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and Geography, Bangor University, Bangor, United Kingdom, 3 UK Centre for Ecology and Hydrology, Wallingford,
United Kingdom, 4 School of Biological Sciences, University of Reading, Reading, United Kingdom

High-throughput sequencing 16S rRNA gene surveys have enabled new insights into
the diversity of soil bacteria, and furthered understanding of the ecological drivers
of abundances across landscapes. However, current analytical approaches are of
limited use in formalizing syntheses of the ecological attributes of taxa discovered,
because derived taxonomic units are typically unique to individual studies and
sequence identification databases only characterize taxonomy. To address this, we
used sequences obtained from a large nationwide soil survey (GB Countryside Survey,
henceforth CS) to create a comprehensive soil specific 16S reference database, with
coupled ecological information derived from survey metadata. Specifically, we modeled
taxon responses to soil pH at the OTU level using hierarchical logistic regression
(HOF) models, to provide information on both the shape of landscape scale pH-
abundance responses, and pH optima (pH at which OTU abundance is maximal).
We identify that most of the soil OTUs examined exhibited a non-flat relationship
with soil pH. Further, the pH optima could not be generalized by broad taxonomy,
highlighting the need for tools and databases synthesizing ecological traits at finer
taxonomic resolution. We further demonstrate the utility of the database by testing
against geographically dispersed query 16S datasets; evaluating efficacy by quantifying
matches, and accuracy in predicting pH responses of query sequences from a separate
large soil survey. We found that the CS database provided good coverage of dominant
taxa; and that the taxa indicating soil pH in a query dataset corresponded with the
pH classifications of top matches in the CS database. Furthermore we were able to
predict query dataset community structure, using predicted abundances of dominant
taxa based on query soil pH data and the HOF models of matched CS database taxa.
The database with associated HOF model outputs is released as an online portal for
querying single sequences of interest (https://shiny-apps.ceh.ac.uk/ID-TaxER/), and flat
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files are made available for use in bioinformatic pipelines. The further development of
advanced informatics infrastructures incorporating modeled ecological attributes along
with new functional genomic information will likely facilitate large scale exploration and
prediction of soil microbial functional biodiversity under current and future environmental
change scenarios.

Keywords: ecological responses, 16S database, countryside survey, amplicon 16S rRNA, traits, HOF modeling,
soil bacteria communities

INTRODUCTION

Soil bacteria are highly diverse (Gans et al., 2005;
Roesch et al., 2010) and are significant contributors to soil
functionality. Sequencing of 16S rRNA genes has enabled a
wealth of new insights into the taxonomic diversity of soil
prokaryotic communities, revealing the ecological controls
on a vast diversity of yet to be cultured taxa with unknown
functional potential (Fierer, 2017). However, despite numerous
studies across the globe, we are still some way from synthesizing
the new knowledge on the ecology of these novel organisms
recovered through local and distributed soil surveillance. This
is because there is currently no formalized way of retrieving
ecological information on reference sequences which match
user-discovered taxa (either clustered operational taxonomic
units or amplicon sequence variants). Whilst we have a wealth of
databases and tools for characterizing the taxonomy of matched
sequences (Wang et al., 2007; McDonald et al., 2012; Quast
et al., 2013), databases do not include any associated ecological
information on sequences matches. Whilst new software has
recently become available that uses text mining to return some
ecological data on matched sequences to NCBI, this information
is currently limited to descriptions of sequence associated habitat
(Sinclair et al., 2016).

Synthesizing relationships between soil amplicon abundances
and environmental parameters is now necessary to progress
ecological understanding of soil microbes beyond those few
organisms that are readily cultivated. Determining microbial
responses across environmental gradients can inform on the
realized niche widths of discrete taxa, and may indicate
the presence of shared functional traits across taxa (Martiny
et al., 2015). This information is now urgently needed for
microbes as we move into a period of increasing genomic
data availability for uncultivated taxa. Coupling data on taxon
responses across environmental gradients with functional trait
information potentially allows a mechanistic and predictive
understanding of both biodiversity and ecosystem level responses
to environmental change. For example, a large body of theory
exists describing how species responses to environmental change
affects ecosystem functioning (Lavorel and Garnier, 2002; Suding
et al., 2008; Diaz et al., 2013). Here functional “response”
groups are defined as species sharing a similar response to
an environmental driver; and functional “effect” groups refer
to species that have similar effects on one or more ecosystem
processes. The degree of coupling between response and effect
groups can then allow prediction of functional effects under
change. For instance if certain phylogenetic groups of taxa

decrease due to environmental change, and these taxa also
represent an effect group (e.g., these taxa possess a unique
functional gene) then we can expect the function to also decrease.
Conversely with uncoupled effect groups (e.g., responsive taxa all
possess a ubiquitous functional gene), the system is likely to be
more functionally resistant to change (Diaz et al., 2013). Applying
such concepts to microbial ecology is a realistic ambition
given the extensive availability of amplicon datasets coupled
to environmental information, and the increasing feasibility of
uncultivated microbial genome assembly from metagenomes or
single cell genomics (Choi et al., 2017).

The fast evolution of microbial taxa coupled with potential
horizontal gene transfer has led to assumptions that microbial
diversity may be largely functionally redundant (Martiny et al.,
2015). However, we know from large-scale amplicon surveys
that there are distinct differences in soil bacterial composition
across environmental gradients, with soil pH frequently observed
as a primary correlate (Fierer and Jackson, 2006; Griffiths
et al., 2011). This implies that different microbial phylogenetic
lineages possess adaptations conferring altered competitiveness
in soils of different pH; paving the way for future studies
into the genomic basis, and thereby elucidating specific genetic
“response traits.” There is also evidence that many specific
bacterial functional capacities such as methanogenesis (an
“effect” trait) are phylogenetically conserved and therefore may
be less redundant (Martiny et al., 2013). Determining the degree
of functional redundancy in taxa which respond across soil pH
gradients, will permit new insight into the microbial biodiversity
mechanisms underpinning soil functionality and resilience to
change. Since soil pH is largely predictable from geo-climatic
(Slessarev et al., 2016) and land use features (Wamelink et al.,
2019); prediction of the abundances of individual bacterial taxa
under environmental change scenarios is likely to be feasible.
The immediate challenge is therefore to establish predictive
frameworks for many soil bacterial taxa, which can be populated
with genomic information as it becomes available; to ultimately
facilitate predictions of microbial functional distributions.

