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Abstract
We propose a two-stage multi-objective optimization framework for full scheme 
solar cell structure design and characterization, cost minimization and quantum effi-
ciency maximization. We evaluated structures of 15 different cell designs simulated 
by varying material types and photodiode doping strategies. At first, non-dominated 
sorting genetic algorithm  II (NSGA-II) produced Pareto-optimal-solutions sets 
for respective cell designs. Then, on investigating quantum efficiencies of all cell 
designs produced by NSGA-II, we applied a new multi-objective optimization algo-
rithm II (OptIA-II) to discover the Pareto fronts of select (three) best cell designs. 
Our designed OptIA-II algorithm improved the quantum efficiencies of all select cell 
designs and reduced their fabrication costs. We observed that the cell design com-
prising an optimally doped zinc-oxide-based transparent conductive oxide (TCO) 
layer and rough silver back reflector (BR) offered a quantum efficiency ( Qe ) of 
0.6031. Overall, this paper provides a full characterization of cell structure designs. 
It derives relationship between quantum efficiency, Qe of a cell with its TCO layer’s 
doping methods and TCO and BR layer’s material types. Our solar cells design char-
acterization enables us to perform a cost-benefit analysis of solar cells usage in real-
world applications.

Keywords Thin-film silicon solar cell · Quantum efficiency · Maxwell simulation · 
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1 Introduction

Sustainable energy demand of twenty-first century comes from green energy 
production methods like harvesting energy from nature: solar, water, and wind. 
Of these, solar light harvesting is pervasive and is the most agile in terms of 
installation.

Solar cells are typically categorized as photovoltaic  [15], thermophotovol-
taic [3], or nanophotonic thermophotovoltaic [22] type cells. Since solar energy is 
the most used green energy method, many research works (e.g., [2, 14, 30]) have 
been done on solar cell design and cell structure optimization to improve cells 
light-harvesting efficiency and solar energy production capacity maximization.

In our previous work  [27], we performed simulation and experiments to 
improve thin-film photovoltaic type solar cell design and its light-harvesting 
efficiency. In this paper, we aim to improve upon our previous results  [27] and 
extend our framework to investigate a full characterization of optimal solar cell 
design. Thus, we performed full scheme solar cell design simulations and inves-
tigated their Pareto surfaces. We evaluated various solar cell compositions and 
material combinations for designing different solar cell structures.

We formulated “solar cell structure design problem” and its optical simula-
tions for cells quantum efficiency improvement as a multi-objective optimiza-
tion (MOO) problem  [4, 9]. We aimed at maximizing cells quantum efficiency 
and minimizing cells intrinsic layer thickness. Our MOO setup aimed at evaluat-
ing several solar cell designs. These designs were generated by simulating cells 
structural components into different compositions by varying transparent con-
ductive oxide layer doping strategy, photodiode materials, back reflector (BR) 
materials, and roughness of BR layer. Of all possible compositions, we selected 
15 cell structure designs that are practically feasible and of interest, and for 
which theoretical models have been validated  [28, 32]. Our MOO formulation 
has a two-stage strategy for the optimization of cell structure designs. Stage-one 
applies non-dominated sorting algorithm-II (NSGA-II) to produce Pareto-optimal 
solutions for each cell design. In stage-two, Pareto-fronts of three cell designs 
selected from stage-one are optimized by using our newly designed algorithm 
called multi-objective optimization-immunological algorithm (OptIA-II).

Our two-stage strategy improved the baseline quantum efficiency from 0.5999 
to a quantum efficiency of 0.6031, which is a 0.6845% increase from our base-
line on a single solar cell quantum efficiency obtained in  [27]. Note that a tiny 
fraction of solar cell efficiency improvement has a proportional impact on solar 
cell energy production capacity. We notice that our methodology can be straight-
forwardly extended to other solar cell structures, including, e.g., the bifacial 
one [33], where the optimization of optical absorption is a critical issue.

In summary, the main contributions and observations of this research are as 
follows:

• We present a MOO framework for optimal thin-film solar cell structure 
designs.
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• We optimized, evaluated, and characterized 15 cell designs.
• We present a new algorithm called OptIA-II for MOO of solar cells.
• We show that our two-stage MOO can improve the quantum efficiency of cells 

and characterize cell designs into clusters concerning to trade-off between cells 
fabrication cost and cells quantum efficiency.

Section  2 of this paper explains quantum efficiency of solar cell, solar cell struc-
ture and design. Related work on cells structure optimization is discussed in Sect. 3. 
Formulation of solar optimization as a MOO problem and NSGA-II and OptIA-II 
algorithms description are presented in Sect. 4. Section 5 describes simulations and 
experiment setup. Results are discussed in Sect. 6. Section 7 outlines conclusions of 
this work.

2  Thin‑film silicon solar cells

2.1  Quantum efficiency of solar cells

The quantum efficiency ( Qe ) of a solar cell is the ratio of charge carrier produced at 
the external circuit of the cell (electronic device) to the number of photons received 
(or absorbed) by the cell. There are two ways this quantum efficiency ratio is calcu-
lated: (i) external quantum efficiency and (ii) internal quantum efficiency.

External quantum efficiency is a ratio of the number of photo-generated charge 
carriers (i.e., electrons) picked up by the cell to the number of photons incident on 
the cell [7].

Internal quantum efficiency is the number of electrons (charge carriers) extracted 
from the cell divided by the number of photons absorbed (trapped) within the cell’s 
photoactive layers (i.e., p-i-n-type photodiode absorption layers)  [6]. This implies 
that if all photons absorbed by the photoactive layers results in the generation of 
charge carriers at the external circuit of the device, then the internal quantum effi-
ciency would be 100% [31]. Hence, maximizing the light absorption would result in 
maximizing the charge carrier collected at the external circuit [13].

This in-fact is thin-film solar cell structure design problem which we discussed in 
Sect. 2.3. For this, many candidate cell structures are to be evaluated for achieving 
maximized internal quantum efficiency. We simply call it quantum efficiency, Qe . In 
this work, we compute quantum efficiency, Qe of a candidate cell structure according 
to methods mentioned in Sect. 4, detail of which is available in [28, 32].

2.2  Structure of thin‑film silicon solar cells

This study works on thin-film solar cell composition shown in Fig.  1. The com-
position of this cell has its p-i-n-type doped layers: amorphous silicon (a-Si) and 
microcrystalline silicon ( �c-Si) separated by a thin ZnO layer (transparent conduc-
tive oxide (TCO) layer). This means that the charge careers p-type and n-type are 
separated by an intrinsic layer. This p-i-n-type photodiode is developed on a layer 
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of composite substance made of SiO2 (glass) and ZnO (zinc oxide). Silver (Ag) or 
Aluminium (Al) metallic BR supports the cell structure, which is the bottom-most 
layer of cell in Fig. 1.

