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Abstract: This study introduces a hydro-climatic extremes assessment framework that combines
the latest climate simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6)
HighResMIP with the Soil and Water Assessment (SWAT) model, and examines the influence of
the different climate model resolutions. Sixty-six hydrological and environmental flow indicators
from the Indicators of Hydrologic Alteration (IHA) were computed to assess future extreme flows
in the Kelantan River Basin (KRB), Malaysia, which is particularly vulnerable to flooding. Results
show that the annual precipitation, streamflow, maximum and minimum temperatures are projected
to increase by 6.9%, 9.9%, 0.8 ◦C and 0.9 ◦C, respectively, by the 2021–2050 period relative to the
1985–2014 baseline. Monthly precipitation and streamflow are projected to increase especially for the
Southwest Monsoon (June–September) and the early phase of the Northeast Monsoon (December)
periods. The magnitudes of the 1-, 3-, 7-, 30- and 90-day minima flows are projected to increase
by 7.2% to 8.2% and the maxima flows by 10.4% to 28.4%, respectively. Lastly, changes in future
hydro-climatic extremes are frequently quite different between the high-resolution and low-resolution
models, e.g., the high-resolution models projected an increase of 11.8% in mean monthly flow in
November-December-January compared to 3.2% for the low-resolution models.

Keywords: climate change; CMIP6; extreme; SWAT; flood; IHA; global warming; drought;
Malaysia; Kelantan

1. Introduction

Climate change features pervasive global warming driven by anthropogenic emissions
of greenhouse gases (GHGs), and is one of the major global threats that strongly affect the
environment, ecosystems and human society. Intensification of precipitation and increases in
temperature due to global warming have been observed in Asia in the past few decades [1–3].
These changes have a major impact on different hydrological systems and consequently
increase the risk of regional water hazards such as flood and drought [4,5]. For example,
damage caused by floods exceeds more than USD 10 billion a year in China [6,7]. Severe
droughts can significantly reduce agricultural yields and freshwater supplies, resulting
in social-economic losses [8]. Therefore, quantification of the climate change impact on
precipitation extremes and subsequent extreme flows is important in developing better
adaptation, more effective mitigation and greater resilience against water hazards.

The numerical modelling of the climate systems is one of the fundamental pillars in
studying the changes in hydro-climatic extremes under different scenarios of anthropogenic
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GHG emissions. For such studies, general circulation models (GCMs) are extensively
used to project scenarios of potential climate change across the earth system. Previous
studies based on GCM experiments produced for the Coupled Model Intercomparison
Project phase 5 (CMIP5) have projected a continuous global warming and increase in
temperature extremes across the globe in the 21st century [9]. For hydrological research,
outputs from the GCMs can provide useful driving data of hydrological models simulating
the interaction between climate change and hydrological processes. Betts, et al. [10]
applied the HadGEM3A-GA3.0, a high-resolution CMIP5 GCM (~60 km), to examine
global freshwater availability under the RCP8.5 scenario. They noticed the water cycle
changes are complicated and varied in different geographical regions, with mean river
flow increase two times greater than the historical period in South and East Asia. A
comparison of GCM resolution on a global hydrological cycle assessment was conducted
by Vannière, et al. [11], who found increases in global precipitation from low to high
resolutions models. However, uncertainties in the GCM simulations still require careful
and more detailed consideration at basin scale.

A new generation of GCM simulations produced for Coupled Model Intercomparison
Project Phase 6 (CMIP6) have been developed and released [12]. These experiments
are based on state-of-the-art GCMs which are more capable of describing the complex
physical processes within the climate system compared to the previous GCM versions [13].
The standard set of CMIP6 simulations are at relatively low resolutions of 100–200 km.
However, the release of simulations from the High-Resolution Model Intercomparison
Project (HighResMIP, Haarsma et al. [14]) for CMIP6 provides a good opportunity to study
hydrological changes at unprecedented resolutions under present and future climates.
Hence, application of the high resolution CMIP6 experiments in hydrological modelling at
basin scale is likely to be a hotspot of hydrological research in the near future, especially for
the impact assessment of hydrological extremes [15]. Previous studies based on regional
climate models (RCMs) have found a considerable sensitivity of simulated basin-scale
precipitation to changes in RCM model resolution, and such a resolution-dependance can
have an impact on hydrological simulations [16,17]. However, considerable uncertainty
remains both in RCM and GCM simulations requiring further investigation in order to
understand how hydrological changes are influenced by the increase in model resolution.
The availability of high-resolution GCMs from HighResMIP allows the comparison of
different GCM resolutions and hydrological outputs, especially in the simulation of tropical
extreme river flows, and provides a good opportunity to study the effect of model resolution
on hydrological assessments. In particular HighResMIP provides simulations at resolutions
similar to previous RCM based studies without the methodological uncertainties inherent
in using RCMs, i.e., definition of the domain, nesting, nudging, etc.

