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Abstract
This is the first study to show the global Cut-off Low (COL) activity in 46 models participating in the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6). The COL historical simulations for the period 1979–2005 
obtained from the CMIP5 and CMIP6 models and their ensembles are compared with the ERA5 reanalysis using an objective 
feature-tracking algorithm. The results show that the CMIP6 models simulate the spatial distribution of COLs more realisti-
cally than the CMIP5 models. Some improvements include reduced equatorward bias and underestimation over regions of 
high COL density. Reduced biases in CMIP6 are mainly attributed to the improved representation of the zonal wind due 
to the poleward shift of the subtropical jet streams. The CMIP5 models systematically underestimate the COL intensity as 
measured by the T42 vorticity at 250 hPa. In CMIP6, the intensity is still underestimated in summer, but overestimated in 
winter in part due to increased westerlies. The overestimation is enhanced by the finer spatial resolution models that iden-
tify more of the strong systems compared to coarser resolution models. Other aspects of COLs such as their temporal and 
lifetime distributions are modestly improved in CMIP6 compared to CMIP5. Finally, the predictive skill of climate models 
is evaluated using five variables and the Taylor diagram. We find that 15 out of the 20 (75%) best coupled models belong to 
CMIP6, and this highlights the overall improvement compared to its predecessor CMIP5. Despite this, the use of the multi-
model ensemble average seems to be better in simulating COLs than individual models.
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1  Introduction

Interest in Cut-off Low (COL) pressure systems has 
increased in the last decades, in recognition of their impor-
tance to precipitation regimes at low-mid latitudes. In par-
ticular, precipitation extremes associated with COLs can 
result in damage and socioeconomic impacts (Llassat et al. 

2007; Porcu and Carrassi 2009). Since COLs move slowly, 
they can result in large accumulated rainfall amounts in a 
particular location, contributing to flood episodes on differ-
ent continents (Singleton and Reason 2006a, b; McInnes and 
Hubbert 2001; Llasat et al. 2007). In particular, deep COLs 
extending toward the surface are generally associated with 
wetter conditions (Porcù et al. 2007; Pinheiro et al. 2021a). 
Moreover, COLs can cause deep intrusions of ozone-rich 
stratospheric air downward (Ancellet et al. 1994), which can 
be important at high altitudes as ozone is a pollutant.

COLs are historically identified as closed geopotential 
height contours in the mid-upper troposphere, associated 
with high potential vorticity (PV) anomalies cut-off from 
the stratosphere, as a result of the Rossby wave breaking 
on the mid-latitude jet (Ndarana and Waugh 2010). COLs 
typically grow because of the energy imported from the jet 
streak that propagates eastward along the poleward side of 
the COL (Ndarana et al. 2020) due to the agestrophic flux 
convergence, together with baroclinic processes (Gan and 
Dal Piva 2013, 2016; Pinheiro et al. 2021b), and then decay 
due to the export of energy downstream (ageostrophic flux 
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divergence), friction and diabatic heating (Kousky and Gan 
1981; Hoskins et al. 1985; Fuenzalida et al. 2005; Sakamoto 
and Takahashi 2005; Cavallo and Hakim 2010).

In the last few years, many studies have been undertaken to 
demonstrate the climatological features of COLs in both hem-
ispheres, providing new insights in to their spatial distribution 
and temporal variability. The use of algorithms to objectively 
identify COLs has facilitated the development of more quan-
titative studies, mostly based on gridded data (atmospheric 
reanalysis), indicating that results are sensitive to the chosen 
identification method (Nieto et al. 2008; Pinheiro et al. 2019) 
and dataset (Reboita et al. 2010; Pinheiro et al. 2020). More 
recently, there has been an increasing interest in how climate 
models simulate COLs, perhaps because changes in the COL 
behavior may impact regional climate variability. Understand-
ing how well COLs are simulated by climate models is essen-
tial for reliable current predictions and future projections. One 
way to do this is to investigate whether climate models are 
able to accurately simulate present-day COL characteristics 
in reasonably good agreement with reanalyses.

While considerable efforts have been made in regional 
and global climate modeling, there are few studies evaluat-
ing the performance of climate models in simulating COLs, 
with the result that their prediction remains uncertain. An 
exception is the paper by Bozkurt et al. (2016), in which 
the relationship of sea surface temperature (SST) anoma-
lies with precipitation was tested using a regional climate 
model. They compared the simulated COL with observa-
tions to show that the warmer SST in the southeast Pacific 
sector was crucial for the rare event of intense rainfall in 
the Atacama Desert. Additionally, Reyers and Shao (2019) 
evaluated the skill of two coupled climate models, which 
participated in the third phase of the Paleoclimate Modelling 
Intercomparison Project (PMIP3), in simulating the synoptic 
conditions associated with COLs located off the coast of 
Northern Chile. They found that more COLs occurred in the 
Last Glacial Maximum compared to present-day conditions, 
due to a decrease of the subtropical jet intensity.

The Coupled Model Intercomparison Project (CMIP) 
has facilitated the assessment of the impact of past, pre-
sent and future climate conditions on large and synoptic 
scale weather patterns (Bellenger et al. 2014; Zappa et al. 
2013; Reboita et al. 2019; Harvey et al. 2020), providing an 
invaluable source for the Intergovernmental Panel on Cli-
mate Change (IPCC) Assessment Reports. Data from the 
sixth generation of CMIP is now available, and represents 
the current state-of-the-art in global coupled climate mod-
eling. It is important to analyse these outputs and examine 
whether they are better (or not) in simulating the current cli-
mate compared to the predecessor CMIP5 simulations. The 
most important changes in CMIP6 with respect to the previ-
ous version are the increased spatial model resolution and 
improved model parameterizations and physical processes 

(Eyring et al. 2016). These improvements will hopefully 
reduce the model uncertainty and will be critical for better 
prediction of synoptic-scale features such as COLs, this has 
been highlighted by recent evidence that the CMIP6 models 
better represent the location and intensity of extratropical 
cyclones compared to CMIP5 models (Priestley et al. 2020).

The primary focus of this study is to quantify the ability 
of the CMIP5 and CMIP6 models in representing the global 
climatological features of COLs. This will be done by con-
trasting the results with the latest global reanalysis product 
ERA5 (Hersbach and Dee 2016). Specifically, we intend to 
answer the following research questions:

•	 Are CMIP6 models better at simulating COLs compared 
to the CMIP5 models;

•	 Does the increased spatial resolution of CMIP6 models 
result in an improvement in the simulations of COLs in 
terms of their spatial distribution, number and intensity;

•	 What is the inter-model spread in the COL simulations, 
and what is the overall ranking of model performance for 
COLs.

The paper continues by describing the reanalysis and 
model datasets together with the tracking algorithm in 
Sect. 2. Our results are discussed in Sect. 3, followed by 
conclusions in Sect. 4.

2 � Data and methods

2.1 � Models and reanalysis data

Atmospheric reanalysis products have been extensively used 
to evaluate climate models in simulating current climate 
conditions. Inconsistences in COL features have been found 
when COLs have been identified in data from older reanalysis 
(Reboita et al. 2010), but improvements in the data assimila-
tion and forecast models have reduced the uncertainties in 
location and intensity of COLs with more recent reanalyses 
(Pinheiro et al. 2020). The ERA5 is the most recent reanalysis 
produced by the European Centre for Medium-range Weather 
Forecasts (ECMWF) (Hersbach and Dee 2016), and will be 
used here to assess the model results. The most important 
changes in the ERA5 configuration compared to its predeces-
sor ERA-Interim include a finer spatial spectral resolution 
(TL639, corresponding ~ 31 km), higher temporal resolution 
(hourly outputs), higher number of vertical levels (137), and 
a larger amount of observational data assimilated. ERA5 
is based on the Integrated Forecasting System (IFS) model 
Cycle41r2 with 12-h 4DVar data assimilation.