Glass (SiO2 ) layer (topmost layer in Fig. 1) of the cell is the light’s entry point. 
This tandem solar cell structure is benefited from light-harvesting efficiency of its 
photoactive layers: amorphous silicon (a-Si) and microcrystalline silicon ( �c-Si). 
Amorphous silicon (a-Si) and microcrystalline silicon ( �c-Si) respectively have ∼ 
1.7 eV and ∼ 1.1 eV optical band-gaps.

Thin-film technology has made it possible to produce low-cost solar cells. This 
is mainly due to plasma-assisted chemical vapor deposition technology that enables 
the production of thin-film solar cells by growing silicon (Si) layers [21] instead of 
stacking silicon wafers. Compared with the cost-intensive poly-crystalline Si wafer 
cutting method where thick poly-crystalline Si wafers are cut and stacked together 
to form solar cells, the plasma-assisted chemical vapor deposition technology is a 
highly cost-effective method.

In-fact, growing Si layers (more generally the absorption layer) also enables the 
production of solar cells with a smaller thickness (of the order of μ m) compared 
to previously possible devices (solar cells) that were thicker by 2-order magnitude. 
However, smaller thickness causes less absorption of light. Therefore, the effective 
use of light-trapping techniques has become crucial for thin-film solar efficiency. 
The effectiveness of light-trapping techniques relies on thin-film solar cells structure 
optimization.

Fig. 1  Example of a single thin-film solar cell design, where ZnO is the transparent conductive oxide 
layer; Ag is the back reflector; d�c-Si :i is the thickness of �c-Si:i layer; and �i(i = 1,… , 11) is the rough-
ness (cells composition parameters that are to be optimized); amorphous silicon (a-Si) and microcrystal-
line silicon ( �c-Si) are materials in p-i-n photodiodes
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2.3  Design of solar cells structure

When designing and optimizing a solar cell structure, we use two light-trapping 
methods: light-trapping BR layer and nano-texturing. Metals like silver (Ag) maybe 
used as a BR layer, while alkaline solutions like KOH or NaOH are used for nano-
texturing of layer’s interfaces. Alkaline solution KOH or NaOH corrodes silicon to 
form randomly positioned square pyramids. The depth of corrosion can be accu-
rately tuned by controlling the temperature and time length of the corrosion pro-
cess [29]. These two methods modify cell geometry (structure).

Indeed, cell geometry optimization helps improve its light-harvesting capacity. 
The cell geometry (structure) can be optimized by modifying mesoscale features 
(thickness of the different layers) and nano-scale features (nano-texturing of the 
interfaces of the layers).

The mesoscale features optimization relies on processing time of growing Si lay-
ers, and it directly impacts fabrication cost of solar cells. Obviously, mesoscale fea-
tures optimization is a monotonic function of the layer’s thickness (mainly of the 
intrinsic layer �c-Si:i) [30]. So is the fabrication cost of solar cells.

Nano-texturing process, on the other hand, produces textured (rough) interfaces 
in a periodic manner to increase light absorption. The optimization of nano-textur-
ing is essential to make a balance between shading and exposure to light [25].

This process can also be performed randomly and roughness (a numeric value 
measured in nm) can be optimized. Simultaneous optimization of mesoscale fea-
tures and nano-scale features is a trade-off that needs to be met for efficient light-
harvesting. On one hand, mesoscale features optimization is sensitive to fabrication 
costs. On the other hand, nano-texturing feature optimization is sensitive to light 
absorption capacity. Such a complex optimization problem requires an appropriate 
numerical approach. This, in fact, is a MOO problem where we optimize the trade-
off between the effects of these two cell design features.

3  Related work

Thin-film silicon solar cell is relied on light trapping (absorption) techniques to 
maximize its (internal) quantum efficiency, Qe  [13]. Since not all the light entered 
a cell is absorbed, an optimization of thin-film silicon solar structure design must 
be performed by varying its structural components for enhancing its light trapping 
(absorption) capacity [19]. Solar cells structural components that can be optimized 
are layers thickness [20, 27], layers interface roughness and diffraction grating [23], 
type of materials used in the cell [18], and the variations in the BR [12, 24].

Numerical simulation  [2] and optical simulation  [28, 32] are used for thin-film 
solar cell structure optimization. These simulations are computationally expansive 
and solar cell structure design requires evaluation of many designs. Thus, very few 
works reported to have tackled this problem. Especially, the use of optimization 
algorithms is rare, leave alone its optimization as a MOO problem.

An example of genetic algorithm (GA)  [16], an optimization algorithm, used 
for cell structure optimization is available in  [23], in which the authors aimed at 



 V. Ojha et al.

1 3

optimizing thin-film cell structure optimization using GA. They vary diffraction 
gratings (roughness of interface between ZnO:Ag back reflector) of cells. For this, 
they used periodic rectangular gratings, a four-level rectangular grating, and a ran-
dom grating resembling a randomly textured surface. GA formulation, therefore, 
was used to optimize the reflector’s geometry with groove height (within range 
[0 nm, 800 nm]) and groove period (within rang [0.5 μ m, 5.0 μm]).

Their purpose was to optimize (to find) grating types related to maximum quan-
tum efficiency, Qe . Compared to their work, our work optimizes each layer’s rough-
ness, and our purpose is to optimize photodiode intrinsic layer thickness and compo-
sition of cell related to maximum quantum efficiency, Qe . Moreover, our work aims 
at MOO compared to single-objective optimization mentioned in [23].

Contrary to our cell composition optimization approach, some other works in lit-
erature aimed at optimizing only a few components of cell structure using single-
objective GA. For example, thin-film anti-reflection coatings optimization of solar 
cell is presented in [17] and authors in [1] tackles cell structure optimization by opti-
mizing three cell geometrical parameters related to solar cell, namely, number of 
fingers (balancing shading and surface exposure, i.e., loosely it is the texture of light 
entry surface) and two values of cells doping profile.

In our previous work [27], we optimized the trade-off between the cells quantum 
efficiency, Qe and the cells structural designs such as the thickness of the cell struc-
ture and layers roughness. In our previous work, we evaluated only a few solar cell 
compositions. However, our current work tackles thin-film solar cell optimization 
for a variety of TOC materials, BR metals, and TCO doping strategies. We call it a 
full scheme solar cell design and characterization. Here, we aim to evaluate 15 prac-
tically feasible cell designs using our two-stage MOO framework.