We believe that attempts to progress understanding of the
ecological attributes of environmentally retrieved bacterial taxa
can be streamlined immediately by making better use of the
extensive amplicon datasets that exist, which already provide an
abundance of useful information on taxa-environment responses.
Indeed it has recently been shown that many prokaryotic taxa
are distributed globally (particularly dominant OTUs Delgado-
Baquerizo et al., 2018), yet there is currently no way to
formally capture their ecological attributes in databases for
further microbiological and ecological enquiry other than in
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Supplementary Material spreadsheets. Here we seek to address
this by making available a database of representative sequences
from a large 16S rRNA amplicon dataset from over 1,000
soil samples collected across Britain. In addition to providing
standard taxonomic annotation, we also seek to add ecological
response information to each representative sequence. We
focus here on soil pH responses as bacterial communities are
known to respond strongly across soil pH gradients (Griffiths
et al., 2011). We will firstly model OTU abundances across
soil pH using hierarchical logistic regression (HOF) (Jansen
and Oksanen, 2013), a commonly used approach to examine
vegetation responses across ecological gradients which has yet
to be widely applied to microbial datasets. We will use model
outputs to assign each OTU to a specific pH response group based
on abundance optima, and in addition demonstrate the utility
of the database in determining the phylogenetic relationships in
ecological responses. The utility of the database will be further
tested on 16S datasets to compare both the percentage of hits
and modeled responses. The OTU database with associated HOF
model outputs is released both as an online portal for visualizing
individual queries and as flat files for integration into existing
bioinformatics pipelines.

RESULTS AND DISCUSSION

Database Coverage
The database was constructed from sequences obtained from the
2007 Countryside Survey (CS), a randomly stratified sampling
of most soil types and habitats across Great Britain, full
details of which are provided elsewhere (Griffiths et al., 2011;
Reynolds et al., 2013). Sequencing of 1,113 soils using the
universal 341f/806r (Takahashi et al., 2014) primers targeting

the V3 and V4 regions of the 16S rRNA gene yielded a total
of 39,952 reference sequence OTUs, after clustering at 97%
sequence similarity and singleton removal. Coverage was assessed
on a filtered dataset of 1,006 samples which had at least 5,000
reads per sample, using sample based species accumulation
curves calculated per habitat class and pooled across all
habitats (Figure 1). The curves for individual habitats, whilst
not reaching saturation, reveal some interesting trends with
grasslands exhibiting highest biodiversity at the landscape scale,
which is likely attributable to the broad range of soil conditions
they encompass. The pooled curves across all habitats, however,
appear to begin to level off, which importantly reveals that in
total the reference sequence dataset provides good coverage of the
non-singleton 97% OTUs found across this landscape.

Performance of Database Against
Independent Datasets
The coverage of this dataset was further assessed through blasting
representative sequences from independent 16S datasets for
various locations and habitats (detailed in Table 1), against
all 39,952 CS representative sequences. Here we defined an
OTU “hit” as a query OTU that shared 97% identity with a
CS OTU and had an e-value equal to or less than 0.001. We
subsequently calculated the percentage of OTUs within each
independent dataset meeting this criteria to gain insights into CS
dataset coverage.

For the two independent soil datasets (query datasets 1 and 2,
Table 1), we found over 50% of the OTUs in each study had a
hit within the CS database. Expectedly, this was in stark contrast
to the fresh water query dataset (query dataset 3, Table 1) which
exhibited much less overlap with the CS database with 33.2%
having CS hits. 16S sequences from query dataset 1, a study of
land use change across the United Kingdom (Malik et al., 2018),

FIGURE 1 | Coverage of bacterial 97% OTUs within the Countryside Survey (CS) dataset. Sample based richness accumulation curves were calculated across
1,006 CS soil samples (“All sites”), and within specific habitats. Standard deviations are calculated from random permutations of the data.
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TABLE 1 | Validating the use of the CS OTU sequences as a database, through
querying with independent datasets.

Query
dataset

Habitat
description

Query OTU
percentage

of hits

Primer ENA project ID

1 Grassland and
arable soils, Britain

67.26% 341f/806r
V3-V4

PRJEB36119

2 All habitat soils
survey, Wales

58.49% 515f/806rB V4 PRJEB27883

3 Thames River,
Britain

33.2% 341f/806r
V3-V4

Unpublished, see
Read et al., 2015

Reference sequences from independent datasets were BLAST searched against
countryside survey representative sequences, and the proportion of OTUs
matched at over 97% similarity reported. British soil query datasets had highest
percentage of hits irrespective of methodologies, with a set of riverine samples
showing lowest proportion of OTUs matching the CS soil reference database.

also sequenced with the same 341f/806r primer set, had the
highest percentage of hits against the CS representative sequences
(67.26%). Wider assessment of our own unpublished datasets
using the exact same methodologies yield percentages of hits of
62 and 56% for soils from United Kingdom calcareous grasslands
and tropical rainforests, respectively. A separate survey of Welsh
soils (George et al., 2019) was also queried against the CS
database (query dataset 2, Table 1), which used the commonly
used Earth Microbiome primer set exclusively targeting the V4
region (as opposed to V3 and V4 targeted region used for the CS
dataset). This dataset had a percentage of hits of 58.49% providing
evidence that datasets amplified with other primer sets can be
matched to the CS database with only marginal loss of coverage.