In this study the present-day historical simulations of 
23 CMIP5 models and 23 CMIP6 models, listed in the 
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supplementary Tables S1 and S2, are used. The historical 
runs are produced using fully coupled ocean–atmosphere 
climate models, forced by greenhouse gas concentrations, 
solar forcing, natural and anthropogenic aerosols and land 
use (Eyring et al. 2016). The historical simulations are 
available from the mid-nineteenth century to near present, 
but we restrict our analysis to the period after 1979 to be 
consistent with the period covered by the reanalysis dataset 
for the modern satellite era (post-1979), while the end data 
2005 was chosen based on the availability of CMIP5 data. 
The CMIP6, in particular, includes simulations produced as 
part of the High-Resolution Model Intercomparison Project 
(HighResMIP, Haarsma et al. 2016), following specific pro-
tocols such as incorporating higher resolutions. The standard 
CMIP6 models have atmospheric resolutions that typically 
range from ~ 250 to ~ 100 km, but the HighResMIP simula-
tions comprise simulations with considerably higher resolu-
tions (25–50 km), which allows a more detailed investiga-
tion of the impact of increased resolution on the simulated 
characteristics of COLs. Since the CMIP5–CMIP6 models 
present a wide range of resolutions, it is possible to separate 
models into “high” and “low” resolution groups, as shown 
in bold in the Tables S1 and S2. The nominal resolution 
will be used to categorize models as this attribute does not 
depend on the grid characteristics, as defined in Appendix 2 
in Taylor (2018). The “high” resolution group includes mod-
els with nominal resolutions of 100–150 km for CMIP5 and 
25–100 km for CMIP6. For the analysis of the large-scale 
circulation, the data were first regridded to a common hori-
zontal grid using the bilinear interpolation technique.

The CMIP models were chosen based on their data avail-
ability at the time of writing, since not all models provide 
the six-hourly wind fields at upper pressure level (e.g., 250-
hPa), which are required to identify and track COLs. We use 
all available ensemble members to reduce the uncertainty 
in the analysis (see Table S1 for detail descripts of data). 
The ensemble mean fields are calculated from the indi-
vidual model runs where each ensemble model is tracked 
individually.

2.2 � COL tracking and analysis techniques

COLs are identified and tracked using a scheme that has 
been previously described (Pinheiro et  al. 2019, 2020) 
based on the TRACK algorithm (Hodges 1995, 1999) and 
is outlined below. The tracking is performed on the relative 
maxima for the NH and minima for the SH in the six-hourly 
250-hPa relative vorticity ( �

250
 ). The 250-hPa level was cho-

sen for the tracking due to data availability, and that it is 
close to the dynamical tropopause level and is the closest 
level above the 300 hPa, where the highest intensities occur 
in COLs (Pinheiro et al. 2021a). The 250-hPa zonal and 
meridional wind speeds are used to compute the �

250
 . The 

identification process is preceded by spectrally filtering the 
vorticity field using a triangular truncation 42 (T42) to retain 
only the synoptic scale features, and this ensures that the 
features will be focused on a similar spatial scale, irrespec-
tive of the model horizontal resolution. The tapering filter 
of Sardeshmukh and Hoskins (1984) is applied to reduce 
the Gibbs effect, and the large-scale background is also 
removed by setting the coefficients of the total wavenum-
bers less than or equal to five to zero. The extrema (feature 
points) are determined as off-grid locations using B-spline 
interpolation and steepest ascent maximization. The track-
ing is performed on the sphere by first initialising a set of 
tracks from the feature points using the nearest neighbour 
method. These tracks are then refined by minimizing a cost 
function for track smoothness subject to adaptive constraints 
for displacement and track smoothness. A post-tracking fil-
tering is used to ensure the presence of a cut-off circulation. 
This is applied to the horizontal wind components, added 
to the tracks, in four offset points located 5° geodesic from 
the COL centre, defined as follows: 0° (u < 0), 90° (v > 0), 
180° (u > 0), and 270° (v < 0) for the NH; and 0° (u > 0), 
90° (v < 0), 180° (u < 0), and 270° (v > 0) for the SH. These 
conditions reduce the number of open troughs without being 
too restrictive as in methods based on multiple step schemes 
(Nieto et al. 2005; Reboita et al. 2010; Pinheiro et al. 2017, 
2019). Finally, only the tracks that occur within the 15°–50° 
latitudinal band from the equator in both hemispheres, and 
last at least 24 h are retained.

COL diagnostics include their frequency, intensity, life 
time and seasonality. The spatial statistics are computed 
using spherical kernel estimators to produce the track den-
sity and mean intensity (Hodges 1996). The track density 
is provided as the number of COLs per season per unit area 
(5° spherical cap ≅ 106 km2). The mean intensity is com-
puted from all points along the track based on the T42 �

250
 , 

scaled by -1 in the SH. The spatial diagnostics are examined 
for each season, but only the mean fields (averaged over all 
seasons) are shown in the main text for reasons of simplic-
ity and convenience. For each model, the spatial statistics 
are averaged across all the available ensembles to reduce 
the uncertainty arising from different model versions. Addi-
tional analyses for each season are given as supplementary 
online material.

The performance of individual climate models in simu-
lating the spatial distribution of COLs (in terms of track 
density) is evaluated using the Taylor diagram (Taylor 
2001), which has been used in other model intercomparison 
and evaluation studies (Gleckler et al. 2008; Walsh et al. 
2013; Langenbrunner and Neelin 2013; Kumar and Sarthi 
2019). The Taylor diagram includes widely-used standard 
statistical metrics such as the standard deviation, correla-
tion, root-mean-square error (RMSE) and unbiased RMSE 
(ubRMSE) as is in our Taylor diagram. These indices are 
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analysed together with the mean bias and they are all quanti-
fied by spatially averaging the mean COL track density over 
the study area for the reanalysis and climate model simula-
tions. Since the Taylor diagram provides a concise statistical 
summary of how well climate models reproduce spatial pat-
terns, a skill score method is used by assigning the model’s 
position (ith ranking position) among all the 46 models from 
CMIP5 and CMIP6 using the five aforementioned variables, 
and then averaged over all variables. This allows us to estab-
lish the relatively better performing models (i.e., the models 
with higher ranking scores) for the simulation of COLs.

3 � Results

3.1 � Spatial distribution of Cut‑off Lows

3.1.1 � ERA5

Before discussing the results of the model simulations, the 
global climatology of COLs is presented for the period from 
1979 to 2008 using the ERA5 reanalysis to provide a frame 
of reference. During the 30-year period, the method based 
on the �

250
 identifies an average of 575 (440) tracks per 

year in the NH (SH), which is a larger number than those 
reported in the literature for methods based on identification 
using geopotential data and more restrictive criteria (Nieto 
et al. 2005; Ndarana and Waugh 2010; Reboita et al. 2010; 
Muñoz et al. 2020). Differences in numbers are expected as 
for smoother fields such as geopotential weaker COLs are 
unlikely to be identified, this is compounded by the lack of 
ground truth to compare with (Pinheiro et al. 2019). The 
interannual variability of COLs as calculated using a coef-
ficient of variation indicates a small variance (5%) compared 
to the those observed by Fuenzalida et al. (2005) and Muñoz 
et al. (2020). Differences may be attributed to either the 
identification method or dataset as the results from the most 
recent reanalyses are found to be much better constrained 
compared to older reanalyses (Pinheiro et al. 2020).