In tropical Asia, extreme flows are sensitive to extreme climatic events, particularly in
small catchments [18]. Numerous studies have investigated the impacts of climate change
on extreme flows in different river basins over Southeast Asia [19–21], where the reported
changes vary from place to place. Based on the recent Coordinated Regional Climate
Downscaling Experiment—Southeast Asia (CORDEX-SEA) simulations, a drier climate
condition is projected for the southern part of Southeast Asia by the end of the 21st century,
while a wetter condition is mainly found in the northern region [22]. The recent study of
Tan, et al. [23] introduced a SouthEast Asia HydrO-meteorological droughT (SEA-HOT)
framework that integrates the RCMs simulations from CORDEX-SEA and SWAT for hydro-
meteorological drought assessment in current and future climates. Although RCMs can
provide useful high-resolution climate inputs for hydrological simulations, there are several
known caveats. These include the lack of two-way interactions between the downscaled
climate on the one-way nested grids and the external large-scale circulations [24,25]. The
performance of RCMs is also strongly dependent on the selection of the driving lateral
boundary conditions, e.g., Tangang, et al. [26], which can introduce considerable model
uncertainties to climate simulations. Therefore, further studies are required to examine the
hydrological simulations of SWAT driven by the latest high-resolution climate simulations,
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e.g., the CMIP6 HighResMIP experiments, which have a resolution similar to that of
CORDEX-SEA.

To assess the hydrologic impacts on ecosystems, The Nature Conservancy (TNC) has
developed the Indicators of Hydrologic Alteration (IHA) program, which is a software
system that computes various hydrological and environmental indicators for quantifying
the frequency, magnitude and duration of flows [27]. These indicators provide useful
approaches to study flow behavior so as to improve the understanding of water hazards
and their ecological and environmental impacts at a regional level. Several studies have
combined the SWAT simulations with IHA to evaluate the impact of climate change on
regional extreme flows [28–30]. Kiesel, et al. [31] integrated SWAT and 32 IHA indicators to
evaluate future changes in extreme flows in three European catchments. Zhang et al. [32]
used a similar approach to evaluate the impacts of cascade dams and climate variability
on the streamflow of the Jiulong River watershed in the southeast of China. However,
the simulation of SWAT combined with the analyses of IHA in tropical regions has been
inadequately investigated in previous studies and requires further research, especially for
Southeast Asia.

The Kelantan River Basin (KRB) is a typical tropical river basin in Peninsular Malaysia,
which is frequently affected by monsoon floods during the early phase of the Northeast
monsoon (NEM) season in almost every year [33]. In fact, previous major flood events in
Malaysia were caused by continuous extreme precipitation episodes that were brought by
the NEM associated with Madden–Julian oscillation (MJO) and the Borneo vortex [34,35].
According to Chan [36], one of the most destructive floods occurred in 1967, when more
than 50% of the state’s population were affected. In 2014, the total amount of heavy
precipitation from 21 to 23 December reached 1295 mm, and resulted in the highest water
level of 22.7 m at the Jambatan Guillermard station [37], which is two times higher than
the normal level. Tan et al. [38] evaluated the impact of climate change on water resources
in the KRB based on the CMIP5 projections and found that the future annual streamflow
will increase by 14.6 to 27.2%. This study also projected an increase in the monthly mean
streamflow in November, December and January during the NEM season. However, these
previous studies have provided limited information on the projected changes in extreme
flows, which is critical for decision making in local water hazard risk management and
environmental protection [39] across Kelantan. In addition, the SWAT calibration and
validation of KRB have been mostly limited to monthly scale assessments. This study has
further evaluated the capability of SWAT for a 30-year daily-scale simulation up to 2014.

Therefore, this study aims to introduce a framework to assess the impact of climate
change on extreme flows in tropical regions through a novel approach that integrates SWAT,
CMIP6 HighResMIP and the IHA indicators. The specific objectives are: (1) to evaluate the
capability of CMIP6 HighResMIP at the basin scale; (2) to assess the SWAT capability in
simulating long-term daily streamflow in the KRB; and (3) to quantify the hydrological
extremes of the KRB in the mid-21st century period (1985–2014 vs 2021–2050) under
high-resolution and low-resolution CMIP6 GCMs. The results of this study will enhance
the understanding of how different HighResMIP CMIP6 GCMs resolutions influence the
tropical extreme flow simulations. Besides, this study provides a comprehensive and the
most up-to-date framework for assessing future hydro-climatic extremes for Southeast
Asia as well as other tropical regions both in developing and less developed countries for
climate adaptation and environmental protection policy formulations. Moreover, the future
hydro-climatic projections can be used as a reference by the local authorities to design flood
and drought related policies.

2. Materials and Methods
2.1. Study Area

The KRB is located in the northeast part of Peninsular Malaysia, between latitudes
4◦–6◦ and longitudes 101◦–103◦, as shown in Figure 1. The Kelantan River originates from
Mount Ulu Sepat. The elevation of the river basin ranges from −2 m to 2174 m. The river
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has a total length of 248 km and drains a basin area of 12,685 km2, covering more than
85% of Kelantan state. The outlet of this study was selected at the river mouth, so the
drainage area is slightly larger than Tan et al. [38] who selected the Jambatan Guillermard
streamflow station as the basin’s outlet. In 2013, the basin was dominated by forest (70.8%),
followed by rubber (13.3%), oil palm (11.2%), agricultural (2.8%), paddy-fields (1.3%) and
urban development (0.6%). Based on the flood reports prepared by the Department of
Irrigation and Drainage Malaysia (DID), floods have normally occurred in Kuala Krai,
Tanah Merah, Machang and Pasir Mas that are located in the middle and downstream
parts of KRB. As reported in the DID’s 2014/2015 annual flood report, floods in Kelantan
for the year 2014 resulted in the evacuation of more than 300,000 people, 14 casualties and
about RM156 million total losses [40].
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River Basin, Malaysia.