We next wanted to explore possible reasons for obtaining less
than 100% coverage from query soil datasets, given the good
coverage of the CS reference sequence database evident from the
rarefaction curve (Figure 1). We predicted this discrepancy was
caused by rare OTUs being unique to specific studies and tested
this by classifying OTU’s from query dataset 1 (Table 1) into 1,000
discrete abundance based quantiles (1 being the most abundant
quantile and 1,000 being the least). Plotting the proportion of
query OTUs which matched to the CS database by query OTU
abundance class, confirmed that less abundant query OTUs had
less matches to the CS database (Figure 2). This adds weight
to arguments that much of the rare taxa detected through
amplicon sequencing could be spurious artifacts of the PCR
amplification process (Edgar, 2017). Regardless of these issues,
the high proportion of hits for dominant taxa in the query dataset
validates the use of the large CS dataset as a comprehensive
reference database.

Modeling OTU Responses to Soil pH
Since the majority of the 39,952 reference OTUs obtained across
all CS samples likely derive from rare taxa with intrinsically little
value for predictive modeling (low within-sample abundance,
and occurrence across samples), we opted to only model taxa-
pH relationships for those taxa which occurred in at least 30
samples within the CS dataset. These taxa were selected from
a cleaned dataset of 1,006 samples which had at least 5,000
reads per sample. These samples covered the following aggregate

FIGURE 2 | The CS database provides good coverage of dominant taxa
within a query dataset. Query OTU reference sequences (dataset 1, Table 1)
were grouped into 1,000 bins by decreasing rank (e.g., the 1000th bin
contains the least abundant OTUs); and the proportion of each bin matching
the CS dataset calculated and displayed on the y-axis. The proportion of
matches to the CS database (> 97% similarity) declines as query taxa
become rarer, despite the comprehensive nature of the CS database.

vegetation classes: crops and weeds, fertile grassland, heath
and bog, infertile grassland, lowland wooded, moorland grass
mosaics, tall grass and herb, and upland wooded.

Further examination of the species accumulation by sample
curves for the resulting 13,781 OTUs, revealed saturation
implying that this dataset had complete coverage of common
OTUs, defined by being present in at least 30 samples across
Britain. Hierarchical logistic regression (HOF) models were then
applied to determine individual bacterial taxa responses to pH.
HOF models enable individual taxon responses to be modeled
along environmental gradients using five response shapes,that
increase in number of parameters and shape complexity. A HOF
modeling approach was taken as HOFs discrete response shapes
allow for good interpretability in ecological contexts. GAM’s were
considered as an alternative method, but were not used due
to the challenges associated with choosing suitable smoothing
parameters to avoid overfitting (Jansen et al., 2013). HOF models
were generated using the R package eHOF using a poisson
error distribution. Model choice was determined using AIC and
bootstrapping methods implemented with the eHOF package
(Jansen and Oksanen, 2013), whereby the model with the lowest
AIC was initially chosen and its robustness then tested by
rerunning models on 100 bootstrapped datasets (created by
resampling with replacement). If the most frequently chosen
model in the bootstrap runs was different to the initial model
choice, the most common bootstrap choice was selected. The
resultant pH-taxa response curves classified by the HOF models
include I: no significant change in abundance in response to
pH, II: an increasing or decreasing trend, III: increasing or
decreasing trend which plateaus, IV: Increase and decrease by
same rate (unimodal) and V: Increase and decrease by different
rates causing skew (Figure 3).
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FIGURE 3 | Examples of the five HOF model types. HOF models were generated through fitting countryside survey OTU abundances to soil pH (a pH range from
3.63 to 8.75). The five HOF models used were: (I) no change in abundance across pH gradient, (II) montonic an increase or decrease in abundance along pH
gradient, (III) plateau an increase or decrease in abundance along pH gradient that plateaus, (IV) symmetrical unimodal, abundance increases and decreases across
gradient at an equal rate, (V) skewed unimodal, abundance increases and decreases across gradient at unequal rates.

The proportion of OTUs assigned to each model is shown
in Table 2, and reveals that most of the soil OTUs exhibited
some trend with soil pH, and with the unimodal skewed model
(V) being the most commonly fitted model type (45.76%).
OTUs were then assigned to pH response groups based on the
fitted pH optima. We classified OTUs demonstrating an acidic
preference if the fitted optima was below pH 5.2, based on
previous data showing this represented a critical threshold for
bacterial communities (Griffiths et al., 2011), which was further
confirmed by a similar regression tree analyses of this sequence
dataset (not shown). This pH value also represents a critical
threshold in microbial functioning (Jones et al., 2019). Similarly,

TABLE 2 | Percentage of 13,781 CS OTUs fitted to each HOF model.

Model fit Percentage of countryside survey OTUs

V (Skewed Unimodal) 45.76%

III (Plateau) 24.13%

IV (Unimodal) 23.52%

II (Monotonic) 6.11%

I (No trend) 0.49%

Each OTU was classified to one of five HOF model types according to fitted
relationships with soil pH. The different model response shapes are shown in
Figure 3.

a second threshold was designated at pH 7, with OTUs exhibiting
an optima above this being classed as neutral, and those between
5.2 and 7 classed as “mid.” Plateau model shapes (model III),
were sometimes more difficult to classify, since two optima
are provided which span the plateau, and in some cases these
crossed the pH 5.2 and 7 thresholds. Whilst OTUs exhibiting
this response were in the minority, we opted to assign a separate
designation representing this range, for instance “acid to mid”
for an OTU with two optima above and below pH 5.2. The
proportion of taxa classified to each pH response group are shown
in Table 3. This reveals that OTUs with acidic preference are in
the minority, consistent with reduced bacterial biodiversity being
frequently observed in acidic soils (Griffiths et al., 2011).