4  Solar cell optimization problem

Our work depends on light trapping techniques, plasmonic effects computation, and 
simulation methods for cells efficiency measurement and cells structure design vali-
dation. These methods consist of three parts: (i) the computation of photon’s scatter-
ing probability for cells layers textured interfaces using Maxwell simulations [5, 37]; 
(ii) the computation of coherent and scattered photon absorption by a cell structure 
using a combined method of Photonic Monte Carlo calibration and scattering matri-
ces method; and (iii) the use of optical simulations computational model [28, 32]. 
Together these methods gave us the measure of solar cells quantum efficiency ( Qe ) 
(i.e., the ratio between absorbed energy and incident energy) for several parameters 
like roughness of photodiode layers interfaces and thicknesses of photodiode intrin-
sic layer.

The structure of a thin-film solar cell composition has many layers. Its cell struc-
ture optimization is, therefore, subjected to optimization of interface roughness of 
these layers. We formulated the cell structure optimization problem as a MOO prob-
lem (cf. Sect. 4.1), where layers interfaces roughness were the problem’s tuneable 
parameters. The tuning of these parameters governs the optimization of two cost 
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functions related to thin-film solar cells: (i) quantum efficiency maximization and 
(ii) intrinsic layer thickness minimization.

4.1  Solar cell multi‑objective optimization formulation

Maximization of solar cell quantum efficiency ( Qe)  [28, 32] and minimization of 
microcrystalline silicon layer thickness ( d�c-Si ) are two objectives of the cell struc-
ture design. The quantum efficiency, Qe of solar cells is subjected to optimization 
of their structural factors (parameters), such as (i) roughness of each interface: 
�i, i = 1,… , 11 and (ii) thickness of the microcrystalline silicon layer, d�c-Si . There-
fore, the solar cell optimization problem can be defined as a multi-objective optimi-
zation (MOO) problem:

where Qe is the average overall quantum efficiency of a cell in an ideal charge col-
lection condition (i.e., 100% collection efficiency independently collected on the fre-
quency) calculated as the average absorption in the two intrinsic layers �c-Si:i and 
a-Si:i. In Eq. (1), d�c-Si is the thickness of intrinsic ( �c-Si) layer, and d̄i is the thick-
ness pertaining to i-th material of the reference cell (cf. Table 1).

(1)

maximize Qe

minimize d𝜇c-Si

subject to

⎧
⎪⎨⎪⎩

𝜎1 = 0

0 ≤ 𝜎2 ≤ 0.3d̄2
0 ≤ 𝜎i ≤ 0.2d̄i i = 3,… , 11

0.7d̄𝜇c-Si ≤ d𝜇c-Si ≤ 1.3d̄𝜇c-Si

Table 1  Reference values 
of layers thickness of layer’s 
interface roughness

The materials and structure in Table 1 is a reference cell belongs to 
the solar cell shown in Fig. 1 that has zinc oxide-based transparent 
conductive oxide layer and silver as a back reflector and amorphous 
silicon (a-Si) and microcrystalline silicon ( �c-Si) as p-i-n-type pho-
todiodes layers. A different set of “Materials” produces its respective 
reference cell for the “Thickness (nm)” and “Roughness (nm)” val-
ues as mentioned in this table

Material Thickness (nm) Roughness (nm)

Glass (SiO2) 3.5 × 106 � = 0

Zinc-Oxide (ZnO) 600 � = 120

a-Si:p 20 � = 2

a-Si:i 300 � = 30

a-Si:n 20 � = 2

ZnO 20 � = 2

�c-Si:p 20 � = 2

�c-Si:i 1.7 × 103 � = 170

�c-Si:n 20 � = 2

ZnO:Ag 20 � = 2

Ag 150 � = 15
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The cell structure optimization concerning intrinsic ( �c-Si) layer’s thickness, 
d�c-Si minimization is directly related to cells fabrication cost. However, solar 
cell optimization problem imposes a minimum and maximum thickness con-
straint on intrinsic ( �c-Si) layers in its MOO treatment to Eq. (1). The constraint 
in Eq.  (1) maintains the light scattering weight where intrinsic ( �c-Si) layer is 
thinner than the ZnO layer’s roughness. Moreover, the approximation made by 
modelling approach refereed in Sect. 2.2 for cell structure optimization and vali-
dation holds true only if the constraints in Eq. (1) are met [36].

4.2  Multi‑objective optimization algorithms

A multi-objective optimization (MOO) algorithm optimizes two or more objec-
tives simultaneously as per: such that no one objective of the problem can be 
improved without a simultaneous detriment to at least one of the other objec-
tives. Each fk(�) is a scalar objective, and MOO problem optimizes an objective 
vector F(�) , where � ∈ ℝ

n is its feasible solution obtained at the final population 
on meeting termination criteria like max number of function evaluations.

More specifically, a MOO algorithm produces a set of non-dominated solutions 
{�1, �2,… , ��} , also known as Pareto-optimal front or Pareto-optimal solutions 
set [11], which is defined as follows.

A solution �i dominates other solution �j if for all objectives fk = 1, 2,…m , 
fk(�i) ≼ fk(�j) , where ≼ should be read as “better of.” On the contrary, a solution 
�i is non-dominated if for at least one objective fk(�i) ≼ fk(�j) does not hold. A 
set of such non-dominated solutions is called the Pareto-optimal solutions set.

The solar cell structure optimization problem optimizes the objective vector:

where Qe and d�c-Si are subjected to optimization of parameters (roughness of cell 
structure) � = ⟨�2,… , �11⟩ . We report three select solutions from the Pareto-front of 
each cell design: (i) the solution maximizing the quantum efficiency, i.e., Qe(�)

∗ ; (ii) 
the solution minimizing the thickness of the microcrystalline silicon layer ( d�c-Si ), 
i.e., d�c-Si(�)∗ ; and (iii) the solution closest to the Utopian point, i.e., U(�)∗ which 
represents the solution that contributes highest to both objectives with respect to the 
reference cell mentioned in Table 1.

We used a two-stage approach to perform MOO of solar cell. In the first 
stage, we performed non-dominated sorting genetic algorithm-II (NSGA-II) 
based optimization of the objective F = (Qe(�), d�c-Si(�)) . In the second stage, 
we apply our multi-objective optimization-immunological algorithm (OptIA-
II) to enhance the Pareto-front obtained in the first stage. We briefly describe 
NSGA-II and OptIA-II as follows.

(2)F(�) ≡ (f1(�),… , fm(�)), i.e., F ∶ ℝ
n
→ ℝ

m for m ≥ 2.

