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ABSTRACT

Hyper-adaptability is an ability of humans and animals to adapt to large-scale

changes in the nervous system or the musculoskeletal system, such as strokes and

spinal cord injuries. Although this adaptation may involve similar neural processes

with normal adaptation to usual environmental and body changes in daily lives, it

can be fundamentally different because it requires “reconstruction” of the neural

structure itself and “reconstitution” of sensorimotor control rules to compensate

for the changes in the nervous system. In this survey paper, we aimed to provide

an overview on how the brain structure changes after brain injury and recovers

through rehabilitation. Next, we demonstrated the recent approaches used to ap-

ply computational and neural network modeling to recapitulate motor control and

motor learning processes. Finally, we discussed future directions to bridge the gap

between conventional physiological and modelling approaches to understand the

neural and computational mechanisms of hyper-adaptability and its applications to

clinical rehabilitation.
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1. Introduction

Humans can adapt to different environments. Focusing on motor ability, we could

move our arms to reach an external object and dexterously manipulate various

shapes. We can even learn new motor tasks, such as sports skills. For example, if a

mismatch occurs between the planned movement and realized movement (i.e.,

prediction error), humans could learn and adjust their motor command to adapt to

the environment. This adaptive motor ability stems from the sensory-motor

systems, redundancy of the human body, and brain function. When the human

brain or spinal cord is damaged, motor function is severely impaired. However, the

human brain has a great potential to adapt to these changes and overcome motor

impairment. “Hyper-adaptability” is defined as an animal’s ability to adapt to

large-scale and irreversible changes in the nervous or musculoskeletal system (e.g.,

brain/spinal cord injury). To introduce the concept of “hyper-adaptability,” we

focused on how humans regain their motor function after sustaining a brain injury.

Hyper-adaptability differs from normal adaptation in daily life (i.e., fatigue) in

that this requires “reconstruction of the neural structure” and “reconstitution of

the sensorimotor control rules.” After sustaining a spinal cord injury, for example,

primates could utilize various indirect corticomotoneuronal pathways, the bilateral

motor-related cortical areas, and mesolimbic structures, which are not otherwise

used for the direct control of motor movements under normal physiological

conditions [1]. By recruiting and exploring these latent neural circuits that are not

typically used under normal conditions, the brain might use new control

mechanisms through a re-optimization process. To fully understand

hyper-adaptability (i.e., the mechanism underlying reconstruction of the neural

structure and reconstitution of sensorimotor control rules), integration of

multidisciplinary approaches, including conventional neurophysiological

methodologies and computational neuroscience approaches is necessary. In other

words, theoretical control modelling and neural network modeling are important to

describe the general principles of the adaptation processes.

In this survey paper, we aimed to examine the phenomenon occurring after

brain damage caused by stroke or traumatic injury to introduce the concept of

hyper-adaptability. First, we provide an overview on how the brain function

changes after a brain injury and how it recovers through rehabilitation. These

physiological studies were also reviewed previously [1]. Furthermore, to understand

the mechanism of hyper-adaptation and apply it for rehabilitation therapy,
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computational approaches are needed. Next, we showed the computational

modeling of motor control, which is a possible candidate to explain

hyper-adaptability. Then, we reviewed the recent advances in neural network

modeling approaches for motor control and introduced the previous physiological

experiments to validate the efficacy of these approaches. Finally, we discussed

future directions to clarify the neural and computational mechanism of

hyper-adaptability and its application to clinical rehabilitation.

2. Reconstruction of Neural Networks and Reconstitution of Control

Rules for Hyper-adaptability

When humans move their body to perform a task, many parts of the human brain

play important roles. Sensory information integrated in the parietal association

area of the brain and the network between parietal area, premotor cortex, and

primary motor cortex (M1) are involved in planning a motor command. This

planned motor command is sent to the brainstem and the spinal cord through the

corticospinal tract. Subcortical systems involve low-dimensional motor primitives

(known as synergies) to generate muscle activity. When humans learn a new motor

skill, these nervous systems are utilized for adaptation. In the normal adaptation,

the cerebellum, basal ganglia, and cerebral cortex are thought to play specialized

roles in supervised learning, reinforcement learning, and unsupervised learning,

respectively [2].

When performing a motor task, humans plan and execute motor commands

under a constraint condition. In this context, the goal of the task, surrounding

environments, and dynamics of the musculoskeletal system determine the

constraint conditions and cost function. The human brain can learn motor

commands, which give less value to the cost function and satisfy the constraint

condition. However, if the cerebral cortex, cerebellum, and basal ganglia are

damaged (i.e., stroke or traumatic brain injuries), how can our nervous system

adapt to this large-scale and irreversible change in the nervous system itself?

Under this circumstance, it is mandatory to utilize other latent neural circuits,

which emerged during development but less activated in a normal state, and all

existing elements such as synergy to adapt to drastic change. In the next section,

we reviewed the previous studies on the neurophysiological changes after brain

injuries and what the type of rehabilitation intervention performed. Furthermore,

we introduced how the brain networks change by rehabilitation to understand the

role of hyper-adaptability after a brain damage.
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2.1. Change of Neural Networks after a Brain Injury

When the brain is damaged by stroke or traumatic brain injury, neurons in the

damaged area are lost, and if it involves the corticospinal tracts, hemiplegia

occurs. These motor impairments are caused by physical damages and indirect

behavioral changes following the physical damage. For example, the previous study

investigated how the affected brain area of adult squirrel monkeys changes after a

focal ischemic infarct in M1 [3]. They reported that the movements formerly

represented in the infarcted zone did not reappear in the surrounding zone when

the monkey did not receive extensive behavioral training. This is a direct effect of

brain damage on motor function.

In addition to the direct physical effects, brain damage also causes secondary

impairments. For example, many motor-impaired patients show behavioral change

called “learned non-use” after experiencing a stroke [4]. They pointed out that this

behavioral suppression is caused by the experience of effortful movement and

unsuccessful motor attempts. Further loss of function in the affected brain area

occurs in the case of disuse of the affected limb.