The KRB received an average annual precipitation of 2609.35 mm/year from 1985
to 2014, while average annual streamflow at the Jambatan Guillermard was 475.81 m3/s.
Figure 1 shows the average monthly precipitation, maximum temperature, minimum tem-
perature and streamflow for the basin from 1985 to 2014. The basin receives heavy precipi-
tation during the early phase of the NEM season, mainly in November (365.4 mm/month)
and December (380.74 mm/month). Relatively drier conditions can be found in the second
phase of the NEM, where only about 91.3 mm/month precipitation is received in February.
Average maximum and minimum temperatures of the basin vary from 29.3 ◦C to 34.1 ◦C
and 22.0 ◦C to 23.8 ◦C, respectively. The highest temperature value is normally observed
in April, the inter-monsoon period between the NEM and Southwest monsoon (SWM).
The highest average monthly streamflow at Jambatan Guillermard is found in December
(1296.3 m3/s), followed by November (781.9 m3/s) and January (721.3 m3/s), mainly
during the flood periods in this region. As seen in Figure 1, precipitation is the dominant
factor influencing the streamflow in the NEM, whereas temperature increases in the SWM
raise evaporation and reduce flows. A moderate streamflow rate was found in the driest
month of February, largely due to the lag of flows accumulated from the extreme high
precipitation between November and January, where a similar situation was reported in
other regions [41,42].
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2.2. SWAT

The SWAT model is a semi-distributed and continuous hydrological model developed
for water resources managers to decide the most appropriate strategy or solution by
considering the impact of different management practices on streamflow and non-point
source pollution [43]. SWAT has undergone continuous improvement over the past few
decades [44,45] and its applicability and credibility have been verified in Southeast Asia [46].
SWAT is typically run at daily or monthly temporal resolution for a continuous period of
time. The SWAT simulations can be driven by simulations of average flow climatology,
while the representation of extreme flood events usually requires simulations driven at a
finer (daily at least) temporal resolution. To simulate the long-term climatology of both
extreme droughts and floods, a long-term climate simulation for at least 30-years at daily
scale is recommended to be used as the SWAT input [15]. A review of SWAT-based hydro-
climatic extremes studies has recently been reported by Tan [15]. About 47% of the studies
were conducted in the United States and China. Besides that, only around 10% of the
reviewed research has further evaluated both low and high flow conditions. Therefore,
more studies in different geographical and climate conditions are needed to evaluate the
capability of SWAT in capturing extreme flows.

The SWAT Calibration and Uncertainty Programs (SWAT-CUP), a tool designed specif-
ically to calibrate and validate SWAT, is used in the SWAT model assessment [47,48]. The
Sequential Uncertainty Fitting Version 2 (SUFI2) calibration program in the SWAT-CUP
was selected to evaluate the model performance at daily and monthly scales. During
the calibration, SWAT was run with 500 simulations per iteration under different param-
eter combinations. The Coefficient of determination (R2) and Nash-Sutcliffe Efficiency
(NSE) [49] are the most commonly used statistical approaches to rate the performance of
SWAT for each simulation. The R2 and NSE values range from 0 to 1 and −∞ to 1, respec-
tively, with 1 being the optimal value for both metrics. Detailed descriptions and formulas
of the two statistical approaches are available in previous SWAT studies [50]. Moriasi
et al. [51] recommended that the performance of SWAT can be considered as satisfactory if
NSE and R2 values are greater than 0.5 and 0.6, respectively.

2.3. CMIP6 HighResMIP Models

As an integral protocol of CMIP6, HighResMIP [14] provides high-resolution GCM
ensemble simulations together with their coarse resolution versions. The HighResMIP
experiments allow the assessment of the impact of model resolution on climate simulations
and aim to improve the understanding of model biases and uncertainties [14]. This protocol
acts as an important input to the Intergovernmental Panel on Climate Change (IPCC)
sixth assessment report (AR6). The high resolution (<50-km) GCM simulations from
HighResMIP also help to solve the issue of coarse model resolution in the CMIP5 GCMs [52]
and are comparable to resolutions used in many RCM based studies [53,54]. In this paper,
ten HighResMIP experiments for the present-day (1980–2014) and future (2015–2050)
climates are chosen and the data are collected via the data platform of the Earth System
Grid Federation. The future period simulations are based on the high-emission 8.5 scenario
of the Shared Socioeconomic Pathways (SSPs-8.5), which is part of the new scenario
framework for the latest IPCC climate change assessment. Descriptions of these models
including the model developers and horizontal model resolutions are given in Table 1.

High resolution models have been demonstrated to offer greater fidelity than coarse
resolution models in representing both the observed mean and extreme precipitation
events over Peninsula Malaysia [55]. Nevertheless, even the high resolution models
of HighResMIP inevitably show biases in their representation of extreme precipitation.
Prior to applying the selected HighResMIP experiments to the simulation of SWAT and
the subsequent assessment of hydrological impacts, the model biases relative to climate
observations in the simulated climatic variables (i.e., daily precipitation, maximum and
minimum temperatures) are corrected using a quantile mapping (QM) approach similar
to Boé et al. [56] and Kim et al. [57]. QM first calculates the correction parameter (defined
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as the observed mean value divided by the simulated value) at different quantile levels.
Corrected variables are then obtained by the product of the simulated value and the
calculated correction parameter for each quantile level with an interval of 0.5 percentile
rank. To correct the model bias in simulating the annual cycle of climatic variables, QM is
applied to data for each month, respectively. To compare the simulations between low and
high resolutions, the ensemble of the low resolution (LR) simulations from HadGEM3-LM,
CNRM and FGOALS-L is analyzed and compared to the ensemble of the high resolution
(Ens_HR) simulations from the other seven models.

Table 1. Summary of the GCMs used in the CMIP6 HighResMIP experiments.

