
x ,Un+1

x

〉
− 〈Un

x,U
n
x〉

− 1
4

〈∣∣∣Un+1
∣∣∣2 , ∣∣∣Un+1

∣∣∣2〉+ 1
4
〈
|Un|2 , |Un|2

〉
=
〈
Un+1
x −Un

x,U
n+1
x +Un

x

〉
− 1

4

〈
Un+1 −Un,

∣∣∣Un+1
∣∣∣2Un+1 +

∣∣∣Un+1
∣∣∣2Un

〉
− 1

4
〈
Un+1 −Un, |Un|2Un+1 + |Un|2Un

〉
= −

〈
Un+1 −Un,V n+1

〉
,

through expanding differences and using the second equation of (8.19). Now, using the
first equation of (8.19)

2
(
F4(Un+1)− F4(Un)

)
= τn

〈
V n+1

x +W n+1,V n+1
〉

= τn
〈
W n+1,V n+1

〉
= 0

using the fourth equation of (8.19) with ζ = P n+1 and χ = W n+1, concluding the proof.

Remark 8.3.8 (A discontinuous fully discrete scheme). As mentioned in Remark 8.3.2,
we do not necessarily need to assume that our finite element space is continuous to yield
a conservative scheme. In fact, as we discussed in Chapter 4 there are significant benefits
to a discontinuous approximation. If the scheme is discontinuous it is possible to reduce
the numerical scheme from a system to primal form which would significantly improve the
performance.
To introduce a discontinuous finite element scheme we borrow operators representing dis-
crete first and second spatial derivatives from Chapter 5. When referring to jumps J·K
and averages {·} in this chapter it is important to note that these definitions are all com-
ponentwise, i.e., they act on each vector component independently and do not change the
vectorial dimension of a given function. Let Z ∈ Vq, then recall we define the first discrete
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spatial derivative through G : Vq → Vq such that

〈G (Z) ,φ〉 = 〈Zx,φ〉 −
M−1∑
m=0

JZmK · {φm} ∀φ ∈ Vq.

Additionally, recall the symmetric interior penalty bilinear form, given in Definition 5.1.6,

Ah (Z,φ) = 〈Zx,φx〉+
M−1∑
m=0
− JZmK · {φxmm}

− JφmK · {Zxm}+ σ

hm
JZxmK · JφxmK ∀φ ∈ Vq,

where σ is a sufficiently large constant to guarantee stability. Recall that G satisfies the
discrete integration by parts identity

〈G (Z) ,φ〉 = −〈Z,G (φ)〉 , (8.20)

and the symmetric interior penalty form is bilinear. With these definitions in mind we can
introduce the discontinuous fully discrete scheme as follows. Seek the sequence of functions
Un+1,V n+1,W n+1 ∈ Vq and P n+1 ∈ R/{0} such that for each n ∈ [0, N − 1] we have

〈
Un+1 −Un

τn
+ G

(
V n+1

)
+W n+1,φ

〉
= 0 ∀φ ∈ Vq〈

V n+1 − 1
2

(
|Un|2 +

∣∣∣Un+1
∣∣∣2)Un+1/2,ψ

〉
+Ah

(
Un+1/2,ψ

)
= 0 ∀ψ ∈ Vq〈

W n+1 −
∣∣∣Un+1/2

∣∣∣2 G (Un+1/2
)

+
(
G
(
Un+1/2

)
·Un+1/2

)
Un+1/2,χ

〉
= 0 ∀χ ∈ Vq

P n+1
〈
V n+1,χ

〉
+ ζ

〈
V n+1,W n+1

〉
= 0 ∀ζ ∈ R/{0}

U 0 = Πu0,

where Π denotes the L2 orthogonal projector into the finite element space Vq at the initial
point in time. Following the methodology outlined in the proof of Theorem 8.3.7, along
with the bilinearity of Ah (·, ·) and (8.20), we have that the discrete energy

F̂4(Un) = 1
2Ah (U ,U )− 1

8
〈
|U |2 , |U |2

〉
,

is preserved over time, i.e.,

F̂4(Un) = F̂4(U 0) ∀n ∈ [0, N ].

208



Section 8.4 Page 209

Note that as the finite element spaces are discontinuous we can employ local discontinuous
Galerkin techniques, similarly to Remark 4.2.6, to rewrite our scheme in primal form
speeding up the implementation by orders of magnitude.