Furthermore, the balance of transcallosal inhibitory activity between the

affected and unaffected motor cortices changes after the onset of stroke [5,6]. A

previous study [6] investigated the generation of a voluntary movement by the

paretic hand of the patients who had ischemic subcortical infarction. They found

an abnormally high interhemispheric inhibition from M1 of the unaffected

hemisphere to the M1 of the affected side. A functional magnetic resonance

imaging study also revealed that the interhemispheric functional connectivity

between the cortical motor areas is reduced and correlates with the severity of

motor impairment [7]. Damage to the brain causes impairment in the descending

pathways from the brain to the spinal cord. Although the spinal cord is

undamaged, the excitation level of motor neurons in the spinal cord cannot be

properly controlled. This results in increased stretch reflex (spasticity) and muscle

tonus, muscle weakness, or impaired muscle coordination. These results clearly

demonstrate that brain damage causes functional impairment not only due to the

direct focal damage but also due to the plastic changes in the entire nervous

system.

These findings suggest that brain injury often causes difficulty in limb

movement, and it imposes a long-term constraint when deciding the appropriate

motor commands to accomplish a motor task. Figure 1 shows a schematic diagram

of the comparison between moving a hand to a target under normal and impaired

states. In the normal state, humans could learn and execute appropriate motor

commands, which minimize the “cost function,” generally indicating the

effectiveness of a motor command under the given environmental and body

dynamics (lower is preferable), as shown in Fig. 1(a). However, when irreversible

4



CI 
Therapy

CI 
Therapy

CI 
Therapy

FacilitationFacilitation

DisinhibitionDisinhibition

Cost

Motor Command x
Motor Command x

Motor Command x

x’

(a) Normal                                                         (b) Impaired                                              (c) Rehabilitation

Intervention

Damaged

target target target

CostCost

Figure 1. Schematic diagram of motor control. (a) Humans can choose appropriate motor commands under

the cost function provided by the environmental and body dynamics. (b) When the brain is damaged, cost
function is changed so that humans need to choose different motor strategies. (c) Rehabilitation intervention

aims to reshape the cost function and encourage the individual to hyper-adapt to learn a new motion strategy.

changes occur in the brain network (e.g., abnormal interhemispheric inhibition), it

is considered to be an additional motor constraint. In particular, the previous

motor commands, which used to be sufficient under normal conditions, are no

longer appropriate solutions solution during the impaired state. Thus, humans

need to choose different motor commands to accomplish the task although it

requires a higher cost (Fig. 1(b)). In the next section, we introduce the type of

rehabilitation performed for motor impaired post-stroke patients.

2.2. Neuro-rehabilitation for Motor Recovery

Constraint-induced movement (CI) therapy is widely used in rehabilitation to

overcome the learned non-use of the effected limb [8]. As described in the former

section, behavioral suppression of movement in the affected limb prolongs the

non-use of the said limb, resulting in the reduction in the volume of the brain

region for body representation. In CI therapy, patients are encouraged to use their

affected limb by inducing constraints on the unaffected limb. This intensive and

repetitive practice can induce use-dependent plasticity to reorganize brain

structure. The previous study [9] investigated how the hand representation area

changes after CI therapy is applied to the chronic stroke patients with cortical

lesions or subcortical lesions that involved the internal capsule. The internal

capsule is the region where the corticospinal tract passes, and damage to this area

impairs limb movement. Authors used transient magnetic stimulation (TMS) to

investigate evoked movements to identify how the hand representation area

changes in stroke patients after CI therapy. They found that the cortical
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representation area of the affected limb became significantly larger than that

before CI therapy [9]. The CI therapy limits the unaffected limb movement, and

this prevents the formulation and execution of motor commands under the

impaired state. In this situation, the CI therapy is considered to increase the cost

of the motor commands, which are used in the impaired state to encourage the

patient to explore better motor commands (Fig. 1(c)).

Some facilitation techniques are also used in stroke rehabilitation, such as

repetitive facilitation exercise and neuro-developmental training. In the repetitive

facilitation exercise, physical therapists provides physical stimulation (flexion or

extension of the targeted joint) as the patient intends to move his or her affected

hand [10]. This technique aims to elevate the excitation level of impaired

descending motor tracts and encourage patients to initiate movement. Similarly,

facilitation based on the Bobath concept uses facilitation techniques [11]. They

also emphasized that the afferent information from the limb is important to

improve body awareness. The timing of muscle synergy activation from a sitting

position to a standing position improved and was similar to that of healthy

individuals when the physical therapists provided facilitation based on the Bobath

concept [12]. Facilitation techniques are thought to change the shape of the cost

function to enable the motor-impaired patients to relearn new motor commands.

In this way, the role of the facilitation provided by the physical therapists is

considered to encourage the patient to seek different motor commands under the

modified neural network (Fig. 1(c)).

Another possible methodology to improve motor impairment is the use of

transcranial direct current stimulation (tDCS). tDCS involves the application of a

weak direct current through the scalp to change the excitability of the cortex.

Anodal and cathodal stimulation are used, respectively, for excitation and

inhibition of the target brain area [13]. There are two possible strategies for stroke

rehabilitation: one strategy is to provide anodal stimulation to the affected sphere

to increase excitability, and the other strategy is to provide cathodal stimulation in

an unaffected hemisphere to decrease inhibition in this area. This is expected to

improve unbalanced interhemispheric inhibition. Repetitive transcranial magnetic

stimulation (rTMS) involves the induction of motor unit potentials in the cortex.

A low-frequency rTMS (<1 Hz) inhibits the excitation of the targeted area, while

a high-frequency rTMS (>5 Hz) increase the excitation [14]. These techniques

modify the neural networks of the inter- and intra-hemisphere to improve the

interhemispheric inhibition. As a result, the motor-impaired patients are able to

avoid local minimum motor commands and explore the landscape of cost function

to find a global minimum solution (Fig. 1(c)).

Bimanual training is also suggested to be effective for motor restoration [15]. In

contrast to CI therapy, patients with stroke are asked to move both affected and
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unaffected limbs. Previous study [16] investigated the effect of bimanual arm

training on the patients who had upper extremity spastic hemiparesis following a

single cortical or subcortical ischemic stroke. In this way, activation of the

unaffected hemisphere increased, and it may unmask the uncrossed corticospinal

projections to the affected limb. This uncrossed corticospinal projections are the

latent neural subsystems, which are not used in the normal state. Fady et al. also

showed that the muscle activities of the affected limb became similar to those of

healthy individuals when the patients with cortical and subcortical stroke used the

unaffected limb to support the affected limb [17]. The advantage of bimanual

training to CI therapy is that bimanual training is applicable to patients with more

severe movement disorders. The bimanual training aims to improve the abnormal

interhemispheric inhibition and to prompt the usage of latent neural sub systems

to allow the motor-impaired patient to use different motor strategies (Fig. 1(c)).