No. Modeling Organizations Model Name Vertical Resolution
(Layers)

Horizontal Resolution
(Longitude × Latitude) Label

1 The UK Met Office Hadley
Centre for Climate Change HadGEM3-GC31 85

1.875◦ × 1.25◦ HadGEM3-LM
2 0.83◦ × 0.56◦ HadGEM3-MM
3 0.35◦ × 0.23◦ HadGEM3-HM

4 French National Centre for
Meteorological Research CNRM-CM6-1 91

1.406◦ × 1.406◦ CNRM
5 0.5◦ × 0.5◦ CNRM-HR

6 27 institutes in Europe
(Haarsma et al., 2020) EC-Earth3P 91 0.703◦ × 0.703◦ EC-Earth

7 Meteorological Research
Institute (Japan) MRI-AGCM3-2 60

0.563◦ × 0.563◦ MRI-H
8 0.188◦ × 0.188◦ MRI-S

9
Institute of Atmospheric

Physics/Chinese Academy
of Sciences

FGOALS-f3 32 1.25◦ × 1◦ FGOALS-L

10
Geophysical Fluid

Dynamics Laboratory/
NOAA (U.S.)

GFDL-CM4C192 33 0.625◦ × 0.5◦ GFDL

2.4. IHA Indicators

IHA is a user-friendly tool developed by The Nature Conservancy to measure flow
characteristics using 32 IHA (Table 2) and 34 Environmental Flow Component (EFC)
(Table 3) indicators [27]. For example, the IHA tool can calculate the magnitude and du-
ration of annual minima and maxima flows for specific periods, e.g., 1-day, 3-day, 7-day,
30-day, 90-day. These indicators provide useful information for policy makers, water man-
agers, hydrologists and researchers to understand the impact of human activity, including
land use and anthropogenic climate warming, on rivers and groundwater. Comparative
analysis can be conducted to describe and quantify the changes of these extreme elements
associated with climate change. The zero-flow day indicator is excluded in this study due
to its limited suitability for tropical regions. The IHA version 7.1 is used to calculate the
extreme flows based on the SWAT outputs. The computation of IHA is based on the daily
streamflow data generated from the SWAT simulations.

Table 2. List of 32 IHA parameters adopted in this study.

Hydrologic Parameters Symbol

1. Magnitude of monthly water condition (12 parameters)
Mean value for each calendar month January–December

2. Magnitude and duration of annual extreme water
conditions (11 parameters)

Annual minima, 1-day mean 1-day min
Annual minima, 3-day means 3-day min
Annual minima, 7-day means 7-day min
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Table 2. Cont.

Hydrologic Parameters Symbol

Annual minima, 30-day means 30-day min
Annual minima, 90-day means 90-day mom
Annual maxima, 1-day mean 1-day max
Annual maxima, 3-day means 3-day max
Annual maxima, 7-day means 7-day max
Annual maxima, 30-day means 30-day max
Annual maxima, 90-day means 90-day max

Base flow index: 7-day minimum flow/mean flow for year Base flow

3. Timing of annual extreme water conditions (2 parameters)
Julian date of each annual 1-day maximum Date min
Julian date of each annual 1-day minimum Date max

4. Frequency and duration of high and low pulses (4
parameters)

Number of low pulses within each water year Lo pulse count
Mean or median duration of low pulses (days) Lo pulse dura
Number of high pulses within each water year Hi pulse count
Mean or median duration of high pulses (days) Hi Pulse dura

5. Rate and frequency of water condition changes (3
parameters)

Rise rates: Mean of all positive differences between
consecutive daily values Rise rate

Fall rates: Mean of all negative differences between
consecutive daily values Fall rate

Number of hydrologic reversals Reversals

Table 3. List of 34 Environmental Flow Component (EFC) parameters that adopted in this study.

Environmental Flow Components Parameters Symbol

1. Monthly low flows (12 parameters)
Mean values of low flows during each calendar month January low–December low

2. Extreme low flows (4 parameters)
Peak flow (minimum flow during event) EL peak

Duration of extreme low flows (days) EL duration
Timing of extreme low flows EL time

Frequency of extreme low flows EL freq

3. High flow pulses (6 parameters)
Peak flow (maximum flow during event) HF peak
Duration of high flow pulse event (days) HF duration

Timing of high flow pulse event (Julian date of peak
flow) HF time

Frequency of high flow pulse event HF freq
Rise rate of high flow pulse event HF rise
Fall rate of high flow pulse event HF fall

4. Small floods (6 parameters)
Peak flow of small flood event (maximum flow during

event) SF peak

Duration of small flood event (days) SF duration
Timing of slow flood event (Julian date of peak flow) SF time

Frequency of small flood event SF freq
Rise rate of small flood event SF Rise
Fall rate of small flood event SF Fall
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Table 3. Cont.

Environmental Flow Components Parameters Symbol

5. Large floods (6 parameters)
Peak flow of large flood event (maximum flow during

event) LF peak

Duration of large flood event (days) LF duration
Timing of large flood event (Julian date of peak flow) LF time

Frequency large flood event LF freq
Rise rate of large flood event LF Rise
Fall rate of large flood event LF Fall

2.5. Model Setup and Input Data

The general framework of this study is shown in Figure 2 and includes the following
steps: (1) SWAT input collection, (2) HighResMIP data download and bias correction; (3)
SWAT calibration and validation; (4) Incorporation of the bias corrected HighResMIP into
calibrated SWAT, (5) calculation of flow extremes based on the IHA indicators, and (6) com-
parison of the changes between future (2021–2050) and historical (1985–2014) flow extreme.
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Figure 2. Flow chart of this study.