Representative sequences of all 13,781 OTUs were aligned with
Clustal Omega 1.2.11, and used to construct a Phylogenetic tree
with FastTree 2.1.7 with the generalized time-reversible (GTR)
model of nucleotide evolution. FastTree uses a heuristic form
of neighbor joining to initially determine tree topology before
reducing tree length using nearest neighbor interchanges (NNIs)
and subtree prune regraft moves (SPRs). Tree topology and
branch lengths are then improved using maximum likelihood
rearrangements. FastTree was used as it’s highly efficient when
handling large alignments (Price et al., 2010). The tree was

1http://www.clustal.org/
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TABLE 3 | Percentage of 13,781 CS OTUs classified to different pH
response groups.

pH Response group Percentage of
countryside
survey OTUs

Mid (5.2 < Optima < 7) 34.8%

Neutral (Optima > 7) 31.62%

Acid (Optima < 5.2) 23.08%

Mid to Neutral (5.2 < Optimum1 < 7 and Optimum 2 > 7) 7.41%

Acid to Neutral (Optimum1 < 5.2 and Optimum2 > 7) 1.52%

Acid to Mid (Optimum1 < 5.2 and 5.2 < Optimum2 < 7) 1.14%

Each OTU was assigned to a pH response classification based on the modeled pH
optima. The model outputs with one optima (II, IV,V) were classified as acidic, mid
or neutral based on pH thresholds identified above. Plateau shaped models with 2
optima (model III), which spanned the pH thresholds were labeled as either mid to
neutral, acid to neutral, or acid to mid.

visualized using graphlan (Asnicar et al., 2015) together with the
pH classification derived from the HOF models and is shown in
Figure 4. Distinct phylogenetic clustering is apparent for phyla
with representatives known to have acidophilic preferences such

as the Acidobacteria (Kielak et al., 2016). Additionally, other
phyla such as the Verrucomicrobia appear to possess clades with
a distinct pH preference. However, the overall impression across
other taxonomic groups is that the pH abundance optima can
vary substantially amongst closely related taxa. This emphasizes
the need to move beyond the association of traits with broad
phylogenetic lineages; and identifies the need to determine traits
at finer levels of taxonomic resolution.

Incorporating CS Data and pH
Responses Into a Sequence
Identification Tool
A web application was developed using the Shiny package2

which enables users to BLAST a 16S query sequence against
the countryside survey representative sequences, subsequently
allowing visualization of key environmental information
including HOF model outputs, relevant to individual matched
sequences. The Graphic User Interface was implemented

2https://shiny.rstudio.com/

FIGURE 4 | The phylogenetic distribution of bacterial pH optima. A phylogenetic tree of all OTUs present in > 100 samples (totaling 6,385 OTUs), with each OTU
annotated according to pH classification based on HOF model optima (outer ring).
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in R (3.4.1) using the Shiny package (see text footnote 3)
alongside ShinyJS to execute JavaScript functions from R3.
BLASTn commands are executed from R using the users
query sequence, e-value of 0.01, and the reference sequence
database of CS representative sequences. eHOF model objects
were converted to binary using the Rbase serialize function
and stored in a PostgreSQL (9.3.17) database4 alongside
model and other environmental metadata (Supplementary
Figure 1). BLAST results are displayed as an interactive
table of hits, each hit linking to a plot of the pH model fit
(based upon raw read number), a LOESS fit (based on relative
abundance), a box plot of habitat associations and a simple
interpolated map showing relative abundance distribution
across Britain (Supplementary Figure 2). Additionally
we provide a text box which can be populated with user
submitted trait related information on matched OTUs. The
application is available at shiny-apps.ceh.ac.uk/ID-TaxER/ and
to facilitate batch processing of query sequences the sequence
database, taxonomy and trait matrix are released via github
(github.com/brijon/ID-TaxER-flat-files) for integration into
bioinformatics pipelines.

Utility in Predicting pH Preferences and
Community Structure Using a Query
Dataset
To demonstrate both the utility of the reference sequence
database, and the HOF modeling approach to identify
environmental responses of soil bacterial taxa, we used a query
dataset of > 400 samples collected across Britain (dataset 1,
Table 1). Since this survey focused on productive habitats
(grassland and arable land uses), with only a few acidic samples,
it was not appropriate to generate independent HOF models.
Instead we classified the samples according to the same pH
cutoff levels identified above (pH 5.2 and 7) and then determined
pH responsive taxa using indicator species analyses (Dufrene
and Legendre, 1997). As can be seen in Figure 5A, the pH
groupings were clearly evident in the sample based ordination.
Representative sequences from this dataset were then blasted
against the CS database, and optimum pH and pH classification
metrics retrieved from the top hit for subsequent comparison. In
total 477 indicators for the three pH groupings were retrieved,
of which 454 had a match greater than 97% similarity to the
CS database. Of the 155 acidic indicator taxa identified in the
query dataset, 129 (83%) were reliably classified as acidic OTUs
based on matches to the CS database (Figure 5B), with 20 OTUs
“incorrectly” classified as having a mid-pH optima. However,
the predicted optima of these OTUs was mainly below pH 6 and
most lie very close to pH 5.2. Similarly for the 226 query taxa
identified as indicating neutral soils, 203 (90%) had a neutral pH
classification in the CS database, with 15 being incorrectly classed
as mid, though the optima for these was between pH 6.5 and 7.
Sixty-seven indicators of the query mid pH soils were obtained
of which 64 (96%) had a mid pH classification based on match

3https://cran.r-project.org/web/packages/shinyjs/
4https://www.postgresql.org/

FIGURE 5 | Validating the pH models using a query dataset. Taxa strongly
responsive to soil pH were identified from Query dataset 1 (Table 1), and then
matched to the CS database to evaluate utility of the approach. (A) NMDS
ordination plot of the query dataset, with pH groupings denoted by color
(red = pH < 5.2; green = pH > 5.2 < 7; and blue = pH > 7). (B) Indicator
species analyses on the query dataset revealed 477 OTUs strongly associated
with the three pH classes (“Observed pH class”). The y-axis values and point
color denote the predicted pH optimum, and predicted pH class following
matching to CS database. (C) The relative abundances of the 100 most
abundant taxa in the query dataset were predicted using the CS HOF models
of matched taxa, and subjected to NMDS ordination. The plot shows that the
predicted abundances of these taxa reliably predicted the observed data first
axis NMDS scores.
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to the CS database. Overall this analyses shows that information
on soil pH preferences from independent datasets can be reliably
obtained using our approach.