As discussed in the previous section, humans have difficulties to move their limb

after a brain damage (Fig. 1(b)). Rehabilitation interventions help the

motor-impaired patients to seek better solutions under the additional constraints

imposed by the brain injury. CI therapy and facilitation techniques contribute to

reshaping the cost function by limiting the limb movement or guiding the patient

to perform limb movements appropriately. Modifying the neural network by tDCS

and bimanual training encourages the patient to use the latent neural network,

which is not typically used in the normal state, and to explore different motion

commands. Therefore, the rehabilitation intervention could be interpreted as

reshaping the cost function to prompt the utilization of latent neural networks and

encourage the patient to seek new motor commands. In the next section, we

showed how reorganization occurs in neural networks and how motor control rules

are reconstituted.

2.3. Changes in Neural Network and Motor Control Rules while Motor

Recovery

As mentioned in the previous section, rehabilitation therapies help motor-impaired

patients of motor impairments to regain motor functions. In this section, we

reviewed the different changes occurring in the brain that are induced by

rehabilitation and how humans improve motor performance. The human brain has

the plasticity to reorganize neural networks even after a brain injury. Nudo et al.

showed that reorganization of hand representation in M1 occurs after rehabilitative

training [3]. While recovering, the squirrel monkey showed improvements in their

ability to retrieve more food from the well placed in front of them. This plastic

change occurs not only at the damaged brain area but also at the adjacent and

even remote areas. In patients with stroke at the M1, the finger motor
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representation in M1 is evoked in the adjacent dorsal area of the lesion [18]. The

other previous study used NIRS to examine the brain activity during gait

rehabilitation of patients with stroke at the cerebral cortex [19]. During the gait

rehabilitation of patients with stroke, the activation of premotor cortice is

enhanced in the affected hemisphere. These findings imply that different brain

areas are activated largely in patients with stroke than in healthy individuals due

to the reorganization of neural structure to compensate for the motor deficit.

Moreover, patients who recovered from stroke utilized motor pathways different

from those of those healthy individuals to achieve movement [20]. A previous study

investigated the patients who recovered their motor ability after experiencing

ischemic infarct of the internal capsule. When the brain activity assessed using

PET, the blood flow in the motor-related areas, such as the premotor cortex and

the primary sensorimotor cortex, of the patients’ unaffected side of the brain was

increased compared with that of healthy individuals. This finding implies that

patients with stroke exhibit cerebral cortex reorganization to utilize the uncrossed

corticospinal tract from the unaffected hemisphere to re-generate motor commands.

As the patients with stroke receive rehabilitation, they improve motor

performance utilizing the residual motor function. For example, although the

cerebral cortex is damaged, humans could still use the subcortical systems to

achieve the movement. The muscle activity involved in an animal locomotion could

be decomposed into small sets of primitives called muscle synergy [21]. Muscle

synergies can be preserved in the cortical stroke patients between the affected and

unaffected limbs to perform a variety of tasks and movements [22,23]. Fewer

numbers of muscle synergies in locomotion are also reported in post-stroke patients

with hemiparesis secondary to a single unilateral stroke than in healthy

individuals [24]. Changes in the activation timing of muscle synergies observed

during the sit-to-stand motion in stroke patients occurs in the cerebral cortex [25].

These studies imply that animals could utilize the existing low dimensional

subspace of motor commands such as muscle synergies to accomplish motor tasks

despite brain damage.

When environmental and body dynamics are provided, the normal adaptation

process enables humans to learn and choose motor commands under the given cost

function (Fig. 1(a)). However, when the brain is damaged (e.g., large-scale and

irreversible changes), the motor commands that humans used in the normal

condition requires more cost due to the inhibition of brain activity and changes in

muscle property, such as muscle spasticity. To regain the motor function after

these irreversible changes, normal adaptation may not enough because humans

may insist on using the high-cost motor commands, which is the local minimum

solution under the impaired cost function (Fig. 1(b)). In order to obtain better

motor commands, the hyper-adaptation process reshapes the cost function by
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modifying the neural network. In such a way, the patients can utilize the preserved

low-dimensional subspace of body dynamics and explore different motion strategies

(Fig. 1(c)). In this context, rehabilitation intervention is considered to reorganize

the brain network including employment of the latent subsystem by guiding the

patients to utilize preserved low-dimensional subspace (e.g., muscle synergies). In

the next chapter, we will introduced the framework of the motor control theories

to possibly explain the process of hyper-adaptability.

3. Motor Control Theories for Hyper-adaptability

In this section, we provided an overview of the control schemes, and discussed the

potential control framework suitable to explain the hyper-adaptability. We

introduced the concept of weak and strong anticipation, and explained how these

control schemes based on these two concepts can explain the process of motor

control and neurorehabilitation, and discussed the potential control framework

suitable to study hyper-adaptability as introduced in the previous sections. In

summary, to determine the suitable pathways to understand the control

mechanisms underlying the hyper-adaptability, we discussed two types of

theoretical frameworks, strong and weak anticipation; if a model of the

target/environment dynamics is provided for the prediction of the future, it is said

to be weak anticipation; if it is not given, but the prediction arises from systematic

lawfulness based on the real-time coupling between environmental dynamics, body

dynamics and internal dynamics, it is said to be strong anticipation [26].

3.1. Types of Motor Control Theories: Weak and Strong Anticipation

A surprising aspect of neuroscience and neurorehabilitation is that motor control is

one of the most complex and difficult tasks that the human brain is responsible

for. The sheer number of factors, for example, high degrees of freedom of body

parts, that must be managed to execute even the simplest physical task stands in

sharp contrast to the unconscious ease with which we perform complex tasks. The

confusion has only grown as engineering-based robotics techniques have been

found singularly lacking in the face of the unavoidable sensory delays, persistent

noise, and imprecise sensing ubiquitous to biological systems. Therefore, discussing

the topic of motor control in organisms requires a relaxation of constraints and

biases imported from control theory and engineering.

To overcome the inevitable time-delay in the sensory-motor systems, which

would otherwise make simple tasks impossible, we need to predict or anticipate the

next moment of environmental dynamics as well as body dynamics. Anticipation
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allows an individual to obtain information about the environment because errors

between the anticipated and actual feedback from the body can be used to

measure and improve the motor controller, or can be a simple source of instability.

Furthermore, functions to induce anticipation are strongly related to the ability to

adapt to the new environmental dynamics or impaired dynamics of body parts. In

examining how organisms achieve this, Stepp and Turvey made a distinction

between control methods based on ‘weak’ and ‘strong’ anticipation [26] (Table 1).