The simulation of SWAT requires three geophysical inputs, including land use, soil
and elevation. The latter information was extracted from satellite-based digital elevation
model data, the Shuttle Radar Topography Mission (SRTM). The land use data of 2013 is
provided by the Department of Agricultural Malaysia (DOA), while the soil data is from
the FAO-UNESCO soil map. The climate driving data of SWAT includes daily precipitation,
daily maximum and minimum temperatures. Daily climate data from 1980 to 2014 was
collected from the Malaysia Meteorological Department (MMD). To initialize the sub-
basin delineation, digital river network data collected from Department of Drainage and
Irrigation (DID) was used to integrate into the SRTM DEM for improving the river network
formation. Lastly, the streamflow data from the same department is used to calibrate and
validate the SWAT model. The minimum threshold value of 10,000 ha was used in the
sub-basin delineations. Five slope classes of 0%–10%, 10%–20%, 20%–30%, 30%–40% and
>40% were used in the slope definition during the model development. The next step
is the formation of hydrologic response units, the smallest spatial unit of SWAT which
lumps together all similar land uses, soils and slopes within each sub-basin to perform all
model calculations.

SWAT has exhibited a reliable performance in simulating the climatology of monthly
streamflow in Kelantan and typical cases of historical drought events [23,38]. This will
apply a new configuration of SWAT, calibrated by referring to parameter ranges and
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sensitivity analysis from previous studies [23,38]. The calibration and validation periods
are chosen as 1985–1999 and 2000–2014, respectively. As the SWAT model setup at the
monthly scale has been well configured and described in previous studies [23,38], this
paper focuses on the daily scale simulation, which is important for allowing the diagnoses
of extreme flows.

Bias corrected HighResMIP climate projections as described in Section 2.3 are used to
drive the calibrated SWAT in order to simulate the future daily streamflow from 1985 to
2050. Thus, the projected hydro-climatic changes driving the simulation of SWAT are based
on multi-GCM ensemble experiments, which help to consider the climate projection uncer-
tainties associated with the different GCM configurations and improve reliability in the
assessment of hydro-climatic impacts [58,59]. The simulated streamflow will then be used
to calculate the 66 extreme indicators as listed in Tables 2 and 3. The assessment of climate
change impact on flow extremes was conducted by comparing the relative differences of
extreme indicators between 1985–2014 and 2021–2050. Moreover, the statistical significance
of the mean difference between the future and the baseline historical periods at a 95%
confidence level (p-value < 0.05) will be determined using the two-tailed Student’s t-test.

3. Results
3.1. SWAT Calibration and Validation

Table 4 indicates that the baseflow alpha-factor (ALPHA_BF), initial SCS runoff Curve
Number for moisture condition II value (CN2) and effective hydraulic conductivity in main
channel alluvium (CH_K2) are among the most sensitive parameters for daily streamflow
calibration, which is similar to the previous monthly scale calibration in KRB [23,38].
ALPHA_BF shows the baseflow response to changes in recharge, CN2 represents a function
of the soil permeability, land use and soil water condition, while CH_K2 adjusts the
relationship of water exchange from groundwater to river [60,61].

Table 4. Final SWAT performance rating as recommended by Moriasi [51].

No Name First Iteration Last Iteration Fitted

1 v__ALPHA_BF.gw 0.00 1.00 0.00
2 v__CH_K2.rte 0.00 500.00 350.00
3 r__CN2.mgt −0.50 0.50 −0.45
4 v__GW_DELAY.gw 0.00 500.00 0.00
5 r__SOL_AWC().sol −0.50 0.50 −1.00
6 v__GW_REVAP.gw 0.02 0.20 0.10
7 v__RCHRG_DP.gw 0.00 1.00 0.00
8 v__GWQMN.gw 0.00 5000.00 1500.00
9 r__CH_N2.rte −0.50 0.50 −1.00

10 v__REVAPMN.gw 0.00 500.00 128.00
11 v__SURLAG.bsn 0.05 24.00 2.00
12 v__ESCO.bsn 0.00 1.00 0.05

v_ indicates that the original parameter value is replaced with the given value; R indicates that the parameter
value is multiplied with 1 + the given value.

The comparison between the observed and simulated streamflow in the case of Jam-
batan Guillermard during the calibration (1985–1999) and validation (2000–2014) periods
is shown in Figure 3. In general, the simulated monthly and daily variations of stream-
flow are captured reasonably well with respect to the observed streamflow. However, an
overestimation of baseflow is found for the period of 2010–2014, which is possibly due to
increasing groundwater demand in recent years [62], as there is no accessible groundwater
extraction data for the study area. Six groundwater parameters were considered in the
SWAT calibration by allowing more water transfer from baseflow to surface or atmosphere
so that the impact of inadequate groundwater data is minimized.

The model performance is rated as “very good” in terms of the monthly scale sim-
ulation according to the Jambatan Guillemard Bridge for both the calibration (R2 = 0.84
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and NSE = 0.72) and validation (R2 = 0.84 and NSE = 0.63) periods. The performance of
SWAT is rated as satisfactory at the daily scale. For the last iteration of calibration, 78%
(p-value = 0.78) of the simulations were bracketed by the 95 Percent Prediction Uncertainty
(95PPU) with r-value of 0.89, indicating that the calibration is acceptable. Thus, the cali-
brated configuration of SWAT will then be used for simulating the hydro-climatic extremes
in the KRB and the results will be discussed in Sections 3.3–3.5.
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Figure 3. Observed and simulated daily streamflow at Jambatan Guillermard from 1985 to 2014.