The track density (contours) and mean intensity (colour) 
are shown in Fig. 1 and provides information on the spa-
tial distribution of COLs for summer and winter in both the 
NH and SH. Summer and winter were chosen to contrast 
the periods with highest/lowest frequency and intensity of 
COLs. By comparing the JJA with DJF, we confirm pre-
vious findings that COL systems in both hemispheres are 
much more frequent in summer (accounting for about one 
third of the annual mean number of COLs), contrasting with 
far fewer COLs formed during winter (~ 15% of the annual 
mean number) when enhanced zonal wind speeds are more 
frequent in most subtropical and mid-latitude regions, inhib-
iting the split jet flow, and consequently the Rossby wave 
breaking (RWB) process, which is generally required for the 

development of a COL (Peters and Waugh 2003; Ndarana 
and Waugh 2010). However, deep COLs extending toward 
the surface are more frequently found in winter (Ndarana 
et al. 2010; Barnes et al. 2021), when COLs reach their 
strongest intensities (Pinheiro et al. 2017), but also due to the 
dynamical tropopause that is closer to the surface compared 
to other seasons (Kunz et al. 2011).

In austral latitudes, COLs are mainly found in the vicin-
ity of the continents in winter, consistent with numerous 
previous studies (Fuenzalida et  al. 2005; Reboita et  al. 
2010; Ndarana and Waugh 2010; Pinheiro et  al. 2017). 
However, the largest activity of COLs migrates to oceanic 
areas in summer, where the latent heat release is generally 
less significant than over the warm continents (Fuenzalida 
et al. 2005), as diabatic heating has been found to act as a 
dissipative mechanism in COLs (Sakamoto and Takahashi 
2005; Garreaud and Fuenzalida 2007) and tropopause polar 
vortices (Cavallo and Hakim 2010). The spatial distribution 
of COLs in the NH is much more asymmetric compared 
to the SH. In winter, COLs concentrate at three preferred 
locations: northeastern Atlantic Ocean; Mediterranean Sea 
and northwestern Africa; and northwestern Pacific Ocean 
and western North America. During the summer the pic-
ture changes as preferred regions for COL development are 
also found in northeastern China, central Pacific Ocean, and 
along the Gulf of Mexico and Caribbean Sea region. The 
prominent Caribbean maximum has also been observed by 
Wernli and Sprenger (2007) as potential vorticity cutoffs 
on the 350-K isentropes, but does not appear as an obvious 
feature in studies where the identification is based on geo-
potential data (e.g., Nieto et al. 2008; Muñoz et al. 2020), 
as this field is known to be problematic for identifying and 
tracking COLs related to the weak geopotential gradients 
that typically occur at low latitudes (Pinheiro et al. 2019). 
It is known that the Caribbean is also a region affected by 
tropical cyclones which occurs most frequently during late 
summer, and upper-level disturbances such as COLs can act 
as synoptic-scale precursors to tropical cyclone develop-
ment (Sadler 1967; Kelley and Mock 1982). The influence 
of upper-level potential vorticity disturbances on the tropical 
transition is documented in earlier studies (Emanuel 2005; 
Galarneau et al. 2015; Bentley et al. 2016) and a possible 
relationship between COLs and tropical cyclones may be 
associated with the maximum observed in the Caribbean.

In general, the overall maximum track density located 
around 30-35oN appears to be associated with COLs devel-
oped by RWB, while the mechanism associated with the 
systems located in more southern latitudes is likely a result 
of Rossby and mixed Rossby-gravity wave dispersion (Silva 
Dias et al. 1983). The last type is a tropopause vortex that 
occurs downstream from upper-level anticyclones, especially 
during the summer, as discussed in Frank (1970), Kousky 
and Gan (1981), and Morais et al. (2021).
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In Pinheiro et al. (2017), the seasonal COL mean intensity 
in the SH was analysed using tracking of vorticity minima 
at 300 hPa using the ERA-Interim reanalysis. As seen in 
Pinheiro et al. (2017), the main track density (Fig. 1) roughly 
coincides with regions of maximum intensity in winter in 
both hemispheres, but the strongest intensities migrate to 
more poleward latitudes in summer, suggesting that the 
mechanisms responsible for controlling the COL strength 
may be subject to the seasonal cycle of the jet streams. The 
maximum intensities of COLs are found on average at a lati-
tude of about 29° N (29° S) in winter and 43° N (41° S) in 
summer in the NH (SH), which approximately corresponds 
to the latitude of maximum zonal winds (not shown). The 
objective method identifies an average filtered �

250
 of 7.6 × 

10–5 s−1 for the NH COLs and − 8.7 × 10–5 s−1 for the SH 
COLs, however, the inter-hemispheric differences in inten-
sity reduces if we consider the latitudinal band 20°–50° N 
(and 50 –20° S), suggesting that the lower intensities of the 
NH COLs are partly explained by weak systems located 
near the equator (particularly in summer) and included in 

the statistic. The ability of CMIP models to simulate these 
features will be examined in the next sections.

3.1.2 � COLs in the CMIP5 and CMIP6 ensembles

It is important to determine whether changes in the CMIP6 
models have resulted in an improved representation of COLs 
in comparison to their corresponding version in CMIP5 in 
order to have confidence in how models simulate and predict 
COLs. Therefore, the ability of the CMIP5 and CMIP6 mod-
els to capture the spatial distribution of COLs is examined 
through the track density averaged over all seasons, using the 
model historical simulations for the period 1979–2005 and 
compared to ERA5 for the same period. The diagnosis of the 
seasonal cycle of the COLs will be discussed in Sect. 3.2. 
Figure 2 compares the climatology of COLs simulated by the 
multi-model ensemble mean of the 23 CMIP5 models and 
the 23 CMIP6 models with the reanalysis data. The analysis 
is presented for the NH and SH so that the model results for 
each hemisphere and region can be compared. The CMIP5 

Fig. 1   Track density (contour) 
and mean intensity (shaded) 
of 250-hPa relative vorticity 
for summer and winter in the 
Northern Hemisphere (NH) and 
Southern Hemisphere (SH). 
Track density contours are every 
4.0 with the dashed line at 16.0. 
Mean intensity is suppressed for 
track density below 1.0. Unit: 
number per season per unit area 
(unit area is equivalent to a 5° 
spherical cap) for track density; 
and 10–5 s−1 for mean intensity
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and CMIP6 ensemble means of track density (Fig. 2) show 
that models can reproduce the preferred regions of COL 
activity, though there is a significant underestimation within 
the preferred regions. The reduced number of COLs repre-
sented by the models can in part be explained by their lower 
spatial resolution compared with the reanalysis. However, 
by comparing CMIP5 with CMIP6, we find a reduction in 
the track density underestimation from 18% (23%) in CMIP5 
to 8% (4%) in CMIP6 for the NH (SH) respectively. Moreo-
ver, considering the spread among the individual models 
(see supplementary material, Figs. S1 and S2), the analysis 
demonstrates an improvement in the inter-model standard 
deviation which reduces from 0.67 (0.53) in CMIP5 to 0.56 
(0.51) in CMIP6 for the NH (SH). While the multi-model 
ensemble reproduces the regions of high density reasonably 
well, some models fail to reproduce these features. This is 
more apparent in CMIP5 (e.g., FGOALS-g2, FGOALS-
s2, IPSL-CM5A-LR, IPSL-CM5B-LR, MIROC-ESM), 
but deficiencies still remain in some CMIP6 models (e.g., 

IPSL-CM6A-LR, MIROC-ES2L, NorESM2-LM), lowering 
the confidence in future projections with these models.