(3)F = (Qe(�), d�c-Si(�)),
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4.2.1  Non‑dominated sorting genetic algorithm‑II (NSGA‑II)

NSGA-II [11] is an evolutionary algorithm inspired by the principle of natural selec-
tion and has been found effective in real word applications (e.g.,  [35]). NSGA-II 
uses non dominated sorting, elitism, and crowding distances strategies to guide an 
initial population P = (�1,… ,�D) of D solution vectors through a predefined num-
ber of steps to a final population while simultaneously optimizing trade-off of multi-
ple objectives. Operators like crossover and mutation generate new solutions in each 
generation. This offspring generated from the current population, is then joined to 
their parents to constitute an enlarged set of vectors that are then sorted to choose 
the population that will be passed to the next generation of the algorithm. To per-
form this selection, in each generation, each solution of population P is assigned a 
rank and a crowding distance value.

A fast non-dominated sorting process sorts D candidate solutions into several sets 
(called fronts) of non-dominated solutions: F1,F2,… ,Fs such that the front F1 con-
tains all the non-dominated candidate solutions of population P. This means, no one 
solution in F1 is dominated by any other solutions.

Considering all remaining solutions except the ones already in F1 , it is possible 
to identify a new front F2 which contains all the next non-dominated solutions of P. 
Subsequently, front F3 and other fronts are sorted until no solution is left to be sorted 
into a front.

Once solutions are sorted into several fronts, a rank is assigned to each candidate 
solution such that those in front F1 have rank 1, those in front F2 have rank 2, and 
those in front F3 have rank 3. This continues until all solutions are assigned a rank.

The rank of the solutions is then used as the first parameter considered when con-
structing the population for the next generation.

The crowding distance of a candidate solution � is the estimation of the density 
of solutions around it. The distance assigned to � is the sum of its distance from the 
two points found on either side of it in the objective space. Crowding distance helps 
NSGA-II maintain diversity in the population while propagating population, P from 
generation to generation, by promoting the solutions with a higher distance from the 
other points within the same front.

4.2.2  Multi‑objective immunological algorithm (OptIA‑II)

We designed a novel multi-objective optimization algorithm called OptIA-II. Our 
OptIA-II is a clonal selection algorithm [26, 34]. There are three immunological 
theories: immune networks, negative selection, and clonal selection. Of which, 
OptIA-II follows clonal selection theory [26]. OptIA-II works on the following four 
principles: (i) cloning, (ii) inversely proportional hypermutation, (iii) hypermacro-
mutation, and (iv) aging.

Cloning operator The cloning operator clones each candidate solution so that 
these clones can be modified using the other operators to explore the neighbour-
hood in the search space [10, 26] while keeping the original parents points of the 
population.



 V. Ojha et al.

1 3

Hypermutation and hypermacromutation operators Hypermutation and hyper-
macromutation operators [26] perturb each candidate solution using an inversely 
proportional law where a candidate solution with a better objective rank has a lower 
number of its genes mutated, and a candidate solution with a poorer objective rank 
has a higher number of its genes mutated. Hypermutation and hypermacromutation 
differ by the number gens they mutate for best and worse solutions. Hypermacro-
mutation mutates relatively low number of genes compared to hypermutation. For 
example, if hypermacromutation is expected to mutate about 5 and 15% of the genes 
of the best and worst solutions respectively, the hypermutation is expected to mutate 
about 37% of the genes of the best solution and 100% of the genes of the worst solu-
tion. However, the hypermacromutation will likely apply more significant changes 
in the genes it mutates.

The formal definitions of hypermutation and hypermacromutation operators 
are as follows: Let n be the number of genes a candidate solution � has. Then, we 
have n = 10 genes of a candidate solution subjected to mutation in this work, i.e., 
� = �2, �3,… , �11 representing layers interface roughness. For convenience, we re-
index solution vector as � = �1, �2,… , �10.

A threshold � is defined for each solution and used to determine whether its genes 
will be mutated by the hypermutation operator, i.e. it expresses the probability with 
which the mutation of a gene occurs.

Thus, for a hypermutation potential �1 , we compute � as:

where F̂(�) indicates normalized objective rank between [0, 1] of the candidate solu-
tion � , where 1 is the best solution and 0 is the worse solution. Once � is defined, 
the expected number of genes mutated by the operator is approximately equal to 
⌊� ⋅ n + 0.5⌋.

In practice, for each gene a random variable is then drawn from a uniform dis-
tribution U(0, 1) and then compared to � , if the variable is below the threshold the 
hypermutation of that gene is performed as:

where 𝜏1, 𝜏2 < 1 are two parameters dependent on the population size D and defined 

as �1 = 1∕

�
2
√
D, �2 = 1∕

√
2D and r, s ∼ N(0, 1) are two variables drawn from a 

standard normal distribution.

(4)𝛼 = e−𝜌1F̂(�),

(5)�i = �i ⋅ e
(�1⋅r)+(�2⋅s),
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On contrary to hypermutation, in the hypermacromutation operator the threshold 
� to determine the genes of each candidate solution � to be mutated, for a hypermac-
romutation potential �2 , is computed as:

Similarly to the hypermutation case, a random variable drawn for each gene i of 
the solution triggers the hypermacromutation if lower than � . This mutation is per-
formed by using a convex operator which randomly selects another gene �j for i ≠ j 
and by applying the following operation:

where � ∈ [0, 1] is drawn from a uniform distribution, and l and u are the lower 
and upper bounds defined for each gene, respectively. Hence, the operator applies 
a convex mutation based on the value of the gene �i to be mutated and the value of 
another gene �j that is normalized and transferred in the feasible interval of �i.

(6)𝛼 =
e−F̂(�)

𝜌2
.

(7)�i = (1 − �)�i + �

(
li +

�j − lj

uj − lj
(ui − li)

)
,
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A mentioned, the two mutation operators have similarities and differences; first, 
the definition of the probability of the mutation � involves different parameters such 
as the two mutation potentials �1, �2 and, in the case of hypermutation, �1, �2 that are 
dependent on the population size only. The other notable difference is how the muta-
tion is performed; hypermutation is a variation of the corresponding gene based 
on its value and an exponential function that maintains the new value close to the 
original one due to the definition of �1, �2 , having D = 100 . The convex operator 
in the hypermacromutation makes the mutated value more likely to be far from the 
original gene, also depending on its normalized difference with the other randomly 
chosen gene in the solution.

That is, hypermacromutation aims to produce a more diverse candidate solution 
than the original one, improving the diversity across the population, while the hyper-
mutation keep the exploration more within the close range of the existing genes.

In our case, posing �1 = 1, �2 = 7 makes the chance of a hypermutation of a 
gene more likely that a hypermacromutation. The presence of the normalized rank 
of solutions F̂(�) in the definition of the probabilities ensures the inversely propor-
tional law, making both mutations more likely to occur within the worst solutions of 
the current population.