8.4 Numerical experiments

In this section we illustrate the performance of the method proposed through a series
of numerical experiments. Similarly to the prequel the brunt of the computational work
has been carried out using Firedrake [153]. We employ a Gauss quadrature of order 4q,
where q is the degree of the finite element space, to minimise quadrature error introduced
into the implementation. Indeed, at this degree all integrals are performed exactly with
the exception of the projection of the initial condition. When computing errors we shall
utilise a 4q + 4 degree Gauss quadrature. The nonlinear system of equations are then
approximated using the PETSc [20, 21] Newton line search method with a tolerance of
10−12 on each time step. A combination of Paraview and Matplotlib have been used as
a visualisation tool. The code written for this purpose is freely available at [106]. For
each benchmark test we fix the polynomial degree q and compute a sequence of solutions
with h = h(i) = 2−i and τ chosen either so τ � h, to make the temporal discretisation
error negligible, or so τ = h so temporal discretisation error dominates. This is done for
a sequence of refinement levels, i = l, . . . , L. We have previously used S1 as the unitary
periodic domain. For our numerical experiments, we have scaled the domain to [0, 40] for
computational convenience.

Remark 8.4.1 (Numerical deviation in F4). While the analysis shows that our scheme
exactly preserves the energy over arbitrarily long time, the implementation relies on linear
and nonlinear solvers that inherently require further approximation. The result of this is
that the energy may deviate locally up to the tolerance of the linear and nonlinear solvers
which introduces the possibility of these errors propagating over time. In our numerical
tests we focus on studying the global deviation in time, F4(Un) − F4(U0), which includes
any propagation arising from solver or precision errors.

8.4.1 Test 1 - Asymptotic benchmarking of a 1-soliton solution

We take d = 2 and
u0 = 2µ

cosh ((µ (x− cµ)))E, (8.21)
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over the periodic domain S1([0, 40]) with E = (0.8, (1− 0.82)0.5)T, µ = 1 and cµ = 20.
The exact solution is then given by (8.5). We take a uniform timestep and uniform
meshes that are fixed with respect to time. Convergence results are shown in Figure
8.2 and conservativity over long time is given in Figure 8.1. Note that for the 1-soliton
solution we have W n ≡ 0 for all n in which case the Lagrange multiplier is not required
as 〈V n,W n〉 = 0 trivially for all n.
For this test case we also investigate how well the qualitative structure of the solution is
captured, similarly to §5.4 and [32] through the amplitude error, phase error and shape
error of a single soliton over time. Recall that we define X as the set of Lagrange degrees
of freedom of our finite element functions.
Further recall the following definitions. The amplitude error for Ui is then given by

max
X

Ui −max
X

ui.

If the amplitude error is positive then the numerical soliton is larger than the exact solu-
tion, and vice versa. Similarly we define the phase error as

epi = argmax
X

Ui − argmax
X

ui,

where argmax represents the spatial coordinate associated to the maximum over X. If the
phase error is positive then the numerical approximation is moving faster than the exact
solution, and vice versa. Note that this discrete measure of the error cannot detect shifts
in phase which are smaller than the distance between degrees of freedom. The amplitude
and phase errors for this test case can be seen in Figure 8.3 and Figure 8.4 respectively.
Additionally recall that we define the shape error by shifting the exact solution by the
distance of the phase error and computing the L2 error at fixed times, i.e., the discrete
shape error is ∥∥∥ui(x+ epi, tn)− Ui(x, tn)

∥∥∥
L2(S1([0,40]))

.

The shape error for this test can be seen in Figure 8.5.
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Figure 8.1: Here we examine the conservative discretisation scheme with various poly-
nomial degrees, q, approximating the exact solution (8.5) with initial conditions given
by (8.21). We show the deviation in the two invariants Fi, i = 2, 4, corresponding to
momentum and energy. In each test we take a fixed spatial discretisation parameter of
h = 0.25 and fixed time step of τ = 0.001. Notice that in each case the deviation in energy
is smaller than the solver tolerance of 10−12 and the deviation in momentum is bounded.
In addition, as the degree of approximation is increased the deviation in momentum be-
comes smaller, in this case by around two orders of magnitude per polynomial order. The
simulations are simulated for long time to test conservativity with T = 100 in each case.
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Figure 8.2: Here we examine the conservative discretisation scheme with various poly-
nomial degrees, q, approximating the exact solution (8.5) with initial conditions given
by (8.21). We show the errors measured in the L∞(0, tn;L2(S1([0, 40]))) norm for each
component of the system and the EOC for test runs that benchmark both the spa-
tial and temporal discretisation and show that the scheme is of optimal order. We
use eui := ‖ui − Ui‖L∞(0,tn;L2(S1([0,40]))) for i = 1, 2, the components of the solution
u = (u1, u2)T and numerical approximation U = (U1, U2)T.