3.2. Bias Correction of CMIP6 HighResMIP Models

The biases of the HighResMIP experiments were corrected using the QM, as discussed
in Section 2.3. Figure 4 shows the climatology of monthly precipitation and maximum
and minimum temperatures from 1980 to 2014 over KRB that are measured from observed
data, original and bias-corrected HighResMIP models. The original HighResMIP models
tend to underestimate the monthly precipitation in November and December, whereas an
inconsistent pattern was found for other months. The HighResMIP models simulate the
peak monthly precipitation in November, one month earlier than observed. The FGOALS-
f3-L simulation exhibits a generally poorer performance than the other simulations as it
significantly underestimates the precipitation amount over KRB, especially during the SWM
season (June–September). We also note that the original HighResMIP models generally
show a better performance in simulating the precipitation amount compared to the original
regional climate model simulations from CORDEX-SEA that dramatically overestimate
the observed precipitation by up to five times for certain months in the same basin [23].
As shown in Figure 4d, the QM approach reasonably corrects the biases of the models in
representing the peak monthly precipitation in December and precipitation amount for
all the simulations. It is also noted that the high resolution (HR) simulations exhibit less
underestimation of precipitation during the NEM compared to low resolution (LR).
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Figure 4. The annual cycles of monthly precipitation amount (a,d), monthly mean daily maximum (b,e) and minimum
temperature (c,f) for the ten CMIP6 HighResMIP experiments, compared to the MMD observations during the period
1980~2014: (a–c) original; (d–f) bias-corrected for the Kelantan River Basin, Malaysia.

In general, most CMIP6 HighResMIP models reasonably capture the observed warm
period in April and September in terms of the monthly mean of daily maximum and mini-
mum temperatures (Figure 4b,c,e,f), mainly during the inter-monsoon periods. However,
all the HighResMIP models underestimate the monthly maximum temperature, whereas
most of the models show an overestimation in the monthly minimum temperature, except
the CNRM-CM6-1-HR, EC-EARTH3P and GFDL-CM4C192 models. Minimum temper-
atures outperformed maximum temperatures in the climatology simulations since the
ensemble mean is much closer to the observed data. Similar to precipitation, maximum and
minimum temperature biases reduce significantly after applying the QM bias correction
approach, as shown in Figure 4e,f, respectively. Compared to LR, the HR simulations show
less overestimation of daily minimum temperature. However, no apparent improvement
in simulating maximum temperature is found in HR.

3.3. Climate Change

The projected annual and monthly changes in precipitation, daily maximum and
minimum temperatures over the KRB for the period 2021–2050 relative to 1985–2014 are
shown in Figure 5. Annual precipitation is projected to increase significantly by 6.9%. For
almost every month, the precipitation amount is projected to increase from 0.94 (October)
to 15.1% (December), except for April with a reduction of 2.4%. In Figure 5a, statistically
significant changes in the monthly average precipitation are seen in June, July, August and
December, indicating a general increase in precipitation during the SWM and the early
phase of the NEM.

The annual mean of daily maximum and minimum temperatures for the period
2021–2050 relative to 1985–2014 are projected to increase by 0.8 and 0.9 ◦C, respectively
(Figure 5b). The equivalent warming trends are slightly higher than the historical long-
term warming trends (0.1 and 0.3 ◦C/decade for maximum and minimum temperatures
respectively) from 1985 to 2018 in Malaysia [1]. For each month, maximum and minimum
temperatures are projected to increase by 0.7–1.0 ◦C, with higher magnitudes of warming
in May and November (Figure 5b). There is also a significant difference between the future
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and historical temperatures in their mean values for both the annual and monthly scales
(Figure 5b), supporting the literature regarding a warming situation in the next 30 years.
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3.4. Hydrologic Extreme Changes

A comparison of the changes in hydrological extremes at the Jambatan Guillemard
station between the 2021–2050 and 1985–2014 periods is shown in Figure 6. Annual and
monthly streamflow are projected to increase by 9.9% and 3.5% to 16.8% in the future,
respectively, as simulated from an ensemble mean of the ten HighResMIP models. A
higher rate of increase of more than 10% can be found in June to August and December.
Additionally, a significant difference of mean streamflow at 95% confidence level can be
found at the time-scales of annual, December to January, March, and June to October, which
is similar to the monthly precipitation changes. As December and January are the major
flood periods in the KRB, more intense flooding impacts may occur in the future.

Next we analyze the indicators quantifying the annual streamflow extremes in terms
of their magnitude for different durations, e.g., the second IHA group listed in Table 1.
Figure 6b shows that the 1-, 3-, 7-, 30- and 90-day minima and maxima flows increase
significantly from 7.2% to 8.2% and 10.4% to 28.4%, respectively, in the 2021–2050 period.
There is a high deviation for the case of extremely high flows at 1-, 3- and 7- day maxima
flow, showing that the magnitude of floods might increase in the near future. As for the
baseflow index, a slight decrease of 0.9% is seen for the future period. This indicates that
the future amount of water available for freshwater supply tends to remain the same as the
current value. However, stress on water supply may occur if there is an increased water
demand following population growth in the future.