We then sought to test whether we could reliably predict
community structure using the CS HOF model outputs to
predict query OTU abundances. We identified the most abundant
OTUs in the query dataset, and blasted against the CS database.
CS HOF models were then used to predict the abundances
of the 100 matched dominant OTUs within the 424 query
samples. This predicted community matrix was then subject
to NMDS ordination with the first axis scores plotted against
the actual observed ordination scores generated from 24,260
OTUs. The results in Figure 5C show that the observed
and predicted first axis ordination scores were highly related
(r2 = 0.88) demonstrating that it is possible to predict broad scale
community change from individual OTU relative abundance pH
models. These findings add to a growing body of literature on
the predictability of soil bacterial communities (Fierer et al.,
2013; Griffiths et al., 2016; Bickel et al., 2019); but furthermore
demonstrate the utility of our overall approach in deriving
meaningful ecological information from matches to a 16S rRNA
sequence database incorporating ecological responses.

CONCLUSION

This work demonstrates how large scale soil molecular survey
data can be used to build robust predictive models of bacterial
abundance responses across environmental gradients. The
models were applied to the single soil variable of pH which is
known globally to be the strongest predictor of soil bacterial
community structure in surveys spanning wide environmental
gradients. We have produced an informatics tool incorporating
extensive sequence data from a wide range of soils, linked to
taxonomic and ecological response information. This currently
includes data on the modeled pH optima, and the predictive
utility in this regard was demonstrated using an independent
dataset. Other ecological information is also made available via an
online portal including habitat association, spatial distribution,
and metrics relating to abundance and occurrence. We are
currently working on incorporating other information on the
sensitivities of discrete OTUs to land use change; and there is
the wider potential for users to update the trait matrix with
other observations (more information provided at https://github.
com/brijon/ID-TaxER-flat-files). Such information could include
sensitivities to perturbations such as climate change, as well as
rRNA derived links to wider genome data to inform on function.

We anticipate this simple database and tool will be of use to
the soil molecular community, but also hope it prompts further
global efforts to better capture relevant ecological information
on newly discovered microbial taxa. We acknowledge some
limitations of the current tool, and identify some possibilities
to develop further: firstly being a 16S rRNA amplicon dataset,
the database inventory will be affected by known biases relating
to PCR primers and amplification conditions, i.e., taxa that
are known to be poorly detected by the primers used will be
under represented in the database (Thijs et al., 2017). Secondly
as the database features the V3-V4 region of the 16S rRNA

amplified with 341f/806r primers and therefore obviously, user
datasets built on a different region of the 16S rRNA gene will not
produce any matches. Additionally the length of sequences means
only limited taxonomic resolution is currently provided, and
ecological inferences based on BLAST matches must consider the
strength of match, and variance within the matched region with
respect to taxonomic discrimination (Fox et al., 1992). Emerging
long read sequencing technologies applied to survey nucleic acid
archives in the future may improve these current constraints
(Singer et al., 2016). With respect to the pH models, many other
factors can of course influence bacterial abundances (Thomson
et al., 2010; Fierer, 2017), and we note the large degree of variance
in relative abundance for a taxon even within its apparent pH
niche optima (Figure 3). Such variance could may be caused
by nutrient availability, stress etc. and more complex models,
albeit constrained by pH, need to be formulated to advance
predictive accuracy. More generally, we assert that observed
taxon relative abundance only inform on relative taxon success at
a given soil pH, and does not identify any explicit underpinning
ecological mechanism (e.g., pH stress tolerance vs. competitive
fitness) (Austin, 1999). However, linking emerging genomic data
to detailed environmentally relevant sequence databases such as
detailed here, will likely improve future understanding in relation
to elucidating specific functional response traits and determining
mechanisms underpinning bacterial community assembly along
soil gradients. Finally, and importantly, the CS database is
spatially constrained to a temperate island in Northern Europe,
and would benefit from a more global extent to capture other
soil biomes such as drylands. Improvements here could be made
from integrating data from global sequencing initiatives, or
leveraging data from sequence repositories provided consistent
environmental metadata can also be retrieved in order to reliably
predict response trait characteristics. Further use of data from
global sequence repositories, would likely shed light on more taxa
and potentially reveal more on those taxa deemed rare in for
example national focused studies.

MATERIALS AND METHODS

Samples were collected as part of the UK Centre for Ecology and
Hydrology Countryside survey (CS) between June and July 2007
covering sites throughout Great Britain. Samples were chosen
through a stratified random sample of 1 km squares using a
15 km grid, implementing the institute of Terrestrial Ecology
(ITE) land classification to ensure incorporation of different land
classes, with up to 5 randomly sampled cores (15 cm long × 4
cm diameter) taken within each square. Metadata for each soil
sample were collated including soil organic matter, soil organic
carbon, bulk density, pH, indicator of phosphorus availability
using methodologies detailed elsewhere (Griffiths et al., 2011;
Reynolds et al., 2013).