Figure 3 shows the multi-model mean bias of the CMIP5 
and CMIP6 models relative to ERA5 (model minus ERA5) 
in terms of track density. To determine the common errors 
in models, a systematic bias is defined if it is common to 
all models for each corresponding CMIP phase, which is 
denoted by stippling the areas where all the models have 
a bias with the same sign. The spatial pattern of biases 
in CMIP5 and CMIP6 are similar in each hemisphere, 
but the magnitude of the mean biases (computed from all 
grid points in the domain) is substantially lower in CMIP6 
than in CMIP5. The largest bias in track density is found 
in regions of high COL density, where there are too few 
COLs. In contrast, positive biases are generally found at 
more equatorward latitudes, which are apparent in South 
America, the southwestern Atlantic Ocean, and the region 
extending across the South Indian Ocean, Australia, and 
eastern and central Pacific Ocean. The equatorward shift of 

Fig. 2   Track density of 250-hPa relative vorticity averaged over all 
seasons for multi-model ensemble mean of a, d the CMIP5 models, 
b, e the CMIP6 models, and c, f the ERA5 reanalysis. Analysis is 

performed for a–c NH COLs and d–f SH COLs. Unit is number per 
season per unit area, where unit area is equivalent to 5° spherical cap
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COLs in the climate models is also obvious in the NH from 
North Africa, extending across the Middle East and India, 
but the spatial distribution of bias in CMIP6 changes in the 
North Pacific Ocean which is characterized by too few COLs 
at more southern latitudes and many more COLs at more 
northern latitudes. Although biases still persist in CMIP6, 
there is a reduction of the overall spatial bias and a poleward 
shift of the COLs in CMIP6 relative to CMIP5 (not shown). 
For details of the mean track density bias in each individual 
model, see supplementary material (Figs S5 and S6).

The multi-model mean bias of the mean intensity, as 
measured by the T42 �

250
 , shows a clear underestimation 

in CMIP5 in both hemispheres (Fig. 4a, c). The negative 
bias in the NH (Fig. 4a) generally occurs at more pole-
ward latitudes, in particular from Northeast Asia to North 
America, and the central Pacific Ocean south to 30oN, where 
the underestimation occurs during all seasons (not shown). 
When considering the multi-model mean bias of the mean 
intensity with respect to CMIP6 (Fig. 4b), we find a reduc-
tion of the negative bias in most regions where the CMIP5 
fails to simulate the intensities well. In contrast, there are 

positive biases in central America and from eastern China to 
the northwestern Pacific Ocean, though with little consensus 
between the models, which is denoted by the absence of 
stippling. As with the NH, the intensity of the SH COLs is 
robustly underestimated by CMIP5 (Fig. 4c), in particular 
during the austral summer and autumn (not shown). How-
ever, there is an overall improvement in the representation 
of intensities of the SH COLs in CMIP6 (Fig. 4d), since the 
biases are less prominent and less extensive than those in the 
corresponding version of CMIP5. In general, we find that the 
intensity underestimation is reduced by about 7% in CMIP6 
compared to CMIP5 in both hemispheres, though there are 
more pronounced seasonal differences in the simulated 
intensities in CMIP6, which are underestimated in summer 
and overestimated in winter (not shown). The underesti-
mation occurs in 96% (91%) of the CMIP5 models, but it 
decreases to 78% (56%) of the CMIP6 models with regard to 
NH (SH). This improvement would be even more noticeable 
if we consider only the higher resolution models in which 
their representation of the COL intensity performs much 
better than the lower resolution models. A more detailed 

Fig. 3   Multi-model mean bias 
with respect to the ERA5 rea-
nalysis (ensemble mean minus 
ERA5) for the a, c CMIP5 and 
b, d CMIP6. Fields are track 
density for the multi-model 
mean bias (shaded) and ERA5 
for contour intervals 8.0 COL 
season−1 (5° spherical cap)−1. 
Stippling denotes areas where 
the bias of all models has the 
same sign. Track density is 
suppressed where values are 
below 0.25 COL season−1 (5° 
spherical cap)−1
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discussion of the simulated intensities with respect to model 
horizontal resolution is given in Sects. 3.2.1 and 3.2.4.

3.1.3 � Impact of model horizontal resolution

To provide a comparative analysis of how coupled model 
biases are affected by horizontal resolution, we analyzed 
the track density bias in two subsets of CMIP6 models from 
the same modeling centers each including standard and 
enhanced horizontal resolutions in the atmosphere (see the 
list of models assessed in the supplementary Table S2). The 
high-resolution simulations, namely HighResMIP, are based 
on exactly the same models as for the standard resolution 
simulations without additional tuning, thereby minimizing 
differences that could arise from different experimental set-
ups and forcings (Haarsma et al. 2016). Figure 5a, b show 
some improvement in mean bias with the HighResMIP 
relative to standard resolution simulations in the NH. The 
negative biases that systematically affect coupled climate 
models (see Figs. 2 and 3) are reduced in the HighResMIP 
simulations, particularly in the northeastern Atlantic, 

southern Europe and north Africa which is likely a result of 
the enhanced horizontal resolution. The performance of five 
statistical measures (mean bias, standard deviation, correla-
tion, RMSE and ubRMSE) indicates a clear improvement in 
COL simulations with HighResMIP over standard resolu-
tion models. There is only one standard resolution model 
(MPI-ESM1-2-HR) that outperforms the corresponding 
higher resolution version (MPI-ESM1-2-XR), which is the 
worst HighResMIP model according to the statistical meas-
ures. However, improvements are not observed in the North 
Pacific where biases still remain in the HighResMIP models.

In the SH, improvements between HighResMIP and 
standard resolution models are less obvious compared to 
the NH. Perhaps the most remarkable improvement is seen 
in subtropical South America where the overrepresentation 
of the COL tracks is reduced in the HighResMIP simula-
tions, which may be associated with a better representation 
of orographic drag processes in higher-resolution models 
(Pithan et al. 2016). It is surprising that increasing horizontal 
resolution does not systematically lead to a larger number of 
identified tracks, as observed in reanalysis systems (Pinheiro 

Fig. 4   Same as in Fig. 3 but for 
the mean intensity, scale by − 1 
for SH COLs (as they are asso-
ciated with negative �

250
 ). Unit 

is 10–5 s−1. The ERA5 climatol-
ogy is indicated by 8.0 and 10.0 
× 10–5 s−1 contour intervals. 
Mean intensity is suppressed for 
track densities below 0.25
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et al. 2020). Overall, our results demonstrate that improv-
ing the horizontal resolution impacts positively in the NH, 
but biases still persist in the SH where errors in the air–sea 
coupling or the representation of the large-scale circulation 
may be more problematic (Meehl et al. 2019), while model 
physics appears to be more important than increased hori-
zontal resolution.

3.1.4 � Large‑scale circulation bias

Given that most climate models fail to realistically simu-
late the COL features, even the higher resolution CMIP6 
models, it is important to investigate whether the model 
biases presented in earlier sections can be linked to biases 
in the large-scale atmospheric circulation. Understanding 
the factors that influence model bias is essential to gain 
confidence in climate model projections. Moreover, we 
intend to verify whether the systematic CMIP5 deficien-
cies may have evolved or are still persisting in CMIP6. 
The possible association between the large-scale circula-
tion and the COL activity is investigated by examining the 

basic state zonal flow defined by the seasonal means of the 
250-hPa zonal wind ( U

250
 ) from all model ensemble mem-

bers and compared to ERA5. Figure 6a, b show that the 
CMIP5 and CMIP6 multi-model means exhibit an equator-
ward shift of the NH jet streams relative to ERA5, which 
is noticeable as a dipole bias with too strong winds on the 
equatorward side and too weak winds on the poleward 
side of the climatological jet position. This is an obvious 
feature in the exit region of the North Atlantic and North 
Pacific jets, which has previously been observed in CMIP5 
(Zappa et al. 2013; Pithan et al. 2016) and still persists 
in CMIP6. Such biases are present in all seasons, except 
in summer as shown in the supplementary material (Fig. 
S11). The enhanced polar jet that extends zonally from 
the North Atlantic into central Europe leads to a strong 
underestimation of the COL track density over these areas. 
The continued presence of the bias indicates that, such 
under a stronger zonal wind across the North Atlantic and 
Europe, the COL development will likely be occurring far 
south of Europe, and not over the Iberian Peninsula, as 
would be expected.