At every step of the procedures in which new genes are generated, they are main-
tained only if feasible as defined by the constraints of the problem and discarded 
otherwise.

Aging operator The aging operator eliminates old candidate solutions from the 
current population to introduce diversity and to avoid local minima [26]. Aging 
operator depends on the number of iterations a solution can survive in the popula-
tion. For example, if we set an age limit of 50 iterations for solutions in a population. 
Then, the solution will be dropped from the population. However, the best solution 
in the population is waived from this elimination (elitism).

Moreover, the best dead solutions are retained in an archive to be considered 
again if during a generation the number of feasible and alive solutions found after 
the mutations and aging goes below the size of the population.

Pareto-front-selection operator After aging operator has eliminated older solu-
tions from the current population, a Pareto-front-selection operator is performed to 
assign a rank to each solution of a combined set of solutions of both current popula-
tion (without aged solution) and current offspring solutions. The Pareto-front-selec-
tion operation in OptIA-II is a fast non-dominated sorting of population, P, which is 
like fast non-dominated sorting of NSGA-II described in Sect. 4.2.1.

OptIA-II optimization cycle OptIA-II outlined in Algorithm 3 starts with an initial 
population P of D candidate solutions. Each member of the population is a candi-
date solution for the given optimization problem. Cloning, hypermutation, hyper-
macromutation, elitism, and aging operators of OptIA-II algorithm guides an initial 
population P = (�1,… ,�D) of D solution vectors through a predefined number of 
steps to a final population while simultaneously optimizing trade-offs of multiple 
objectives.

In main optimization cycle of OptIA-II, the cloning operator clones (dupli-
cates) each candidate solution D′ times. On these solutions, hypermutation and 



1 3

Design and characterization of effective solar cells  

hypermacromutation operators are applied with respective mutation potentials �1 
and �2 to mutate randomly chosen candidate solutions.

After fitness of each solution is evaluated, an aging operator discards solutions 
that have reached a predefined age limit (the maximum number of steps � that a 
solution can survive in the population). However, elitism preserves the best solution 
irrespective of its age. Finally, remaining solutions of the population are assigned 
rank and sorted as per Pareto-front-selection operation [8].

5  Simulations and experiment setting

5.1  Solar cell designs

We present a comprehensive and exhaustive simulation strategy for solar cell 
optimization in this work. We performed a total of 15 different simulations in our 
experimental framework. These simulation cases are shown in Table 2. We aim to 
investigate the structural validity and practical feasibility of these cases.

Compared to our previous work  [27], where four levels of dosage of TCO 
and two varieties of BR roughness were used, we explore more comprehensive 
solar cell design variations in this work. We investigated the following design 
variations:

• four-levels of TCO dosage—optimally doped (resistance less than 1 mΩ×cm), 
normally doped (resistance of the order of 1 mΩ×cm), lowly doped (resistance 
larger than 100 mΩ×cm), and not doped;

• two types of TCO materials– zinc-oxide (ZnO) and tin-oxide (SnO2);
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• two varieties of BR roughness–smooth and rough surfaces; and
• two types of back reflector–metals silver (Ag) and aluminium (Al).

Such a comprehensive and computationally expensive setup was explored to 
investigate solar cells structure designs and materials that could maximize the 
quantum efficiency, Qe and minimize intrinsic layer thickness, d�c-Si(�) . Moreo-
ver, we hope that it will produce a full characterization of solar cell designs and 
associate the designs with their quantum efficiency and fabrication cost trade-off.

The solar cell structure in Fig.  1 is a layer-wise composition. The layers are 
designed by varying the mentioned four categories of variations (cf. Table  2). 
Each design, therefore, requires approximation of its layer interface roughness � 
that maximizes its quantum efficiency and minimizes its fabrication cost.

5.2  Two‑stage multi‑objective optimization strategy

In our two-stage optimization strategy, the first stage uses NSGA-II algorithm. 
NSGA-II aims at maximizing quantum efficiency and minimizing intrinsic layer 
thickness simultaneously. NSGA-II based optimization was performed on all 15 cell 
designs. The simulation results of each design’s feasible solutions were collected 
and compared with their respective reference cells.

For NSGA-II based MOO, population size was P = 100 , and a maximum of 200 
generation was used as the stopping criterion. We used simulated binary crossover 
(SBX) with crossover probability pc = 0.9 . For mutation, polynomial mutation with 
mutation probability pm = 1∕(number of decision variables) was used. The parent 
selection method was binary tournament selection.

The second stage was the fine-tuning stage. Here, we apply our OptIA-II algo-
rithm to the results of NSGA-II. In this stage, OptIA-II aimed at improving select 
best Pareto-fronts obtained using the NSGA-II algorithm. Three best designs 
obtained in the first stage were optimized in the second stage.

For OptIA-II, the population size was the same as the Pareto-front population size 
of the NSGA-II algorithm. The cloning factor D′ was 2, the aging factor � (maxi-
mum age) was 50 iterations, hypermutation potentiall �1 was 1, hypermacromutation 
potential �2 was 7. The stopping criteria Tmax was 104 fitness function evaluations.

6  Results and discussion

In our previous work  [27], a solar cell design “highly doped ZnO and smooth 
Ag as the BR” on optimization using a single-objective algorithm showed a 
5.88% improvement with respect to the reference cell (i.e., Qe = 0.604169 and 
d�c-Si = 2210 ). However, for this cell design, no constraint mentioned in Eq. (1) was 
applied. Thus, parameter values � were very high. This made the obtained design 
fragile and unstable.
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Using single objective OptIA without violating constrained in Eq. (1), it was pos-
sible to obtain a solution with Qe = 0.5928 and d�c-Si = 1814.45; while NSGA-II 
based MOO produced a 5.083% improvement on absorption ( Qe = 0.599967 and 
d�c-Si = 2209.97876 ) with respect to the reference cell design (cf. Table 1).

In addition, another solar cell design “low doped ZnO and rough BR Ag” pro-
duced a Qe = 0.6 and d�c-Si = 2100 on NSGA-II-based optimization. For “optimally 
doped ZnO and smooth BR Ag,” our previous work produced a Qe = 0.593 and 
d�c-Si = 2110 using single objective OptIA as its best results [27].

In this research, we use the max quantum efficiency, Qe = 0.6 obtained in  [27] 
using NSGA-II for cell design “low doped ZnO and rough BR Ag” as our baseline 
accuracy. Moreover, we aim to maximize quantum efficiency, Qe as much as possi-
ble while maintaining the constraint laid down in Eq. (1). We hope to obtain stable 
cell designs from our two-stage MOO framework with quantum efficiency, Qe > 0.6 
for their intrinsic layer thickness within the range [1190, 2210].