DNA was extracted from 0.3 g of soil using the MoBIO
PowerSoil-htp 96 Well DNA Isolation kit (Carlsbad, CA)
according to manufacturer protocols. Amplicon libraries were
constructed according to the dual indexing strategy of Kozich
et al. (2013), using primers 341F (Muyzer et al., 1993), and
806R (Caporaso et al., 2011). Amplicons were generated using a
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high fidelity DNA polymerase (Q5 Taq, New England Biolabs)
on 20 ng of template DNA employing an initial denaturation
of 30 s at 95◦C, followed by (25 for 16S and 30 cycles for
ITS and 18S) of 30 s at 95◦C, 30 s at 52◦C and 2 min at
72◦C. A final extension of 10 min at 72◦C was also included to
complete the reaction. Amplicon sizes were determined using
an Agilent 2200 TapeStation system (∼550 bp) and libraries
normalized using SequalPrep Normalization Plate Kit (Thermo
Fisher Scientific). Library concentration was calculated using a
SYBR green quantitative PCR (qPCR) assay with primers specific
to the Illumina adapters (Kappa, Anachem). Libraries were
sequenced at a concentration of 5.4 pM with a 0.6 pM addition
of an Illumina generated PhiX control library. Sequencing runs,
generating 2 × 300 bp, reads were performed on an Illumina
MiSeq using V3 chemistry.

Sequenced paired-end reads were joined using PEAR (Zhang
et al., 2013), quality filtered using FASTX tools5, length filtered
with the minimum length of 300 bp. The presence of PhiX and
adapters were checked and removed with BBTools6, and chimeras
were identified and removed with VSEARCH_UCHIME_REF
(Rognes et al., 2016) using Greengenes Release 13_5 (at
97%). Singletons were removed and the resulting sequences
were clustered into operational taxonomic units (OTUs) with
VSEARCH_CLUSTER at 97% sequence identity. Representative
sequences for each OTU were taxonomically assigned by RDP
Classifier with the bootstrap threshold of 0.8 or greater using
the Greengenes Release 13_5 (full) as the reference. All statistical
analyses and visualizations were conducted within the R package,
predominantly using the vegan and ggplot packages unless
otherwise indicated.
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Supplementary Figure 1 | ID-TaxER database Infrastructure 16S sequences are
queried over the web via the R Shiny interface. A BLAST search is then performed
against a blast database containing representative 16S sequences from the 2007
Countryside survey. Model information and associated metadata for match hits
are located in a PostgreSQL database of OTU taxonomy/model data (model
objects are stored as binary and retrieved for the user) and results displayed via
the shiny interface.

Supplementary Figure 2 | Example outputs from the ID-TaxER online portal.
Using the DA101/Ca. U. copiosus (Brewer et al., 2016) 16S sequence (GenBank:
Y07576.1) as a query, we found 98.3% identitiy to CS OTU19097
(taxonomy = k_Bacteria; p_Verrucomicrobia; c_Spartobacteria;
o_Chthoniobacterales; f_Chthoniobacteraceae; g_DA101): (A) HOF model output
showing the number of reads of CS OTU19097 per sample plotted against soil
pH; with the line representing the model fit (Model V, unimodal response to pH
with an optima at pH 6.18) (B) the relative abundance of OTU19097 against
sample pH, with the line representing a LOESS fit; (C) boxplot showing the
median and ranges of the relative abundance of OTU19097 per CS habitat class;
(D) inverse distance weighted interpolation map of the relative abundance of
OTU19097 across Britain.

REFERENCES
Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C., and Segata, N. (2015).

Compact graphical representation of phylogenetic data and metadata with
GraPhlAn. PeerJ 3:e1029. doi: 10.7717/peerj.1029

Austin, M. P. (1999). The potential contribution of vegetation ecology to
biodiversity research. Ecography 22, 465–484. doi: 10.1111/j.1600-0587.1999.
tb01276.x

Bickel, S., Chen, X., Papritz, A., and Or, D. (2019). A hierarchy of environmental
covariates control the global biogeography of soil bacterial richness. Sci. Rep.
9:12129.

Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A., and Fierer, N. (2016).
Genome reduction in an abundant and ubiquitous soil bacterium ’Candidatus
Udaeobacter copiosus’. Nat. Microbiol. 2:16198.

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A.,
Turnbaugh, P. J., et al. (2011). Global patterns of 16S rRNA diversity at a

Frontiers in Microbiology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 682886

https://shiny-apps.ceh.ac.uk/ID-TaxER/
https://shiny-apps.ceh.ac.uk/ID-TaxER/
https://github.com/brijon/ID-TaxER-flat-files
https://catalogue.ceh.ac.uk/documents/79669141-cde5-49f0-b24d-f3c6a1a52db8
https://catalogue.ceh.ac.uk/documents/79669141-cde5-49f0-b24d-f3c6a1a52db8
https://github.com/brijon/sgtoolkit
hannonlab.cshl.edu
jgi.doe.gov/data-and-tools/bbtools/
https://github.com/brijon/Beyond_taxonomic_identification
https://github.com/brijon/ID-TaxER
https://github.com/brijon/ID-TaxER
https://www.frontiersin.org/articles/10.3389/fmicb.2021.682886/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2021.682886/full#supplementary-material
https://doi.org/10.7717/peerj.1029
https://doi.org/10.1111/j.1600-0587.1999.tb01276.x
https://doi.org/10.1111/j.1600-0587.1999.tb01276.x
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-682886 July 13, 2021 Time: 16:50 # 10

Jones et al. Beyond Taxonomic Identification

depth of millions of sequences per sample. Proc. Natl. Acad. Sci.U. S. A. 108,
4516–4522. doi: 10.1073/pnas.1000080107

Choi, J., Yang, F., Stepanauskas, R., Cardenas, E., Garoutte, A., Williams, R., et al.
(2017). Strategies to improve reference databases for soil microbiomes. ISME J.
11, 829–834. doi: 10.1038/ismej.2016.168

Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González,
A., Eldridge, D. J., Bardgett, R. D., et al. (2018). A global atlas of the
dominant bacteria found in soil. Science 359, 320–325. doi: 10.1126/science.aap
9516