Fig. 5   Multi-model mean track 
density bias for a subset of the 
CMIP6 models from the same 
modeling centers corresponding 
to a, c standard resolution, b, d 
HighResMIP simulations. Unit 
is the same as Fig. 3
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Figure 6c, d show the multi-model mean bias of the 
CMIP5 and CMIP6 models, respectively, for the U

250
 in 

the SH. The CMIP5 and CMIP6 models appear to experi-
ence a similar bias in the austral jet as found in the NH. 
The multi-model means of CMIP5 and CMIP6 for the U

250
 

feature a positive bias on the equatorial side of the exit 
region of both the polar jet over the South Indian Ocean 
and the subtropical jet over the South Pacific Ocean, but 
a notable improvement in the U

250
 simulation occurs in 

CMIP6 with reduced biases compared to CMIP5. The 
reduced equatorward bias of the CMIP6 models is likely 
contributing to the decreased bias in COL activity, as 
shown in Fig. 3c, d. The underestimation in the austral 
COL activity in locations with high track density, that is 
more significant in CMIP5, is likely caused by the fact 
that the simulated zonal flow is accelerated there to val-
ues larger than those observed in the reanalysis, in par-
ticular in winter and spring (supplementary material, Fig. 
S12). This highlights the deficiencies in simulating the jet 
stream that is displaced equatorward relative to observa-
tions in the CMIP5 and CMIP6 models.

We suggest that the spatial pattern of bias in track den-
sity is connected to that in U

250
 , since positive (negative) 

mean track density bias roughly coincide with regions of 
negative (positive) mean U

250
 bias. To gain more insight 

on the relation between these biases, we compute the inter-
model spatial correlation between the U

250
 and track den-

sity biases area averaged within the 20°–50° N (50°–20° S) 
latitudinal bands. A weak negative correlation is generally 
found between the bias in the U

250
 and COL track density 

in both the CMIP5 and CMIP6 models. The multi-model 
ensemble of CMIP6 (CMIP5) exhibit a correlation of − 0.31 
(− 0.22) for the SH and − 0.15 (− 0.17) for the NH, whereas 
the largest negative correlations occur in autumn in both 
hemispheres. Looking at each model individually, however, 
shows there are model differences, as U

250
 and track density 

biases are not correlated in 6 (8) CMIP6 (CMIP5) models 
in the NH. However, a better agreement is observed in the 
SH where almost all models present negative correlations.

In summary, our results demonstrate there is a possible 
link between the spatial distribution of COLs and the jet 
behavior, which corroborate recent work demonstrating 

Fig. 6   Zonal windy anomaly 
at 250-hPa for the multi-model 
means of THE a, c CMIP5 
models and b, d CMIP6 models 
for the a, b northern hemisphere 
and c, d Southern hemisphere. 
Black line contours show ERA5 
climatology for the period 
1979–2005. Unit is ms−1
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the role of the mid-latitude jet streak on the development 
of South African COLs (Ndarana et al. 2020). Our results 
suggest that the simulated zonal wind has improved in the 
CMIP6 models particularly in summer, due to reduced posi-
tive bias in the subtropical jet, which in turn results in an 
increased number of COLs identified in regions of high track 
density. However, even though the U

250
 bias is a robust fea-

ture across the CMIP5 and CMIP6 models, there is a con-
siderable spread in the magnitude and distribution of these 
biases across the 46 models considered in this paper. For 
this reason, care is needed in attributing the bias in the COL 
diagnostics to a single field, such as U

250
 , as other factors 

(e.g., cloud radiative forcing) have been found to be impor-
tant in controlling the position and strength of the extratropi-
cal jet streams (Ceppi et al. 2012; Grise and Polvani 2014; 

Li et al. 2015; Voigt and Shaw 2016). In this regard, recent 
studies have shown a bias reduction in short wave cloud 
forcing in CMIP6 models (Kawai et al. 2017, 2019; Voldoire 
et al. 2019).

3.2 � Inter‑model spread in the CMIP5 and CMIP6

3.2.1 � Number

The COL activity is now further investigated by examin-
ing the number of COLs identified in each CMIP5–CMIP6 
model against the reanalysis. Figure 7a shows the medi-
ans, quartiles, whiskers and outliers (when available) of 
the percentage difference (with respect to ERA5) in the 
total number of COLs simulated by the CMIP5 and CMIP6 

Fig. 7   Percentage change of COL number with respect to the ERA5 reanalysis in terms of the a total number, b extremes and c, d seasonal vari-
ability. White and gray boxes represent the CMIP5 and CMIP6 ensembles, respectively
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models. We find that the majority of models underesti-
mate the total number of COLs in both hemispheres as the 
medians for both CMIP5 and CMIP6 (and the interquartile 
ranges, except the CMIP6 for the SH) lie entirely below 
zero. However, there is a wide inter-model spread that 
exists mainly due to the poor performance of the coarser 
resolution models, which persist even in CMIP6, though a 
remarkable improvement has been achieved in CMIP6 with 
respect to the interquartile distances, in particular in the 
NH. By comparing CMIP5 and CMIP6, we find a reduc-
tion of 39% (35%) in the number of models with percent-
age change larger than ± 10% for the NH (SH). In CMIP5, 
six models (FGOALS-g2, GISS-E2-R, IPSL-CM5B-LR, 
MRI-ESM1, GFDL-ESM2G and GFDL-ESM2M) under-
estimate the total number of COLs with bias larger than 
40%, while only two CMIP6 models (MRI-ESM2-0 and 
NorESM2-LM) have an underestimation larger than 20%.

The number of simulated COLs is also analyzed by 
comparing the seasonal variability. For the NH (Fig. 7c), 
it can be seen that the CMIP6 models simulate much better 
the number of COLs in boreal summer, when the median 
is close to zero, though the smallest inter-model spread 
(measured by the minimum–maximum and lower quartile-
upper quartile differences) occurs in boreal autumn. It was 
found that the inter-model spread in the simulated number 
of COLs in the SH (Fig. 7d) is larger than in the NH, par-
ticularly in austral winter, contrasting with relatively better 
models’ performance in austral autumn.

We also examine the ability of models in simulating 
extreme COLs, defined as those exceeding the threshold of 
95th percentile in the maximum along-track �

250
 relative to 

the model and reanalysis climatologies. Similar to the total 
number of COLs, Fig. 7b shows a significant underestima-
tion of the strong COLs with a large dispersion among the 
models, indicating that the deficiency in representing the 
number of COLs similarly affects the extremes. However, a 
reduction in the median bias in CMIP6 (7% in the NH and 
17% in the SH) is observed as well as a decrease in the inter-
quartile range (2% in the NH and 24% in the SH) as com-
pared to CMIP5. A closer inspection of individual model 
performance shows that higher-resolution models generally 
provide the highest level of global COL activity. Nonethe-
less, the model resolution is not the only factor that deter-
mines model bias, since some high-resolution models such 
as MRI-ESM2-0 (~ 100 km) and GFDL-CM4 (~ 100 km) 
underestimate the number of COLs by approximately 10%-
20%. In this case, the uncertainties are likely to be attributed 
to the use of different model physical parameterizations.