6.1  Stage 1: Multi‑objective optimization using NSGA‑II

A summarized result of NSGA-II based MOO of the solar cell optimization on all 
15 designs is shown in Fig. 2. In stage-one, NSAG-II offers best quantum efficiency, 
Qe = 0.6 on cell design configuration “optimally doped ZnO and smooth BR Ag.” 

Table 2  Solar cell structure design compositions for simulation

Simulation TCO, back reflector, and doping variations

Cost intensive TOC and back reflector metal use
sAg-oZnO Smooth back reflector Ag, optimally doped ZnO (the 

most cost-intensive)
sAg-nZnO Smooth back reflector Ag, normally doped ZnO
sAg-lZnO Smooth back reflector Ag, lowly doped ZnO
sAg-ntZnO Smooth back reflector Ag, not doped ZnO

Cost intensive back reflector roughness
rAg-oZnO Rough back reflector Ag, optimally doped ZnO
rAg-nZnO Rough back reflector Ag, normally doped ZnO
rAg-lZnO Rough back reflector Ag, lowly doped ZnO
rAg-ntZnO Rough back reflector Ag, not doped ZnO

Cost-effective back reflector metal use
sAl-oZnO Smooth back reflector Al, optimally doped ZnO
sAl-nZnO Smooth back reflector Al, normally doped ZnO
sAl-lZnO Smooth back reflector Al, lowly doped ZnO
sAl-ntZnO Smooth back reflector Al, not doped ZnO

Cost-effective TOC use
sAg-SnO2 Smooth back reflector Ag, SnO2
rAg-SnO2 Rough back reflector Ag, SnO2
sAl-SnO2 Smooth back reflector Al, SnO2 (the least cost-intensive)
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This result is the same as the baseline in our previous experiment. This motivated us 
to fine-tune some select best results of stage-one in stage-two.

However, in our current frameworks, we hope not only for maximizing cells 
quantum efficiency, Qe , but we hope to have a full characterization of cell designs 
and approximate their design parameters, which our stage-one provides successfully. 
Figure 2 offers this characterization by summarizing Pareto-fronts of all 15 designs.

In Fig. 2, quantum efficiency, Qe maximization trait is plotted on x-axis against 
minimization trait of microcrystalline silicon layer thickness, d�c-Si plotted on y-axis. 
We notice that this summarized plot of solar cell designs generates clusters that are 
linked to different design characteristics. Here, four clear clusters (four sets of cell 
designs) can be seen in Fig. 2. We characterize each cluster as follows:

Lowest cost-intensive and lowest quantum efficient cluster The solar cell 
designs that are not-doped constitute this cluster. This cluster appears in the left-
most part of Fig. 2 (first three labels listed on the right panel). The quantum effi-
ciency, Qe of not-doped cell designs vary between 0.47 and 0.51. These quantum 
efficiencies are obviously less than baseline quantum efficiency, Qe = 0.6 . This 
makes this cluster the least quantum efficient cluster.

NSGA-II finds optimal parameters for not-doped designs that maximized 
quantum efficiencies of these designs with respect to their respective reference 
cells (cf. Fig. 3a–c). Table 3 summarizes parameter values of candidate solutions 
obtained for not-doped cell designs: sAg-ntZnO, rAg-ntZnO, and sAl-ntZnO. 
Moreover, Table  3 provides a detailed optimized parameter (layers interface 
roughness �i, i = 2,… , 11 ) values and corresponding quantum efficiency, Qe val-
ues and microcrystalline silicon layer thickness, d�c-Si values of three candidate 
solution points for each design.

These three candidate solutions refer to (i) the highest quantum efficiency Qe(�)
∗ ; 

(ii) the thinnest microcrystalline silicon layer d�c-Si(�)∗ ; and (iii) a point U(�)∗ with 
the closest fitness to the Utopian point, that is, the theoretical point having the best 
obtained optimal values for both objectives simultaneously. The Utopian point is not 
practically feasible. However, the presented U(�)∗ gives a good trade-off between 
the objectives in our simulations with respect to respective reference cell.

Low cost-intensive and low quantum efficient cluster The next cluster in Fig. 2 
is lowly-doped cell designs (sAl-lZnO, sAg-lZnO, and rAg-lZnO) whose quantum 
efficiency Qe varies between 0.5 and 0.54. Their detailed Pareto-fronts are shown in 
Fig. 3d–f. Table 3 summarizes their parameter values of candidate solutions.

High cost-intensive and high quantum efficient cluster In the order of the perfor-
mances, the design with rough BR rAg-lZnO is better than smooth doping designs, 
which indicates that low doping rough BR cell design provides better light-harvest-
ing capacity than smooth BR cell design. This fact is evident from normally-doped 
ZnO design and SnO2 doped design cluster (cf. Fig. 2). The detailed Pareto-fronts of 
normally-doped cluster designs are shown in Fig. 3g–l respectively. Their respective 
parameter values of three candidate solutions are shown in Table 3.

After analysing lowly-doped and normally-doped clusters, it is clearly observed 
that the rough BR Ag among ZnO based TCO doping is a better choice than a 
smooth BR. Similarly, rough BR Ag gives better light-harvesting capacity than a 
smooth BR. In-fact, SnO2 based TCO layer shows a higher quantum efficiency than 
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ZnO based TCO layer in this cluster. The max quantum efficiency of rAg-SnO2 is 
0.57, which is as good as the reference cell outlined in Table 1.

Highest cost-intensive and highest quantum efficient cluster The rightmost cluster 
in Fig. 2 is the cluster of optimally doped cell designs: “smooth BR Al plus opti-
mally doped ZnO (sAl-oZnO),” “smooth BR Ag plus optimally doped ZnO (sAg-
oZnO),” and “rough BR Ag plus optimally doped ZnO (rAg-oZnO).” Figures 4, 5, 
and 6, respectively show detailed NSGA-II based MOO of the simulation and all 
feasible solutions on the Pareto-front of sAl-oZnO, sAg-oZnO and rAg-oZnO cell 
designs.

The quantum efficiency of this cluster varies between 0.56 (close to the reference 
cell) and 0.6 ( ≈ 5.36 % more efficient than the reference cell and equal to baseline 
quantum efficiency Qe ). Detailed parameter values and three candidate solutions of 
these designs are listed in Table  3. We select these optimally doped cell designs 
(sAl-oZnO, sAg-oZnO, and rAg-oZnO) for the second stage optimization (Pareto-
front’s fine-tuning) using OptIA-II.