Diaz, S., Purvis, A., Cornelissen, J. H., Mace, G. M., Donoghue, M. J., Ewers,
R. M., et al. (2013). Functional traits, the phylogeny of function, and
ecosystem service vulnerability. Ecol. Evo.l 3, 2958–2975. doi: 10.1002/
ece3.601

Dufrene, M., and Legendre, P. (1997). Species assemblages and indicator species:
the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366.
doi: 10.2307/2963459

Edgar, R. C. (2017). Accuracy of microbial community diversity estimated
by closed- and open-reference OTUs. PeerJ 5:e3889. doi: 10.7717/peerj.
3889

Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the
soil microbiome. Nat. Rev. Microbiol. 15, 579–590. doi: 10.1038/nrmicro.20
17.87

Fierer, N., and Jackson, R. B. (2006). The diversity and biogeography of soil
bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103, 626–631. doi: 10.
1073/pnas.0507535103

Fierer, N., Ladau, J., Clemente, J. C., Leff, J. W., Owens, S. M., Pollard, K. S., et al.
(2013). Reconstructing the microbial diversity and function of pre-agricultural
tallgrass prairie soils in the United States. Science 342, 621–624. doi: 10.1126/
science.1243768

Fox, G. E., Wisotzkey, J. D., and Jurtshuk, P. (1992). How Close Is Close:
16S rRNA Sequence Identity May Not Be Sufficient To Guarantee Species
Identity. Int. J. Syst. Evol. Microbiol. 42, 166–170. doi: 10.1099/00207713-
42-1-166

Gans, J., Wolinsky, M., and Dunbar, J. (2005). Computational improvements reveal
great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390.
doi: 10.1126/science.1112665

George, P. B. L., Lallias, D., Creer, S., Seaton, F. M., Kenny, J. G., Eccles,
R. M., et al. (2019). Divergent national-scale trends of microbial and animal
biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun.
10:1107.

Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M., and Whiteley,
A. S. (2011). The bacterial biogeography of British soils. Environ. Microbiol. 13,
1642–1654. doi: 10.1111/j.1462-2920.2011.02480.x

Griffiths, R. I., Thomson, B. C., Plassart, P., Gweon, H. S., Stone, D., Creamer, R. E.,
et al. (2016). Mapping and validating predictions of soil bacterial biodiversity
using European and national scale datasets. Appl. Soil Ecol. 97, 61–68. doi:
10.1016/j.apsoil.2015.06.018

Jansen, F., and Oksanen, J. (2013). How to model species responses along ecological
gradients – Huisman–Olff–Fresco models revisited. J. Veg. Sci. 24, 1108–1117.
doi: 10.1111/jvs.12050

Jansen, F., Oksanen, J., and Podani, J. (2013). How to model species responses
along ecological gradients - Huisman-Olff-Fresco models revisited. J. Veg. Sci.
24, 1108–1117.

Jones, D. L., Cooledge, E. C., Hoyle, F. C., Griffiths, R. I., and Murphy,
D. V. (2019). pH and exchangeable aluminum are major regulators
of microbial energy flow and carbon use efficiency in soil microbial
communities. Soil Biol. Biochem. 138:107584. doi: 10.1016/j.soilbio.2019.
107584

Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., Van Veen, J. A., and Kuramae, E. E.
(2016). The Ecology of Acidobacteria: moving beyond Genes and Genomes.
Front. Microbiol. 7:744. doi: 10.3389/fmicb.2016.00744

Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss,
P. D. (2013). Development of a Dual-Index Sequencing Strategy and Curation
Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina
Sequencing Platform. Appl. Environ. Microbiol. 79, 5112–5120. doi: 10.1128/
aem.01043-13

Lavorel, S., and Garnier, E. (2002). Predicting changes in community composition
and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct.
Ecol. 16, 545–556. doi: 10.1046/j.1365-2435.2002.00664.x

Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N., Chowdhury,
S., et al. (2018). Land use driven change in soil pH affects microbial carbon
cycling processes. Nat. Commun. 9:3591.

Martiny, A. C., Treseder, K., and Pusch, G. (2013). Phylogenetic conservatism of
functional traits in microorganisms. ISME J. 7, 830–838. doi: 10.1038/ismej.
2012.160

Martiny, J. B. H., Jones, S. E., Lennon, J. T., and Martiny, A. C. (2015). Microbiomes
in light of traits: a phylogenetic perspective. Science 350:aac9323. doi: 10.1126/
science.aac9323

McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., Desantis, T. Z., Probst,
A., et al. (2012). An improved Greengenes taxonomy with explicit ranks
for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6,
610–618. doi: 10.1038/ismej.2011.139

Muyzer, G., De Waal, E. C., and Uitterlinden, A. G. (1993). Profiling of
complex microbial populations by denaturing gradient gel electrophoresis
analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.
Appl. Environ. Microbiol. 59, 695–700. doi: 10.1128/aem.59.3.695-700.
1993

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2 – Approximately
Maximum-Likelihood Trees for Large Alignments. PLoS One 5:e9490. doi: 10.
1371/journal.pone.0009490

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013).
The SILVA ribosomal RNA gene database project: improved data processing
and web-based tools. Nucleic Acids Res. 41, D590–D596.

Read, D. S., Gweon, H. S., Bowes, M. J., Newbold, L. K., Field, D., Bailey, M. J., et al.
(2015). Catchment-scale biogeography of riverine bacterioplankton. ISME J. 9,
516–526. doi: 10.1038/ismej.2014.166

Reynolds, B., Chamberlain, P. M., Poskitt, J., Woods, C., Scott, W. A., Rowe,
E. C., et al. (2013). ). Countryside Survey: national “Soil Change” 1978–2007 for
Topsoils in Great Britain—Acidity, Carbon, and Total Nitrogen Status. Vadose
Zone J. 12, 1–15.

Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Km, A., Kent, A. D., et al.
(2010). Pyrosequencing enumerates and contrasts soil microbial diversity. ISME
J. 1, 283–290. doi: 10.1038/ismej.2007.53

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a
versatile open source tool for metagenomics. PeerJ 4:e2584. doi: 10.7717/peerj.
2584

Sinclair, L., Ijaz, U. Z., Jensen, L. J., Coolen, M. J. L., Gubry-Rangin, C.,
Chronakova, A., et al. (2016). Seqenv: linking sequences to environments
through text mining. PeerJ 4:e2690. doi: 10.7717/peerj.2690

Singer, E., Bushnell, B., Coleman-Derr, D., Bowman, B., Bowers, R. M., Levy,
A., et al. (2016). High-resolution phylogenetic microbial community profiling.
ISME J. 10, 2020–2032. doi: 10.1038/ismej.2015.249

Slessarev, E. W., Lin, Y., Bingham, N. L., Johnson, J. E., Dai, Y., Schimel, J. P., et al.
(2016). Water balance creates a threshold in soil pH at the global scale. Nature
540, 567–569. doi: 10.1038/nature20139

Suding, K. N., Lavorel, S., Chapin, F. S., Cornelissen, J. H. C., Diaz, S., Garnier,
E., et al. (2008). Scaling environmental change through the community-level:
a trait-based response-and-effect framework for plants. Glob. Chang. Biol. 14,
1125–1140. doi: 10.1111/j.1365-2486.2008.01557.x

Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., and Nishijima, M. (2014).
Development of a prokaryotic universal primer for simultaneous analysis of
Bacteria and Archaea using next-generation sequencing. PLoS One 9:e105592.
doi: 10.1371/journal.pone.0105592

Thijs, S., Op De Beeck, M., Beckers, B., Truyens, S., Stevens, V., Van Hamme, J. D.,
et al. (2017). Comparative Evaluation of Four Bacteria-Specific Primer Pairs for
16S rRNA Gene Surveys. Front. Microbiol. 8:494. doi: 10.3389/fmicb.2017.00494

Thomson, B. C., Ostle, N., Mcnamara, N., Bailey, M. J., Whiteley, A. S., and
Griffiths, R. I. (2010). Vegetation affects the relative abundances of dominant
soil bacterial taxa and soil respiration rates in an upland grassland soil. Microb.
Ecol. 59, 335–343. doi: 10.1007/s00248-009-9575-z

Wamelink, G. W. W., Walvoort, D. J. J., Sanders, M. E., Meeuwsen,
H. A. M., Wegman, R. M. A., Pouwels, R., et al. (2019). Prediction of
soil pH patterns in nature areas on a national scale. Appl. Veg. Sci. 22,
189–199.

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/aem.000
62-07

Frontiers in Microbiology | www.frontiersin.org 10 July 2021 | Volume 12 | Article 682886

https://doi.org/10.1073/pnas.1000080107
https://doi.org/10.1038/ismej.2016.168
https://doi.org/10.1126/science.aap9516
https://doi.org/10.1126/science.aap9516
https://doi.org/10.1002/ece3.601
https://doi.org/10.1002/ece3.601
https://doi.org/10.2307/2963459
https://doi.org/10.7717/peerj.3889
https://doi.org/10.7717/peerj.3889
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1073/pnas.0507535103
https://doi.org/10.1073/pnas.0507535103
https://doi.org/10.1126/science.1243768
https://doi.org/10.1126/science.1243768
https://doi.org/10.1099/00207713-42-1-166
https://doi.org/10.1099/00207713-42-1-166
https://doi.org/10.1126/science.1112665
https://doi.org/10.1111/j.1462-2920.2011.02480.x
https://doi.org/10.1016/j.apsoil.2015.06.018
https://doi.org/10.1016/j.apsoil.2015.06.018
https://doi.org/10.1111/jvs.12050
https://doi.org/10.1016/j.soilbio.2019.107584
https://doi.org/10.1016/j.soilbio.2019.107584
https://doi.org/10.3389/fmicb.2016.00744
https://doi.org/10.1128/aem.01043-13
https://doi.org/10.1128/aem.01043-13
https://doi.org/10.1046/j.1365-2435.2002.00664.x
https://doi.org/10.1038/ismej.2012.160
https://doi.org/10.1038/ismej.2012.160
https://doi.org/10.1126/science.aac9323
https://doi.org/10.1126/science.aac9323
https://doi.org/10.1038/ismej.2011.139
https://doi.org/10.1128/aem.59.3.695-700.1993
https://doi.org/10.1128/aem.59.3.695-700.1993
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1038/ismej.2014.166
https://doi.org/10.1038/ismej.2007.53
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2690
https://doi.org/10.1038/ismej.2015.249
https://doi.org/10.1038/nature20139
https://doi.org/10.1111/j.1365-2486.2008.01557.x
https://doi.org/10.1371/journal.pone.0105592
https://doi.org/10.3389/fmicb.2017.00494
https://doi.org/10.1007/s00248-009-9575-z
https://doi.org/10.1128/aem.00062-07
https://doi.org/10.1128/aem.00062-07
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-682886 July 13, 2021 Time: 16:50 # 11

Jones et al. Beyond Taxonomic Identification

Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2013). PEAR: a fast and
accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620. doi:
10.1093/bioinformatics/btt593

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Jones, Goodall, George, Gweon, Puissant, Read, Emmett, Robinson,
Jones and Griffiths. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 11 July 2021 | Volume 12 | Article 682886

https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1093/bioinformatics/btt593
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Beyond Taxonomic Identification: Integration of Ecological Responses to a Soil Bacterial 16S rRNA Gene Database
	Introduction
	Results and Discussion
	Database Coverage
	Performance of Database Against Independent Datasets
	Modeling OTU Responses to Soil pH
	Incorporating CS Data and pH Responses Into a Sequence Identification Tool
	Utility in Predicting pH Preferences and Community Structure Using a Query Dataset

	Conclusion
	Materials and Methods
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