(a) Here q = 1 and we fix τ = 0.00001. This is suf-
ficiently small that the spatial discretisation error
dominates.

(b) Here q = 2 and we fix τ = 0.00001. This is suf-
ficiently small that the spatial discretisation error
dominates.

(c) Here q = 3 and we fix τ = 0.00001. This is suf-
ficiently small that the spatial discretisation error
dominates.

(d) Here q = 2 and on every refinement level we
choose a coupling τ = Ch. Note that the time dis-
cretisation error here dominates.
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Figure 8.3: We examine the difference in maximal amplitude of the solutions for various
polynomial degrees, q, compared to the exact solution (8.5) with initial conditions given
by (8.21). When the difference in amplitude is positive the numerical approximation is
larger than the exact solution, and when it is negative the numerical approximation is
smaller. We plot these difference for both vector components of the soliton independently.
In these simulations we take a fixed spatial discretisation parameter of h = 0.08 and a
fixed time step of τ = 0.05. We notice that the deviation in amplitude is bounded over
time and decreases with polynomial degree.

(a) Here q = 1. (b) Here q = 2. (c) Here q = 3.

Figure 8.4: We examine the difference in speed between numerical solutions for various
polynomial degrees, q, and the exact solution (8.5) with initial conditions given by (8.21).
We track this difference by looking at the spatial coordinate of the maximal amplitude for
the numerical and exact solutions, and take the difference. We plot these differences for
both vector components of the soliton independently. In these simulations we take a fixed
spatial discretisation parameter of h = 0.08 and a fixed time step of τ = 0.05. We notice
that the phase error decreases over time, i.e., the numerical solution travels slower than
its exact counterpart.

(a) Here q = 1. (b) Here q = 2. (c) Here q = 3.
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Figure 8.5: We examine the difference in the shape between numerical solu-
tions for various polynomial degrees, q, and the exact solution (8.5) with ini-
tial conditions given by (8.21). Mathematically we can write the shape error as
miny∈S1([0,40]) ‖ui(x+ y, tn)− Ui(x, tn)‖L2(S1([0,40])) for each component of the solution. In
these simulations we take a fixed spatial discretisation parameter of h = 0.08 and a fixed
time step of τ = 0.05. We notice that the shape error does not propagate over long time
and decreases as the polynomial degree increases.

(a) Here q = 1. (b) Here q = 2. (c) Here q = 3.
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8.4.2 Test 2 - Asymptotic benchmarking of a 2-soliton solution

We take d = 2 and
u0 = Fµ,ν

G
E1 + Fν,µ

G
E2, (8.22)

with Fµ,ν given in (8.7) G given in (8.8). The parameters are E1 = (1, 0)T, E2 = (0, 1)T,
µ =
√

2, ν =
√

3, cν = 24.9, cµ = 25.1. The exact solution is then given by (8.1.1). We take
a uniform timestep and uniform meshes that are fixed with respect to time. Convergence
results are shown in Figure 8.7 and conservativity over long time is given in Figure 8.6.
Note that for 2-soliton solution we have W n 6= 0 in general in which case the Lagrange
multiplier is required to ensure 〈V n,W n〉 = 0 for all n and that the results of Theorem
8.3.7 hold.