6.2  Stage 2: Multi‑objective optimization using OptIA‑II

Our OptIA-II algorithm fine-tuned the Pareto-front of NSGA-II in this stage. Fig-
ures 7, 8, and 9 show these fine-tuned Pareto-fronts. Here, OptIA-II Pareto-fronts are 
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Fig. 2  Pareto-front approximations obtained by using NSGA-II for the multi-objective optimization 
(minimization of Micro-crystal silicon layer d�c-Si and maximization of Quantum efficiency Qe ) of the 
optical model for tandem-thin-film silicon solar cell with the ”full parameterized” model for all 15 solar 
cell simulation variations. Notice that the Pareto-front of all simulations is coloured from the lower 
Quantum efficiency Qe value to higher (apparently best) the best Quantum efficiency Qe . Design with 
“Rough back reflector Ag and Optimal Doped ZnO version is indicted in red line with red pentagon 
marker appear, which also indicate the best Pareto-front among all designs (colour figure online)
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shown in red line and feasible candidate solutions in coloured “+” marked points. 
NSGA-II Pareto-front solutions are shown in black “+” marked points.

OptIA-II improved the Pareto-front line of all three select NSGA-II obtained 
solutions. Table 4 shows the parameter values � and objective values Qe and d�c-Si of 
the fine-tuned solutions.

Fig. 3  NSGA-II optimization of simulation. a–c cluster of not-doped ZnO cell structure designs for 
smooth back reflector Al, rough back reflector Ag, smooth back reflector Ag. d–f cluster of lowly-doped 
ZnO cell structure designs for smooth back reflector Al, smooth back reflector Ag, and rough back reflec-
tor Ag. g–f cluster of normally-doped ZnO and SnO2 doped cell structure designs for smooth back 
reflector Al (SnO2 ), smooth back reflector Al (ZnO), smooth back reflector Ag (ZnO), j–l cluster of opti-
mally-doped ZnO cell structure designs for rough back reflector Ag (ZnO), smooth back reflector Ag 
(SnO2 ), and rough back reflector Ag (SnO)
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Table 3  NSGA-II multi-objective optimization (minimization of micro-crystal silicon layer d�c-Si and 
maximization of quantum efficiency Qe ) of the optical model for tandem-thin-film silicon solar cell with 
the “full parameterized” model for all 15 solar cell simulation variations

Simulation �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 d�c-Si Qe

sAl-ntZnO 143.57 1.52 59.73 0.26 1.13 2.57 228.51 0.81 3.92 7.35 2210.00 0.51
146.91 0.97 58.20 3.12 2.06 3.07 98.00 0.76 3.85 30.00 1501.87 0.49
147.34 1.07 60.00 3.42 2.49 3.62 299.02 3.83 4.00 9.28 1190.00 0.47

rAg-ntZnO 148.95 1.35 59.07 0.20 1.37 2.65 241.37 1.24 3.99 4.51 2210.00 0.51
176.18 3.99 53.07 0.61 2.16 3.93 299.62 4.00 1.68 18.50 1600.04 0.49
140.97 2.11 59.82 1.54 2.52 1.60 109.31 1.59 3.85 29.54 1190.00 0.48

sAg-ntZnO 149.70 1.26 59.88 0.61 1.07 2.80 221.45 1.12 4.00 5.96 2209.17 0.51
170.43 3.87 56.98 0.55 0.27 2.46 301.44 2.27 3.98 29.67 1495.93 0.50
179.78 0.20 58.98 3.72 2.51 1.84 233.94 4.00 3.98 18.34 1190.00 0.48

sAl-lZnO 163.20 1.94 54.36 0.64 4.00 3.31 97.18 3.84 1.56 13.89 2105.49 0.53
166.56 3.12 49.41 0.87 3.02 0.42 201.36 3.70 1.83 20.79 1677.59 0.51
155.36 3.79 51.13 2.33 3.03 3.84 313.33 1.07 4.00 29.27 1190.00 0.50

sAg-lZnO 178.73 1.78 53.60 2.90 1.03 1.64 250.36 2.02 2.00 19.61 2210.00 0.54
179.90 1.03 59.96 2.56 1.12 3.99 118.19 2.84 3.39 10.19 1590.20 0.52
175.71 1.07 59.54 2.71 0.96 3.77 141.00 2.85 3.74 12.75 1190.00 0.51

rAg-lZnO 168.72 1.15 54.17 1.00 0.23 0.53 117.43 0.86 1.61 24.84 2206.33 0.53
180.00 1.18 57.30 0.45 3.89 3.05 121.30 2.12 3.94 29.95 1587.14 0.53
177.03 1.26 57.80 0.57 3.82 2.31 112.01 2.55 3.92 27.28 1190.00 0.51

sAl-SnO2 180.00 1.54 60.00 2.21 2.32 1.06 32.74 3.99 2.01 6.09 2048.73 0.57
179.77 2.01 50.37 2.18 2.20 0.29 62.02 3.96 2.38 2.81 1653.14 0.55
177.85 3.43 41.74 2.26 3.07 2.91 221.17 1.28 3.89 9.76 1190.00 0.53

sAl-nZnO 179.68 0.63 59.99 3.03 2.18 3.74 306.67 3.23 3.23 3.04 2073.04 0.56
179.86 1.30 55.95 3.50 3.42 2.42 70.84 4.00 1.50 29.77 1587.75 0.55
179.95 1.46 59.95 3.65 3.73 2.34 60.03 4.00 1.22 22.20 1190.00 0.53

sAg-nZnO 156.56 2.21 60.00 0.62 0.63 1.56 93.53 2.46 3.46 21.94 2210.00 0.57
164.63 0.35 54.18 2.86 2.55 3.27 94.23 0.63 4.00 28.07 1586.12 0.55
180.00 2.62 52.79 2.86 0.30 0.55 167.91 3.23 3.63 27.46 1190.00 0.54

rAg-nZnO 168.86 1.66 59.66 0.82 3.86 3.45 140.12 3.43 2.57 9.84 2210.00 0.57
178.50 3.37 53.61 1.55 2.80 1.36 323.05 2.48 3.99 30.00 1585.69 0.55
153.24 2.67 55.05 0.20 2.90 2.21 333.86 0.82 4.00 9.29 1190.00 0.53

sAg-SnO2 180.00 1.89 49.77 3.05 1.43 3.70 70.69 3.93 3.93 27.58 2045.57 0.57
180.00 2.58 54.09 3.22 3.69 1.44 315.97 0.71 1.55 28.30 1554.78 0.56
171.10 3.20 60.00 3.76 4.00 1.06 286.61 1.37 1.84 28.37 1190.00 0.54