Weak anticipation methods use a mathematical model of the system under

control to explicitly calculate its future state. This allows appropriate control

signals to be formulated in down streams based on this future state, rather than

waiting for delayed feedback from the body. Weak anticipation methods include

feedforward and feedback models such as Smith predictors, MOSAIC [27], and

optimal feedback control (OFC) models [28]. From the control engineering point of

view, the feedback delay between brain and body is a source of instability, and the

feedforward (internal) model plays a role of stabilizing the feedback loops.

All of the weak anticipation-based control frameworks need to construct an

explicit model of the body dynamics as an internal model to simulate the

outcomes of motor commands. Characteristically, a weakly anticipating predictor’s

performance is maximised where the system under control and its environment are

fully understood, and drops when this characterization is uncertain or incorrect.

As an example of weak anticipation, the MOSAIC [27] model is an extended

version of OFC and suggests that the brain encodes many contextual models that

represent different physical tasks. By observing sensory cues, a MOSAIC-based

system can select a forward and inverse model suited to the current environmental

context or begin the process of learning a new one if none matches. The functional

hypothesis of MOSAIC is that these models can collectively approximate a

prediction for any given scenario, although the number and diversity of models

that would be required are still under debate. Nonetheless, all weak anticipation

methods must contend with the difficulty of constructing a forward model not only

for the (highly complex) human body, but also for every possible interaction

between the body and the environment.

By contrast, strong anticipation does not posit the existence of a predictive

model, but that anticipation arises out of the real-time coupling of the organism

(or artificial system) with its environment [26]. The controller or internal dynamics

does not act as a predictor in isolation for changing environment or target

dynamics, but only in concert with the sensors and actuators of the body. Thus,

the brain-body system as a whole anticipates the future states of environmental or

target dynamics. In contrast to the weak anticipation, there is no single internal

dynamics that represents the external dynamics. For example, the controllers

developed by Alverez-Aguirre et al. [29] and Eberle et al. [30] do not model the
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Table 1. Summary of weak and strong anticipation
Weak anticipation Strong anticipation

Basic mechanism

Prediction of motor outcomes
with internal models to esti-
mate the body state for gen-
eration of motor commands

Synchronization of internal
dynamics with body and en-
vironmental dynamics to rein-
force motor commands

Normal adapta-
tion

Updating of internal models
to produce appropriate motor
commands

No need to tune the parame-
ters

Hyper adaptation May not to be applicable
Reshaping of RNNs to find
the global minimum

Examples
Optimal feedback control,
MOSAIC

Anticipating synchronisation,
outfielder problems

feedback delay of the controlled system, but automatically adapt to the length of

delay without parameter changes via the phenomenon of anticipating

synchronisation [31]. Anticipation for the future state of the target dynamics was

made possible, without using the internal model of the target dynamics, by out of

the resonance between the internal dynamics of the body and the actual body

dynamics itself. This provides a new perspective for engineering-inspired models of

human motor control, which traditionally take the sensors and actuators (muscles)

as fixed priors that do not contribute to the ability to anticipate, and would

indicate a dynamical system approach for neuroscience and neurorehabilitation. In

later sections, we showed how a strong anticipation can be implemented in the

control scheme to interact with the environmental dynamics, and how the strong

anticipation via anticipating synchronisation (one particular branch) allows us to

have a simple oscillator model capable of predicting the environmental dynamics

and body dynamics.

Optimal Feedback Controller: An Example of Weak Anticipation

As an example of the weak anticipation framework, an attempt to explain the

motor control comes in the form of optimal feedback control (OFC) (For example,

see [28]). In principle, one desired state of body kinematics (e.g., desired velocity

and position) is input to the controller of the OFC, and the controller also receives

the input from the feedback loops, which encodes the discrepancy between the

sensory feedback from the musculoskeletal systems (body) and the predicted state

from the internal model of the body. In practice, the state estimator combines the

incoming afferent sensory feedback and an outcome prediction of outgoing motor

commands through an internal forward model to construct an optimal estimate of

the body’s current state by tuning the feedback gain in the controller.
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In the OFC, a motor variance is hypothesized to be a result of a ‘minimum

intervention’ principle, where the feedback controller only corrects the feedback

gain parameters for task-relevant deviations. Motor planning of feedback gain

should proceed, depending on task goals [32,33]. Once movement is initiated,

motor commands are generated by an OFC with the estimated state and planned

feedback gain. The motor planning itself is context dependent; Cluff and Scott

showed that the motor system can produce a spectrum of corrective responses that

depend on the behavioral goal of the motor task [33]. This also indicates that the

internal model is needed to simulate the environmental and body dynamics to

determine the motor planning prior to the motor execution. Once a motor plan has

been specified, motor commands are generated by an OFC that uses a state

estimator to combine sensory feedback and forward sensory prediction (based on

an efference copy of the motor command) in order to correct motor errors. In

summary, in terms of a whole control scheme, ‘weak anticipation’ model of the

OFC includes (a) perception (b) simulation (c) motor planning and (d) optimal

functions.

Anticipating Synchronization-Based Control Scheme: An Example of

Strong Anticipation

The optimal feedback model can stabilize the control to achieve a goal, overcoming

the time delay in the sensory-motor system by the internal model of the body.

However, this stable control is achieved by the precise representation of body

dynamics within the internal model to simulate the body dynamics. Thus, if the

body dynamics is altered due to the brain damage, it goes beyond the functions of

the OFC to exhibit the adaptation for a new body dynamics. In addition, when

the target has a certain dynamics, and humans are engaged to trace a target, the

future state of the target cannot be predicted, requiring another internal model

that represents and simulates the target dynamics.

Thus, here still remains the questions; (1) how humans can smoothly follow the

target dynamics, predicting the future state of its dynamics, and (2) the

robustness of the internal model of the body when it is damaged. We considered

that the framework of strong anticipation, i.e., dynamical real-time coupling of

internal dynamics with the target/body dynamics, can shed a light into the

questions above.

Although the potential implementations of strong anticipation are very diverse

one, in particular, the strong anticipation is applicable to the problem of human

motor control: anticipating synchronization. Let us think of the situation in which

an agent (follower) is anticipating the environmental dynamics (leader). In the

original AS framework, ‘leader’ system is showing the autonomous dynamics as a
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function of time. The ‘follower’ system has the identical autonomous dynamics and

is the coupling term that tries to minimize the difference to the state of the leader

system. This AS Framework can be considered as a variation in the

synchronization between dynamical systems where the ‘follower’ system

synchronizes with the future of the ‘leader’ system instead of its present state [31].