Figure 8.6: We examine the conservative discretisation scheme with various polynomial
degrees, q, approximating the exact solution (8.6) with initial conditions given by (8.22).
We show the deviation in the two invariants Fi, i = 2, 4, corresponding to momentum
and energy respectively. In each test we take a fixed spatial discretisation parameter of
h = 0.25 and fixed time step of τ = 0.001. Notice that in each case the deviation in energy
is smaller than the solver tolerance of 10−12 and the deviation in momentum is bounded.
The simulations are simulated for long time to test conservativity with T = 100 in each
case.
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Figure 8.7: We examine the conservative discretisation scheme with various polyno-
mial degrees, q, approximating the exact solution (8.6) with initial conditions given by
(8.22). We show the errors measured in the L∞(0, tn;L2(S1([0, 40]))) norm for each
component of the system and the EOC for test runs that benchmark both the spa-
tial and temporal discretisation and show that the scheme is of the correct order. We
use eui := ‖ui − Ui‖L∞(0,tn;L2(S1([0,40]))) for i = 1, 2, the components of the solution
u = (u1, u2)T.

(a) Here q = 1 and we fix τ = 0.00001. This is suf-
ficiently small that the spatial discretisation error
dominates.

(b) Here q = 2 and we fix τ = 0.00001. This is suf-
ficiently small that the spatial discretisation error
dominates.

(c) Here q = 3 and we fix τ = 0.00001. This is suf-
ficiently small that the spatial discretisation error
dominates.

(d) Here q = 2 and on every refinement level we
choose a coupling τ = Ch. Note that the time dis-
cretisation error here dominates.
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8.4.3 Test 3 - Dynamics of 2 and 3-soliton solutions

8.4.3.1 Subtest 1

We take d = 2 and
u0 = Fµ,ν

G
E1 + Fν,µ

G
E2, (8.23)

with Fµ,ν given in (8.7) G given in (8.8). The parameters are E1 = ( 9
10 ,
√

19
10 )

T
, E2 =

( 1
10 ,

3
√

11
10 )

T
, µ =

√
2, ν =

√
3, cν = 10, cµ = 13. Figure 8.8 shows some plots of the

dynamics of the numerical approximation.

8.4.3.2 Subtest 2

We take d = 2 and
u0 = Fµ,ν

G
E1 + Fν,µ

G
E2, (8.24)

with Fµ,ν given in (8.7) G given in (8.8). The parameters are E1 = (1, 0)T, E2 = (0, 1)T,
µ = −

√
2, ν =

√
3, cµ = 9, cν = 13. Figure 8.9 shows some plots of the dynamics

of the numerical approximation. We also examine the difference in the amplitude and
phase between the numerical and exact solitons in each vector component before and after
the soliton interaction in Table 8.1. The amplitude and phase errors are calculated as
described in the one soliton case.

8.4.3.3 Subtest 3

In addition to the 2-soliton interactions we also take the opportunity to examine the
dynamics of a 3-soliton interaction. We take d = 2 and

u0 =
3∑
i=1

2µi
cosh ((µi (x− cµi)))

Ei (8.25)

with E1 = E3 = (1, 0)T,E2 = (0, 1)T, µ1 = 19
10 , µ2 = −40

25 , µ3 = 13
10 and cµ1 = 4, cµ2 =

12, cµ3 = 21. Figure 8.10 shows the dynamics of the numerical approximation.
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Figure 8.8: The dynamics of the approximation generated by the conservative discreti-
sation scheme with polynomial degree q = 1 approximating a smooth solution with initial
conditions given by (8.23).

Figure 8.9: The dynamics of the approximation generated by the conservative discreti-
sation scheme with polynomial degree q = 1 approximating a smooth solution with initial
conditions given by (8.24).
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Table 8.1: The phase and amplitude errors committed by the conservative discretisation scheme approximating
the smooth solution (8.24). We display the minimal and maximal errors both before and after the soliton interactions for
various coupled temporal and spatial discretisations and various polynomial degrees. We notice, as in the one soliton case,
our numerical solitons travel slower than their exact counterparts both before and after soliton interactions, with the phase
error generally increasing after the soliton interactions. Note that when the phase error is measured to be zero this does not
mean that the phase of the numerical scheme is exact, only that the phase error is smaller than the distance between the
degrees of freedom, h

q
, of our numerical approximation. The error in amplitude also increases after the soliton interaction,

but remains reasonably small and decreases with the polynomial degree.