3.2.2 � Taylor diagram

To examine the level of agreement between reanalysis and 
individual models, the Taylor diagram is used to further 

evaluate the simulated spatial patterns of COLs with respect 
to track density. One difference in the analysis presented 
here from the standard Taylor diagram is that the mean dif-
ference (or bias) is included in our diagrams. In addition, we 
used the unbiased RMSE (ubRMSE) to remove systematic 
bias in the CMIP model simulations, as this measure charac-
terizes random errors which occur when biases are present.

Figure 8 shows the performance of each climate model 
and their ensemble means in both CMIP5 and CMIP6 for 
the simulations of the COL track density. The normalized 
standard deviations are generally less spread out than that 
in the reanalysis. Reduced standard deviation is a result of 
a smoother track density, which means that COLs are either 
underestimated in locations of high track density or overes-
timated in locations of low track density. Most models have 
standard deviations higher than 0.80 (reference value is 1.0 
with respect to reanalysis), in particular from CMIP6. The 
model with the lowest standard deviation is CNRM-CM6-
1-HR, whereas the highest standard deviations are gener-
ally observed in the HighResMIP models which are nearly 
identical with those observed in reanalysis.

Concerning the mean bias, most models systematically 
underestimate the track density, but there is a general over-
representation of COLs in the HighResMIP models which 
are normally more capable in resolving finer-scale features. 
We find that the multi-model mean bias is substantially 
reduced in CMIP6 compared to CMIP5, and this is con-
sistent with Fig. 3. Nevertheless, the largest bias is found 
in CNRM-CM6-1-HR, demonstrating a surprisingly poor 
ability to detect COLs considering the relatively high hori-
zontal resolution of 50 km. The CMIP6 models generally 
exhibit high correlations, ranging from 0.88 to 0.98, with 
an average of 0.94 in the NH, and ranging from 0.80 to 
0.95, with an average of 0.91 in the SH. We can see that the 
CMIP5 models are clearly less accurate in reproducing the 
spatial patterns compared to the majority of CMIP6 models. 
The correlation of the CMIP5 simulations with ERA5 var-
ies between 0.82 and 0.95 (average is 0.90) in the NH, and 
between 0.57 and 0.94 (average is 0.84) in the SH.

The Taylor diagram also includes the ubRMSE, which 
is another measure of model accuracy. The two models 
with the lowest ubRMSE values are ECMWF-IFS-HR and 
GFDL-CM4 (ECMWF-IFS-HR and SAM0-UNICON by 
considering the RMSE) for the NH, and MIROC6 and MPI-
ESM1-2-HR (the same models by considering the RMSE) 
for the SH. The mean ubRMSE calculated with the CMIP6 
models is reduced by 19% (21%) compared to that calculated 
with the CMIP5 models for the NH (SH).

In general, the CMIP6 models have consistently better 
agreement with the reanalysis data compared to the CMIP5 
models. The inter-model spread in CMIP6 would reduce by 
omitting the CNRM-CM6-1-HR model, which has the low-
est skill of all the CMIP6 models. The results also reinforce 
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that the model performance is affected by their spatial reso-
lution, since models with finer horizontal resolution perform 
better than those with coarser resolution (see supplementary 
material—Fig. S15—where the higher and lower horizontal 
resolution model sets are indicated by blue and red, respec-
tively), particularly in the NH. However, increasing model 
spatial resolution is not always sufficient to improve simu-
lations. A remarkable example to this finding is CNRM-
CM6-1-HR, which is a HighResMIP model that clearly 
presents an inferior performance with respect to mean bias, 
standard deviation and ubRMSE (RMSE). Conversely, there 
are a few CMIP5 models (e.g., ACCESS1-0, ACCESS1-3, 
HadGEM2-CC and HadGEM2-ES) with relatively low 
spatial resolutions that outperform some higher resolution 
CMIP6 models (e.g., BCC-CSM2-MR, CNRM-CM6-1-HR, 
EC-Earth3, MRI-ESM2-0 and SAM0-UNICON for NH; 
CNRM-CM6-1-HR for SH) in nearly all metrics. For the 
NH, the HighResMIP models have a better performance 

compared to their corresponding standard resolution version, 
with the exception of MPI-ESM1-2-HR that outperforms the 
higher resolution version (MPI-ESM1-2-XR) in almost all 
statistical indices. Despite the robustness of the improved 
performance of HighResMIP models in the NH, the impact 
of horizontal resolution on the COL simulations in the SH 
is much less evident.

An advantage in using the Taylor diagram is that it shows 
that the multi-model ensemble tends to be more skillful 
than the average single-model performance. The multi-
model superiority is caused by the error cancellation and 
non-linearity of the diagnostics (Hagedorn et al. 2005). 
Averaging the skill of the 23 models in both CMIP5 and 
CMIP6 does not correspond to the skill of the combined 
models (i.e., the multi-model ensemble), except for the mean 
bias which is a linear metric. The most outstanding perfor-
mance of the multi-model ensemble across all simulations 
is seen in CMIP5 for the SH COLs, where the ubRMSE of 

Fig. 8   Taylor diagram of simu-
lated track density by the a, c 
CMIP5 models and b, d CMIP6 
models for the a, b NH and c, 
d SH in relation to ERA5. The 
y axis shows the normalized 
standard deviation (blue arc), 
correlation is denoted by the 
black dashed arc, unbiased root 
mean square error (ubRMSE) is 
denoted by solid arc. The mean 
bias is given in bars below the 
Taylor diagram
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the multi-model ensemble is smaller than the best single 
CMIP5 model.

Considering that the Taylor diagram provides useful 
information from different statistical measures, a skill score 
is calculated for each model taking into account the four 
variables given in the Taylor diagram (mean bias, standard 
deviation, correlation and ubRMSE) together with RMSE. 
For example, for the NH the ECMWF-IFS-HR model has 
the highest ranking score out of 46 models, which was deter-
mined by averaging the rank of the five metrics mentioned 
above. Following this approach, the first four best placed 
models (by the five-variable average) are, in that order 
(from the first to fourth best scores): ECMWF-IFS-HR, EC-
Earth3P-HR, HadGEM3-GC-HH and CMCC-CM2-VHR4 
for the NH; and MIROC6, HadGEM3-GC-HH, ACCESS1-0 
and MPI-ESM1-2-HR for the SH. Note that ACCESS1-0 is 
the only CMIP5 model in the top four model systems for 
the SH, while the best ranked CMIP5 model for the NH is 
ACCESS1-3 occupying the 13th place. We find that 15 out 
of 20 best-ranked models belong to CMIP6, indicating that 
there is a remarkable improvement from CMIP5 to CMIP6 
models in the representation of COLs. The ranking of all 
models’ performance is given in Table S3 of supplementary 
material.

3.2.3 � Seasonal cycle

We now explore the ability of the CMIP5 and CMIP6 mod-
els in capturing the seasonal cycle of COLs. As seen in pre-
vious studies (e.g., Nieto et al. 2005; Ndarana and Waugh 
2010; Pinheiro et al. 2017; Muñoz et al. 2020) and showed in 
Fig. 1 of this paper, COL systems exhibit a pronounced sea-
sonal cycle (with larger standard deviation in the NH) with 
maximum in occurrence during summer and early autumn 
and minimum in winter and early spring. The weaker zonal 
circulation observed in summer facilitates the COL devel-
opment as well as RWB events associated with the 350-K 

isentropic surface (Postel and Hitchman 1999; Hitchman and 
Huesmann 2007; Ndarana and Waugh 2011). Figure 9 shows 
that both CMIP5 and CMIP6 models accurately repro-
duce the seasonal variation of COLs in both hemispheres, 
although the multi-model means show a little stronger sea-
sonal cycle compared to ERA5. The CMIP6 has a reduced 
inter-model spread compared to the CMIP5 by an average of 
23% (41%) across the whole monthly distribution for the NH 
(SH). Models with finer horizontal grid spacing have a better 
performance than the coarser ones, with higher correlation 
coefficient and similar standard deviation to observations.