Synchronization of the follower with the future state of the leader is not a violation

of causality but relies on the fact that a deterministic dynamical system’s current

state is strongly determined by its past. Intuitively, the leader and follower systems

have the same autonomous dynamics, and are running autonomously as a function

of time; in the follower system, the coupling term to minimize the difference to the

state of the leader, the self-feedback delay of the follower (‘memory’ of the

follower’s past state) plays a role in ‘pushing’ the autonomous dynamics of the

follower to synchronise with the future state of the leader.

From here, we focused on the detailed formulation of the AS-based strong

anticipation. Mathematically speaking, let us describe the leader system as x(t),

and the follower system as y(t). Both systems share the same autonomous

dynamics of f(x) as shown in Eq. (1) and Eq. (2). It was shown that anticipation

could be induced in the follower systems by adding a time-delayed coupling

K[x− y(t− τ)] (Eq. 2) in which K is a coupling parameter and τ denotes the

degree of self-feedback delay.

ẋ(t) = f(x(t)) (1)

ẏ(t) = f(y(t)) +K[x(t) − y(t− τ)] (2)

The coupling accelerates the time evolution of the follower until it ‘catches up’

with the leader; as shown by Hayashi et al. [34], the coupling term with the time

delay is related to the renormalization of the follower’s time step to be longer,

leading to the faster evolution of the follower dynamics. As a result, the follower

system can synchronize with the future state of the leader system, y(t) = x(t+ τ),

steadily within a certain range of K and τ . Anticipating synchronization was first

demonstrated in identical leader/follower autonomous dynamics, but it was

subsequently established that this is a sufficient, but not necessary condition for

stable anticipation [35,36]. Mathematically speaking, internal models of the body

or target are not necessary, as shown in Eq. (2) in which f(x) does not have to be

the exact match of f(x) in the Eq. (1), i.e. autonomous dynamics of the leader and

the follower does not have to be exactly the same. If the autonomous dynamics of

the follower is sufficiently similar to that of the leader, the follower can anticipate

the future state of the leader. Thus, as long as the follower’s behavior is sufficiently

similar to that of the leader there will be some region in which the anticipating
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manifold y(t) = x(t+ τ) is stable and can be used to predict the leader [35,37].

Oguchi and Nijmeijer used an AS follower system to act as a nonlinear

predictor in a delayed-feedback control problem, although this required an explicit

internal model of the feedback delay [29,38]. However, this still falls short of the

potential of anticipating synchronization to deliver robust anticipation without

reliance on computational modelling of the external dynamics.

To develop a human model that can trance the chaotic target, Eberle et al.

developed a framework for a novel ‘parallel’ controller (Fig. 2), extending the AS

paradigm where the predictive capacity is linked directly to feedback delay [30].

From the motor control perspective, as shown in Fig. 2, the target signals, x(t), are

directed toward the parallel system, one signal goes to the proportional control in

which the delayed feedback from the body (plant) is subtracted and multiplied by

the gain parameter, k. Therefore, the end-effector, y(t), is designed to trace the

target dynamics with the sensory-motor delay. Meanwhile, the same target signal,

x(t), goes into the internal dynamics, and another feedback loop is implemented to

generate errors as input signals to the internal dynamics. Having those two parallel

control units with the feedback loops driven by the target dynamics, original

motor commands from the minimum feedback model are reinforced by the motor

commands from the internal dynamics.

Here, the internal dynamics is not used to predict the body motion, but to

change the dynamical behavior of the real body such that it can become the

target’s follower and predict the future state of the target. Crucially, the parallel

system could predict a chaotically moving external target despite the absence of a

target model. Unlike previous implementations within the optimal feedback control

framework, the internal dynamics does not output a prediction of the plant state,

and there is no need to adjust the gain parameters in the controller. The body’s

response is a result of the resonance between the two parallel feedback loops (Fig.

3). This synchronization-based adaptation occurs rapidly, meaning that the

framework of the AS based control scheme is highly adaptive by nature to the

changing environment and changes of the body dynamics.

A further extension of the framework was demonstrated [39], where the internal

dynamics was represented by a bank of simple oscillators while maintaining the

predictive behavior for the environmental dynamics. Surprisingly, as the nature of

strong anticipation, neither an exact model of the target nor the body is required

for the robotic hand to trace the chaotic motion of the target, i.e., anticipation for

the target dynamics. In other words, the bank of oscillators as a internal dynamics

could represent the plant and target dynamics in the parallel configuration and

reinforce the motor commands to control the body coordination, compensating the

time delay in the sensory-motor system and predicting the future state of target

dynamics.
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Figure 2. Block diagram of the ‘parallel’ system: internal dynamics g(.) condition the behavior of the body

h(.) such that it can be coupled with the target f(.) and predict its output such that x(t + τ) = y(t). Green

elements represent intrinsic elements of the body and target, while yellow elements are added to enable antic-
ipation.

Environmental Dynamics

Internal Dynamics

Body Dynamics

Feedback loop

Reinforced motor command

Figure 3. Schematic illustration of the parallel model based on anticipating synchronization. Environmental
dynamics drives both internal dynamics and body dynamics. Internal dynamics with the feedback loops will

reinforce the original motor commands. Note that the internal dynamics is not internal models of environmental

or body dynamics, just a band of oscillators. We discussed the possibility of using recurrent neural networks
(RNNs) as internal dynamics.
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To summarize the mathematical formulation of the AS-based anticipating

synchronization, let us give a comprehensive discussion below. In the control

framework based on the AS, for the target motion representing the environmental

dynamics, the harmonic oscillators could induce the resonance of the body

dynamics so that the body coordination status can be used to predict the future

state of the target dynamics (Fig. 3). Again, the bank of harmonic oscillators in

isolation is not the model of the body or target dynamics. Thus, the ability to

trace the chaotic target in synchronization naturally emerged from the systematic

lawfulness of the configuration as shown in Fig. 3.

The ability to encode the internal dynamics in the form of oscillatory dynamics

is of interest given that such systems are ubiquitous in biological organisms.

Similar properties are exhibited by certain recurrent neural networks (RNNs) that

seek to represent the dynamical properties of the human brains. Thus, these

networks might represent an ideal platform for control based on strong anticipation

for more complex dynamics, because a bank of non-linear oscillators can be a rich

source of the non-linear dynamics spanning a variety of landscape of cost functions.