τ h Degree Phase error
for t ∈ [0, 2.0]

Phase er-
ror for
t ∈ [6.0, 8.0]

Amplitude er-
ror for t ∈
[0, 2.0]

Amplitude er-
ror for t ∈
[6.0, 8.0]

min max min max min max min max
1 -3.2e-01 0.0e+00 -1.3e+00 -6.4e-01 -2.5e-01 3.2e-03 -2.6e-01 2.1e-02

2.0e-02 3.2e-01 2 -1.6e-01 0.0e+00 -1.6e-01 0.0e+00 -2.0e-02 8.8e-03 -3.9e-02 2.3e-02
3 -1.1e-01 0.0e+00 -1.1e-01 0.0e+00 -6.2e-03 4.3e-03 -1.4e-02 1.2e-02
1 -1.6e-01 0.0e+00 -4.8e-01 -1.6e-01 -7.0e-02 -3.8e-03 -7.6e-02 -6.1e-03

1.0e-02 1.6e-01 2 0.0e+00 0.0e+00 -8.0e-02 0.0e+00 -2.1e-03 1.2e-03 -4.4e-03 2.8e-03
3 -5.3e-02 0.0e+00 -5.3e-02 0.0e+00 -7.9e-04 7.7e-04 -2.3e-03 2.2e-03
1 -8.0e-02 0.0e+00 -8.0e-02 0.0e+00 -1.6e-02 -5.7e-04 -1.8e-02 -4.8e-03

5.0e-03 8.0e-02 2 -4.0e-02 0.0e+00 0.0e+00 0.0e+00 -2.2e-04 1.1e-04 -5.3e-04 3.7e-04
3 -2.7e-02 0.0e+00 -2.7e-02 0.0e+00 -1.2e-04 7.7e-05 -3.5e-04 2.7e-04
1 -4.0e-02 0.0e+00 -4.0e-02 0.0e+00 -3.5e-03 -5.9e-05 -4.9e-03 4.0e-05

2.5e-03 4.0e-02 2 -2.0e-02 0.0e+00 0.0e+00 0.0e+00 -2.6e-05 1.4e-05 -7.6e-05 3.6e-05
3 -1.3e-02 0.0e+00 -1.3e-02 0.0e+00 -1.9e-05 1.1e-05 -5.6e-05 3.5e-05

(a) Phase and amplitude errors for the first vector component of the solution.

τ h Degree Phase error
for t ∈ [0, 2.0]

Phase er-
ror for
t ∈ [6.0, 8.0]

Amplitude er-
ror for t ∈
[0, 2.0]

Amplitude er-
ror for t ∈
[6.0, 8.0]

min max min max min max min max
1 -3.2e-01 0.0e+00 -9.6e-01 -3.2e-01 -1.4e-01 -1.2e-02 -1.0e-01 -9.3e-03

2.0e-02 3.2e-01 2 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -5.0e-03 1.2e-03 -7.5e-03 3.9e-03
3 0.0e+00 0.0e+00 -1.1e-01 0.0e+00 -8.2e-04 7.2e-04 -2.9e-03 2.8e-03
1 -1.6e-01 0.0e+00 -3.2e-01 0.0e+00 -3.2e-02 -1.1e-03 -2.8e-02 -4.4e-03

1.0e-02 1.6e-01 2 -8.0e-02 0.0e+00 0.0e+00 0.0e+00 -4.0e-04 1.9e-04 -3.3e-04 2.9e-04
3 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -1.2e-04 7.0e-05 -3.5e-04 4.9e-04
1 -8.0e-02 0.0e+00 -8.0e-02 0.0e+00 -7.0e-03 -1.9e-04 -9.1e-03 1.6e-03

5.0e-03 8.0e-02 2 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -3.9e-05 1.8e-05 -1.4e-05 9.7e-05
3 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -1.9e-05 1.0e-05 -4.4e-05 8.0e-05
1 -4.0e-02 0.0e+00 -4.0e-02 0.0e+00 -1.5e-03 -2.0e-05 -2.1e-03 7.0e-05

2.5e-03 4.0e-02 2 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -7.6e-06 7.7e-06 -5.7e-07 2.7e-05
3 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -3.4e-06 2.1e-06 -5.6e-06 1.5e-05

(b) Phase and amplitude errors for the second vector component of the solution.
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Figure 8.10: The dynamics of the approximation generated by the conservative discreti-
sation scheme with polynomial degree q = 1 approximating a smooth solution with initial
conditions given by (8.25).
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8.4.4 Test 4 - Propagation of solitary waves from smooth initial
data

We take d = 2 and u0 = (u0,1, u0,2) with

u0,1 = sin
(
π

20x
)

u0,2 = cos
(
π

10x
)
.