The third IHA group indicates the streamflow extreme events in terms of the occur-
rence timing. A water year is defined using the Julian dates format where “day 1” refers to
1st January and “day 365” refers to 31st December. As shown in Figure 6c, the occurrence
timing of the future annual minimum and maximum events that are projected by the ten
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models will increase by 1.0% to 25.3% (1.87 to 46.27) and 0.4% to 16.2% (0.73 to 29.67),
respectively. This indicates that the future streamflow extreme events are projected to be de-
layed for a few days to a few weeks. The fourth IHA group shows the number and duration
of extreme pulses. The results show that the number of low pulses showed no significant
changes; meanwhile, the number of high pulses is projected to increase significantly by
22.7%. The duration of future low and high pulses tends to change slightly compared to the
historical period, based on an ensemble mean of 3.3% and 5.9%, respectively. The last IHA
group contains the rate and frequency of water condition changes. There is a significant
increase in the rise rate and fall rate at the Jambatan Guillermard station by 31.9% and
25.5%, respectively, showing that a rapid increase or decrease in streamflow might happen
in the future. The number of hydrological reversals will increase by 11.6% as projected
by the model ensemble, which shows an increment in the number of daily streamflow
increases after decreasing, and decreases after increasing.
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Figure 6. Projected changes in hydrological extremes as indicated by 32 IHA parameters of (a) monthly flows, (b) magnitude
and duration, (c) timing, (d) frequency and duration and (e) rate and frequency between 1985–2014 and 2021–2050 at the
Jambatan Guillermard station.

3.5. Environmental Flow Changes

The EFC indicators that divide into monthly low flows, extreme low flows, high
flow pulses, small floods and large floods, were also considered in this study because
this information is very important to sustain riverine ecological integrity. The first EFC
group shows the monthly low flow sustained by groundwater, so any changes in these
parameters can be related to groundwater availability. Basically, a slight decrease in the
monthly low flow can be found in April, May and October to December by 0.2% to 1.1%,
based on the ensemble mean projection as shown in Figure 7. By contrast, monthly low
flows from July to September are projected to increase significantly at the 95% confidence
level by 4.3 to 9.4%.
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4. Discussion

Climate change is expected to have a more significant impact on hydrological extreme
flows than environmental flow components, since more IHA indicators (Figure 6) were
found to be significant in the 2021–2050 period than EFC indicators (Figure 7). The findings
show that extreme high flows are more sensitive to climate than normal and low flows in
the KRB. The situation can be highlighted by the fact of continuous heavy precipitation in
the first week of January 2021, that resulted in serious flooding in five states of Peninsular
Malaysia, including Kelantan. According to the Kelantan e-flood portal, https://ebanjir.
kelantan.gov.my/ (accessed on 20 March 2021), water levels at the Jambatan Guillermard
station exceeded the danger level of 16 m from 6th January to 9th January 2021, up to the
peak level of 18.89 m. The water level is only slightly lower than the Kelantan Big Yellow
Flood of 2014 that reached a peak level of 22.74 m. The alteration in extreme flows has
a great influence on biodiversity and the ecological system within and surrounding the
river [63].

The statistical analysis has shown that the SWAT model is acceptable for daily stream-
flow simulations in the KRB. In Southeast Asia, a review of SWAT application in hydro-
climatic extreme studies reported that the SWAT model tended to have a better performance
on monthly time scales compared to daily time scales [46]. A possible explanation for
this might be insufficient rain gauges in the tropics to capture the daily-scale extreme
precipitation at a better spatial coverage [64]. For example, the only rain gauge in the
southeastern part of the KRB as shown in Figure 1 may miss captured extreme events in
the nearby region, and therefore the extreme flows were underestimated by the SWAT
model. In fact, the reported NSE and R2 values at daily time scales in previous SWAT
extreme related studies commonly ranged from 0.50 to 0.79 [15]. Besides, the SWAT model
tends to underestimate the peak flows which are reported in the river basins of Spain [65],
Brazil [66] and Hawaii [67]. Based on Krysanova and Arnold [68], the flood-plain depo-

https://ebanjir.kelantan.gov.my/
https://ebanjir.kelantan.gov.my/
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sition algorithm within SWAT needs to be improved in order to increase the accuracy
of SWAT in replicating peak flows. This suggestion has been taken into consideration
during the SWAT+ development [69]; however, how effective the improvement is still
needs further investigation.

Climate projections are always regarded as one of the major uncertainties in hydro-
climatic impact modelling [15,70]. Given that the HR models have been shown to have a
better fidelity in representing precipitation extreme events when compared to observations
than their LR model counterparts [55], one might expect the HR models to provide a more
accurate assessment of future precipitation extremes. Of the models assessed in this study,
changes in future precipitation extremes are frequently quite different between the HR and
LR models. The mean precipitation change is significantly higher during the November-
December-January period when most flooding occurs at 9.6% for the HR models compared
to 5.0% for the LR models (Figure 5). The associated mean monthly flow changes are
significantly higher during the Nov-Dec-Jan period at 11.8% for the HR models compared
to 3.2% for the LR models. The changes in the magnitude and duration of the 1-day to
90-day maximum flows are universally greater in the HR models than in the LR models
with values for 1-day maxima increases by as much as 35.1% for HR compared to 12.8%
for LR models (Figure 6). Large flood event marker changes in future climate scenarios
are significantly more prevalent in the HR models than the LR models. For example, the
large flood frequency increases by 119% for the HR models compared to 44.4% for the LR
models (Figure 7). Similarly, Troin [71] also reported that RCM is superior than GCMs
for hydro-climatic assessment, particularly in mountainous regions. Therefore, numerous
high-resolution GCMs along with different downscaling techniques should be considered
in future hydro-climatic modelling [72].