3.2. Control Theories for Normal Adaptation

So far, control frameworks based on weak and strong anticipation were introduced

to mainly explain how they work in terms of control. Here, we extend our approach

of two theoretical frameworks to discuss the adaptation process in motor learning

where participants are asked to learn a new environmental or body dynamics.

For example, let us think of the reaching task as shown in Fig. 1 under the

unknown force field, and how humans can learn or adapt to this new

environmental dynamics of the force field. In the OFC, while reaching the target,

the force field induces the discrepancy between the predicted state of body parts

and the actual state of these parts (sensory-prediction errors). Initially, the gain

parameters in the feedback controller will be tuned, an internal model of the force

field will be generated, and the motor commands will be generated to compensate

for the sensory-prediction errors. On the other hand, the AS-based strong

anticipation was initially validated in manual tracking of non-chaotic targets, with

and without programmed feedback delays in the visual-motor systems [40].

Participants were asked to track a chaotically moving target presented on a

computer monitor by means of controlling a similar on-screen object. The task

success of adapting to the introduced time delay in the visual feedback required

anticipation on the part of the participant. Stepp showed that (a) participants are

able to synchronize with a chaotic target, even with some amount of applied delay;

(b) the degree of anticipation to the target dynamics varies systematically with

applied time delay, and (c) this systematic dependence of anticipation is the
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primary feature of systems exhibiting anticipating synchronization. Validation of

the AS-based strong anticipation in various experimental paradigms should be

explored further to explain the motor adaptation of humans in the future.

3.3. Control Theories for Hyper-adaptability

In this section, let us focus on the adaptation mechanism when the neural

networks in the brain are damaged. In the case of OFC, depending on the

damaged area, perception, simulation of body dynamics, motor planning, and

optimal functions will be affected; therefore, the efference copy and predicted state

of the body coordination will also be affected [41]. However, the OFC itself does

not have the explicit functions to recover those damages or may not be developed

to have functions in order to resolve the damage to the neural networks.

On the other hand, AS-based strong anticipation has been shown to work even

in cases where the body dynamics is not modeled. Therefore, the function could be

restored after damage to the internal dynamics by much simpler adaptations to

the closed loops of feedback between the body and the brain. Since a simple

follower system can anticipate a complex leader, the remaining functional neurons

representing the internal dynamics could be repurposed to resume anticipating the

body’s dynamics, utilizing the ability of self-organization. The AS coupling

without invoking the need for a ‘diagnostic function’ can selectively repair the

original internal dynamics.

This autonomous ability of the strong anticipation may be compatible with the

usage of recurrent neural networks, RNNs (please see the following sections) as

more adaptive internal dynamics. Using the harmonic oscillators, we showed that

the internal dynamics can be resonanced with the target and body dynamics to

anticipate the future state of the target dynamics. If the simple harmonic

oscillators are replaced with the RNNs, the internal dynamics will be enriched as a

reservoir of the nonlinear dynamics and the ability to repair itself, when damaged,

will be more enhanced as the closed loops within the networks will have a higher

function to induce resonanced states with the body and environmental dynamics

(Fig. 3).

From the perspective of the reshaping neural networks for hyper-adaptation,

when the brain reorganizes neural networks by disinhibiting the pre-existing neural

network that is normally suppressed (Fig. 1), an internal dynamics based on RNNs

can rapidly change its dynamical behaviour to explore the landscape of cost

functions (Please see the following sections for details). When RNNs are embedded

within an AS-based internal model, the systematic lawfulness of the control

configuration (Fig. 3) would allow the RNNs to find the global minimum of the

cost functions. That is, physical intervention to the body dynamics can stimulate
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the feedback loops between the brain and the body to induce the reshaping of the

RNNs for the global minimum of the cost functions as shown in Fig. 1.

In this section of motor control theories for hyper-adaptability, we provided an

overview of the two main frameworks, namely, weak and strong anticipation,

discussing the basic mechanisms of how they function and consequence for motor

adaptation. Although the discussion on weather the parallel model should be used

to implement the RNN as a internal dynamics needs to be clarified, the RNN

would have a higher affinity with the idea of strong anticipation since it states that

organisms like human beings anticipate events by continuously coupling their own

(cognitive or somatic) processes to the dynamics of the environment. To induce the

motor coordination for a given purpose, quite a few control frameworks would be

able to achieve a goal; however, the mechanisms themselves can be different. Thus,

as in the following sections, the physiological experiments conducted to measure

the activity of neurons will play an important role to validate the extracted

dynamics against the motor coordination and to discuss further the control

framework used in the motor coordination of humans.

4. Neural Network Modeling of Hyper-adaption

In the previous sections, we reviewed the examples of hyper-adaptability in

humans after stroke or traumatic brain injuries and discussed the applicability of

control theories (weak and strong anticipation) in understanding the mechanisms

of hyper-adaptability. These behavioral and theoretical considerations highlighted

the “reconstruction” of neural structures, which is essential for hyper-adaptation

and differentiate it from normal adaptation. To understand the circuit mechanism

of hyper-adaptability, it is necessary to establish neural network models that can

recapitulate the behavioral change during hyper-adaptation. In addition, such

neural network modeling also provides useful insights into physiological

observations during hyper-adaptation. In the previous section, we attempted to

apply the recurrent neural networks to replace a control process (i.e., internal

dynamics). Here, we more generally discuss how recent advances of neural network

modeling can be used to understand the circuit mechanisms of hyper-adaptability.

4.1. Neural Network Modeling of Sensory-motor Systems

Neural network modeling has emerged as a powerful tool to emulate the neural

functions and to infer their circuit mechanisms, such as sensory processing [42],

decision making [43], and motor control [44–46]. One of the biggest successes is the

application of feedforward neural networks (i.e., networks that only have
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feedforward connections) to recapitulate a neural processing of ventral stream in

the visual system [42]. Such a feedforward network was successfully trained to

identify objects in a large dataset of images (ImageNet). An advantage of neural

network modeling is that once the network is sufficiently trained, researchers can

“look inside” the network, including synaptic connections and network structures,

to get insights for critical structure, which achieves the desired functions. For

example, the trained network of the ventral stream demonstrated that the neural

responses of layers in the network were surprisingly similar to those recorded from

the visual system, indicating the hierarchical and serial processing in the ventral

stream.