(8.26)

The solution here is smooth and solitary waves begin to form quickly into the simulation.
Plots of the solutions are given in Figure 8.13 as well as conservativity plots in Figure
8.11.

Figure 8.11: The conservative discretisation scheme with various polynomial degrees,
q, approximating the solution to (8.1) with initial conditions given by (8.26). We show
the deviation in the two invariants Fi, i = 2, 4, corresponding to momentum and energy
respectively. In each test we take a fixed spatial discretisation parameter of h = 0.25
and fixed time step of τ = 0.001. Notice that in each case the deviation in energy is
smaller than the solver tolerance of 10−12 and the deviation in momentum is bounded.
The simulations are simulated for long time to test conservativity with T = 100 in each
case.
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Figure 8.12: The conservative scheme with various polynomial degrees, q, approximating
the solution to (8.1) with initial conditions given by (8.26). We now show the deviation in
the two invariants Fi, i = 2, 4, locally, that is, for each n, we measure |F4(Un)− F4(Un−1)|.
In each test we take a fixed spatial discretisation parameter of h = 0.25 and fixed time
step of τ = 0.001. Notice that in each case the deviation in energy is smaller than the
solver tolerance of 10−12 and the deviation in momentum is bounded. The simulations
run over long time to test conservativity with T = 100 in each case. This result should
be compared to the study of the global deviation |F4(Un)− F4(U0)| given in Figure 8.11
which accumulates in time through propagation of precision errors over time.
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Figure 8.13: Here we show the dynamics of the approximation generated by the conser-
vative discretisation scheme with polynomial degree q = 1 approximating the solution to
(8.1) with initial conditions given by (8.26). Notice that initially, dispersive waves emanate
from the discontinuity.

222



Section 8.4 Page 223

8.4.5 Test 5 - Solution with discontinuous initial data

We take d = 2 and u0 = (u0,1, u0,2) with

u0,1 =

1 for x ∈ [10, 20]

0 otherwise.

u0,2 =

0 for x ∈ [20, 30]

1 otherwise.

(8.27)

The solution here is discontinuous in both components. This is a particularly tough
scenario to simulate as there is no guarantee of classical solutions. We align the mesh to
the discontinuities so that the discrete energy at the initial condition makes sense. Plots
of the solutions are given in Figure 8.15 as well as conservativity plots in Figure 8.14.
The phenomena demonstrated in this experiment are related to the observations in [82]
where, for the scalar KdV equation, arguments based on Whitham’s modulation theory
are presented.

Figure 8.14: Here we examine the conservative discretisation scheme with various polyno-
mial degrees, q, approximating the solution to (8.1) with initial conditions given by (8.27).
We show the deviation in the two invariants Fi, i = 2, 4, corresponding to momentum
and energy respectively. In each test we take a fixed spatial discretisation parameter of
h = 0.25 and fixed time step of τ = 0.001. Notice that in each case the deviation in energy
is smaller than the solver tolerance of 10−12 and the deviation in momentum is bounded.
The simulations are simulated for long time to test conservativity with T = 100 in each
case.
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Figure 8.15: Here we show the dynamics of the approximation generated by the conser-
vative discretisation scheme with polynomial degree q = 1 approximating the solution to
(8.1) with initial conditions given by (8.27). Notice that initially, dispersive waves emanate
from the discontinuity.
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8.5 Conclusion

In this chapter we have constructed a Galerkin approximation for the vmKdV equation
that is consistent with the underlying algebraic structure of the PDE. We have proven
that both the semi-discretisations as well as the fully discrete problems are conservative
and numerically shown that this is true in practice. In addition, we have given numerical
evidence to suggest that the method is of optimal order, that is,

‖u−U‖L∞((0,T );L2(S1)) = O(τ 2 + hq+1).

We expect methods designed in this fashion, which is quite generic, to be successful in the
simulation of geophysical fluid flows.
Extensions to work in this chapter will be carried out by exploring applications to further
systems of Hamiltonian PDEs, a thorough error analysis, and exploiting the possibility of
constructing schemes with multiple conserved quantities.
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