3.2.4 � Intensity

According to the analysis presented in this paper, the simu-
lated intensities are improved from CMIP5 to CMIP6. We 
now investigate whether the CMIP6 models better repre-
sent the peak intensity of COLs, and if this is affected by 
the model spatial resolution. The maximum intensity dis-
tribution of COLs observed in ERA5 and simulated by the 
CMIP5 and CMIP6 models is measured by the maximum (or 
minimum in the SH, scaled by − 1) along-track T42 vorticity 
at 250 hPa, as shown in Fig. 10. The reanalysis (black line) 
shows a positively skewed distribution for the COL intensity 
in the NH, while the median peak vorticity in the SH shifts 
to the right, indicating there are more mid-to-strong systems 
in the SH than in the NH. While the shape of the intensity 
distribution simulated by the CMIP5 models is similar to 
that in ERA5, there is a tendency to have too many COLs 
at the lower end of the distribution and too few COLs at 
the upper end, which is consistent with the underestimation 
observed in Fig. 4. There is, however, an improved repre-
sentation of the intensity distribution in the CMIP6 models 
that have intensities lying closer to the ERA5 distribution. 
This improvement is particularly noticeable in the tail of 
the distribution, associated with the extreme intensities. For 
example, for the NH (SH) the number of strong COLs with 

Fig. 9   Monthly distribution of 
Cut-off Lows in the SH (blue) 
and NH (red) of the multi-
model mean of a CMIP5 and b 
CMIP6. Dashed and solid lines 
represent multi-model mean for 
the lower- and higher-resolution 
models, respectively. Shaded 
regions indicate the inter-model 
spread for the CMIP5 and 
CMIP6 models. Pink and cyan 
colours represent the ERA5 for 
the NH and SH, respectively
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intensities in the range 16–25 × 10–5 s−1 is underrepresented 
by about 48% (46%) in CMIP5 models, but the underestima-
tion is reduced to 4% (5%) in CMIP6 models. Although the 
underestimation is clearly present in CMIP5, there is a large 
spread among models, and some of them individually repro-
duce fairly well the observed intensities, for instance, the 
MIROC5, MRI-CGCM3, and MRI-ESM1 models, in which 
their correlation with ERA5 across the intensity distribution 
is above 0.98 in both hemispheres.

One factor that appears to be important in representing 
the peak intensity of COLs is the model grid spacing. The 
results show that higher resolution models (blue line) are 
more accurate in simulating the intensity distribution com-
pared to lower resolution models (red line). This is evident 
across the two generations of CMIP models, but particularly 
in CMIP6, where the frequencies closely match the reanaly-
sis, especially with respect to the extremes that are under-
represented even by the higher resolution CMIP5 models. In 
summary, it is striking how well the COL intensities are rep-
resented in the CMIP6 models (relative to CMIP5), where 
the ensemble spread is reduced across all intensities, though 
deficiencies still exist in lower-resolution CMIP6 models. 

This suggests that model horizontal resolution plays an 
important role in the representation of COL peak intensity.

3.2.5 � Life time

Previous studies have shown that the typical life cycle of 
COLs is characterized by initial growth because of the 
ageostrophic flux convergence associated with the energy 
dispersion from upstream systems, and then sustained by 
baroclinic processes, and a subsequent decay due to the 
ageostrophic flux divergence, friction and diabatic heating 
(Garreaud and Fuenzalida 2007; Gan and Piva 2013, 2016; 
Pinheiro et al. 2021b). The ability of CMIP5–CMIP6 models 
in simulating the COL life cycle is now investigated using 
the frequency distribution of lifetimes. The COL lifetime is 
computed by considering the time from genesis to lysis in 
each vorticity track, which is generally larger than the mean 
lifetime found in previous studies in which the identifica-
tion was based on the geopotential (Fuenzalida et al. 2005; 
Nieto et al. 2005; Reboita et al. 2010; Favre et al. 2012; 
Muñoz et al. 2020). The mean lifetime of the 250-hPa vorti-
city COLs obtained with ERA5 is about 5.8 days in the NH 

Fig. 10   Maximum intensity 
distribution (based on the T42 
vorticity at 250 hPa) of COLs 
in the a, b NH and c, d SH, for 
the a, c CMIP5 and b, d CMIP6 
multi-models. The gray shaded 
regions indicate inter-model 
spread for the CMIP5 and 
CMIP6 models. The blue and 
red lines represent the means 
of high-resolution and low-
resolution CMIP5 and CMIP6 
models, respectively. The black 
line represents results from 
ERA5. Unit is 10–5 s−1, scaled 
by − 1 for SH
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and 4.9 days in the SH, while earlier studies have shown that 
COLs typically last 2–4 days. This difference is expected as 
the vorticity field detects more mobile earlier stages of the 
COL life cycle (Pinheiro et al. 2019).

The lifetime distribution of COLs (Fig. 11) is reasonably 
well reproduced in the climate models, as the percentage of 
models with correlations higher than 0.95 are 74% (80%) in 
CMIP5 and 87% (96%) in CMIP6 for the NH (SH). While the 
average bias of the COL mean lifetime (i.e., the difference 
between the multi-model mean and reanalysis) is less than 
0.1 day, a few models (e.g., MIROC-ESM, MIROC-ES2L, 
and CNRM-CM6-1-HR) underestimate the mean lifetime 
more than 20% relative to ERA5, which may be indicative 

of either shorter tracks or faster moving systems compared 
to reanalysis. The most notable discrepancy appears in the 
MIROC-ESM and MIROC-ES2L as these models simulate 
unrealistically too many short-lived systems in both hemi-
spheres, while COLs with lifetimes longer than 4 days are 
underestimated. These differences can partly be attributed to 
the overestimation of the COL mean speed by the MIROC-
ESM and MIROC-ES2L models, due to the simulation of 
an enhanced subtropical jet as compared to reanalysis (see 
supplementary material, Figs. S16 and S17). We calculated 
the difference between the models and ERA5 for the clima-
tological COL mean speed at 250 hPa, and found an overes-
timation of 1.0 m/s (2.8 m/s) in MIROC-ESM and 1.6 m/s 

Fig. 11   Life time distribution of COLs in the a, b NH and c, d SH, for the a, c CMIP5 and (b, d CMIP6 multi-models. The black line represents 
results from ERA5, the blue and red lines the high-resolution and low-resolution models, respectively. Unit is day
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(0.7 m/s) in MIROC-ES2L with respect to the NH (SH), 
while the average difference (or bias) is generally not large 
in other models. The model performance does not indicate a 
clear distinction between high- and low-resolution models, 
although there is a considerable reduction in the inter-model 
spread in CMIP6 relative to CMIP5. Interestingly, despite 
the high resolution of CNRM-CM6-1-HR, this model has 
a poor skill in simulating the lifetime distribution of NH 
COLs, presenting the lowest correlation (~ 0.80) among all 
models. This suggests that other factors besides the model 
horizontal resolution may affect the accuracy of COL simu-
lations, such as the model parameterizations.

4 � Conclusions

This study provides a robust quantitative assessment of 46 
coupled climate models (with enough ensemble members) 
participating in the CMIP5 and CMIP6 experiments for the 
historical simulations of global COLs, which is considered 
as one of the most important synoptic-scale systems affect-
ing the weather in subtropical regions. Our motivation is 
to investigate the ability of the newly available CMIP6 
models in representing the climatological features of COLs 
observed in the ERA5 reanalysis, and to determine whether 
the simulations have improved from the previous generation 
of CMIP5 models. This paper provides the opportunity for a 
better understanding of the systematic deficiencies of models 
in simulating upper-level winds and their association with 
COLs, which may be used as a basis for further assessments 
of the changes and impacts of COLs under future climate 
conditions.