However, in contrast to a huge success of the feedforward networks in modeling

of the sensory system, their application to the motor system has not been

successful. One of the potential reasons is that the motor control is fundamentally

based on the interaction between top-down motor commands and feedback

information. The ultimate goal of motor system is not to “represent” some

behavioral parameters, but to “generate” a temporal, i.e., dynamic, pattern of

motor outputs, such as muscle activation patterns [47]. Unlike a feedforward

network, an RNN contains recursive connections that allow the past states of

neurons to influence their current state, and it can generate a temporal pattern of

motor outputs. In the RNN, the activity of the network (r) can be viewed as a

differential equation of the input (u) and the own network activity:

ṙ(t) = Jr(t) + u(t) (3)

where J represents the system dynamics that defines how the network activity

develops over time.

4.2. RNN Modeling of Motor Control, Preparation and Learning

Recent development of neural recording techniques from a large-scale neural

structure allows us to find a neural state which represents patterns of population

neural activity rather than the individual neurons. For example, when monkeys

make a reaching to spatial target, each neuron in the motor areas shows a wide

variety of patterns of activity, which does not seem to consistently represent any

specific motor parameters, such as muscle activity or hand position [48]. However,

when a dimensional reduction technique (e.g., PCA and jPCA) is applied to

high-dimensional neural activity, the population activity can be successfully

expressed as a combination of smaller sets of population activity that can be

expressed as a low-dimensional subspace of neural activity [49]. This finding
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indicates that a population of motor cortex neurons are not independently

activated but regulated to reflect the body and behavioral constraints.

Interestingly, when an RNN was trained to reproduce muscle activity that was

experimentally recorded from monkeys during reaching, similar low-dimensional

subspaces of neural activity spontaneously appeared in the RNN although it was

not explicitly required [46]. This result suggested that in a normal state, the

network connections in the motor cortex can be optimized to perform motor tasks,

and the network dynamics of the motor cortex is confined to a low-dimensional

subspace (Fig. 4a, a yellow plane). Similar results were found when the RNN was

trained to reproduce the arm velocity during reaching rather than the muscle

activity [50].

What is the functional implication of the low-dimensional subspace of the

network dynamics of motor cortex? Recent studies have suggested that there are

at least two advantages of the low-dimensional dynamics in the motor system:

separation of multiple processes and facilitation of motor learning. Firstly, it can

separate the neural processes for motor execution from those that should not affect

motor outputs directly, such as motor preparation. For example, motor

preparation facilitates the performance (speed and accuracy) of the forthcoming

motor behaviors, but the neural activity involved in the motor preparation should

not evoke motor outputs before the start signal arrives. Therefore, the process for

motor execution and preparation should be separated although both are processed

in the same motor cortical neurons. Kaufman et al. (2014) demonstrated that the

preparatory activity in the motor cortex spanned a neural subspace that is

orthogonal to a subspace for motor output [51]. This finding suggests that motor

preparation can be made without affecting the motor outputs. This separation of

output null (motor preparation) and output-potent (motor execution) dimensions

allows the network to perform multiple processes simultaneously and

independently. The RNN modeling of motor preparation and execution activity

replicates these subspaces that are located orthogonally. More interestingly, the

neural states in the preparatory and execution subspaces were not randomly

related, but they were tightly related to each other [44]. This modeling results

suggested that the low-dimensional dynamics of the motor cortex can create

several subspaces separately for the multiple neural functions and “gate” them

from one space to the other (e.g., from motor preparation to motor execution).

Another advantage of the existence of low-dimensional dynamics in the motor

system is that it can facilitate motor learning and adaptation. Accumulating

evidence showed that the low-dimensional subspace of motor cortex dynamics was

consistent across multiple behaviors [52], over a long period of time [53,54], and

during motor learning [54]. Using a brain-computer interface (BCI) technique in

monkeys, Sadtler et al. examined how quickly monkeys can adapt to novel BCI
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mappings (i.e., mappings between neural activity and cursor movements), which

are designed to be within or outside of the original subspace of the motor cortex

dynamics [55]. Their results showed that monkeys could readily learn to control

the cursor when the change was within the original subspace, whereas they were

less able to learn the new mapping if it was outside of the original subspace. To

understand the circuit mechanisms that cause the difference in the motor learning

ability, Feulner and Clopath (2020) trained RNNs and compared their adaptability

to change of the BCI mapping within and outside of the original subspace [45].

Their results showed that RNN can predict error feedback signal more correctly

when the change was within the original subspace than when it was outside of the

original subspace and resulted in the better learning performance, suggesting that

the low-dimensional subspace provided a constraint to correctly estimate the error

feedback for motor learning. These results give functional implications for the

existence of the low-dimensional subspaces of the motor cortex.

4.3. Perspectives for RNN Modeling of Hyper-adaptability

In the previous section, we reviewed the recent advances regarding the neural

dynamics of the motor system and applications of RNN modeling to determine the

underlying network mechanisms. Here, we further discuss how to employ these

approaches to investigate the neural mechanisms of hyper-adaptability.

Figure 4 shows a schematic illustration to explain possible scenarios about how

the network changes during hyper-adaptability. First, in a normal situation, the

network dynamics is optimized to body and behavioral constraints and confined to

a low-dimensional subspace (Fig. 4a). During normal adaptation (e.g., force field

adaptation), network weights are changed but the low-dimensional subspace is

preserved [54]. Then, if the network is damaged by stroke or traumatic brain

injuries, a part of the network can be lost, and this prevents the neural state from

fully exploring the original subspace and causes motor impairments (Fig. 4b). To

recover from the impairments, the network needs to explore a large range of

networks, including latent networks, which were less active in a normal state (r4 in

Fig. 4c). After that, the network also needs to re-optimize its dynamics to obtain

the new control subspace to recover motor function. Note that, in the recovered

state, the optimized subspace is not necessarily the same as that of the original

activity pattern (e.g., the activity of neurons r2 and r3 are different from the

normal state), but their activity could be re-optimized for the new network

structure including recruited the latent networks (e.g., r4). In this scenario, in

order to identify the mechanism that causes the hyper-adaptability, it is important

to determine the factor that regulates or facilitates the re-optimization of neural

dynamics from the normal state to the recovered state.
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Previous studies have demonstrated some common principles that explain the

changes in the neural dynamics in the recovered state (Fig. 4d). First, functional

recovery can be constrained by subspaces of lower motor systems, such as the

brainstem and spinal cord (Fig. 4d top). For example, muscle synergies, which are

believed to be predominantly implemented in the subcortical systems [56–59], can

be preserved after a cortical stroke [22,23]. This result suggests that the network

dynamics of a lower system might constrain a control space where the higher

system needs to explore to re-optimize the network dynamics during

hyper-adaptation. This constraint might help the motor system to achieve faster

and robust learning similar to the BCI motor learning within the original subspace

[45,55].