rAg-SnO2 180.00 3.47 60.00 0.39 2.99 3.17 132.56 0.38 3.34 7.77 1757.36 0.57
179.93 0.73 54.96 3.29 1.25 1.78 30.78 3.93 3.18 12.06 1472.39 0.56
171.10 2.83 56.54 2.80 2.57 4.00 194.27 0.91 3.70 24.37 1190.00 0.54

sAl-oZnO 156.25 1.43 59.48 0.27 1.21 2.69 228.92 0.83 3.28 6.75 2210.00 0.59
179.24 1.29 50.42 3.45 0.79 2.31 297.25 3.78 4.00 8.29 1590.91 0.58
148.89 3.00 53.89 3.23 1.17 3.96 126.97 1.89 4.00 12.81 1190.00 0.56
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The quantum efficiency, Qe of smooth BR Al plus optimally doped ZnO (sAl-
oZnO) design increased from Qe = 0.5946 to Qe = 0.6006 , i.e., its quantum effi-
ciency, Qe improved by 1.0091% . Also, the thickness d�c-Si of the microcrystal silicon 
intrinsic layer decreased from 2210 to 2208.43. Similarly, the quantum efficiency, 
Qe of smooth back reflector Ag plus optimally doped ZnO (sAg-oZnO) design 
increased from Qe = 0.5988 to Qe = 0.6028 , a 0.6680% increase in Qe . Its thick-
ness d�c-Si decreased from 2210 to 2208.24. For rough BR Ag plus optimally doped 
ZnO (rAg-oZnO) design, the quantum efficiency, Qe increased from Qe = 0.5990 
to Qe = 0.6031 . A 0.6845% increased in quantum efficiency, Qe . Its thickness, d�c-Si 
decreased from 2210 to 2209.67.

Notice that the energy production efficiency is directly proportional to 
increases in the quantum efficiency Qe of a single photovoltaic solar cell. 

Table 3  (continued)

Simulation �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 d�c-Si Qe

sAg-oZnO 180.00 1.72 60.00 0.66 1.48 2.46 39.03 1.25 0.75 11.86 2210.00 0.60

168.33 0.49 59.87 0.35 4.00 3.66 93.60 0.33 2.42 28.01 1586.92 0.58

161.10 3.41 56.46 2.20 1.71 3.22 255.27 1.17 3.51 12.91 1190.00 0.56
rAg-oZnO 180.00 1.38 56.95 0.38 0.88 3.19 211.80 1.26 2.96 6.44 2210.00 0.60

180.00 1.03 59.68 1.23 3.91 3.11 41.17 1.28 3.66 30.00 1587.99 0.59
158.65 3.27 52.08 2.67 1.86 0.89 326.33 1.19 3.84 28.74 1190.00 0.56

For each setting, the two extreme points Qe(�)
∗ and d�c-Si(�)∗ and the point U(�)∗ closest to the utopian 

point are reported. Highlighted boldface Qe values are three select candidate designs whose Pareto-front 
was passed onto the second stage for the optimization
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Therefore, a 0.6845% increased in quantum efficiency Qe of a single photovoltaic 
solar cell is a significant proportional improvement on the single solar panel that 
has a few such photovoltaic solar cells.

Our results in Table 3 and Fig. 2 provide a detailed characterization of solar 
cell designs mentioned in Table 2. This is significant for the characterization of 
solar cells real-world applications.
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For example, the applications such as household appliances and toys where a 
low-cost solar panel is required with relatively good quantum efficiency, we may use 
the least cost-intensive designs that have relatively good quantum efficiency. In our 
obtained solar cell characterization, the second most-effective design cluster shown 
in Fig. 2 pertaining to “normally doped SnO2 and Al as a BR design may be used.

This design is highly cost-effective since normal doping is a cost-effective method 
than the optimally doped method, and TCO material SnO2 is cheaper martial than 
ZnO. Moreover, Al as a BR is cheaper than Ag. The design “optimally doped ZnO 
with Al as a (smooth) back reflector” belonging to the most efficient cluster (see 
Fig. 2 and its improved quantum efficiency in Table 4) is still a cost-effective design 
than the most effective design that is “optimally doped ZnO with Ag as a (rough) 
BR.” This design may be used in application relatively higher sophistication than the 
toys and household appliances. Some sophisticated real-world applications such as 
satellites where highly efficient solar panels are required can use “optimally doped 
ZnO with Ag as a (rough) BR.”

7  Conclusions

A comprehensive framework was designed in this research for solar cell optimiza-
tion. This framework studies 15 different solar cell structure designs. We performed 
simulation and optimization of cell structure interface roughness parameters to 
improve cells light-harvesting capacity. That is, to improve cells quantum efficiency 
computed using a full Maxwell simulation model.

We treated solar cell design optimization problem as a multi-objective opti-
mization (MOO) problem and optimized cells quantum efficiency against cells 
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microcrystalline silicon intrinsic layer thickness (cells fabrication cost). Our Pareto-
optimality results obtained by applying non-dominated sorting algorithm-II (NSGA-
II) produced a full characterization of the cell designs. From the analysis of the 
NSGA-II produced Pareto-fronts, we found that transparent conductive oxide (TCO) 
layer doping has a strong correlation with cells quantum efficiency. This means, in 
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our experiments, a high concentration doping strategy (optimal doping with resist-
ance less than 1 mΩ× cm) produced the most efficient cell design.

We also found that the cell structure design with a rough back reflector compared 
to a smooth back reflector provided a higher light-harvesting capacity. This was evi-
dent from the Pareto-front of cell designs for both zinc oxide (ZnO) and tin oxide 
(SnO2 ) doping. Here, the rough back reflector provided a better trad-off between 
quantum efficiency and micro-crystal silicon layer thickness.

The use of silver (Ag) as a back reflector material was clearly better than the alu-
minium (Al). However, high concentration doping of ZnO with Al as back reflector 
material offered a slightly improved quantum efficiency (0.6006) with respect to the 
baseline quantum efficiency (0.6). We found that ZnO as a TCO layer is more effi-
cient than SnO2.

In our two-stage MOO, the Pareto-fronts of three select best cell designs of 
NSGA-II based MOO stage were fine-tuned by our designed multi-objective opti-
mization-immunological algorithm (OptIA-II). We observed that OptIA-II algo-
rithm improved both costs associated with solar cell design. It maximized quantum 
efficiency and minimized micro-crystal silicon intrinsic layer thickness of all three 
select designs. The best stable solar cell design found was rough back reflector Ag 
plus optimally doped ZnO that produced an ≈ 0.7 % improved quantum efficiency 
(i.e., Qe = 0.6031 ) with respect to the baseline quantum efficiency.
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