This intercomparison of simulations at different model resolutions suggests that
the simulation results based on climate simulations at relatively low model resolutions
should be interpreted with cautions. The linkage between the model performance in
simulating regional precipitation and the spatial resolution of the model is complex. For
example, Liang et al. [55] found that the high resolution version of HadGEM3-GC3.1 has a
stronger ability to simulate the Borneo Vortices during the NEM season and their associated
precipitation in Malaysia compared to the low resolution versions. This partly explains
that the high-resolution simulations of MRI-S and Had-HM exhibit a better performance
in capturing the high precipitation period (November and December) of the study area
with respect to the low-resolution experiments, as shown in Figure 4a. We note that the
application of all available climate models, or only the models with good performance in
hydrological impact assessment, is still a debatable issue regarding what is the optimal
choice [70], and offer a caveat that the number of models that provide LR diagnostics is
limited to just three in our analyses, compared to seven for the HR models. Further model
evaluations should be added as more HighResMIP model output becomes available.

Bias correction of climate model output is important for improving the quality of driv-
ing data of hydrological simulation for hydro-climatic impact modelling studies [23,73,74],
and is mainly based on statistical approaches. For instance, Tan et al. [38] used a linear
scaling approach to correct biases in the CMIP5 GCMs before applying them into SWAT. In
this study, a statistical method based on QM is used to correct biases in the HighResMIP
experiments. This method has also been used for bias corrections in the dynamical down-
scaling simulations over Malaysia [75] and Southeast Asia [76] from the CORDEX-SEA
experiments. This study of Shrestha, et al. [77] suggested that there is no significant differ-
ence between the simple (linear scaling) and complex (QM) bias correction schemes for
monthly streamflow studies. However, Luo, et al. [78] compared seven bias correction
schemes to downscale precipitation and temperature in the Kaidu River Basin, China, and
reported that the effect of different bias correction schemes is larger in precipitation than
temperature. More studies on how the use of different approaches influence bias correc-
tions in GCMs and how RCMs influence the daily streamflow simulations are required for
the study area of the paper and the surrounding western Maritime Continent.
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5. Conclusions

Extreme hydro-climatic events exert substantial impact on the environment and
human society. This study incorporates the latest high-resolution GCM simulations from
HighResMIP and SWAT to project possible future changes in hydrological extremes over the
KRB. The SUFI-2 algorithm was applied in the SWAT sensitivity analysis, calibration and
validation for improving the credibility of SWAT for simulating the long-term climatology
of daily streamflow. In this process, ALPHA_BF, CN2 and CH_K2 are found to be the
most sensitive parameters in the SWAT calibration, which is consistent with previous
studies [23].

The original outputs of the HighResMIP experiments tend to underestimate monthly
precipitation in November and December. Besides, the models are found to simulate an
earlier peak (by about one month) of monthly precipitation compared to observations.
Most of the HighResMIP experiments underestimate the monthly maximum temperature,
while an overestimation is found for the monthly minimum temperature compared to
observations. Based on future climate simulations with the model biases corrected by QM,
the annual precipitation, maximum and minimum temperatures are projected to increase
significantly by 6.9%, 0.8 ◦C and 0.9 ◦C, respectively, for the 2021–2050 period relative to
the 1985–2014 baseline period. Monthly precipitation in the basin is expected to increase
for almost every month by 0.9 to 15.1%, except for April with a decreasing signal of 2.4%.
Monthly maximum and temperatures are projected to increase by 0.7–1.0 ◦C.

The future simulation of the annual mean streamflow for the period 2021–2050 shows a
significant increase by 9.9% relative to the 1985–2014 baseline period. Meanwhile, monthly
streamflow is projected to increase for all months by 3.5 to 16.8%, with significant changes
mainly found in the SWM and the early NEM periods. The magnitude of 1-, 3-, 7-, 30- and
90-day minima and maxima flows are projected to increase significantly by up to 28.4%. In
contrast, the baseflow index is projected to change slightly by about 0.9%. The occurrence
timing of the extreme flows is expected to be delayed by a few days to a few weeks in the
future. The duration of future low and high pulses shows only minor changes as compared
to the baseline period. By contrast, the rise rate and fall rate exhibit a rapid increase or
decrease of streamflow that may occur in the future.

For the changes in the monthly distribution of low flows for the period 2021–2050
relative to 1985–2014, slight decreases are seen in April, May, October, November and
December, whereas a significant increase is found from July to September by 4.3% to 9.4%.
The duration and frequency of extreme low flows are projected to decrease by 15.7% and
16.5% respectively. For the high-flow pulses, future projections show an increase by 1.8% to
18.6% compared to the baseline period. Generally, indicators for both small and large floods
are projected to increase in the future. However, only changes in small flood duration and
large floods’ frequency are statistically significant.

This study constructs a framework for comprehensively assessing hydro-climatic
extremes by integrating hydrological modelling and state-of-the-art high-resolution climate
simulations. Further studies are needed to understand the limited ability of SWAT in cap-
turing both the peak and low flows in the KRB. Besides, future work is needed to compare
SWAT with its latest version, SWAT+ [69], and investigate the potential improvement of
SWAT+ in simulating peak flows in the KRB. As more simulations of CMIP6 GCMs with
different model resolutions will be released to the public, a comprehensive investigation on
how the horizontal and vertical resolutions of GCMs influence the SWAT simulation will be
investigated in the near future. Finally, this study indicates that high- and low-resolution
model resolutions resulted in quite different changes in future hydro-climatic extremes,
so a more reliable climate projection quantification framework and ensembles techniques
should be developed to minimize uncertainties in hydro-climatic extreme simulations.
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