Second, hyper-adaptation sometimes caused disinhibition to employ latent

networks that are less active in a normal state (Fig. 4d bottom). After stroke or

spinal cord injuries, indirect corticomotoneuronal pathways such as propriospinal

and cortico-rubral pathways are recruited to achieve functional recovery [60–62]. In

addition, ipsilateral motor areas, which are usually less activated during unilateral

limb movements, are activated to increase the interhemispheric interaction after

spinal cord injuries [63,64]. Interestingly, these latent neural circuits are mostly

phylogenetically and developmentally older systems, but they are preserved in

developed nervous systems. These observations are consistent with basic principles

proposed by Gerald Edelman that development and plasticity of the central neural

system occurs in a bottom-up manner through a natural selection of neuronal

groups rather than in a top-down manner [65]. From a neural network perspective,

the hyper-adaptation can be viewed as a bottom-up process to reproduce a neural

development with 1) the extensive exploration of the nervous system and 2)

selection or reoptimization of the neural dynamics to achieve behavioral goals.

It is of interest how the latent, normally suppressed, circuits are recruited and

the entire dynamics is reoptimized. The neural interactions can be investigated by

combining a large-scale neural recordings and statistical techniques to infer the

causal interactions, such as Granger causality, or dynamical causal modeling.

However, all of these methods are based on the correlational estimates of neural

interactions, and they cannot accurately deal with the problem of confounders like

common input or recurrent connectivity [66]. Perich and Rajan recently proposed

a novel approach to describe the interactions of neural networks using data-driven

RNN modeling [67]. This technique trains RNN models to match not only the final

outputs with target outputs, but also the network activity with “teacher” activity,

which is experimentally recorded. Using this approach, they successfully

recapitulate the changes in the neural dynamics of the whole brain recordings from

larval zebrafish and identify a putative interaction between habenula and the

raphe nucleus during adaptation to inescapable stress [68]. Critically, these neural
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network modeling approaches provide useful insights into the mechanistic change

during the hyper-adaptation because these data-driven RNN can explicitly model

the latent network, which is suppressed during normal states and is difficult to

model with conventional RNN training algorithms.

5. Future Direction to Understand the Neural Mechanisms for

Hyper-adaptability

Hyper-adaptability is the ability of the human to bridge the gap that occurs in the

brain-body system by reconstruction of their neural structure and reconstitution of

motor principle. Although humans have the capability to learn new motor skills

under the given environments and musculoskeletal systems utilizing the existing

neural networks, hyper-adaptability becomes important to relearn motor functions

after the brain is severely damaged. In this survey paper, we reviewed how the

human brain changes after injury and how the rehabilitation methodology induces

motor recovery. When the neural networks are injured due to brain damage,

humans are unable to utilize conventional neural networks. In the context of

hyper-adaptability, rehabilitation intervention is considered to modify the neural

networks and to encourage the use of latent neural circuits, which humans do not

use in the normal state.

To prompt hyper-adaptation, the motor-impaired patients could explore

different motor strategies in the latent neural networks by utilizing the

low-dimensional subspace of the musculoskeletal systems (e.g., muscle synergy). As

previous studies suggested, motor-impaired patients after brain injury could utilize

muscle synergies preserved in the spinal cord [23–25], and the activation of muscle

synergies improve by rehabilitation [12]. Identifying the existing muscle synergy

structure and utilizing them in rehabilitation would be beneficial for restoring the

motor function of the patients with motor impairment. Furthermore, it is

worthwhile to examine the effects of a combination of different intervention

methods, such as CI therapy, disinhibition, and facilitation. To fully utilize these

rehabilitation methods, it is necessary to understand how neural network models

change through rehabilitation after a brain injury.

One promising approach is the application of neural network models to

recapitulate the process of functional recovery after motor dysfunctions. This

approach can be divided into two steps: 1) building network models to reproduce

intact behavior (forward engineering) and 2) “breaking” the model to analyze the

internal structure and emulate the motor impairments and recovery processes

(reverse engineering). Michaels et al. (2020) showed that the inhibition of a part of

hierarchical RNNs showed unique patterns of motor deficits similar to those
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observed in animal experiments [69]. Other studies also demonstrated that

deactivation of brain areas could be emulated by the deactivation of motor control

models, such as the optimal feedback control model [70,71]. The network model

approaches (such as hierarchical RNNs and other variants) will be more critical to

bridge the gap between the theoretical predictions and physiological observations.

Another feasible application of neural network models is to understand the

development and evolution of the central nervous system. To understand the

reorganization of neural systems for a large-scale change in the nervous system

(i.e., hyper-adaptability), it is important to consider how the latent neural

structures are recruited and reoptimized to adapt to the change of the nervous

system and body. How these latent neural structures are selected and preserved

during development and across species is a fundamental question in neuroscience

[65,72]. Training and testing network models could provide a mechanistic

explanation of the development and preservation of latent structures and

recruitment while recovering from the nervous system impairment.

One limitation of network modeling is that training algorithms are not

biologically plausible. Trained RNNs can recapitulate the animal behaviours and

neural dynamics, but most of the previous studies used biologically less feasible

algorithms, such as backpropagation through time [73], transfer learning [74], and

data-driven RNN modelling [67]. This prevented us from considering the

time-course of the learning process with regard to the adaptation of animals.

Recently, biologically more plausible algorithms have been proposed, such as

Hebbian learning [75]. These algorithms might provide useful insights into the

time-course of development and adaptation, including hyper-adaptability. Further

development and investigation are warranted.

In terms of neurorehabilitation, the process of regaining motor control in

impaired parts of the body can be considered as reshaping the neural networks and

reconstituting the control scheme in the brain. Although some parts of the neural

networks are damaged, using the framework of the strong anticipation, we suggest

that the nature of the nonlinear reservoir of RNN as an internal dynamics and low

dimensional space based on synergy from the muscle allow the reshaping of the

RNN for a rapid adaptation of the new body. The former is generated by the

resonance of the RNN with the body dynamics based on the AS control

framework, and the latter by the constraint of body kinematics and dynamics

through sensory-motor feedback loops. It could be more important to identify the

robustness or adaptability of each latent neural systems to unravel the neural

mechanism of hyper-adaptation and leverage them for rehabilitation.
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