The main findings of this study are summarized as 
follows:

•	 In general, the CMIP5 and CMIP6 models capture the 
key features of the spatial distribution of COLs in both 
hemispheres, though there is a robust underestimation 
over the locations of maxima in track density. The under-
representation of COLs demonstrates an overall weak 
association with the equatorward bias in the extratropical 
jet that systematically affects models in the NH and SH.

•	 The CMIP6 models show a notably improved ability to 
simulate the COL activity in comparison to the CMIP5 
models. A reduction in bias by a factor of four occurs 
with CMIP6 relative to CMIP5.

•	 Our quantitative analysis indicates a considerable inter-
model spread and uncertainty in the simulated number of 
COLs, where higher-resolution models generally provide 
the highest number of COLs globally. The largest inter-
model spread in number is observed in winter, contrast-
ing with better performance in summer in the NH and 
autumn in the SH.

•	 The CMIP6 models tend to underestimate (overestimate) 
the intensity of COLs in summer (winter), and such 
biases seem to be related to negative (positive) bias in 
the mean zonal wind (subtropical jet). This deficiency 
is partly improved in the CMIP6 models, particularly 
in summer and winter periods, as previously observed 
(Bracegirdle et al. 2019).

•	 Simulations indicate that biases are affected by model 
grid spacing, as models with fine horizontal resolutions 
simulate COLs better than the ones with coarse horizon-
tal resolutions. This is particularly true with regard to the 
COL intensity, where the high-resolution CMIP6 models 
reproduce fairly well the peak intensity distribution as 
compared to ERA5. However, the CMIP5 models strug-
gle to simulate the intensity distributions, particularly 
with respect to the high-intensity COLs, even the higher 
resolution CMIP5 models.

•	 The monthly distribution of COLs is well represented by 
the CMIP5 and CMIP6 models, with a seasonal variation 
slightly less pronounced than observed in reanalysis.

•	 The climate models reasonably capture the lifetime dis-
tribution of COLs, with reduced skill in MIROC-ESM, 
MIROC-ES2L and CNRM-CM6-1-HR and minor 
improvement with CMIP6 models.

The observed systematic weakness in the COL intensity 
that is found in the CMIP5 models (and also in the rela-
tively coarse-resolution CMIP6 models) has improved in 
the high-resolution CMIP6 models, supported by the High-
ResMIP simulations that incorporate models at 25–50 km 
atmospheric resolution. The community effort in model 
development, particularly with respect to increasing model 
spatial resolution, has resulted in a positive impact on the 
simulation of the COL intensities, which was found to be in 
better agreement with observations as compared with the 
coarse resolution models in CMIP5. The smaller differences 
between CMIP6 models and reanalysis are likely related to 
improved forecasting capabilities and increased horizontal 
resolution, in which in HighResMIP models are comparable 
to that in ERA5, thus facilitating the identification of more 
of the stronger systems.. Particular care is needed when 
assessing the impact of model resolution on diagnostics 
averaged over all seasons, given that the CMIP6 models have 
intensities underestimated in summer, but overestimated in 
winter. The overestimation of intensities in winter is likely a 
result of the stronger jet (and associated vorticity) simulated 
in regions of high COL track density, indicating an impor-
tant unrealism in the simulations of the COL intensity in the 
CMIP6 models.

Looking at each model individually shows that some of 
them perform better than others, and indicates that the model 
performance is region dependent. This was demonstrated 
through a skill score by quantitatively evaluating the spatial 
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model performance of each individual CMIP5 and CMIP6 
model. The robustness of the evaluation method was sup-
ported by different metrics under consideration, combined to 
reach a final ranking that may be helpful for climate model 
users to guide the choice of models in further studies. The 
overall performance revealed that simulations were signifi-
cantly improved in CMIP6 that accounts for 75% of the best 
20 ranked-models. According to this approach, the high-
est skill models are, in that order, ECMWF-IFS-HR, EC-
Earth3P-HR, HadGEM3-GC-HH and CMCC-CM2-VHR4 
for NH, and MIROC6, HadGEM3-GC-HH, ACCESS1-0 
and MPI-ESM1-2-HR for SH. Our analysis using the same 
subset of models indicate that improving horizontal reso-
lution impacts positively in the NH for almost all models, 
however, the improvements from HighResMIP simulations 
are relatively modest in the SH.

Despite the difference in model performance, our analy-
sis demonstrates that the use of the multi-model ensemble 
can be more effective in representing the spatial patterns of 
COLs rather than using an individual model, as it reduces 
uncertainties that arise when the output from one model 
is used. Alternative methods based on statistical weight-
ings could reduce error in multi-model means. A common 
approach, for example, is the Bayesian model averaging 
(Duan and Philipps 2010; Shashikanth et al. 2018), where 
different weights are assigned to models based on their 
agreement with observations. Another point is that this 
study is based on a limited number of models in which data 
were available at the time of writing, therefore more model 
data might potentially affect the conclusions. Despite this, 
our conclusions are supported by a robust evidence base 
that includes 86 ensembles from 23 CMIP6 models and 74 
ensembles from 23 CMIP5 models.

The results exhibited in this paper contain several inter-
esting features that summarize the COL behavior in a global 
perspective, and thus it has only been possible here to pre-
sent an overview of models’ performance. It is clear from 
the spatial diagnostics (shown in Figs. 2, 3, 4, 5 and 6) that 
the model bias varies significantly by region. Local features 
can be masked by global statistics, therefore future research 
may focus on regional and seasonal variability. A second 
important question is whether results are robust to the use 
of different identification schemes, as differences have been 
found in numbers and seasonality of COLs between studies 
using different methods (Wernli and Sprenger 2007; Nieto 
et al. 2008; Pinheiro et al. 2019). An intercomparison with 
different methods and/or criteria would be of great value for 
future research in order to investigate whether results are 
generalized or affected by the identification method choice. 
In addition to this question, one crucial aspect of the com-
parison between methods and datasets lies in the absence of 
a reference database that could be used as a trustable ground 
truth to validate against.

In summary, we conclude that the CMIP6 models and 
their multi-model ensemble means show a significant 
improvement in simulating the COL characteristics over 
the subtropical regions in both hemispheres. Improved 
model physics and increased horizontal and vertical reso-
lutions are some of the likely reasons for improved simula-
tions in CMIP6 that result in a reduction of bias compared 
to the CMIP5 simulations. A notable improvement is the 
poleward shift in the COL tracks from CMIP5 to CMIP6 
which reduces the large equatorward bias that systemati-
cally affects climate models, which can partly be attributed 
to a better representation of the zonal mean flow in the 
CMIP6 models. Perhaps the HighResMIP models play the 
largest role in the improvements seen in the CMIP6, par-
ticularly for the NH where higher-resolution simulations 
lead to a reduction of the large negative bias presented in 
relatively low-resolution models.

Also of interest, but not discussed here, is the temporal 
variability of COLs at different time scales and their asso-
ciation with different atmospheric and oceanic climatic 
modes as discussed previously (Nieto et al. 2007; Sin-
gleton and Reason 2007; Risbey et al. 2009; Ndarana and 
Waugh 2010; Favre et al 2012; Muñoz et al 2020). Under-
standing the influence of large-scale environmental factors 
on COL related properties (e.g., location, intensity and 
precipitation) is a problem of great scientific importance 
and crucial for understanding the climate and its varia-
tion. The simulated response of COL activity to El Niño 
Southern Oscillation will be discussed in a future paper.
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